summaryrefslogtreecommitdiff
path: root/gcc/expmed.cc
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2022-01-14 16:56:44 +0100
committerMartin Liska <mliska@suse.cz>2022-01-17 22:12:04 +0100
commit5c69acb32329d49e58c26fa41ae74229a52b9106 (patch)
treeddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/expmed.cc
parent490e23032baaece71f2ec09fa1805064b150fbc2 (diff)
downloadgcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz
Rename .c files to .cc files.
gcc/ada/ChangeLog: * adadecode.c: Moved to... * adadecode.cc: ...here. * affinity.c: Moved to... * affinity.cc: ...here. * argv-lynxos178-raven-cert.c: Moved to... * argv-lynxos178-raven-cert.cc: ...here. * argv.c: Moved to... * argv.cc: ...here. * aux-io.c: Moved to... * aux-io.cc: ...here. * cio.c: Moved to... * cio.cc: ...here. * cstreams.c: Moved to... * cstreams.cc: ...here. * env.c: Moved to... * env.cc: ...here. * exit.c: Moved to... * exit.cc: ...here. * expect.c: Moved to... * expect.cc: ...here. * final.c: Moved to... * final.cc: ...here. * gcc-interface/cuintp.c: Moved to... * gcc-interface/cuintp.cc: ...here. * gcc-interface/decl.c: Moved to... * gcc-interface/decl.cc: ...here. * gcc-interface/misc.c: Moved to... * gcc-interface/misc.cc: ...here. * gcc-interface/targtyps.c: Moved to... * gcc-interface/targtyps.cc: ...here. * gcc-interface/trans.c: Moved to... * gcc-interface/trans.cc: ...here. * gcc-interface/utils.c: Moved to... * gcc-interface/utils.cc: ...here. * gcc-interface/utils2.c: Moved to... * gcc-interface/utils2.cc: ...here. * init.c: Moved to... * init.cc: ...here. * initialize.c: Moved to... * initialize.cc: ...here. * libgnarl/thread.c: Moved to... * libgnarl/thread.cc: ...here. * link.c: Moved to... * link.cc: ...here. * locales.c: Moved to... * locales.cc: ...here. * mkdir.c: Moved to... * mkdir.cc: ...here. * raise.c: Moved to... * raise.cc: ...here. * rtfinal.c: Moved to... * rtfinal.cc: ...here. * rtinit.c: Moved to... * rtinit.cc: ...here. * seh_init.c: Moved to... * seh_init.cc: ...here. * sigtramp-armdroid.c: Moved to... * sigtramp-armdroid.cc: ...here. * sigtramp-ios.c: Moved to... * sigtramp-ios.cc: ...here. * sigtramp-qnx.c: Moved to... * sigtramp-qnx.cc: ...here. * sigtramp-vxworks.c: Moved to... * sigtramp-vxworks.cc: ...here. * socket.c: Moved to... * socket.cc: ...here. * tracebak.c: Moved to... * tracebak.cc: ...here. * version.c: Moved to... * version.cc: ...here. * vx_stack_info.c: Moved to... * vx_stack_info.cc: ...here. gcc/ChangeLog: * adjust-alignment.c: Moved to... * adjust-alignment.cc: ...here. * alias.c: Moved to... * alias.cc: ...here. * alloc-pool.c: Moved to... * alloc-pool.cc: ...here. * asan.c: Moved to... * asan.cc: ...here. * attribs.c: Moved to... * attribs.cc: ...here. * auto-inc-dec.c: Moved to... * auto-inc-dec.cc: ...here. * auto-profile.c: Moved to... * auto-profile.cc: ...here. * bb-reorder.c: Moved to... * bb-reorder.cc: ...here. * bitmap.c: Moved to... * bitmap.cc: ...here. * btfout.c: Moved to... * btfout.cc: ...here. * builtins.c: Moved to... * builtins.cc: ...here. * caller-save.c: Moved to... * caller-save.cc: ...here. * calls.c: Moved to... * calls.cc: ...here. * ccmp.c: Moved to... * ccmp.cc: ...here. * cfg.c: Moved to... * cfg.cc: ...here. * cfganal.c: Moved to... * cfganal.cc: ...here. * cfgbuild.c: Moved to... * cfgbuild.cc: ...here. * cfgcleanup.c: Moved to... * cfgcleanup.cc: ...here. * cfgexpand.c: Moved to... * cfgexpand.cc: ...here. * cfghooks.c: Moved to... * cfghooks.cc: ...here. * cfgloop.c: Moved to... * cfgloop.cc: ...here. * cfgloopanal.c: Moved to... * cfgloopanal.cc: ...here. * cfgloopmanip.c: Moved to... * cfgloopmanip.cc: ...here. * cfgrtl.c: Moved to... * cfgrtl.cc: ...here. * cgraph.c: Moved to... * cgraph.cc: ...here. * cgraphbuild.c: Moved to... * cgraphbuild.cc: ...here. * cgraphclones.c: Moved to... * cgraphclones.cc: ...here. * cgraphunit.c: Moved to... * cgraphunit.cc: ...here. * collect-utils.c: Moved to... * collect-utils.cc: ...here. * collect2-aix.c: Moved to... * collect2-aix.cc: ...here. * collect2.c: Moved to... * collect2.cc: ...here. * combine-stack-adj.c: Moved to... * combine-stack-adj.cc: ...here. * combine.c: Moved to... * combine.cc: ...here. * common/common-targhooks.c: Moved to... * common/common-targhooks.cc: ...here. * common/config/aarch64/aarch64-common.c: Moved to... * common/config/aarch64/aarch64-common.cc: ...here. * common/config/alpha/alpha-common.c: Moved to... * common/config/alpha/alpha-common.cc: ...here. * common/config/arc/arc-common.c: Moved to... * common/config/arc/arc-common.cc: ...here. * common/config/arm/arm-common.c: Moved to... * common/config/arm/arm-common.cc: ...here. * common/config/avr/avr-common.c: Moved to... * common/config/avr/avr-common.cc: ...here. * common/config/bfin/bfin-common.c: Moved to... * common/config/bfin/bfin-common.cc: ...here. * common/config/bpf/bpf-common.c: Moved to... * common/config/bpf/bpf-common.cc: ...here. * common/config/c6x/c6x-common.c: Moved to... * common/config/c6x/c6x-common.cc: ...here. * common/config/cr16/cr16-common.c: Moved to... * common/config/cr16/cr16-common.cc: ...here. * common/config/cris/cris-common.c: Moved to... * common/config/cris/cris-common.cc: ...here. * common/config/csky/csky-common.c: Moved to... * common/config/csky/csky-common.cc: ...here. * common/config/default-common.c: Moved to... * common/config/default-common.cc: ...here. * common/config/epiphany/epiphany-common.c: Moved to... * common/config/epiphany/epiphany-common.cc: ...here. * common/config/fr30/fr30-common.c: Moved to... * common/config/fr30/fr30-common.cc: ...here. * common/config/frv/frv-common.c: Moved to... * common/config/frv/frv-common.cc: ...here. * common/config/gcn/gcn-common.c: Moved to... * common/config/gcn/gcn-common.cc: ...here. * common/config/h8300/h8300-common.c: Moved to... * common/config/h8300/h8300-common.cc: ...here. * common/config/i386/i386-common.c: Moved to... * common/config/i386/i386-common.cc: ...here. * common/config/ia64/ia64-common.c: Moved to... * common/config/ia64/ia64-common.cc: ...here. * common/config/iq2000/iq2000-common.c: Moved to... * common/config/iq2000/iq2000-common.cc: ...here. * common/config/lm32/lm32-common.c: Moved to... * common/config/lm32/lm32-common.cc: ...here. * common/config/m32r/m32r-common.c: Moved to... * common/config/m32r/m32r-common.cc: ...here. * common/config/m68k/m68k-common.c: Moved to... * common/config/m68k/m68k-common.cc: ...here. * common/config/mcore/mcore-common.c: Moved to... * common/config/mcore/mcore-common.cc: ...here. * common/config/microblaze/microblaze-common.c: Moved to... * common/config/microblaze/microblaze-common.cc: ...here. * common/config/mips/mips-common.c: Moved to... * common/config/mips/mips-common.cc: ...here. * common/config/mmix/mmix-common.c: Moved to... * common/config/mmix/mmix-common.cc: ...here. * common/config/mn10300/mn10300-common.c: Moved to... * common/config/mn10300/mn10300-common.cc: ...here. * common/config/msp430/msp430-common.c: Moved to... * common/config/msp430/msp430-common.cc: ...here. * common/config/nds32/nds32-common.c: Moved to... * common/config/nds32/nds32-common.cc: ...here. * common/config/nios2/nios2-common.c: Moved to... * common/config/nios2/nios2-common.cc: ...here. * common/config/nvptx/nvptx-common.c: Moved to... * common/config/nvptx/nvptx-common.cc: ...here. * common/config/or1k/or1k-common.c: Moved to... * common/config/or1k/or1k-common.cc: ...here. * common/config/pa/pa-common.c: Moved to... * common/config/pa/pa-common.cc: ...here. * common/config/pdp11/pdp11-common.c: Moved to... * common/config/pdp11/pdp11-common.cc: ...here. * common/config/pru/pru-common.c: Moved to... * common/config/pru/pru-common.cc: ...here. * common/config/riscv/riscv-common.c: Moved to... * common/config/riscv/riscv-common.cc: ...here. * common/config/rs6000/rs6000-common.c: Moved to... * common/config/rs6000/rs6000-common.cc: ...here. * common/config/rx/rx-common.c: Moved to... * common/config/rx/rx-common.cc: ...here. * common/config/s390/s390-common.c: Moved to... * common/config/s390/s390-common.cc: ...here. * common/config/sh/sh-common.c: Moved to... * common/config/sh/sh-common.cc: ...here. * common/config/sparc/sparc-common.c: Moved to... * common/config/sparc/sparc-common.cc: ...here. * common/config/tilegx/tilegx-common.c: Moved to... * common/config/tilegx/tilegx-common.cc: ...here. * common/config/tilepro/tilepro-common.c: Moved to... * common/config/tilepro/tilepro-common.cc: ...here. * common/config/v850/v850-common.c: Moved to... * common/config/v850/v850-common.cc: ...here. * common/config/vax/vax-common.c: Moved to... * common/config/vax/vax-common.cc: ...here. * common/config/visium/visium-common.c: Moved to... * common/config/visium/visium-common.cc: ...here. * common/config/xstormy16/xstormy16-common.c: Moved to... * common/config/xstormy16/xstormy16-common.cc: ...here. * common/config/xtensa/xtensa-common.c: Moved to... * common/config/xtensa/xtensa-common.cc: ...here. * compare-elim.c: Moved to... * compare-elim.cc: ...here. * config/aarch64/aarch64-bti-insert.c: Moved to... * config/aarch64/aarch64-bti-insert.cc: ...here. * config/aarch64/aarch64-builtins.c: Moved to... * config/aarch64/aarch64-builtins.cc: ...here. * config/aarch64/aarch64-c.c: Moved to... * config/aarch64/aarch64-c.cc: ...here. * config/aarch64/aarch64-d.c: Moved to... * config/aarch64/aarch64-d.cc: ...here. * config/aarch64/aarch64.c: Moved to... * config/aarch64/aarch64.cc: ...here. * config/aarch64/cortex-a57-fma-steering.c: Moved to... * config/aarch64/cortex-a57-fma-steering.cc: ...here. * config/aarch64/driver-aarch64.c: Moved to... * config/aarch64/driver-aarch64.cc: ...here. * config/aarch64/falkor-tag-collision-avoidance.c: Moved to... * config/aarch64/falkor-tag-collision-avoidance.cc: ...here. * config/aarch64/host-aarch64-darwin.c: Moved to... * config/aarch64/host-aarch64-darwin.cc: ...here. * config/alpha/alpha.c: Moved to... * config/alpha/alpha.cc: ...here. * config/alpha/driver-alpha.c: Moved to... * config/alpha/driver-alpha.cc: ...here. * config/arc/arc-c.c: Moved to... * config/arc/arc-c.cc: ...here. * config/arc/arc.c: Moved to... * config/arc/arc.cc: ...here. * config/arc/driver-arc.c: Moved to... * config/arc/driver-arc.cc: ...here. * config/arm/aarch-common.c: Moved to... * config/arm/aarch-common.cc: ...here. * config/arm/arm-builtins.c: Moved to... * config/arm/arm-builtins.cc: ...here. * config/arm/arm-c.c: Moved to... * config/arm/arm-c.cc: ...here. * config/arm/arm-d.c: Moved to... * config/arm/arm-d.cc: ...here. * config/arm/arm.c: Moved to... * config/arm/arm.cc: ...here. * config/arm/driver-arm.c: Moved to... * config/arm/driver-arm.cc: ...here. * config/avr/avr-c.c: Moved to... * config/avr/avr-c.cc: ...here. * config/avr/avr-devices.c: Moved to... * config/avr/avr-devices.cc: ...here. * config/avr/avr-log.c: Moved to... * config/avr/avr-log.cc: ...here. * config/avr/avr.c: Moved to... * config/avr/avr.cc: ...here. * config/avr/driver-avr.c: Moved to... * config/avr/driver-avr.cc: ...here. * config/avr/gen-avr-mmcu-specs.c: Moved to... * config/avr/gen-avr-mmcu-specs.cc: ...here. * config/avr/gen-avr-mmcu-texi.c: Moved to... * config/avr/gen-avr-mmcu-texi.cc: ...here. * config/bfin/bfin.c: Moved to... * config/bfin/bfin.cc: ...here. * config/bpf/bpf.c: Moved to... * config/bpf/bpf.cc: ...here. * config/bpf/coreout.c: Moved