diff options
author | kenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4> | 2001-10-02 14:18:40 +0000 |
---|---|---|
committer | kenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4> | 2001-10-02 14:18:40 +0000 |
commit | 83cce46b47d48de4c71b02a20f5bf36296a48568 (patch) | |
tree | 6570bc15069492ca4f53a85c5d09a36d099fd63f /gcc/ada/inline.adb | |
parent | ee6ba406bdc83a0b016ec0099d84035d7fd26fd7 (diff) | |
download | gcc-83cce46b47d48de4c71b02a20f5bf36296a48568.tar.gz |
New Language: Ada
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@45955 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/inline.adb')
-rw-r--r-- | gcc/ada/inline.adb | 954 |
1 files changed, 954 insertions, 0 deletions
diff --git a/gcc/ada/inline.adb b/gcc/ada/inline.adb new file mode 100644 index 00000000000..b21ca1f53dd --- /dev/null +++ b/gcc/ada/inline.adb @@ -0,0 +1,954 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT COMPILER COMPONENTS -- +-- -- +-- I N L I N E -- +-- -- +-- B o d y -- +-- -- +-- $Revision: 1.55 $ +-- -- +-- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- +-- for more details. You should have received a copy of the GNU General -- +-- Public License distributed with GNAT; see file COPYING. If not, write -- +-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- +-- MA 02111-1307, USA. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- +-- -- +------------------------------------------------------------------------------ + +with Atree; use Atree; +with Einfo; use Einfo; +with Elists; use Elists; +with Errout; use Errout; +with Exp_Ch7; use Exp_Ch7; +with Exp_Ch11; use Exp_Ch11; +with Exp_Tss; use Exp_Tss; +with Fname; use Fname; +with Fname.UF; use Fname.UF; +with Lib; use Lib; +with Nlists; use Nlists; +with Opt; use Opt; +with Sem_Ch8; use Sem_Ch8; +with Sem_Ch10; use Sem_Ch10; +with Sem_Ch12; use Sem_Ch12; +with Sem_Util; use Sem_Util; +with Sinfo; use Sinfo; +with Snames; use Snames; +with Stand; use Stand; +with Uname; use Uname; + +package body Inline is + + -------------------- + -- Inlined Bodies -- + -------------------- + + -- Inlined functions are actually placed in line by the backend if the + -- corresponding bodies are available (i.e. compiled). Whenever we find + -- a call to an inlined subprogram, we add the name of the enclosing + -- compilation unit to a worklist. After all compilation, and after + -- expansion of generic bodies, we traverse the list of pending bodies + -- and compile them as well. + + package Inlined_Bodies is new Table.Table ( + Table_Component_Type => Entity_Id, + Table_Index_Type => Int, + Table_Low_Bound => 0, + Table_Initial => Alloc.Inlined_Bodies_Initial, + Table_Increment => Alloc.Inlined_Bodies_Increment, + Table_Name => "Inlined_Bodies"); + + ----------------------- + -- Inline Processing -- + ----------------------- + + -- For each call to an inlined subprogram, we make entries in a table + -- that stores caller and callee, and indicates a prerequisite from + -- one to the other. We also record the compilation unit that contains + -- the callee. After analyzing the bodies of all such compilation units, + -- we produce a list of subprograms in topological order, for use by the + -- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for + -- proper inlining the back-end must analyze the body of P2 before that of + -- P1. The code below guarantees that the transitive closure of inlined + -- subprograms called from the main compilation unit is made available to + -- the code generator. + + Last_Inlined : Entity_Id := Empty; + + -- For each entry in the table we keep a list of successors in topological + -- order, i.e. callers of the current subprogram. + + type Subp_Index is new Nat; + No_Subp : constant Subp_Index := 0; + + -- The subprogram entities are hashed into the Inlined table. + + Num_Hash_Headers : constant := 512; + + Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1) + of Subp_Index; + + type Succ_Index is new Nat; + No_Succ : constant Succ_Index := 0; + + type Succ_Info is record + Subp : Subp_Index; + Next : Succ_Index; + end record; + + -- The following table stores list elements for the successor lists. + -- These lists cannot be chained directly through entries in the Inlined + -- table, because a given subprogram can appear in several such lists. + + package Successors