to... * config/bpf/coreout.cc: ...here. * config/c6x/c6x.c: Moved to... * config/c6x/c6x.cc: ...here. * config/cr16/cr16.c: Moved to... * config/cr16/cr16.cc: ...here. * config/cris/cris.c: Moved to... * config/cris/cris.cc: ...here. * config/csky/csky.c: Moved to... * config/csky/csky.cc: ...here. * config/darwin-c.c: Moved to... * config/darwin-c.cc: ...here. * config/darwin-d.c: Moved to... * config/darwin-d.cc: ...here. * config/darwin-driver.c: Moved to... * config/darwin-driver.cc: ...here. * config/darwin-f.c: Moved to... * config/darwin-f.cc: ...here. * config/darwin.c: Moved to... * config/darwin.cc: ...here. * config/default-c.c: Moved to... * config/default-c.cc: ...here. * config/default-d.c: Moved to... * config/default-d.cc: ...here. * config/dragonfly-d.c: Moved to... * config/dragonfly-d.cc: ...here. * config/epiphany/epiphany.c: Moved to... * config/epiphany/epiphany.cc: ...here. * config/epiphany/mode-switch-use.c: Moved to... * config/epiphany/mode-switch-use.cc: ...here. * config/epiphany/resolve-sw-modes.c: Moved to... * config/epiphany/resolve-sw-modes.cc: ...here. * config/fr30/fr30.c: Moved to... * config/fr30/fr30.cc: ...here. * config/freebsd-d.c: Moved to... * config/freebsd-d.cc: ...here. * config/frv/frv.c: Moved to... * config/frv/frv.cc: ...here. * config/ft32/ft32.c: Moved to... * config/ft32/ft32.cc: ...here. * config/gcn/driver-gcn.c: Moved to... * config/gcn/driver-gcn.cc: ...here. * config/gcn/gcn-run.c: Moved to... * config/gcn/gcn-run.cc: ...here. * config/gcn/gcn-tree.c: Moved to... * config/gcn/gcn-tree.cc: ...here. * config/gcn/gcn.c: Moved to... * config/gcn/gcn.cc: ...here. * config/gcn/mkoffload.c: Moved to... * config/gcn/mkoffload.cc: ...here. * config/glibc-c.c: Moved to... * config/glibc-c.cc: ...here. * config/glibc-d.c: Moved to... * config/glibc-d.cc: ...here. * config/h8300/h8300.c: Moved to... * config/h8300/h8300.cc: ...here. * config/host-darwin.c: Moved to... * config/host-darwin.cc: ...here. * config/host-hpux.c: Moved to... * config/host-hpux.cc: ...here. * config/host-linux.c: Moved to... * config/host-linux.cc: ...here. * config/host-netbsd.c: Moved to... * config/host-netbsd.cc: ...here. * config/host-openbsd.c: Moved to... * config/host-openbsd.cc: ...here. * config/host-solaris.c: Moved to... * config/host-solaris.cc: ...here. * config/i386/djgpp.c: Moved to... * config/i386/djgpp.cc: ...here. * config/i386/driver-i386.c: Moved to... * config/i386/driver-i386.cc: ...here. * config/i386/driver-mingw32.c: Moved to... * config/i386/driver-mingw32.cc: ...here. * config/i386/gnu-property.c: Moved to... * config/i386/gnu-property.cc: ...here. * config/i386/host-cygwin.c: Moved to... * config/i386/host-cygwin.cc: ...here. * config/i386/host-i386-darwin.c: Moved to... * config/i386/host-i386-darwin.cc: ...here. * config/i386/host-mingw32.c: Moved to... * config/i386/host-mingw32.cc: ...here. * config/i386/i386-builtins.c: Moved to... * config/i386/i386-builtins.cc: ...here. * config/i386/i386-c.c: Moved to... * config/i386/i386-c.cc: ...here. * config/i386/i386-d.c: Moved to... * config/i386/i386-d.cc: ...here. * config/i386/i386-expand.c: Moved to... * config/i386/i386-expand.cc: ...here. * config/i386/i386-features.c: Moved to... * config/i386/i386-features.cc: ...here. * config/i386/i386-options.c: Moved to... * config/i386/i386-options.cc: ...here. * config/i386/i386.c: Moved to... * config/i386/i386.cc: ...here. * config/i386/intelmic-mkoffload.c: Moved to... * config/i386/intelmic-mkoffload.cc: ...here. * config/i386/msformat-c.c: Moved to... * config/i386/msformat-c.cc: ...here. * config/i386/winnt-cxx.c: Moved to... * config/i386/winnt-cxx.cc: ...here. * config/i386/winnt-d.c: Moved to... * config/i386/winnt-d.cc: ...here. * config/i386/winnt-stubs.c: Moved to... * config/i386/winnt-stubs.cc: ...here. * config/i386/winnt.c: Moved to... * config/i386/winnt.cc: ...here. * config/i386/x86-tune-sched-atom.c: Moved to... * config/i386/x86-tune-sched-atom.cc: ...here. * config/i386/x86-tune-sched-bd.c: Moved to... * config/i386/x86-tune-sched-bd.cc: ...here. * config/i386/x86-tune-sched-core.c: Moved to... * config/i386/x86-tune-sched-core.cc: ...here. * config/i386/x86-tune-sched.c: Moved to... * config/i386/x86-tune-sched.cc: ...here. * config/ia64/ia64-c.c: Moved to... * config/ia64/ia64-c.cc: ...here. * config/ia64/ia64.c: Moved to... * config/ia64/ia64.cc: ...here. * config/iq2000/iq2000.c: Moved to... * config/iq2000/iq2000.cc: ...here. * config/linux.c: Moved to... * config/linux.cc: ...here. * config/lm32/lm32.c: Moved to... * config/lm32/lm32.cc: ...here. * config/m32c/m32c-pragma.c: Moved to... * config/m32c/m32c-pragma.cc: ...here. * config/m32c/m32c.c: Moved to... * config/m32c/m32c.cc: ...here. * config/m32r/m32r.c: Moved to... * config/m32r/m32r.cc: ...here. * config/m68k/m68k.c: Moved to... * config/m68k/m68k.cc: ...here. * config/mcore/mcore.c: Moved to... * config/mcore/mcore.cc: ...here. * config/microblaze/microblaze-c.c: Moved to... * config/microblaze/microblaze-c.cc: ...here. * config/microblaze/microblaze.c: Moved to... * config/microblaze/microblaze.cc: ...here. * config/mips/driver-native.c: Moved to... * config/mips/driver-native.cc: ...here. * config/mips/frame-header-opt.c: Moved to... * config/mips/frame-header-opt.cc: ...here. * config/mips/mips-d.c: Moved to... * config/mips/mips-d.cc: ...here. * config/mips/mips.c: Moved to... * config/mips/mips.cc: ...here. * config/mmix/mmix.c: Moved to... * config/mmix/mmix.cc: ...here. * config/mn10300/mn10300.c: Moved to... * config/mn10300/mn10300.cc: ...here. * config/moxie/moxie.c: Moved to... * config/moxie/moxie.cc: ...here. * config/msp430/driver-msp430.c: Moved to... * config/msp430/driver-msp430.cc: ...here. * config/msp430/msp430-c.c: Moved to... * config/msp430/msp430-c.cc: ...here. * config/msp430/msp430-devices.c: Moved to... * config/msp430/msp430-devices.cc: ...here. * config/msp430/msp430.c: Moved to... * config/msp430/msp430.cc: ...here. * config/nds32/nds32-cost.c: Moved to... * config/nds32/nds32-cost.cc: ...here. * config/nds32/nds32-fp-as-gp.c: Moved to... * config/nds32/nds32-fp-as-gp.cc: ...here. * config/nds32/nds32-intrinsic.c: Moved to... * config/nds32/nds32-intrinsic.cc: ...here. * config/nds32/nds32-isr.c: Moved to... * config/nds32/nds32-isr.cc: ...here. * config/nds32/nds32-md-auxiliary.c: Moved to... * config/nds32/nds32-md-auxiliary.cc: ...here. * config/nds32/nds32-memory-manipulation.c: Moved to... * config/nds32/nds32-memory-manipulation.cc: ...here. * config/nds32/nds32-pipelines-auxiliary.c: Moved to... * config/nds32/nds32-pipelines-auxiliary.cc: ...here. * config/nds32/nds32-predicates.c: Moved to... * config/nds32/nds32-predicates.cc: ...here. * config/nds32/nds32-relax-opt.c: Moved to... * config/nds32/nds32-relax-opt.cc: ...here. * config/nds32/nds32-utils.c: Moved to... * config/nds32/nds32-utils.cc: ...here. * config/nds32/nds32.c: Moved to... * config/nds32/nds32.cc: ...here. * config/netbsd-d.c: Moved to... * config/netbsd-d.cc: ...here. * config/netbsd.c: Moved to... * config/netbsd.cc: ...here. * config/nios2/nios2.c: Moved to... * config/nios2/nios2.cc: ...here. * config/nvptx/mkoffload.c: Moved to... * config/nvptx/mkoffload.cc: ...here. * config/nvptx/nvptx-c.c: Moved to... * config/nvptx/nvptx-c.cc: ...here. * config/nvptx/nvptx.c: Moved to... * config/nvptx/nvptx.cc: ...here. * config/openbsd-d.c: Moved to... * config/openbsd-d.cc: ...here. * config/or1k/or1k.c: Moved to... * config/or1k/or1k.cc: ...here. * config/pa/pa-d.c: Moved to... * config/pa/pa-d.cc: ...here. * config/pa/pa.c: Moved to... * config/pa/pa.cc: ...here. * config/pdp11/pdp11.c: Moved to... * config/pdp11/pdp11.cc: ...here. * config/pru/pru-passes.c: Moved to... * config/pru/pru-passes.cc: ...here. * config/pru/pru-pragma.c: Moved to... * config/pru/pru-pragma.cc: ...here. * config/pru/pru.c: Moved to... * config/pru/pru.cc: ...here. * config/riscv/riscv-builtins.c: Moved to... * config/riscv/riscv-builtins.cc: ...here. * config/riscv/riscv-c.c: Moved to... * config/riscv/riscv-c.cc: ...here. * config/riscv/riscv-d.c: Moved to... * config/riscv/riscv-d.cc: ...here. * config/riscv/riscv-shorten-memrefs.c: Moved to... * config/riscv/riscv-shorten-memrefs.cc: ...here. * config/riscv/riscv-sr.c: Moved to... * config/riscv/riscv-sr.cc: ...here. * config/riscv/riscv.c: Moved to... * config/riscv/riscv.cc: ...here. * config/rl78/rl78-c.c: Moved to... * config/rl78/rl78-c.cc: ...here. * config/rl78/rl78.c: Moved to... * config/rl78/rl78.cc: ...here. * config/rs6000/driver-rs6000.c: Moved to... * config/rs6000/driver-rs6000.cc: ...here. * config/rs6000/host-darwin.c: Moved to... * config/rs6000/host-darwin.cc: ...here. * config/rs6000/host-ppc64-darwin.c: Moved to... * config/rs6000/host-ppc64-darwin.cc: ...here. * config/rs6000/rbtree.c: Moved to... * config/rs6000/rbtree.cc: ...here. * config/rs6000/rs6000-c.c: Moved to... * config/rs6000/rs6000-c.cc: ...here. * config/rs6000/rs6000-call.c: Moved to... * config/rs6000/rs6000-call.cc: ...here. * config/rs6000/rs6000-d.c: Moved to... * config/rs6000/rs6000-d.cc: ...here. * config/rs6000/rs6000-gen-builtins.c: Moved to... * config/rs6000/rs6000-gen-builtins.cc: ...here. * config/rs6000/rs6000-linux.c: Moved to... * config/rs6000/rs6000-linux.cc: ...here. * config/rs6000/rs6000-logue.c: Moved to... * config/rs6000/rs6000-logue.cc: ...here. * config/rs6000/rs6000-p8swap.c: Moved to... * config/rs6000/rs6000-p8swap.cc: ...here. * config/rs6000/rs6000-pcrel-opt.c: Moved to... * config/rs6000/rs6000-pcrel-opt.cc: ...here. * config/rs6000/rs6000-string.c: Moved to... * config/rs6000/rs6000-string.cc: ...here. * config/rs6000/rs6000.c: Moved to... * config/rs6000/rs6000.cc: ...here. * config/rx/rx.c: Moved to... * config/rx/rx.cc: ...here. * config/s390/driver-native.c: Moved to... * config/s390/driver-native.cc: ...here. * config/s390/s390-c.c: Moved to... * config/s390/s390-c.cc: ...here. * config/s390/s390-d.c: Moved to... * config/s390/s390-d.cc: ...here. * config/s390/s390.c: Moved to... * config/s390/s390.cc: ...here. * config/sh/divtab-sh4-300.c: Moved to... * config/sh/divtab-sh4-300.cc: ...here. * config/sh/divtab-sh4.c: Moved to... * config/sh/divtab-sh4.cc: ...here. * config/sh/divtab.c: Moved to... * config/sh/divtab.cc: ...here. * config/sh/sh-c.c: Moved to... * config/sh/sh-c.cc: ...here. * config/sh/sh.c: Moved to... * config/sh/sh.cc: ...here. * config/sol2-c.c: Moved to... * config/sol2-c.cc: ...here. * config/sol2-cxx.c: Moved to... * config/sol2-cxx.cc: ...here. * config/sol2-d.c: Moved to... * config/sol2-d.cc: ...here. * config/sol2-stubs.c: Moved to... * config/sol2-stubs.cc: ...here. * config/sol2.c: Moved to... * config/sol2.cc: ...here. * config/sparc/driver-sparc.c: Moved to... * config/sparc/driver-sparc.cc: ...here. * config/sparc/sparc-c.c: Moved to... * config/sparc/sparc-c.cc: ...here. * config/sparc/sparc-d.c: Moved to... * config/sparc/sparc-d.cc: ...here. * config/sparc/sparc.c: Moved to... * config/sparc/sparc.cc: ...here. * config/stormy16/stormy16.c: Moved to... * config/stormy16/stormy16.cc: ...here. * config/tilegx/mul-tables.c: Moved to... * config/tilegx/mul-tables.cc: ...here. * config/tilegx/tilegx-c.c: Moved to... * config/tilegx/tilegx-c.cc: ...here. * config/tilegx/tilegx.c: Moved to... * config/tilegx/tilegx.cc: ...here. * config/tilepro/mul-tables.c: Moved to... * config/tilepro/mul-tables.cc: ...here. * config/tilepro/tilepro-c.c: Moved to... * config/tilepro/tilepro-c.cc: ...here. * config/tilepro/tilepro.c: Moved to... * config/tilepro/tilepro.cc: ...here. * config/v850/v850-c.c: Moved to... * config/v850/v850-c.cc: ...here. * config/v850/v850.c: Moved to... * config/v850/v850.cc: ...here. * config/vax/vax.c: Moved to... * config/vax/vax.cc: ...here. * config/visium/visium.c: Moved to... * config/visium/visium.cc: ...here. * config/vms/vms-c.c: Moved to... * config/vms/vms-c.cc: ...here. * config/vms/vms-f.c: Moved to... * config/vms/vms-f.cc: ...here. * config/vms/vms.c: Moved to... * config/vms/vms.cc: ...here. * config/vxworks-c.c: Moved to... * config/vxworks-c.cc: ...here. * config/vxworks.c: Moved to... * config/vxworks.cc: ...here. * config/winnt-c.c: Moved to... * config/winnt-c.cc: ...here. * config/xtensa/xtensa.c: Moved to... * config/xtensa/xtensa.cc: ...here. * context.c: Moved to... * context.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * coverage.c: Moved to... * coverage.cc: ...here. * cppbuiltin.c: Moved to... * cppbuiltin.cc: ...here. * cppdefault.c: Moved to... * cppdefault.cc: ...here. * cprop.c: Moved to... * cprop.cc: ...here. * cse.c: Moved to... * cse.cc: ...here. * cselib.c: Moved to... * cselib.cc: ...here. * ctfc.c: Moved to... * ctfc.cc: ...here. * ctfout.c: Moved to... * ctfout.cc: ...here. * data-streamer-in.c: Moved to... * data-streamer-in.cc: ...here. * data-streamer-out.c: Moved to... * data-streamer-out.cc: ...here. * data-streamer.c: Moved to... * data-streamer.cc: ...here. * dbgcnt.c: Moved to... * dbgcnt.cc: ...here. * dbxout.c: Moved to... * dbxout.cc: ...here. * dce.c: Moved to... * dce.cc: ...here. * ddg.c: Moved to... * ddg.cc: ...here. * debug.c: Moved to... * debug.cc: ...here. * df-core.c: Moved to... * df-core.cc: ...here. * df-problems.c: Moved to... * df-problems.cc: ...here. * df-scan.c: Moved to... * df-scan.cc: ...here. * dfp.c: Moved to... * dfp.cc: ...here. * diagnostic-color.c: Moved to... * diagnostic-color.cc: ...here. * diagnostic-show-locus.c: Moved to... * diagnostic-show-locus.cc: ...here. * diagnostic-spec.c: Moved to... * diagnostic-spec.cc: ...here. * diagnostic.c: Moved to... * diagnostic.cc: ...here. * dojump.c: Moved to... * dojump.cc: ...here. * dominance.c: Moved to... * dominance.cc: ...here. * domwalk.c: Moved to... * domwalk.cc: ...here. * double-int.c: Moved to... * double-int.cc: ...here. * dse.c: Moved to... * dse.cc: ...here. * dumpfile.c: Moved to... * dumpfile.cc: ...here. * dwarf2asm.c: Moved to... * dwarf2asm.cc: ...here. * dwarf2cfi.c: Moved to... * dwarf2cfi.cc: ...here. * dwarf2ctf.c: Moved to... * dwarf2ctf.cc: ...here. * dwarf2out.c: Moved to... * dwarf2out.cc: ...here. * early-remat.c: Moved to... * early-remat.cc: ...here. * edit-context.c: Moved to... * edit-context.cc: ...here. * emit-rtl.c: Moved to... * emit-rtl.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * et-forest.c: Moved to... * et-forest.cc: ...here. * except.c: Moved to... * except.cc: ...here. * explow.c: Moved to... * explow.cc: ...here. * expmed.c: Moved to... * expmed.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * fibonacci_heap.c: Moved to... * fibonacci_heap.cc: ...here. * file-find.c: Moved to... * file-find.cc: ...here. * file-prefix-map.c: Moved to... * file-prefix-map.cc: ...here. * final.c: Moved to... * final.cc: ...here. * fixed-value.c: Moved to... * fixed-value.cc: ...here. * fold-const-call.c: Moved to... * fold-const-call.cc: ...here. * fold-const.c: Moved to... * fold-const.cc: ...here. * fp-test.c: Moved to... * fp-test.cc: ...here. * function-tests.c: Moved to... * function-tests.cc: ...here. * function.c: Moved to... * function.cc: ...here. * fwprop.c: Moved to... * fwprop.cc: ...here. * gcc-ar.c: Moved to... * gcc-ar.cc: ...here. * gcc-main.c: Moved to... * gcc-main.cc: ...here. * gcc-rich-location.c: Moved to... * gcc-rich-location.cc: ...here. * gcc.c: Moved to... * gcc.cc: ...here. * gcov-dump.c: Moved to... * gcov-dump.cc: ...here. * gcov-io.c: Moved to... * gcov-io.cc: ...here. * gcov-tool.c: Moved to... * gcov-tool.cc: ...here. * gcov.c: Moved to... * gcov.cc: ...here. * gcse-common.c: Moved to... * gcse-common.cc: ...here. * gcse.c: Moved to... * gcse.cc: ...here. * genattr-common.c: Moved to... * genattr-common.cc: ...here. * genattr.c: Moved to... * genattr.cc: ...here. * genattrtab.c: Moved to... * genattrtab.cc: ...here. * genautomata.c: Moved to... * genautomata.cc: ...here. * gencfn-macros.c: Moved to... * gencfn-macros.cc: ...here. * gencheck.c: Moved to... * gencheck.cc: ...here. * genchecksum.c: Moved to... * genchecksum.cc: ...here. * gencodes.c: Moved to... * gencodes.cc: ...here. * genconditions.c: Moved to... * genconditions.cc: ...here. * genconfig.c: Moved to... * genconfig.cc: ...here. * genconstants.c: Moved to... * genconstants.cc: ...here. * genemit.c: Moved to... * genemit.cc: ...here. * genenums.c: Moved to... * genenums.cc: ...here. * generic-match-head.c: Moved to... * generic-match-head.cc: ...here. * genextract.c: Moved to... * genextract.cc: ...here. * genflags.c: Moved to... * genflags.cc: ...here. * gengenrtl.c: Moved to... * gengenrtl.cc: ...here. * gengtype-parse.c: Moved to... * gengtype-parse.cc: ...here. * gengtype-state.c: Moved to... * gengtype-state.cc: ...here. * gengtype.c: Moved to... * gengtype.cc: ...here. * genhooks.c: Moved to... * genhooks.cc: ...here. * genmatch.c: Moved to... * genmatch.cc: ...here. * genmddeps.c: Moved to... * genmddeps.cc: ...here. * genmddump.c: Moved to... * genmddump.cc: ...here. * genmodes.c: Moved to... * genmodes.cc: ...here. * genopinit.c: Moved to... * genopinit.cc: ...here. * genoutput.c: Moved to... * genoutput.cc: ...here. * genpeep.c: Moved to... * genpeep.cc: ...here. * genpreds.c: Moved to... * genpreds.cc: ...here. * genrecog.c: Moved to... * genrecog.cc: ...here. * gensupport.c: Moved to... * gensupport.cc: ...here. * gentarget-def.c: Moved to... * gentarget-def.cc: ...here. * genversion.c: Moved to... * genversion.cc: ...here. * ggc-common.c: Moved to... * ggc-common.cc: ...here. * ggc-none.c: Moved to... * ggc-none.cc: ...here. * ggc-page.c: Moved to... * ggc-page.cc: ...here. * ggc-tests.c: Moved to... * ggc-tests.cc: ...here. * gimple-builder.c: Moved to... * gimple-builder.cc: ...here. * gimple-expr.c: Moved to... * gimple-expr.cc: ...here. * gimple-fold.c: Moved to... * gimple-fold.cc: ...here. * gimple-iterator.c: Moved to... * gimple-iterator.cc: ...here. * gimple-laddress.c: Moved to... * gimple-laddress.cc: ...here. * gimple-loop-jam.c: Moved to... * gimple-loop-jam.cc: ...here. * gimple-low.c: Moved to... * gimple-low.cc: ...here. * gimple-match-head.c: Moved to... * gimple-match-head.cc: ...here. * gimple-pretty-print.c: Moved to... * gimple-pretty-print.cc: ...here. * gimple-ssa-backprop.c: Moved to... * gimple-ssa-backprop.cc: ...here. * gimple-ssa-evrp-analyze.c: Moved to... * gimple-ssa-evrp-analyze.cc: ...here. * gimple-ssa-evrp.c: Moved to... * gimple-ssa-evrp.cc: ...here. * gimple-ssa-isolate-paths.c: Moved to... * gimple-ssa-isolate-paths.cc: ...here. * gimple-ssa-nonnull-compare.c: Moved to... * gimple-ssa-nonnull-compare.cc: ...here. * gimple-ssa-split-paths.c: Moved to... * gimple-ssa-split-paths.cc: ...here. * gimple-ssa-sprintf.c: Moved to... * gimple-ssa-sprintf.cc: ...here. * gimple-ssa-store-merging.c: Moved to... * gimple-ssa-store-merging.cc: ...here. * gimple-ssa-strength-reduction.c: Moved to... * gimple-ssa-strength-reduction.cc: ...here. * gimple-ssa-warn-alloca.c: Moved to... * gimple-ssa-warn-alloca.cc: ...here. * gimple-ssa-warn-restrict.c: Moved to... * gimple-ssa-warn-restrict.cc: ...here. * gimple-streamer-in.c: Moved to... * gimple-streamer-in.cc: ...here. * gimple-streamer-out.c: Moved to... * gimple-streamer-out.cc: ...here. * gimple-walk.c: Moved to... * gimple-walk.cc: ...here. * gimple-warn-recursion.c: Moved to... * gimple-warn-recursion.cc: ...here. * gimple.c: Moved to... * gimple.cc: ...here. * gimplify-me.c: Moved to... * gimplify-me.cc: ...here. * gimplify.c: Moved to... * gimplify.cc: ...here. * godump.c: Moved to... * godump.cc: ...here. * graph.c: Moved to... * graph.cc: ...here. * graphds.c: Moved to... * graphds.cc: ...here. * graphite-dependences.c: Moved to... * graphite-dependences.cc: ...here. * graphite-isl-ast-to-gimple.c: Moved to... * graphite-isl-ast-to-gimple.cc: ...here. * graphite-optimize-isl.c: Moved to... * graphite-optimize-isl.cc: ...here. * graphite-poly.c: Moved to... * graphite-poly.cc: ...here. * graphite-scop-detection.c: Moved to... * graphite-scop-detection.cc: ...here. * graphite-sese-to-poly.c: Moved to... * graphite-sese-to-poly.cc: ...here. * graphite.c: Moved to... * graphite.cc: ...here. * haifa-sched.c: Moved to... * haifa-sched.cc: ...here. * hash-map-tests.c: Moved to... * hash-map-tests.cc: ...here. * hash-set-tests.c: Moved to... * hash-set-tests.cc: ...here. * hash-table.c: Moved to... * hash-table.cc: ...here. * hooks.c: Moved to... * hooks.cc: ...here. * host-default.c: Moved to... * host-default.cc: ...here. * hw-doloop.c: Moved to... * hw-doloop.cc: ...here. * hwint.c: Moved to... * hwint.cc: ...here. * ifcvt.c: Moved to... * ifcvt.cc: ...here. * inchash.c: Moved to... * inchash.cc: ...here. * incpath.c: Moved to... * incpath.cc: ...here. * init-regs.c: Moved to... * init-regs.cc: ...here. * input.c: Moved to... * input.cc: ...here. * internal-fn.c: Moved to... * internal-fn.cc: ...here. * intl.c: Moved to... * intl.cc: ...here. * ipa-comdats.c: Moved to... * ipa-comdats.cc: ...here. * ipa-cp.c: Moved to... * ipa-cp.cc: ...here. * ipa-devirt.c: Moved to... * ipa-devirt.cc: ...here. * ipa-fnsummary.c: Moved to... * ipa-fnsummary.cc: ...here. * ipa-icf-gimple.c: Moved to... * ipa-icf-gimple.cc: ...here. * ipa-icf.c: Moved to... * ipa-icf.cc: ...here. * ipa-inline-analysis.c: Moved to... * ipa-inline-analysis.cc: ...here. * ipa-inline-transform.c: Moved to... * ipa-inline-transform.cc: ...here. * ipa-inline.c: Moved to... * ipa-inline.cc: ...here. * ipa-modref-tree.c: Moved to... * ipa-modref-tree.cc: ...here. * ipa-modref.c: Moved to... * ipa-modref.cc: ...here. * ipa-param-manipulation.c: Moved to... * ipa-param-manipulation.cc: ...here. * ipa-polymorphic-call.c: Moved to... * ipa-polymorphic-call.cc: ...here. * ipa-predicate.c: Moved to... * ipa-predicate.cc: ...here. * ipa-profile.c: Moved to... * ipa-profile.cc: ...here. * ipa-prop.c: Moved to... * ipa-prop.cc: ...here. * ipa-pure-const.c: Moved to... * ipa-pure-const.cc: ...here. * ipa-ref.c: Moved to... * ipa-ref.cc: ...here. * ipa-reference.c: Moved to... * ipa-reference.cc: ...here. * ipa-split.c: Moved to... * ipa-split.cc: ...here. * ipa-sra.c: Moved to... * ipa-sra.cc: ...here. * ipa-utils.c: Moved to... * ipa-utils.cc: ...here. * ipa-visibility.c: Moved to... * ipa-visibility.cc: ...here. * ipa.c: Moved to... * ipa.cc: ...here. * ira-build.c: Moved to... * ira-build.cc: ...here. * ira-color.c: Moved to... * ira-color.cc: ...here. * ira-conflicts.c: Moved to... * ira-conflicts.cc: ...here. * ira-costs.c: Moved to... * ira-costs.cc: ...here. * ira-emit.c: Moved to... * ira-emit.cc: ...here. * ira-lives.c: Moved to... * ira-lives.cc: ...here. * ira.c: Moved to... * ira.cc: ...here. * jump.c: Moved to... * jump.cc: ...here. * langhooks.c: Moved to... * langhooks.cc: ...here. * lcm.c: Moved to... * lcm.cc: ...here. * lists.c: Moved to... * lists.cc: ...here. * loop-doloop.c: Moved to... * loop-doloop.cc: ...here. * loop-init.c: Moved to... * loop-init.cc: ...here. * loop-invariant.c: Moved to... * loop-invariant.cc: ...here. * loop-iv.c: Moved to... * loop-iv.cc: ...here. * loop-unroll.c: Moved to... * loop-unroll.cc: ...here. * lower-subreg.c: Moved to... * lower-subreg.cc: ...here. * lra-assigns.c: Moved to... * lra-assigns.cc: ...here. * lra-coalesce.c: Moved to... * lra-coalesce.cc: ...here. * lra-constraints.c: Moved to... * lra-constraints.cc: ...here. * lra-eliminations.c: Moved to... * lra-eliminations.cc: ...here. * lra-lives.c: Moved to... * lra-lives.cc: ...here. * lra-remat.c: Moved to... * lra-remat.cc: ...here. * lra-spills.c: Moved to... * lra-spills.cc: ...here. * lra.c: Moved to... * lra.cc: ...here. * lto-cgraph.c: Moved to... * lto-cgraph.cc: ...here. * lto-compress.c: Moved to... * lto-compress.cc: ...here. * lto-opts.c: Moved to... * lto-opts.cc: ...here. * lto-section-in.c: Moved to... * lto-section-in.cc: ...here. * lto-section-out.c: Moved to... * lto-section-out.cc: ...here. * lto-streamer-in.c: Moved to... * lto-streamer-in.cc: ...here. * lto-streamer-out.c: Moved to... * lto-streamer-out.cc: ...here. * lto-streamer.c: Moved to... * lto-streamer.cc: ...here. * lto-wrapper.c: Moved to... * lto-wrapper.cc: ...here. * main.c: Moved to... * main.cc: ...here. * mcf.c: Moved to... * mcf.cc: ...here. * mode-switching.c: Moved to... * mode-switching.cc: ...here. * modulo-sched.c: Moved to... * modulo-sched.cc: ...here. * multiple_target.c: Moved to... * multiple_target.cc: ...here. * omp-expand.c: Moved to... * omp-expand.cc: ...here. * omp-general.c: Moved to... * omp-general.cc: ...here. * omp-low.c: Moved to... * omp-low.cc: ...here. * omp-offload.c: Moved to... * omp-offload.cc: ...here. * omp-simd-clone.c: Moved to... * omp-simd-clone.cc: ...here. * opt-suggestions.c: Moved to... * opt-suggestions.cc: ...here. * optabs-libfuncs.c: Moved to... * optabs-libfuncs.cc: ...here. * optabs-query.c: Moved to... * optabs-query.cc: ...here. * optabs-tree.c: Moved to... * optabs-tree.cc: ...here. * optabs.c: Moved to... * optabs.cc: ...here. * opts-common.c: Moved to... * opts-common.cc: ...here. * opts-global.c: Moved to... * opts-global.cc: ...here. * opts.c: Moved to... * opts.cc: ...here. * passes.c: Moved to... * passes.cc: ...here. * plugin.c: Moved to... * plugin.cc: ...here. * postreload-gcse.c: Moved to... * postreload-gcse.cc: ...here. * postreload.c: Moved to... * postreload.cc: ...here. * predict.c: Moved to... * predict.cc: ...here. * prefix.c: Moved to... * prefix.cc: ...here. * pretty-print.c: Moved to... * pretty-print.cc: ...here. * print-rtl-function.c: Moved to... * print-rtl-function.cc: ...here. * print-rtl.c: Moved to... * print-rtl.cc: ...here. * print-tree.c: Moved to... * print-tree.cc: ...here. * profile-count.c: Moved to... * profile-count.cc: ...here. * profile.c: Moved to... * profile.cc: ...here. * read-md.c: Moved to... * read-md.cc: ...here. * read-rtl-function.c: Moved to... * read-rtl-function.cc: ...here. * read-rtl.c: Moved to... * read-rtl.cc: ...here. * real.c: Moved to... * real.cc: ...here. * realmpfr.c: Moved to... * realmpfr.cc: ...here. * recog.c: Moved to... * recog.cc: ...here. * ree.c: Moved to... * ree.cc: ...here. * reg-stack.c: Moved to... * reg-stack.cc: ...here. * regcprop.c: Moved to... * regcprop.cc: ...here. * reginfo.c: Moved to... * reginfo.cc: ...here. * regrename.c: Moved to... * regrename.cc: ...here. * regstat.c: Moved to... * regstat.cc: ...here. * reload.c: Moved to... * reload.cc: ...here. * reload1.c: Moved to... * reload1.cc: ...here. * reorg.c: Moved to... * reorg.cc: ...here. * resource.c: Moved to... * resource.cc: ...here. * rtl-error.c: Moved to... * rtl-error.cc: ...here. * rtl-tests.c: Moved to... * rtl-tests.cc: ...here. * rtl.c: Moved to... * rtl.cc: ...here. * rtlanal.c: Moved to... * rtlanal.cc: ...here. * rtlhash.c: Moved to... * rtlhash.cc: ...here. * rtlhooks.c: Moved to... * rtlhooks.cc: ...here. * rtx-vector-builder.c: Moved to... * rtx-vector-builder.cc: ...here. * run-rtl-passes.c: Moved to... * run-rtl-passes.cc: ...here. * sancov.c: Moved to... * sancov.cc: ...here. * sanopt.c: Moved to... * sanopt.cc: ...here. * sbitmap.c: Moved to... * sbitmap.cc: ...here. * sched-deps.c: Moved to... * sched-deps.cc: ...here. * sched-ebb.c: Moved to... * sched-ebb.cc: ...here. * sched-rgn.c: Moved to... * sched-rgn.cc: ...here. * sel-sched-dump.c: Moved to... * sel-sched-dump.cc: ...here. * sel-sched-ir.c: Moved to... * sel-sched-ir.cc: ...here. * sel-sched.c: Moved to... * sel-sched.cc: ...here. * selftest-diagnostic.c: Moved to... * selftest-diagnostic.cc: ...here. * selftest-rtl.c: Moved to... * selftest-rtl.cc: ...here. * selftest-run-tests.c: Moved to... * selftest-run-tests.cc: ...here. * selftest.c: Moved to... * selftest.cc: ...here. * sese.c: Moved to... * sese.cc: ...here. * shrink-wrap.c: Moved to... * shrink-wrap.cc: ...here. * simplify-rtx.c: Moved to... * simplify-rtx.cc: ...here. * sparseset.c: Moved to... * sparseset.cc: ...here. * spellcheck-tree.c: Moved to... * spellcheck-tree.cc: ...here. * spellcheck.c: Moved to... * spellcheck.cc: ...here. * sreal.c: Moved to... * sreal.cc: ...here. * stack-ptr-mod.c: Moved to... * stack-ptr-mod.cc: ...here. * statistics.c: Moved to... * statistics.cc: ...here. * stmt.c: Moved to... * stmt.cc: ...here. * stor-layout.c: Moved to... * stor-layout.cc: ...here. * store-motion.c: Moved to... * store-motion.cc: ...here. * streamer-hooks.c: Moved to... * streamer-hooks.cc: ...here. * stringpool.c: Moved to... * stringpool.cc: ...here. * substring-locations.c: Moved to... * substring-locations.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * target-globals.c: Moved to... * target-globals.cc: ...here. * targhooks.c: Moved to... * targhooks.cc: ...here. * timevar.c: Moved to... * timevar.cc: ...here. * toplev.c: Moved to... * toplev.cc: ...here. * tracer.c: Moved to... * tracer.cc: ...here. * trans-mem.c: Moved to... * trans-mem.cc: ...here. * tree-affine.c: Moved to... * tree-affine.cc: ...here. * tree-call-cdce.c: Moved to... * tree-call-cdce.cc: ...here. * tree-cfg.c: Moved to... * tree-cfg.cc: ...here. * tree-cfgcleanup.c: Moved to... * tree-cfgcleanup.cc: ...here. * tree-chrec.c: Moved to... * tree-chrec.cc: ...here. * tree-complex.c: Moved to... * tree-complex.cc: ...here. * tree-data-ref.c: Moved to... * tree-data-ref.cc: ...here. * tree-dfa.c: Moved to... * tree-dfa.cc: ...here. * tree-diagnostic.c: Moved to... * tree-diagnostic.cc: ...here. * tree-dump.c: Moved to... * tree-dump.cc: ...here. * tree-eh.c: Moved to... * tree-eh.cc: ...here. * tree-emutls.c: Moved to... * tree-emutls.cc: ...here. * tree-if-conv.c: Moved to... * tree-if-conv.cc: ...here. * tree-inline.c: Moved to... * tree-inline.cc: ...here. * tree-into-ssa.c: Moved to... * tree-into-ssa.cc: ...here. * tree-iterator.c: Moved to... * tree-iterator.cc: ...here. * tree-loop-distribution.c: Moved to... * tree-loop-distribution.cc: ...here. * tree-nested.c: Moved to... * tree-nested.cc: ...here. * tree-nrv.c: Moved to... * tree-nrv.cc: ...here. * tree-object-size.c: Moved to... * tree-object-size.cc: ...here. * tree-outof-ssa.c: Moved to... * tree-outof-ssa.cc: ...here. * tree-parloops.c: Moved to... * tree-parloops.cc: ...here. * tree-phinodes.c: Moved to... * tree-phinodes.cc: ...here. * tree-predcom.c: Moved to... * tree-predcom.cc: ...here. * tree-pretty-print.c: Moved to... * tree-pretty-print.cc: ...here. * tree-profile.c: Moved to... * tree-profile.cc: ...here. * tree-scalar-evolution.c: Moved to... * tree-scalar-evolution.cc: ...here. * tree-sra.c: Moved to... * tree-sra.cc: ...here. * tree-ssa-address.c: Moved to... * tree-ssa-address.cc: ...here. * tree-ssa-alias.c: Moved to... * tree-ssa-alias.cc: ...here. * tree-ssa-ccp.c: Moved to... * tree-ssa-ccp.cc: ...here. * tree-ssa-coalesce.c: Moved to... * tree-ssa-coalesce.cc: ...here. * tree-ssa-copy.c: Moved to... * tree-ssa-copy.cc: ...here. * tree-ssa-dce.c: Moved to... * tree-ssa-dce.cc: ...here. * tree-ssa-dom.c: Moved to... * tree-ssa-dom.cc: ...here. * tree-ssa-dse.c: Moved to... * tree-ssa-dse.cc: ...here. * tree-ssa-forwprop.c: Moved to... * tree-ssa-forwprop.cc: ...here. * tree-ssa-ifcombine.c: Moved to... * tree-ssa-ifcombine.cc: ...here. * tree-ssa-live.c: Moved to... * tree-ssa-live.cc: ...here. * tree-ssa-loop-ch.c: Moved to... * tree-ssa-loop-ch.cc: ...here. * tree-ssa-loop-im.c: Moved to... * tree-ssa-loop-im.cc: ...here. * tree-ssa-loop-ivcanon.c: Moved to... * tree-ssa-loop-ivcanon.cc: ...here. * tree-ssa-loop-ivopts.c: Moved to... * tree-ssa-loop-ivopts.cc: ...here. * tree-ssa-loop-manip.c: Moved to... * tree-ssa-loop-manip.cc: ...here. * tree-ssa-loop-niter.c: Moved to... * tree-ssa-loop-niter.cc: ...here. * tree-ssa-loop-prefetch.c: Moved to... * tree-ssa-loop-prefetch.cc: ...here. * tree-ssa-loop-split.c: Moved to... * tree-ssa-loop-split.cc: ...here. * tree-ssa-loop-unswitch.c: Moved to... * tree-ssa-loop-unswitch.cc: ...here. * tree-ssa-loop.c: Moved to... * tree-ssa-loop.cc: ...here. * tree-ssa-math-opts.c: Moved to... * tree-ssa-math-opts.cc: ...here. * tree-ssa-operands.c: Moved to... * tree-ssa-operands.cc: ...here. * tree-ssa-phiopt.c: Moved to... * tree-ssa-phiopt.cc: ...here. * tree-ssa-phiprop.c: Moved to... * tree-ssa-phiprop.cc: ...here. * tree-ssa-pre.c: Moved to... * tree-ssa-pre.cc: ...here. * tree-ssa-propagate.c: Moved to... * tree-ssa-propagate.cc: ...here. * tree-ssa-reassoc.c: Moved to... * tree-ssa-reassoc.cc: ...here. * tree-ssa-sccvn.c: Moved to... * tree-ssa-sccvn.cc: ...here. * tree-ssa-scopedtables.c: Moved to... * tree-ssa-scopedtables.cc: ...here. * tree-ssa-sink.c: Moved to... * tree-ssa-sink.cc: ...here. * tree-ssa-strlen.c: Moved to... * tree-ssa-strlen.cc: ...here. * tree-ssa-structalias.c: Moved to... * tree-ssa-structalias.cc: ...here. * tree-ssa-tail-merge.c: Moved to... * tree-ssa-tail-merge.cc: ...here. * tree-ssa-ter.c: Moved to... * tree-ssa-ter.cc: ...here. * tree-ssa-threadbackward.c: Moved to... * tree-ssa-threadbackward.cc: ...here. * tree-ssa-threadedge.c: Moved to... * tree-ssa-threadedge.cc: ...here. * tree-ssa-threadupdate.c: Moved to... * tree-ssa-threadupdate.cc: ...here. * tree-ssa-uncprop.c: Moved to... * tree-ssa-uncprop.cc: ...here. * tree-ssa-uninit.c: Moved to... * tree-ssa-uninit.cc: ...here. * tree-ssa.c: Moved to... * tree-ssa.cc: ...here. * tree-ssanames.c: Moved to... * tree-ssanames.cc: ...here. * tree-stdarg.c: Moved to... * tree-stdarg.cc: ...here. * tree-streamer-in.c: Moved to... * tree-streamer-in.cc: ...here. * tree-streamer-out.c: Moved to... * tree-streamer-out.cc: ...here. * tree-streamer.c: Moved to... * tree-streamer.cc: ...here. * tree-switch-conversion.c: Moved to... * tree-switch-conversion.cc: ...here. * tree-tailcall.c: Moved to... * tree-tailcall.cc: ...here. * tree-vect-data-refs.c: Moved to... * tree-vect-data-refs.cc: ...here. * tree-vect-generic.c: Moved to... * tree-vect-generic.cc: ...here. * tree-vect-loop-manip.c: Moved to... * tree-vect-loop-manip.cc: ...here. * tree-vect-loop.c: Moved to... * tree-vect-loop.cc: ...here. * tree-vect-patterns.c: Moved to... * tree-vect-patterns.cc: ...here. * tree-vect-slp-patterns.c: Moved to... * tree-vect-slp-patterns.cc: ...here. * tree-vect-slp.c: Moved to... * tree-vect-slp.cc: ...here. * tree-vect-stmts.c: Moved to... * tree-vect-stmts.cc: ...here. * tree-vector-builder.c: Moved to... * tree-vector-builder.cc: ...here. * tree-vectorizer.c: Moved to... * tree-vectorizer.cc: ...here. * tree-vrp.c: Moved to... * tree-vrp.