is new Table.Table ( + Table_Component_Type => Succ_Info, + Table_Index_Type => Succ_Index, + Table_Low_Bound => 1, + Table_Initial => Alloc.Successors_Initial, + Table_Increment => Alloc.Successors_Increment, + Table_Name => "Successors"); + + type Subp_Info is record + Name : Entity_Id := Empty; + First_Succ : Succ_Index := No_Succ; + Count : Integer := 0; + Listed : Boolean := False; + Main_Call : Boolean := False; + Next : Subp_Index := No_Subp; + Next_Nopred : Subp_Index := No_Subp; + end record; + + package Inlined is new Table.Table ( + Table_Component_Type => Subp_Info, + Table_Index_Type => Subp_Index, + Table_Low_Bound => 1, + Table_Initial => Alloc.Inlined_Initial, + Table_Increment => Alloc.Inlined_Increment, + Table_Name => "Inlined"); + + ----------------------- + -- Local Subprograms -- + ----------------------- + + function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean; + -- Return True if Scop is in the main unit or its spec, or in a + -- parent of the main unit if it is a child unit. + + procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty); + -- Make two entries in Inlined table, for an inlined subprogram being + -- called, and for the inlined subprogram that contains the call. If + -- the call is in the main compilation unit, Caller is Empty. + + function Add_Subp (E : Entity_Id) return Subp_Index; + -- Make entry in Inlined table for subprogram E, or return table index + -- that already holds E. + + function Has_Initialized_Type (E : Entity_Id) return Boolean; + -- If a candidate for inlining contains type declarations for types with + -- non-trivial initialization procedures, they are not worth inlining. + + function Is_Nested (E : Entity_Id) return Boolean; + -- If the function is nested inside some other function, it will + -- always be compiled if that function is, so don't add it to the + -- inline list. We cannot compile a nested function outside the + -- scope of the containing function anyway. This is also the case if + -- the function is defined in a task body or within an entry (for + -- example, an initialization procedure). + + procedure Add_Inlined_Subprogram (Index : Subp_Index); + -- Add subprogram to Inlined List once all of its predecessors have been + -- placed on the list. Decrement the count of all its successors, and + -- add them to list (recursively) if count drops to zero. + + ------------------------------ + -- Deferred Cleanup Actions -- + ------------------------------ + + -- The cleanup actions for scopes that contain instantiations is delayed + -- until after expansion of those instantiations, because they may + -- contain finalizable objects or tasks that affect the cleanup code. + -- A scope that contains instantiations only needs to be finalized once, + -- even if it contains more than one instance. We keep a list of scopes + -- that must still be finalized, and call cleanup_actions after all the + -- instantiations have been completed. + + To_Clean : Elist_Id; + + procedure Add_Scope_To_Clean (Inst : Entity_Id); + -- Build set of scopes on which cleanup actions must be performed. + + procedure Cleanup_Scopes; + -- Complete cleanup actions on scopes that need it. + + -------------- + -- Add_Call -- + -------------- + + procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is + P1 : Subp_Index := Add_Subp (Called); + P2 : Subp_Index; + J : Succ_Index; + + begin + if Present (Caller) then + P2 := Add_Subp (Caller); + + -- Add P2 to the list of successors of P1, if not already there. + -- Note that P2 may contain more than one call to P1, and only + -- one needs to be recorded. + + J := Inlined.Table (P1).First_Succ; + + while J /= No_Succ loop + + if Successors.Table (J).Subp = P2 then + return; + end if; + + J := Successors.Table (J).Next; + end loop; + + -- On exit, make a successor entry for P2. + + Successors.Increment_Last; + Successors.Table (Successors.Last).Subp := P2; + Successors.Table (Successors.Last).Next := + Inlined.Table (P1).First_Succ; + Inlined.Table (P1).First_Succ := Successors.Last; + + Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1; + + else + Inlined.Table (P1).Main_Call := True; + end if; + end Add_Call; + + ---------------------- + -- Add_Inlined_Body -- + ---------------------- + + procedure Add_Inlined_Body (E : Entity_Id) is + Pack : Entity_Id; + Comp_Unit : Node_Id; + + function Must_Inline return Boolean; + -- Inlining is only done if the call statement N is in the main unit, + -- or within the body of another inlined subprogram. + + function Must_Inline return Boolean is + Scop : Entity_Id := Current_Scope; + Comp : Node_Id; + + begin + -- Check if call is in main unit. + + while Scope (Scop) /= Standard_Standard + and then not Is_Child_Unit (Scop) + loop + Scop := Scope (Scop); + end loop; + + Comp := Parent (Scop); + + while Nkind (Comp) /= N_Compilation_Unit loop + Comp := Parent (Comp); + end loop; + + if (Comp = Cunit (Main_Unit) + or else Comp = Library_Unit (Cunit (Main_Unit))) + then + Add_Call (E); + return True; + end if; + + -- Call is not in main unit. See if it's in some inlined + -- subprogram. + + Scop := Current_Scope; + while Scope (Scop) /= Standard_Standard + and then not Is_Child_Unit (Scop) + loop + if Is_Overloadable (Scop) + and then Is_Inlined (Scop) + then + Add_Call (E, Scop); + return True; + end if; + + Scop := Scope (Scop); + end loop; + + return False; + + end Must_Inline; + + -- Start of processing for Add_Inlined_Body + + begin + -- Find unit containing E, and add to list of inlined bodies if needed. + -- If the body is already present, no need to load any other unit. This + -- is the case for an initialization procedure, which appears in the + -- package declaration that contains the type. It is also the case if + -- the body has already been analyzed. Finally, if the unit enclosing + -- E is an instance, the instance body will be analyzed in any case, + -- and there is no need to add the enclosing unit (whose body might not + -- be available). + + -- Library-level functions must be handled specially, because there is + -- no enclosing package to retrieve. In this case, it is the body of + -- the function that will have to be loaded. + + if not Is_Abstract (E) and then not Is_Nested (E) + and then Convention (E) /= Convention_Protected + then + Pack := Scope (E); + + if Must_Inline + and then Ekind (Pack) = E_Package + then + Set_Is_Called (E); + Comp_Unit := Parent (Pack); + + if Pack = Standard_Standard then + + -- Library-level inlined function. Add function iself to + -- list of needed units. + + Inlined_Bodies.Increment_Last; + Inlined_Bodies.Table (Inlined_Bodies.Last) := E; + + elsif Is_Generic_Instance (Pack) then + null; + + elsif not Is_Inlined (Pack) + and then not Has_Completion (E) + and then not Scope_In_Main_Unit (Pack) + then + Set_Is_Inlined (Pack); + Inlined_Bodies.Increment_Last; + Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack; + end if; + end if; + end if; + end Add_Inlined_Body; + + ---------------------------- + -- Add_Inlined_Subprogram -- + ---------------------------- + + procedure Add_Inlined_Subprogram (Index : Subp_Index) is + E : constant Entity_Id := Inlined.Table (Index).Name; + Succ : Succ_Index; + Subp : Subp_Index; + + begin + -- Insert the current subprogram in the list of inlined subprograms + + if not Scope_In_Main_Unit (E) + and then Is_Inlined (E) + and then not Is_Nested (E) + and then not Has_Initialized_Type (E) + then + if No (Last_Inlined) then + Set_First_Inlined_Subprogram (Cunit (Main_Unit), E); + else + Set_Next_Inlined_Subprogram (Last_Inlined, E); + end if; + + Last_Inlined := E; + end if; + + Inlined.Table (Index).Listed := True; + Succ := Inlined.Table (Index).First_Succ; + + while Succ /= No_Succ loop + Subp := Successors.Table (Succ).Subp; + Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1; + + if Inlined.Table (Subp).Count = 0 then + Add_Inlined_Subprogram (Subp); + end if; + + Succ := Successors.Table (Succ).Next; + end loop; + end Add_Inlined_Subprogram; + + ------------------------ + -- Add_Scope_To_Clean -- + ------------------------ + + procedure Add_Scope_To_Clean (Inst : Entity_Id) is + Elmt : Elmt_Id; + Scop : Entity_Id := Enclosing_Dynamic_Scope (Inst); + + begin + -- If the instance appears in a library-level package declaration, + -- all finalization is global, and nothing needs doing here. + + if Scop = Standard_Standard then + return; + end if; + + Elmt := First_Elmt (To_Clean); + + while Present (Elmt) loop + + if Node (Elmt) = Scop then + return; + end if; + + Elmt := Next_Elmt (Elmt); + end loop; + + Append_Elmt (Scop, To_Clean); + end Add_Scope_To_Clean; + + -------------- + -- Add_Subp -- + -------------- + + function Add_Subp (E : Entity_Id) return Subp_Index is + Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers; + J : Subp_Index; + + procedure New_Entry; + -- Initialize entry in Inlined table. + + procedure New_Entry is + begin + Inlined.Increment_Last; + Inlined.Table (Inlined.Last).Name := E; + Inlined.Table (Inlined.Last).First_Succ := No_Succ; + Inlined.Table (Inlined.Last).Count := 0; + Inlined.Table (Inlined.Last).Listed := False; + Inlined.Table (Inlined.Last).Main_Call := False; + Inlined.Table (Inlined.Last).Next := No_Subp; + Inlined.Table (Inlined.Last).Next_Nopred := No_Subp; + end New_Entry; + + -- Start of processing for Add_Subp + + begin + if Hash_Headers (Index) = No_Subp then + New_Entry; + Hash_Headers (Index) := Inlined.Last; + return Inlined.Last; + + else + J := Hash_Headers (Index); + + while J /= No_Subp loop + + if Inlined.Table (J).Name = E then + return J; + else + Index := J; + J := Inlined.Table (J).Next; + end if; + end loop; + + -- On exit, subprogram was not found. Enter in table. Index is + -- the current last entry on the hash chain. + + New_Entry; + Inlined.Table (Index).Next := Inlined.Last; + return Inlined.Last; + end if; + end Add_Subp; + + ---------------------------- + -- Analyze_Inlined_Bodies -- + ---------------------------- + + procedure Analyze_Inlined_Bodies is + Comp_Unit : Node_Id; + J : Int; + Pack : Entity_Id; + S : Succ_Index; + + begin + Analyzing_Inlined_Bodies := False; + + if Errors_Detected = 0 then + New_Scope (Standard_Standard); + + J := 0; + while J <= Inlined_Bodies.Last + and then Errors_Detected = 0 + loop + Pack := Inlined_Bodies.Table (J); + + while Present (Pack) + and then Scope (Pack) /= Standard_Standard + and then not Is_Child_Unit (Pack) + loop + Pack := Scope (Pack); + end loop; + + Comp_Unit := Parent (Pack); + + while Present (Comp_Unit) + and then Nkind (Comp_Unit) /= N_Compilation_Unit + loop + Comp_Unit := Parent (Comp_Unit); + end loop; + + if Present (Comp_Unit) + and then Comp_Unit /= Cunit (Main_Unit) + and then Body_Required (Comp_Unit) + then + declare + Bname : constant Unit_Name_Type := + Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit))); + + OK : Boolean; + + begin + if not Is_Loaded (Bname) then + Load_Needed_Body (Comp_Unit, OK); + + if not OK then + Error_Msg_Unit_1 := Bname; + Error_Msg_N + ("one or more inlined subprograms accessed in $!", + Comp_Unit); + Error_Msg_Name_1 := + Get_File_Name (Bname, Subunit => False); + Error_Msg_N ("\but file{ was not found!", Comp_Unit); + raise Unrecoverable_Error; + end if; + end if; + end; + end if; + + J := J + 1; + end loop; + + -- The analysis of required bodies may have produced additional + -- generic instantiations. To obtain further inlining, we perform + -- another round of generic body instantiations. Establishing a + -- fully recursive loop between inlining and generic instantiations + -- is unlikely to yield more than this one additional pass. + + Instantiate_Bodies; + + -- The list of inlined subprograms is an overestimate, because + -- it includes inlined functions called from functions that are + -- compiled as part of an inlined package, but are not themselves + -- called. An accurate computation of just those subprograms that + -- are needed requires that we perform a transitive closure over + -- the call graph, starting from calls in the main program. Here + -- we do one step of the inverse transitive closure, and reset + -- the Is_Called flag on subprograms all of whose callers are not. + + for Index in Inlined.First .. Inlined.Last loop + S := Inlined.Table (Index).First_Succ; + + if S /= No_Succ + and then not Inlined.Table (Index).Main_Call + then + Set_Is_Called (Inlined.Table (Index).Name, False); + + while S /= No_Succ loop + + if Is_Called + (Inlined.Table (Successors.Table (S).Subp).Name) + or else Inlined.Table (Successors.Table (S).Subp).Main_Call + then + Set_Is_Called (Inlined.Table (Index).Name); + exit; + end if; + + S := Successors.Table (S).Next; + end loop; + end if; + end loop; + + -- Now that the units are compiled, chain the subprograms within + -- that are called and inlined. Produce list of inlined subprograms + -- sorted in topological order. Start with all subprograms that + -- have no prerequisites, i.e. inlined subprograms that do not call + -- other