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * tsan.c: Moved to... * tsan.cc: ...here. * typed-splay-tree.c: Moved to... * typed-splay-tree.cc: ...here. * ubsan.c: Moved to... * ubsan.cc: ...here. * valtrack.c: Moved to... * valtrack.cc: ...here. * value-prof.c: Moved to... * value-prof.cc: ...here. * var-tracking.c: Moved to... * var-tracking.cc: ...here. * varasm.c: Moved to... * varasm.cc: ...here. * varpool.c: Moved to... * varpool.cc: ...here. * vec-perm-indices.c: Moved to... * vec-perm-indices.cc: ...here. * vec.c: Moved to... * vec.cc: ...here. * vmsdbgout.c: Moved to... * vmsdbgout.cc: ...here. * vr-values.c: Moved to... * vr-values.cc: ...here. * vtable-verify.c: Moved to... * vtable-verify.cc: ...here. * web.c: Moved to... * web.cc: ...here. * xcoffout.c: Moved to... * xcoffout.cc: ...here. gcc/c-family/ChangeLog: * c-ada-spec.c: Moved to... * c-ada-spec.cc: ...here. * c-attribs.c: Moved to... * c-attribs.cc: ...here. * c-common.c: Moved to... * c-common.cc: ...here. * c-cppbuiltin.c: Moved to... * c-cppbuiltin.cc: ...here. * c-dump.c: Moved to... * c-dump.cc: ...here. * c-format.c: Moved to... * c-format.cc: ...here. * c-gimplify.c: Moved to... * c-gimplify.cc: ...here. * c-indentation.c: Moved to... * c-indentation.cc: ...here. * c-lex.c: Moved to... * c-lex.cc: ...here. * c-omp.c: Moved to... * c-omp.cc: ...here. * c-opts.c: Moved to... * c-opts.cc: ...here. * c-pch.c: Moved to... * c-pch.cc: ...here. * c-ppoutput.c: Moved to... * c-ppoutput.cc: ...here. * c-pragma.c: Moved to... * c-pragma.cc: ...here. * c-pretty-print.c: Moved to... * c-pretty-print.cc: ...here. * c-semantics.c: Moved to... * c-semantics.cc: ...here. * c-ubsan.c: Moved to... * c-ubsan.cc: ...here. * c-warn.c: Moved to... * c-warn.cc: ...here. * cppspec.c: Moved to... * cppspec.cc: ...here. * stub-objc.c: Moved to... * stub-objc.cc: ...here. gcc/c/ChangeLog: * c-aux-info.c: Moved to... * c-aux-info.cc: ...here. * c-convert.c: Moved to... * c-convert.cc: ...here. * c-decl.c: Moved to... * c-decl.cc: ...here. * c-errors.c: Moved to... * c-errors.cc: ...here. * c-fold.c: Moved to... * c-fold.cc: ...here. * c-lang.c: Moved to... * c-lang.cc: ...here. * c-objc-common.c: Moved to... * c-objc-common.cc: ...here. * c-parser.c: Moved to... * c-parser.cc: ...here. * c-typeck.c: Moved to... * c-typeck.cc: ...here. * gccspec.c: Moved to... * gccspec.cc: ...here. * gimple-parser.c: Moved to... * gimple-parser.cc: ...here. gcc/cp/ChangeLog: * call.c: Moved to... * call.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constexpr.c: Moved to... * constexpr.cc: ...here. * cp-gimplify.c: Moved to... * cp-gimplify.cc: ...here. * cp-lang.c: Moved to... * cp-lang.cc: ...here. * cp-objcp-common.c: Moved to... * cp-objcp-common.cc: ...here. * cp-ubsan.c: Moved to... * cp-ubsan.cc: ...here. * cvt.c: Moved to... * cvt.cc: ...here. * cxx-pretty-print.c: Moved to... * cxx-pretty-print.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * decl2.c: Moved to... * decl2.cc: ...here. * dump.c: Moved to... * dump.cc: ...here. * error.c: Moved to... * error.cc: ...here. * except.c: Moved to... * except.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * friend.c: Moved to... * friend.cc: ...here. * g++spec.c: Moved to... * g++spec.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lambda.c: Moved to... * lambda.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * mangle.c: Moved to... * mangle.cc: ...here. * method.c: Moved to... * method.cc: ...here. * name-lookup.c: Moved to... * name-lookup.cc: ...here. * optimize.c: Moved to... * optimize.cc: ...here. * parser.c: Moved to... * parser.cc: ...here. * pt.c: Moved to... * pt.cc: ...here. * ptree.c: Moved to... * ptree.cc: ...here. * rtti.c: Moved to... * rtti.cc: ...here. * search.c: Moved to... * search.cc: ...here. * semantics.c: Moved to... * semantics.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * typeck.c: Moved to... * typeck.cc: ...here. * typeck2.c: Moved to... * typeck2.cc: ...here. * vtable-class-hierarchy.c: Moved to... * vtable-class-hierarchy.cc: ...here. gcc/fortran/ChangeLog: * arith.c: Moved to... * arith.cc: ...here. * array.c: Moved to... * array.cc: ...here. * bbt.c: Moved to... * bbt.cc: ...here. * check.c: Moved to... * check.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constructor.c: Moved to... * constructor.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * cpp.c: Moved to... * cpp.cc: ...here. * data.c: Moved to... * data.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * dependency.c: Moved to... * dependency.cc: ...here. * dump-parse-tree.c: Moved to... * dump-parse-tree.cc: ...here. * error.c: Moved to... * error.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * f95-lang.c: Moved to... * f95-lang.cc: ...here. * frontend-passes.c: Moved to... * frontend-passes.cc: ...here. * gfortranspec.c: Moved to... * gfortranspec.cc: ...here. * interface.c: Moved to... * interface.cc: ...here. * intrinsic.c: Moved to... * intrinsic.cc: ...here. * io.c: Moved to... * io.cc: ...here. * iresolve.c: Moved to... * iresolve.cc: ...here. * match.c: Moved to... * match.cc: ...here. * matchexp.c: Moved to... * matchexp.cc: ...here. * misc.c: Moved to... * misc.cc: ...here. * module.c: Moved to... * module.cc: ...here. * openmp.c: Moved to... * openmp.cc: ...here. * options.c: Moved to... * options.cc: ...here. * parse.c: Moved to... * parse.cc: ...here. * primary.c: Moved to... * primary.cc: ...here. * resolve.c: Moved to... * resolve.cc: ...here. * scanner.c: Moved to... * scanner.cc: ...here. * simplify.c: Moved to... * simplify.cc: ...here. * st.c: Moved to... * st.cc: ...here. * symbol.c: Moved to... * symbol.cc: ...here. * target-memory.c: Moved to... * target-memory.cc: ...here. * trans-array.c: Moved to... * trans-array.cc: ...here. * trans-common.c: Moved to... * trans-common.cc: ...here. * trans-const.c: Moved to... * trans-const.cc: ...here. * trans-decl.c: Moved to... * trans-decl.cc: ...here. * trans-expr.c: Moved to... * trans-expr.cc: ...here. * trans-intrinsic.c: Moved to... * trans-intrinsic.cc: ...here. * trans-io.c: Moved to... * trans-io.cc: ...here. * trans-openmp.c: Moved to... * trans-openmp.cc: ...here. * trans-stmt.c: Moved to... * trans-stmt.cc: ...here. * trans-types.c: Moved to... * trans-types.cc: ...here. * trans.c: Moved to... * trans.cc: ...here. gcc/go/ChangeLog: * go-backend.c: Moved to... * go-backend.cc: ...here. * go-lang.c: Moved to... * go-lang.cc: ...here. * gospec.c: Moved to... * gospec.cc: ...here. gcc/jit/ChangeLog: * dummy-frontend.c: Moved to... * dummy-frontend.cc: ...here. * jit-builtins.c: Moved to... * jit-builtins.cc: ...here. * jit-logging.c: Moved to... * jit-logging.cc: ...here. * jit-playback.c: Moved to... * jit-playback.cc: ...here. * jit-recording.c: Moved to... * jit-recording.cc: ...here. * jit-result.c: Moved to... * jit-result.cc: ...here. * jit-spec.c: Moved to... * jit-spec.cc: ...here. * jit-tempdir.c: Moved to... * jit-tempdir.cc: ...here. * jit-w32.c: Moved to... * jit-w32.cc: ...here. * libgccjit.c: Moved to... * libgccjit.cc: ...here. gcc/lto/ChangeLog: * common.c: Moved to... * common.cc: ...here. * lto-common.c: Moved to... * lto-common.cc: ...here. * lto-dump.c: Moved to... * lto-dump.cc: ...here. * lto-lang.c: Moved to... * lto-lang.cc: ...here. * lto-object.c: Moved to... * lto-object.cc: ...here. * lto-partition.c: Moved to... * lto-partition.cc: ...here. * lto-symtab.c: Moved to... * lto-symtab.cc: ...here. * lto.c: Moved to... * lto.cc: ...here. gcc/objc/ChangeLog: * objc-act.c: Moved to... * objc-act.cc: ...here. * objc-encoding.c: Moved to... * objc-encoding.cc: ...here. * objc-gnu-runtime-abi-01.c: Moved to... * objc-gnu-runtime-abi-01.cc: ...here. * objc-lang.c: Moved to... * objc-lang.cc: ...here. * objc-map.c: Moved to... * objc-map.cc: ...here. * objc-next-runtime-abi-01.c: Moved to... * objc-next-runtime-abi-01.cc: ...here. * objc-next-runtime-abi-02.c: Moved to... * objc-next-runtime-abi-02.cc: ...here. * objc-runtime-shared-support.c: Moved to... * objc-runtime-shared-support.cc: ...here. gcc/objcp/ChangeLog: * objcp-decl.c: Moved to... * objcp-decl.cc: ...here. * objcp-lang.c: Moved to... * objcp-lang.cc: ...here. libcpp/ChangeLog: * charset.c: Moved to... * charset.cc: ...here. * directives.c: Moved to... * directives.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * files.c: Moved to... * files.cc: ...here. * identifiers.c: Moved to... * identifiers.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * line-map.c: Moved to... * line-map.cc: ...here. * macro.c: Moved to... * macro.cc: ...here. * makeucnid.c: Moved to... * makeucnid.cc: ...here. * mkdeps.c: Moved to... * mkdeps.cc: ...here. * pch.c: Moved to... * pch.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * traditional.c: Moved to... * traditional.cc: ...here.
Diffstat (limited to 'gcc/expmed.cc')
-rw-r--r--gcc/expmed.cc6349
1 files changed, 6349 insertions, 0 deletions
diff --git a/gcc/expmed.cc b/gcc/expmed.cc
new file mode 100644
index 00000000000..715005884d9
--- /dev/null
+++ b/gcc/expmed.cc
@@ -0,0 +1,6349 @@
+/* Medium-level subroutines: convert bit-field store and extract
+ and shifts, multiplies and divides to rtl instructions.
+ Copyright (C) 1987-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Work around tree-optimization/91825. */
+#pragma GCC diagnostic warning "-Wmaybe-uninitialized"
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "rtl.h"
+#include "tree.h"
+#include "predict.h"
+#include "memmodel.h"
+#include "tm_p.h"
+#include "optabs.h"
+#include "expmed.h"
+#include "regs.h"
+#include "emit-rtl.h"
+#include "diagnostic-core.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "dojump.h"
+#include "explow.h"
+#include "expr.h"
+#include "langhooks.h"
+#include "tree-vector-builder.h"
+
+struct target_expmed default_target_expmed;
+#if SWITCHABLE_TARGET
+struct target_expmed *this_target_expmed = &default_target_expmed;
+#endif
+
+static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ poly_uint64, poly_uint64,
+ machine_mode, rtx, bool, bool);
+static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ poly_uint64, poly_uint64,
+ rtx, scalar_int_mode, bool);
+static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ rtx, scalar_int_mode, bool);
+static void store_split_bit_field (rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ poly_uint64, poly_uint64,
+ rtx, scalar_int_mode, bool);
+static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, int, rtx,
+ machine_mode, machine_mode, bool, bool);
+static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, rtx, int, bool);
+static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, rtx, int, bool);
+static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
+static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, int, bool);
+static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
+static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
+static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
+
+/* Return a constant integer mask value of mode MODE with BITSIZE ones
+ followed by BITPOS zeros, or the complement of that if COMPLEMENT.
+ The mask is truncated if necessary to the width of mode MODE. The
+ mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
+
+static inline rtx
+mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
+{
+ return immed_wide_int_const
+ (wi::shifted_mask (bitpos, bitsize, complement,
+ GET_MODE_PRECISION (mode)), mode);
+}
+
+/* Test whether a value is zero of a power of two. */
+#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
+ (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
+
+struct init_expmed_rtl
+{
+ rtx reg;
+ rtx plus;
+ rtx neg;
+ rtx mult;
+ rtx sdiv;
+ rtx udiv;
+ rtx sdiv_32;
+ rtx smod_32;
+ rtx wide_mult;
+ rtx wide_lshr;
+ rtx wide_trunc;
+ rtx shift;
+ rtx shift_mult;
+ rtx shift_add;
+ rtx shift_sub0;
+ rtx shift_sub1;
+ rtx zext;
+ rtx trunc;
+
+ rtx pow2[MAX_BITS_PER_WORD];
+ rtx cint[MAX_BITS_PER_WORD];
+};
+
+static void
+init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
+ scalar_int_mode from_mode, bool speed)
+{
+ int to_size, from_size;
+ rtx which;
+
+ to_size = GET_MODE_PRECISION (to_mode);
+ from_size = GET_MODE_PRECISION (from_mode);
+
+ /* Most partial integers have a precision less than the "full"
+ integer it requires for storage. In case one doesn't, for
+ comparison purposes here, reduce the bit size by one in that
+ case. */
+ if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
+ && pow2p_hwi (to_size))
+ to_size --;
+ if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
+ && pow2p_hwi (from_size))
+ from_size --;
+
+ /* Assume cost of zero-extend and sign-extend is the same. */
+ which = (to_size < from_size ? all->trunc : all->zext);
+
+ PUT_MODE (all->reg, from_mode);
+ set_convert_cost (to_mode, from_mode, speed,
+ set_src_cost (which, to_mode, speed));
+ /* Restore all->reg's mode. */
+ PUT_MODE (all->reg, to_mode);
+}
+
+static void
+init_expmed_one_mode (struct init_expmed_rtl *all,
+ machine_mode mode, int speed)
+{
+ int m, n, mode_bitsize;
+ machine_mode mode_from;
+
+ mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
+
+ PUT_MODE (all->reg, mode);
+ PUT_MODE (all->plus, mode);
+ PUT_MODE (all->neg, mode);
+ PUT_MODE (all->mult, mode);
+ PUT_MODE (all->sdiv, mode);
+ PUT_MODE (all->udiv, mode);
+ PUT_MODE (all->sdiv_32, mode);
+ PUT_MODE (all->smod_32, mode);
+ PUT_MODE (all->wide_trunc, mode);
+ PUT_MODE (all->shift, mode);
+ PUT_MODE (all->shift_mult, mode);
+ PUT_MODE (all->shift_add, mode);
+ PUT_MODE (all->shift_sub0, mode);
+ PUT_MODE (all->shift_sub1, mode);
+ PUT_MODE (all->zext, mode);
+ PUT_MODE (all->trunc, mode);
+
+ set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
+ set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
+ set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
+ set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
+ set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
+
+ set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
+ <= 2 * add_cost (speed, mode)));
+ set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
+ <= 4 * add_cost (speed, mode)));
+
+ set_shift_cost (speed, mode, 0, 0);
+ {
+ int cost = add_cost (speed, mode);
+ set_shiftadd_cost (speed, mode, 0, cost);
+ set_shiftsub0_cost (speed, mode, 0, cost);
+ set_shiftsub1_cost (speed, mode, 0, cost);
+ }
+
+ n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
+ for (m = 1; m < n; m++)
+ {
+ XEXP (all->shift, 1) = all->cint[m];
+ XEXP (all->shift_mult, 1) = all->pow2[m];
+
+ set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
+ set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
+ speed));
+ set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
+ speed));
+ set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
+ speed));
+ }
+
+ scalar_int_mode int_mode_to;
+ if (is_a <scalar_int_mode> (mode, &int_mode_to))
+ {
+ for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
+ mode_from = (machine_mode)(mode_from + 1))
+ init_expmed_one_conv (all, int_mode_to,
+ as_a <scalar_int_mode> (mode_from), speed);
+
+ scalar_int_mode wider_mode;
+ if (GET_MODE_CLASS (int_mode_to) == MODE_INT
+ && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
+ {
+ PUT_MODE (all->reg, mode);
+ PUT_MODE (all->zext, wider_mode);
+ PUT_MODE (all->wide_mult, wider_mode);
+ PUT_MODE (all->wide_lshr, wider_mode);
+ XEXP (all->wide_lshr, 1)
+ = gen_int_shift_amount (wider_mode, mode_bitsize);
+
+ set_mul_widen_cost (speed, wider_mode,
+ set_src_cost (all->wide_mult, wider_mode, speed));
+ set_mul_highpart_cost (speed, int_mode_to,
+ set_src_cost (all->wide_trunc,
+ int_mode_to, speed));
+ }
+ }
+}
+
+void
+init_expmed (void)
+{
+ struct init_expmed_rtl all;
+ machine_mode mode = QImode;
+ int m, speed;
+
+ memset (&all, 0, sizeof all);
+ for (m = 1; m < MAX_BITS_PER_WORD; m++)
+ {
+ all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
+ all.cint[m] = GEN_INT (m);
+ }
+
+ /* Avoid using hard regs in ways which may be unsupported. */
+ all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+ all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
+ all.neg = gen_rtx_NEG (mode, all.reg);
+ all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
+ all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
+ all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
+ all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
+ all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
+ all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
+ all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
+ all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
+ all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
+ all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
+ all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
+ all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
+ all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
+ all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
+ all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
+
+ for (speed = 0; speed < 2; speed++)
+ {
+ crtl->maybe_hot_insn_p = speed;
+ set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
+
+ for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
+ mode = (machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+
+ if (MIN_MODE_PARTIAL_INT != VOIDmode)
+ for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
+ mode = (machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+
+ if (MIN_MODE_VECTOR_INT != VOIDmode)
+ for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
+ mode = (machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+ }
+
+ if (alg_hash_used_p ())
+ {
+ struct alg_hash_entry *p = alg_hash_entry_ptr (0);
+ memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
+ }
+ else
+ set_alg_hash_used_p (true);
+ default_rtl_profile ();
+
+ ggc_free (all.trunc);
+ ggc_free (all.shift_sub1);
+ ggc_free (all.shift_sub0);
+ ggc_free (all.shift_add);
+ ggc_free (all.shift_mult);
+ ggc_free (all.shift);
+ ggc_free (all.wide_trunc);
+ ggc_free (all.wide_lshr);
+ ggc_free (all.wide_mult);
+ ggc_free (all.zext);
+ ggc_free (all.smod_32);
+ ggc_free (all.sdiv_32);
+ ggc_free (all.udiv);
+ ggc_free (all.sdiv);
+ ggc_free (all.mult);
+ ggc_free (all.neg);
+ ggc_free (all.plus);
+ ggc_free (all.reg);
+}
+
+/* Return an rtx representing minus the value of X.
+ MODE is the intended mode of the result,
+ useful if X is a CONST_INT. */
+
+rtx
+negate_rtx (machine_mode mode, rtx x)
+{
+ rtx result = simplify_unary_operation (NEG, mode, x, mode);
+
+ if (result == 0)
+ result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
+
+ return result;
+}
+
+/* Whether reverse storage order is supported on the target. */
+static int reverse_storage_order_supported = -1;
+
+/* Check whether reverse storage order is supported on the target. */
+
+static void
+check_reverse_storage_order_support (void)
+{
+ if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
+ {
+ reverse_storage_order_supported = 0;
+ sorry ("reverse scalar storage order");
+ }
+ else
+ reverse_storage_order_supported = 1;
+}
+
+/* Whether reverse FP storage order is supported on the target. */
+static int reverse_float_storage_order_supported = -1;
+
+/* Check whether reverse FP storage order is supported on the target. */
+
+static void
+check_reverse_float_storage_order_support (void)
+{
+ if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
+ {
+ reverse_float_storage_order_supported = 0;
+ sorry ("reverse floating-point scalar storage order");
+ }
+ else
+ reverse_float_storage_order_supported = 1;
+}
+
+/* Return an rtx representing value of X with reverse storage order.
+ MODE is the intended mode of the result,
+ useful if X is a CONST_INT. */
+
+rtx
+flip_storage_order (machine_mode mode, rtx x)
+{
+ scalar_int_mode int_mode;
+ rtx result;
+
+ if (mode == QImode)
+ return x;
+
+ if (COMPLEX_MODE_P (mode))
+ {
+ rtx real = read_complex_part (x, false);
+ rtx imag = read_complex_part (x, true);
+
+ real = flip_storage_order (GET_MODE_INNER (mode), real);
+ imag = flip_storage_order (GET_MODE_INNER (mode), imag);
+
+ return gen_rtx_CONCAT (mode, real, imag);
+ }
+
+ if (__builtin_expect (reverse_storage_order_supported < 0, 0))
+ check_reverse_storage_order_support ();
+
+ if (!is_a <scalar_int_mode> (mode, &int_mode))
+ {
+ if (FLOAT_MODE_P (mode)
+ && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
+ check_reverse_float_storage_order_support ();
+
+ if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode)
+ || !targetm.scalar_mode_supported_p (int_mode))
+ {
+ sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
+ return x;
+ }
+ x = gen_lowpart (int_mode, x);
+ }
+
+ result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
+ if (result == 0)
+ result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
+
+ if (int_mode != mode)
+ result = gen_lowpart (mode, result);
+
+ return result;
+}
+
+/* If MODE is set, adjust bitfield memory MEM so that it points to the
+ first unit of mode MODE that contains a bitfield of size BITSIZE at
+ bit position BITNUM. If MODE is not set, return a BLKmode reference
+ to every byte in the bitfield. Set *NEW_BITNUM to the bit position
+ of the field within the new memory. */
+
+static rtx
+narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT *new_bitnum)
+{
+ scalar_int_mode imode;
+ if (mode.exists (&imode))
+ {
+ unsigned int unit = GET_MODE_BITSIZE (imode);
+ *new_bitnum = bitnum % unit;
+ HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
+ return adjust_bitfield_address (mem, imode, offset);
+ }
+ else
+ {
+ *new_bitnum = bitnum % BITS_PER_UNIT;
+ HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
+ HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
+ / BITS_PER_UNIT);
+ return adjust_bitfield_address_size (mem, BLKmode, offset, size);
+ }
+}
+
+/* The caller wants to perform insertion or extraction PATTERN on a
+ bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
+ BITREGION_START and BITREGION_END are as for store_bit_field
+ and FIELDMODE is the natural mode of the field.
+
+ Search for a mode that is compatible with the memory access
+ restrictions and (where applicable) with a register insertion or
+ extraction. Return the new memory on success, storing the adjusted
+ bit position in *NEW_BITNUM. Return null otherwise. */
+
+static rtx
+adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
+ rtx op0, HOST_WIDE_INT bitsize,
+ HOST_WIDE_INT bitnum,
+ poly_uint64 bitregion_start,
+ poly_uint64 bitregion_end,
+ machine_mode fieldmode,
+ unsigned HOST_WIDE_INT *new_bitnum)
+{
+ bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
+ bitregion_end, MEM_ALIGN (op0),
+ MEM_VOLATILE_P (op0));
+ scalar_int_mode best_mode;
+ if (iter.next_mode (&best_mode))
+ {
+ /* We can use a memory in BEST_MODE. See whether this is true for
+ any wider modes. All other things being equal, we prefer to
+ use the widest mode possible because it tends to expose more
+ CSE opportunities. */
+ if (!iter.prefer_smaller_modes ())
+ {
+ /* Limit the search to the mode required by the corresponding
+ register insertion or extraction instruction, if any. */
+ scalar_int_mode limit_mode = word_mode;
+ extraction_insn insn;
+ if (get_best_reg_extraction_insn (&insn, pattern,
+ GET_MODE_BITSIZE (best_mode),
+ fieldmode))
+ limit_mode = insn.field_mode;
+
+ scalar_int_mode wider_mode;
+ while (iter.next_mode (&wider_mode)
+ && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
+ best_mode = wider_mode;
+ }
+ return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
+ new_bitnum);
+ }
+ return NULL_RTX;
+}
+
+/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
+ a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
+ offset is then BITNUM / BITS_PER_UNIT. */
+
+static bool
+lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
+ machine_mode struct_mode)
+{
+ poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
+ if (BYTES_BIG_ENDIAN)
+ return (multiple_p (bitnum, BITS_PER_UNIT)
+ && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
+ || multiple_p (bitnum + bitsize,
+ regsize * BITS_PER_UNIT)));
+ else
+ return multiple_p (bitnum, regsize * BITS_PER_UNIT);
+}
+
+/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
+ containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
+ Return false if the access would touch memory outside the range
+ BITREGION_START to BITREGION_END for conformance to the C++ memory
+ model. */
+
+static bool
+strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ scalar_int_mode fieldmode,
+ poly_uint64 bitregion_start,
+ poly_uint64 bitregion_end)
+{
+ unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
+
+ /* -fstrict-volatile-bitfields must be enabled and we must have a
+ volatile MEM. */
+ if (!MEM_P (op0)
+ || !MEM_VOLATILE_P (op0)
+ || flag_strict_volatile_bitfields <= 0)
+ return false;
+
+ /* The bit size must not be larger than the field mode, and
+ the field mode must not be larger than a word. */
+ if (bitsize > modesize || modesize > BITS_PER_WORD)
+ return false;
+
+ /* Check for cases of unaligned fields that must be split. */
+ if (bitnum % modesize + bitsize > modesize)
+ return false;
+
+ /* The memory must be sufficiently aligned for a MODESIZE access.
+ This condition guarantees, that the memory access will not
+ touch anything after the end of the structure. */
+ if (MEM_ALIGN (op0) < modesize)
+ return false;
+
+ /* Check for cases where the C++ memory model applies. */
+ if (maybe_ne (bitregion_end, 0U)
+ && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
+ || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
+ bitregion_end)))
+ return false;
+
+ return true;
+}
+
+/* Return true if OP is a memory and if a bitfield of size BITSIZE at
+ bit number BITNUM can be treated as a simple value of mode MODE.
+ Store the byte offset in *BYTENUM if so. */
+
+static bool
+simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
+ machine_mode mode, poly_uint64 *bytenum)
+{
+ return (MEM_P (op0)
+ && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
+ && known_eq (bitsize, GET_MODE_BITSIZE (mode))
+ && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
+ || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
+ && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
+}
+
+/* Try to use instruction INSV to store VALUE into a field of OP0.
+ If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
+ BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
+ are as for store_bit_field. */
+
+static bool
+store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
+ opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ rtx value, scalar_int_mode value_mode)
+{
+ class expand_operand ops[4];
+ rtx value1;
+ rtx xop0 = op0;
+ rtx_insn *last = get_last_insn ();
+ bool copy_back = false;
+
+ scalar_int_mode op_mode = insv->field_mode;
+ unsigned int unit = GET_MODE_BITSIZE (op_mode);
+ if (bitsize == 0 || bitsize > unit)
+ return false;
+
+ if (MEM_P (xop0))
+ /* Get a reference to the first byte of the field. */
+ xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
+ &bitnum);
+ else
+ {
+ /* Convert from counting within OP0 to counting in OP_MODE. */
+ if (BYTES_BIG_ENDIAN)
+ bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
+
+ /* If xop0 is a register, we need it in OP_MODE
+ to make it acceptable to the format of insv. */
+ if (GET_CODE (xop0) == SUBREG)
+ {
+ /* If such a SUBREG can't be created, give up. */
+ if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)),
+ SUBREG_REG (xop0), SUBREG_BYTE (xop0)))
+ return false;
+ /* We can't just change the mode, because this might clobber op0,
+ and we will need the original value of op0 if insv fails. */
+ xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0),
+ SUBREG_BYTE (xop0));
+ }
+ if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
+ xop0 = gen_lowpart_SUBREG (op_mode, xop0);
+ }
+
+ /* If the destination is a paradoxical subreg such that we need a
+ truncate to the inner mode, perform the insertion on a temporary and
+ truncate the result to the original destination. Note that we can't
+ just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
+ X) 0)) is (reg:N X). */
+ if (GET_CODE (xop0) == SUBREG
+ && REG_P (SUBREG_REG (xop0))
+ && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
+ op_mode))
+ {
+ rtx tem = gen_reg_rtx (op_mode);
+ emit_move_insn (tem, xop0);
+ xop0 = tem;
+ copy_back = true;
+ }
+
+ /* There are similar overflow check at the start of store_bit_field_1,
+ but that only check the situation where the field lies completely
+ outside the register, while there do have situation where the field
+ lies partialy in the register, we need to adjust bitsize for this
+ partial overflow situation. Without this fix, pr48335-2.c on big-endian
+ will broken on those arch support bit insert instruction, like arm, aarch64
+ etc. */
+ if (bitsize + bitnum > unit && bitnum < unit)
+ {
+ warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
+ "destination object, data truncated into %wu-bit",
+ bitsize, unit - bitnum);
+ bitsize = unit - bitnum;
+ }
+
+ /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+ "backwards" from the size of the unit we are inserting into.