inlined subprograms. + + for Index in Inlined.First .. Inlined.Last loop + + if Is_Called (Inlined.Table (Index).Name) + and then Inlined.Table (Index).Count = 0 + and then not Inlined.Table (Index).Listed + then + Add_Inlined_Subprogram (Index); + end if; + end loop; + + -- Because Add_Inlined_Subprogram treats recursively nodes that have + -- no prerequisites left, at the end of the loop all subprograms + -- must have been listed. If there are any unlisted subprograms + -- left, there must be some recursive chains that cannot be inlined. + + for Index in Inlined.First .. Inlined.Last loop + if Is_Called (Inlined.Table (Index).Name) + and then Inlined.Table (Index).Count /= 0 + and then not Is_Predefined_File_Name + (Unit_File_Name + (Get_Source_Unit (Inlined.Table (Index).Name))) + then + Error_Msg_N + ("& cannot be inlined?", Inlined.Table (Index).Name); + -- A warning on the first one might be sufficient. + end if; + end loop; + + Pop_Scope; + end if; + end Analyze_Inlined_Bodies; + + -------------------------------- + -- Check_Body_For_Inlining -- + -------------------------------- + + procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is + Bname : Unit_Name_Type; + E : Entity_Id; + OK : Boolean; + + begin + if Is_Compilation_Unit (P) + and then not Is_Generic_Instance (P) + then + Bname := Get_Body_Name (Get_Unit_Name (Unit (N))); + E := First_Entity (P); + + while Present (E) loop + if Has_Pragma_Inline (E) then + if not Is_Loaded (Bname) then + Load_Needed_Body (N, OK); + + if not OK + and then Ineffective_Inline_Warnings + then + Error_Msg_Unit_1 := Bname; + Error_Msg_N + ("unable to inline subprograms defined in $?", P); + Error_Msg_N ("\body not found?", P); + return; + end if; + end if; + + return; + end if; + + Next_Entity (E); + end loop; + end if; + end Check_Body_For_Inlining; + + -------------------- + -- Cleanup_Scopes -- + -------------------- + + procedure Cleanup_Scopes is + Elmt : Elmt_Id; + Decl : Node_Id; + Scop : Entity_Id; + + begin + Elmt := First_Elmt (To_Clean); + + while Present (Elmt) loop + Scop := Node (Elmt); + + if Ekind (Scop) = E_Entry then + Scop := Protected_Body_Subprogram (Scop); + end if; + + if Ekind (Scop) = E_Block then + Decl := Block_Node (Scop); + + else + Decl := Unit_Declaration_Node (Scop); + + if Nkind (Decl) = N_Subprogram_Declaration + or else Nkind (Decl) = N_Task_Type_Declaration + or else Nkind (Decl) = N_Subprogram_Body_Stub + then + Decl := Unit_Declaration_Node (Corresponding_Body (Decl)); + end if; + end if; + + New_Scope (Scop); + Expand_Cleanup_Actions (Decl); + End_Scope; + + Elmt := Next_Elmt (Elmt); + end loop; + end Cleanup_Scopes; + + -------------------------- + -- Has_Initialized_Type -- + -------------------------- + + function Has_Initialized_Type (E : Entity_Id) return Boolean is + E_Body : constant Node_Id := Get_Subprogram_Body (E); + Decl : Node_Id; + + begin + if No (E_Body) then -- imported subprogram + return False; + + else + Decl := First (Declarations (E_Body)); + + while Present (Decl) loop + + if Nkind (Decl) = N_Full_Type_Declaration + and then Present (Init_Proc (Defining_Identifier (Decl))) + then + return True; + end if; + + Next (Decl); + end loop; + end if; + + return False; + end Has_Initialized_Type; + + ---------------- + -- Initialize -- + ---------------- + + procedure Initialize is + begin + Analyzing_Inlined_Bodies := False; + Pending_Descriptor.Init; + Pending_Instantiations.Init; + Inlined_Bodies.Init; + Successors.Init; + Inlined.Init; + + for J in Hash_Headers'Range loop + Hash_Headers (J) := No_Subp; + end loop; + end Initialize; + + ------------------------ + -- Instantiate_Bodies -- + ------------------------ + + -- Generic bodies contain all the non-local references, so an + -- instantiation does not need any more context than Standard + -- itself, even if the instantiation appears in an inner scope. + -- Generic associations have verified that the contract model is + -- satisfied, so that any error that may occur in the analysis of + -- the body is an internal error. + + procedure Instantiate_Bodies is + J : Int; + Info : Pending_Body_Info; + + begin + if Errors_Detected = 0 then + + Expander_Active := (Operating_Mode = Opt.Generate_Code); + New_Scope (Standard_Standard); + To_Clean := New_Elmt_List; + + if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then + Start_Generic; + end if; + + -- A body instantiation may generate additional instantiations, so + -- the following loop must scan to the end of a possibly expanding + -- set (that's why we can't simply use a FOR loop here). + + J := 0; + + while J <= Pending_Instantiations.Last + and then Errors_Detected = 0 + loop + + Info := Pending_Instantiations.Table (J); + + -- If the instantiation node is absent, it has been removed + -- as part of unreachable code. + + if No (Info.Inst_Node) then + null; + + elsif Nkind (Info. Act_Decl) = N_Package_Declaration then + Instantiate_Package_Body (Info); + Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl)); + + else + Instantiate_Subprogram_Body (Info); + end if; + + J := J + 1; + end loop; + + -- Reset the table of instantiations. Additional instantiations + -- may be added through inlining, when additional bodies are + -- analyzed. + + Pending_Instantiations.Init; + + -- We can now complete the cleanup actions of scopes that contain + -- pending instantiations (skipped for generic units, since we + -- never need any cleanups in generic units). + -- pending instantiations. + + if Expander_Active + and then not Is_Generic_Unit (Main_Unit_Entity) + then + Cleanup_Scopes; + + -- Also generate subprogram descriptors that were delayed + + for J in Pending_Descriptor.First .. Pending_Descriptor.Last loop + declare + Ent : constant Entity_Id := Pending_Descriptor.Table (J); + + begin + if Is_Subprogram (Ent) then + Generate_Subprogram_Descriptor_For_Subprogram + (Get_Subprogram_Body (Ent), Ent); + + elsif Ekind (Ent) = E_Package then + Generate_Subprogram_Descriptor_For_Package + (Parent (Declaration_Node (Ent)), Ent); + + elsif Ekind (Ent) = E_Package_Body then + Generate_Subprogram_Descriptor_For_Package + (Declaration_Node (Ent), Ent); + end if; + end; + end loop; + + elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then + End_Generic; + end if; + + Pop_Scope; + end if; + end Instantiate_Bodies; + + --------------- + -- Is_Nested -- + --------------- + + function Is_Nested (E : Entity_Id) return Boolean is + Scop : Entity_Id := Scope (E); + + begin + while Scop /= Standard_Standard loop + if Ekind (Scop) in Subprogram_Kind then + return True; + + elsif Ekind (Scop) = E_Task_Type + or else Ekind (Scop) = E_Entry + or else Ekind (Scop) = E_Entry_Family then + return True; + end if; + + Scop := Scope (Scop); + end loop; + + return False; + end Is_Nested; + + ---------- + -- Lock -- + ---------- + + procedure Lock is + begin + Pending_Instantiations.Locked := True; + Inlined_Bodies.Locked := True; + Successors.Locked := True; + Inlined.Locked := True; + Pending_Instantiations.Release; + Inlined_Bodies.Release; + Successors.Release; + Inlined.Release; + end Lock; + + -------------------------- + -- Remove_Dead_Instance -- + -------------------------- + + procedure Remove_Dead_Instance (N : Node_Id) is + J : Int; + + begin + J := 0; + + while J <= Pending_Instantiations.Last loop + + if Pending_Instantiations.Table (J).Inst_Node = N then + Pending_Instantiations.Table (J).Inst_Node := Empty; + return; + end if; + + J := J + 1; + end loop; + end Remove_Dead_Instance; + + ------------------------ + -- Scope_In_Main_Unit -- + ------------------------ + + function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is + Comp : Node_Id; + S : Entity_Id := Scop; + Ent : Entity_Id := Cunit_Entity (Main_Unit); + + begin + -- The scope may be within the main unit, or it may be an ancestor + -- of the main unit, if the main unit is a child unit. In both cases + -- it makes no sense to process the body before the main unit. In + -- the second case, this may lead to circularities if a parent body + -- depends on a child spec, and we are analyzing the child. + + while Scope (S) /= Standard_Standard + and then not Is_Child_Unit (S) + loop + S := Scope (S); + end loop; + + Comp := Parent (S); + + while Present (Comp) + and then Nkind (Comp) /= N_Compilation_Unit + loop + Comp := Parent (Comp); + end loop; + + if Is_Child_Unit (Ent) then + + while Present (Ent) + and then Is_Child_Unit (Ent) + loop + if Scope (Ent) = S then + return True; + end if; + + Ent := Scope (Ent); + end loop; + end if; + + return + Comp = Cunit (Main_Unit) + or else Comp = Library_Unit (Cunit (Main_Unit)); + end Scope_In_Main_Unit; + +end Inline; |