+ Otherwise, we count bits from the most significant on a
+ BYTES/BITS_BIG_ENDIAN machine. */
+
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ bitnum = unit - bitsize - bitnum;
+
+ /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
+ value1 = value;
+ if (value_mode != op_mode)
+ {
+ if (GET_MODE_BITSIZE (value_mode) >= bitsize)
+ {
+ rtx tmp;
+ /* Optimization: Don't bother really extending VALUE
+ if it has all the bits we will actually use. However,
+ if we must narrow it, be sure we do it correctly. */
+
+ if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
+ {
+ tmp = simplify_subreg (op_mode, value1, value_mode, 0);
+ if (! tmp)
+ tmp = simplify_gen_subreg (op_mode,
+ force_reg (value_mode, value1),
+ value_mode, 0);
+ }
+ else
+ {
+ tmp = gen_lowpart_if_possible (op_mode, value1);
+ if (! tmp)
+ tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
+ }
+ value1 = tmp;
+ }
+ else if (CONST_INT_P (value))
+ value1 = gen_int_mode (INTVAL (value), op_mode);
+ else
+ /* Parse phase is supposed to make VALUE's data type
+ match that of the component reference, which is a type
+ at least as wide as the field; so VALUE should have
+ a mode that corresponds to that type. */
+ gcc_assert (CONSTANT_P (value));
+ }
+
+ create_fixed_operand (&ops[0], xop0);
+ create_integer_operand (&ops[1], bitsize);
+ create_integer_operand (&ops[2], bitnum);
+ create_input_operand (&ops[3], value1, op_mode);
+ if (maybe_expand_insn (insv->icode, 4, ops))
+ {
+ if (copy_back)
+ convert_move (op0, xop0, true);
+ return true;
+ }
+ delete_insns_since (last);
+ return false;
+}
+
+/* A subroutine of store_bit_field, with the same arguments. Return true
+ if the operation could be implemented.
+
+ If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
+ no other way of implementing the operation. If FALLBACK_P is false,
+ return false instead. */
+
+static bool
+store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
+ poly_uint64 bitregion_start, poly_uint64 bitregion_end,
+ machine_mode fieldmode,
+ rtx value, bool reverse, bool fallback_p)
+{
+ rtx op0 = str_rtx;
+
+ while (GET_CODE (op0) == SUBREG)
+ {
+ bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* No action is needed if the target is a register and if the field
+ lies completely outside that register. This can occur if the source
+ code contains an out-of-bounds access to a small array. */
+ if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
+ return true;
+
+ /* Use vec_set patterns for inserting parts of vectors whenever
+ available. */
+ machine_mode outermode = GET_MODE (op0);
+ scalar_mode innermode = GET_MODE_INNER (outermode);
+ poly_uint64 pos;
+ if (VECTOR_MODE_P (outermode)
+ && !MEM_P (op0)
+ && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
+ && fieldmode == innermode
+ && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
+ && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
+ {
+ class expand_operand ops[3];
+ enum insn_code icode = optab_handler (vec_set_optab, outermode);
+
+ create_fixed_operand (&ops[0], op0);
+ create_input_operand (&ops[1], value, innermode);
+ create_integer_operand (&ops[2], pos);
+ if (maybe_expand_insn (icode, 3, ops))
+ return true;
+ }
+
+ /* If the target is a register, overwriting the entire object, or storing
+ a full-word or multi-word field can be done with just a SUBREG. */
+ if (!MEM_P (op0)
+ && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
+ {
+ /* Use the subreg machinery either to narrow OP0 to the required
+ words or to cope with mode punning between equal-sized modes.
+ In the latter case, use subreg on the rhs side, not lhs. */
+ rtx sub;
+ HOST_WIDE_INT regnum;
+ poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
+ if (known_eq (bitnum, 0U)
+ && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
+ {
+ sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
+ if (sub)
+ {
+ if (reverse)
+ sub = flip_storage_order (GET_MODE (op0), sub);
+ emit_move_insn (op0, sub);
+ return true;
+ }
+ }
+ else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, &regnum)
+ && multiple_p (bitsize, regsize * BITS_PER_UNIT)
+ && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize))
+ {
+ sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
+ regnum * regsize);
+ if (sub)
+ {
+ if (reverse)
+ value = flip_storage_order (fieldmode, value);
+ emit_move_insn (sub, value);
+ return true;
+ }
+ }
+ }
+
+ /* If the target is memory, storing any naturally aligned field can be
+ done with a simple store. For targets that support fast unaligned
+ memory, any naturally sized, unit aligned field can be done directly. */
+ poly_uint64 bytenum;
+ if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
+ {
+ op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
+ if (reverse)
+ value = flip_storage_order (fieldmode, value);
+ emit_move_insn (op0, value);
+ return true;
+ }
+
+ /* It's possible we'll need to handle other cases here for
+ polynomial bitnum and bitsize. */
+
+ /* From here on we need to be looking at a fixed-size insertion. */
+ unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
+ unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
+
+ /* Make sure we are playing with integral modes. Pun with subregs
+ if we aren't. This must come after the entire register case above,
+ since that case is valid for any mode. The following cases are only
+ valid for integral modes. */
+ opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
+ scalar_int_mode imode;
+ if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
+ {
+ if (MEM_P (op0))
+ op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
+ 0, MEM_SIZE (op0));
+ else if (!op0_mode.exists ())
+ {
+ if (ibitnum == 0
+ && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
+ && MEM_P (value)
+ && !reverse)
+ {
+ value = adjust_address (value, GET_MODE (op0), 0);
+ emit_move_insn (op0, value);
+ return true;
+ }
+ if (!fallback_p)
+ return false;
+ rtx temp = assign_stack_temp (GET_MODE (op0),
+ GET_MODE_SIZE (GET_MODE (op0)));
+ emit_move_insn (temp, op0);
+ store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value,
+ reverse, fallback_p);
+ emit_move_insn (op0, temp);
+ return true;
+ }
+ else
+ op0 = gen_lowpart (op0_mode.require (), op0);
+ }
+
+ return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
+ bitregion_start, bitregion_end,
+ fieldmode, value, reverse, fallback_p);
+}
+
+/* Subroutine of store_bit_field_1, with the same arguments, except
+ that BITSIZE and BITNUM are constant. Handle cases specific to
+ integral modes. If OP0_MODE is defined, it is the mode of OP0,
+ otherwise OP0 is a BLKmode MEM. */
+
+static bool
+store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ poly_uint64 bitregion_start,
+ poly_uint64 bitregion_end,
+ machine_mode fieldmode,
+ rtx value, bool reverse, bool fallback_p)
+{
+ /* Storing an lsb-aligned field in a register
+ can be done with a movstrict instruction. */
+
+ if (!MEM_P (op0)
+ && !reverse
+ && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
+ && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
+ && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
+ {
+ class expand_operand ops[2];
+ enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
+ rtx arg0 = op0;
+ unsigned HOST_WIDE_INT subreg_off;
+
+ if (GET_CODE (arg0) == SUBREG)
+ {
+ /* Else we've got some float mode source being extracted into
+ a different float mode destination -- this combination of
+ subregs results in Severe Tire Damage. */
+ gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
+ || GET_MODE_CLASS (fieldmode) == MODE_INT
+ || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
+ arg0 = SUBREG_REG (arg0);
+ }
+
+ subreg_off = bitnum / BITS_PER_UNIT;
+ if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)
+ /* STRICT_LOW_PART must have a non-paradoxical subreg as
+ operand. */
+ && !paradoxical_subreg_p (fieldmode, GET_MODE (arg0)))
+ {
+ arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
+
+ create_fixed_operand (&ops[0], arg0);
+ /* Shrink the source operand to FIELDMODE. */
+ create_convert_operand_to (&ops[1], value, fieldmode, false);
+ if (maybe_expand_insn (icode, 2, ops))
+ return true;
+ }
+ }
+
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full.
+ However, only do that if the value is not BLKmode. */
+
+ const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
+ const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ rtx_insn *last;
+
+ /* This is the mode we must force value to, so that there will be enough
+ subwords to extract. Note that fieldmode will often (always?) be
+ VOIDmode, because that is what store_field uses to indicate that this
+ is a bit field, but passing VOIDmode to operand_subword_force
+ is not allowed.
+
+ The mode must be fixed-size, since insertions into variable-sized
+ objects are meant to be handled before calling this function. */
+ fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
+ if (value_mode == VOIDmode)
+ value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
+
+ last = get_last_insn ();
+ for (int i = 0; i < nwords; i++)
+ {
+ /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
+ except maybe for the last iteration. */
+ const unsigned HOST_WIDE_INT new_bitsize
+ = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
+ /* Bit offset from the starting bit number in the target. */
+ const unsigned int bit_offset
+ = backwards ^ reverse
+ ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
+ : i * BITS_PER_WORD;
+ /* Starting word number in the value. */
+ const unsigned int wordnum
+ = backwards
+ ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1)
+ : i;
+ /* The chunk of the value in word_mode. We use bit-field extraction
+ in BLKmode to handle unaligned memory references and to shift the
+ last chunk right on big-endian machines if need be. */
+ rtx value_word
+ = fieldmode == BLKmode
+ ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
+ 1, NULL_RTX, word_mode, word_mode, false,
+ NULL)
+ : operand_subword_force (value, wordnum, value_mode);
+
+ if (!store_bit_field_1 (op0, new_bitsize,
+ bitnum + bit_offset,
+ bitregion_start, bitregion_end,
+ word_mode,
+ value_word, reverse, fallback_p))
+ {
+ delete_insns_since (last);
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /* If VALUE has a floating-point or complex mode, access it as an
+ integer of the corresponding size. This can occur on a machine
+ with 64 bit registers that uses SFmode for float. It can also
+ occur for unaligned float or complex fields. */
+ rtx orig_value = value;
+ scalar_int_mode value_mode;
+ if (GET_MODE (value) == VOIDmode)
+ /* By this point we've dealt with values that are bigger than a word,
+ so word_mode is a conservatively correct choice. */
+ value_mode = word_mode;
+ else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
+ {
+ value_mode = int_mode_for_mode (GET_MODE (value)).require ();
+ value = gen_reg_rtx (value_mode);
+ emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
+ }
+
+ /* If OP0 is a multi-word register, narrow it to the affected word.
+ If the region spans two words, defer to store_split_bit_field.
+ Don't do this if op0 is a single hard register wider than word
+ such as a float or vector register. */
+ if (!MEM_P (op0)
+ && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
+ && (!REG_P (op0)
+ || !HARD_REGISTER_P (op0)
+ || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
+ {
+ if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
+ {
+ if (!fallback_p)
+ return false;
+
+ store_split_bit_field (op0, op0_mode, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ value, value_mode, reverse);
+ return true;
+ }
+ op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
+ bitnum / BITS_PER_WORD * UNITS_PER_WORD);
+ gcc_assert (op0);
+ op0_mode = word_mode;
+ bitnum %= BITS_PER_WORD;
+ }
+
+ /* From here on we can assume that the field to be stored in fits
+ within a word. If the destination is a register, it too fits
+ in a word. */
+
+ extraction_insn insv;
+ if (!MEM_P (op0)
+ && !reverse
+ && get_best_reg_extraction_insn (&insv, EP_insv,
+ GET_MODE_BITSIZE (op0_mode.require ()),
+ fieldmode)
+ && store_bit_field_using_insv (&insv, op0, op0_mode,
+ bitsize, bitnum, value, value_mode))
+ return true;
+
+ /* If OP0 is a memory, try copying it to a register and seeing if a
+ cheap register alternative is available. */
+ if (MEM_P (op0) && !reverse)
+ {
+ if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
+ fieldmode)
+ && store_bit_field_using_insv (&insv, op0, op0_mode,
+ bitsize, bitnum, value, value_mode))
+ return true;
+
+ rtx_insn *last = get_last_insn ();
+
+ /* Try loading part of OP0 into a register, inserting the bitfield
+ into that, and then copying the result back to OP0. */
+ unsigned HOST_WIDE_INT bitpos;
+ rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ fieldmode, &bitpos);
+ if (xop0)
+ {
+ rtx tempreg = copy_to_reg (xop0);
+ if (store_bit_field_1 (tempreg, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ fieldmode, orig_value, reverse, false))
+ {
+ emit_move_insn (xop0, tempreg);
+ return true;
+ }
+ delete_insns_since (last);
+ }
+ }
+
+ if (!fallback_p)
+ return false;
+
+ store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
+ bitregion_end, value, value_mode, reverse);
+ return true;
+}
+
+/* Generate code to store value from rtx VALUE
+ into a bit-field within structure STR_RTX
+ containing BITSIZE bits starting at bit BITNUM.
+
+ BITREGION_START is bitpos of the first bitfield in this region.
+ BITREGION_END is the bitpos of the ending bitfield in this region.
+ These two fields are 0, if the C++ memory model does not apply,
+ or we are not interested in keeping track of bitfield regions.
+
+ FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
+
+ If REVERSE is true, the store is to be done in reverse order. */
+
+void
+store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
+ poly_uint64 bitregion_start, poly_uint64 bitregion_end,
+ machine_mode fieldmode,
+ rtx value, bool reverse)
+{
+ /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
+ unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
+ scalar_int_mode int_mode;
+ if (bitsize.is_constant (&ibitsize)
+ && bitnum.is_constant (&ibitnum)
+ && is_a <scalar_int_mode> (fieldmode, &int_mode)
+ && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
+ bitregion_start, bitregion_end))
+ {
+ /* Storing of a full word can be done with a simple store.
+ We know here that the field can be accessed with one single
+ instruction. For targets that support unaligned memory,
+ an unaligned access may be necessary. */
+ if (ibitsize == GET_MODE_BITSIZE (int_mode))
+ {
+ str_rtx = adjust_bitfield_address (str_rtx, int_mode,
+ ibitnum / BITS_PER_UNIT);
+ if (reverse)
+ value = flip_storage_order (int_mode, value);
+ gcc_assert (ibitnum % BITS_PER_UNIT == 0);
+ emit_move_insn (str_rtx, value);
+ }
+ else
+ {
+ rtx temp;
+
+ str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
+ ibitnum, &ibitnum);
+ gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
+ temp = copy_to_reg (str_rtx);
+ if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
+ int_mode, value, reverse, true))
+ gcc_unreachable ();
+
+ emit_move_insn (str_rtx, temp);
+ }
+
+ return;
+ }
+
+ /* Under the C++0x memory model, we must not touch bits outside the
+ bit region. Adjust the address to start at the beginning of the
+ bit region. */
+ if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
+ {
+ scalar_int_mode best_mode;
+ machine_mode addr_mode = VOIDmode;
+
+ poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
+ bitnum -= bitregion_start;
+ poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
+ bitregion_end -= bitregion_start;
+ bitregion_start = 0;
+ if (bitsize.is_constant (&ibitsize)
+ && bitnum.is_constant (&ibitnum)
+ && get_best_mode (ibitsize, ibitnum,
+ bitregion_start, bitregion_end,
+ MEM_ALIGN (str_rtx), INT_MAX,
+ MEM_VOLATILE_P (str_rtx), &best_mode))
+ addr_mode = best_mode;
+ str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
+ offset, size);
+ }
+
+ if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ fieldmode, value, reverse, true))
+ gcc_unreachable ();
+}
+
+/* Use shifts and boolean operations to store VALUE into a bit field of
+ width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
+ it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
+ the mode of VALUE.
+
+ If REVERSE is true, the store is to be done in reverse order. */
+
+static void
+store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ poly_uint64 bitregion_start, poly_uint64 bitregion_end,
+ rtx value, scalar_int_mode value_mode, bool reverse)
+{
+ /* There is a case not handled here:
+ a structure with a known alignment of just a halfword
+ and a field split across two aligned halfwords within the structure.
+ Or likewise a structure with a known alignment of just a byte
+ and a field split across two bytes.
+ Such cases are not supposed to be able to occur. */
+
+ scalar_int_mode best_mode;
+ if (MEM_P (op0))
+ {
+ unsigned int max_bitsize = BITS_PER_WORD;
+ scalar_int_mode imode;
+ if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
+ max_bitsize = GET_MODE_BITSIZE (imode);
+
+ if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
+ MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
+ &best_mode))
+ {
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ store_split_bit_field (op0, op0_mode, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ value, value_mode, reverse);
+ return;
+ }
+
+ op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
+ }
+ else
+ best_mode = op0_mode.require ();
+
+ store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
+ value, value_mode, reverse);
+}
+
+/* Helper function for store_fixed_bit_field, stores
+ the bit field always using MODE, which is the mode of OP0. The other
+ arguments are as for store_fixed_bit_field. */
+
+static void
+store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ rtx value, scalar_int_mode value_mode, bool reverse)
+{
+ rtx temp;
+ int all_zero = 0;
+ int all_one = 0;
+
+ /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
+ for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
+
+ if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ /* BITNUM is the distance between our msb
+ and that of the containing datum.
+ Convert it to the distance from the lsb. */
+ bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
+
+ /* Now BITNUM is always the distance between our lsb
+ and that of OP0. */
+
+ /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
+ we must first convert its mode to MODE. */
+
+ if (CONST_INT_P (value))
+ {
+ unsigned HOST_WIDE_INT v = UINTVAL (value);
+
+ if (bitsize < HOST_BITS_PER_WIDE_INT)
+ v &= (HOST_WIDE_INT_1U << bitsize) - 1;
+
+ if (v == 0)
+ all_zero = 1;
+ else if ((bitsize < HOST_BITS_PER_WIDE_INT
+ && v == (HOST_WIDE_INT_1U << bitsize) - 1)
+ || (bitsize == HOST_BITS_PER_WIDE_INT
+ && v == HOST_WIDE_INT_M1U))
+ all_one = 1;
+
+ value = lshift_value (mode, v, bitnum);
+ }
+ else
+ {
+ int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
+ && bitnum + bitsize != GET_MODE_BITSIZE (mode));
+
+ if (value_mode != mode)
+ value = convert_to_mode (mode, value, 1);
+
+ if (must_and)
+ value = expand_binop (mode, and_optab, value,
+ mask_rtx (mode, 0, bitsize, 0),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ if (bitnum > 0)
+ value = expand_shift (LSHIFT_EXPR, mode, value,
+ bitnum, NULL_RTX, 1);
+ }
+
+ if (reverse)
+ value = flip_storage_order (mode, value);
+
+ /* Now clear the chosen bits in OP0,
+ except that if VALUE is -1 we need not bother. */
+ /* We keep the intermediates in registers to allow CSE to combine
+ consecutive bitfield assignments. */
+
+ temp = force_reg (mode, op0);
+
+ if (! all_one)
+ {
+ rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
+ if (reverse)
+ mask = flip_storage_order (mode, mask);
+ temp = expand_binop (mode, and_optab, temp, mask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+ }
+
+ /* Now logical-or VALUE into OP0, unless it is zero. */
+
+ if (! all_zero)
+ {
+ temp = expand_binop (mode, ior_optab, temp, value,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+ }
+
+ if (op0 != temp)
+ {
+ op0 = copy_rtx (op0);
+ emit_move_insn (op0, temp);
+ }
+}
+
+/* Store a bit field that is split across multiple accessible memory objects.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
+ BITSIZE is the field width; BITPOS the position of its first bit
+ (within the word).
+ VALUE is the value to store, which has mode VALUE_MODE.
+ If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
+ a BLKmode MEM.
+
+ If REVERSE is true, the store is to be done in reverse order.
+
+ This does not yet handle fields wider than BITS_PER_WORD. */
+
+static void
+store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitpos,
+ poly_uint64 bitregion_start, poly_uint64 bitregion_end,
+ rtx value, scalar_int_mode value_mode, bool reverse)
+{
+ unsigned int unit, total_bits, bitsdone = 0;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (REG_P (op0) || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
+
+ /* If OP0 is a memory with a mode, then UNIT must not be larger than
+ OP0's mode as well. Otherwise, store_fixed_bit_field will call us
+ again, and we will mutually recurse forever. */
+ if (MEM_P (op0) && op0_mode.exists ())
+ unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
+
+ /* If VALUE is a constant other than a CONST_INT, get it into a register in
+ WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
+ that VALUE might be a floating-point constant. */
+ if (CONSTANT_P (value) && !CONST_INT_P (value))
+ {
+ rtx word = gen_lowpart_common (word_mode, value);
+
+ if (word && (value != word))
+ value = word;
+ else
+ value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
+ value_mode = word_mode;
+ }
+
+ total_bits = GET_MODE_BITSIZE (value_mode);
+
+ while (bitsdone < bitsize)
+ {
+ unsigned HOST_WIDE_INT thissize;
+ unsigned HOST_WIDE_INT thispos;
+ unsigned HOST_WIDE_INT offset;
+ rtx part;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* When region of bytes we can touch is restricted, decrease
+ UNIT close to the end of the region as needed. If op0 is a REG
+ or SUBREG of REG, don't do this, as there can't be data races
+ on a register and we can expand shorter code in some cases. */
+ if (maybe_ne (bitregion_end, 0U)
+ && unit > BITS_PER_UNIT
+ && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
+ && !REG_P (op0)
+ && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
+ {
+ unit = unit / 2;
+ continue;
+ }
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ store_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ {
+ /* Fetch successively less significant portions. */
+ if (CONST_INT_P (value))
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> (bitsize - bitsdone - thissize))
+ & ((HOST_WIDE_INT_1 << thissize) - 1));
+ /* Likewise, but the source is little-endian. */
+ else if (reverse)
+ part = extract_fixed_bit_field (word_mode, value, value_mode,
+ thissize,
+ bitsize - bitsdone - thissize,
+ NULL_RTX, 1, false);
+ else
+ /* The args are chosen so that the last part includes the
+ lsb. Give extract_bit_field the value it needs (with
+ endianness compensation) to fetch the piece we want. */
+ part = extract_fixed_bit_field (word_mode, value, value_mode,
+ thissize,
+ total_bits - bitsize + bitsdone,
+ NULL_RTX, 1, false);
+ }
+ else
+ {
+ /* Fetch successively more significant portions. */
+ if (CONST_INT_P (value))
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> bitsdone)
+ & ((HOST_WIDE_INT_1 << thissize) - 1));
+ /* Likewise, but the source is big-endian. */
+ else if (reverse)
+ part = extract_fixed_bit_field (word_mode, value, value_mode,
+ thissize,
+ total_bits - bitsdone - thissize,
+ NULL_RTX, 1, false);
+ else
+ part = extract_fixed_bit_field (word_mode, value, value_mode,
+ thissize, bitsdone, NULL_RTX,
+ 1, false);
+ }
+
+ /* If OP0 is a register, then handle OFFSET here. */
+ rtx op0_piece = op0;
+ opt_scalar_int_mode op0_piece_mode = op0_mode;
+ if (SUBREG_P (op0) || REG_P (op0))
+ {
+ scalar_int_mode imode;
+ if (op0_mode.exists (&imode)
+ && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
+ {
+ if (offset)
+ op0_piece = const0_rtx;
+ }
+ else
+ {
+ op0_piece = operand_subword_force (op0,
+ offset * unit / BITS_PER_WORD,
+ GET_MODE (op0));
+ op0_piece_mode = word_mode;
+ }
+ offset &= BITS_PER_WORD / unit - 1;
+ }
+
+ /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
+ it is just an out-of-bounds access. Ignore it. */
+ if (op0_piece != const0_rtx)
+ store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
+ offset * unit + thispos, bitregion_start,
+ bitregion_end, part, word_mode, reverse);
+ bitsdone += thissize;
+ }
+}
+
+/* A subroutine of extract_bit_field_1 that converts return value X
+ to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
+ to extract_bit_field. */
+
+static rtx
+convert_extracted_bit_field (rtx x, machine_mode mode,
+ machine_mode tmode, bool unsignedp)
+{
+ if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
+ return x;
+
+ /* If the x mode is not a scalar integral, first convert to the
+ integer mode of that size and then access it as a floating-point
+ value via a SUBREG. */
+ if (!SCALAR_INT_MODE_P (tmode))
+ {
+ scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
+ x = convert_to_mode (int_mode, x, unsignedp);
+ x = force_reg (int_mode, x);
+ return gen_lowpart (tmode, x);
+ }
+
+ return convert_to_mode (tmode, x, unsignedp);
+}
+
+/* Try to use an ext(z)v pattern to extract a field from OP0.
+ Return the extracted value on success, otherwise return null.
+ EXTV describes the extraction instruction to use. If OP0_MODE
+ is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
+ The other arguments are as for extract_bit_field. */
+
+static rtx
+extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
+ opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ int unsignedp, rtx target,
+ machine_mode mode, machine_mode tmode)
+{
+ class expand_operand ops[4];
+ rtx spec_target = target;
+ rtx spec_target_subreg = 0;
+ scalar_int_mode ext_mode = extv->field_mode;
+ unsigned unit = GET_MODE_BITSIZE (ext_mode);
+
+ if (bitsize == 0 || unit < bitsize)
+ return NULL_RTX;
+
+ if (MEM_P (op0))
+ /* Get a reference to the first byte of the field. */
+ op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
+ &bitnum);
+ else
+ {
+ /* Convert from counting within OP0 to counting in EXT_MODE. */
+ if (BYTES_BIG_ENDIAN)
+ bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
+
+ /* If op0 is a register, we need it in EXT_MODE to make it
+ acceptable to the format of ext(z)v. */
+ if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
+ return NULL_RTX;
+ if (REG_P (op0) && op0_mode.require () != ext_mode)
+ op0 = gen_lowpart_SUBREG (ext_mode, op0);
+ }
+
+ /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+ "backwards" from the size of the unit we are extracting from.
+ Otherwise, we count bits from the most significant on a
+ BYTES/BITS_BIG_ENDIAN machine. */
+
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ bitnum = unit - bitsize - bitnum;
+
+ if (target == 0)
+ target = spec_target = gen_reg_rtx (tmode);
+
+ if (GET_MODE (target) != ext_mode)
+ {
+ rtx temp;
+ /* Don't use LHS paradoxical subreg if explicit truncation is needed
+ between the mode of the extraction (word_mode) and the target
+ mode. Instead, create a temporary and use convert_move to set
+ the target. */
+ if (REG_P (target)
+ && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)
+ && (temp = gen_lowpart_if_possible (ext_mode, target)))
+ {
+ target = temp;
+ if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
+ spec_target_subreg = target;
+ }
+ else
+ target = gen_reg_rtx (ext_mode);
+ }
+
+ create_output_operand (&ops[0], target, ext_mode);
+ create_fixed_operand (&ops[1], op0);
+ create_integer_operand (&ops[2], bitsize);
+ create_integer_operand (&ops[3], bitnum);
+ if (maybe_expand_insn (extv->icode, 4, ops))
+ {
+ target = ops[0].value;
+ if (target == spec_target)
+ return target;
+ if (target == spec_target_subreg)
+ return spec_target;
+ return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+ }
+ return NULL_RTX;
+}
+
+/* See whether it would be valid to extract the part of OP0 described
+ by BITNUM and BITSIZE into a value of mode MODE using a subreg
+ operation. Return the subreg if so, otherwise return null. */
+
+static rtx
+extract_bit_field_as_subreg (machine_mode mode, rtx op0,
+ poly_uint64 bitsize, poly_uint64 bitnum)
+{
+ poly_uint64 bytenum;
+ if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
+ && known_eq (bitsize, GET_MODE_BITSIZE (mode))
+ && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
+ && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
+ return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
+ return NULL_RTX;
+}
+
+/* A subroutine of extract_bit_field, with the same arguments.
+ If FALLBACK_P is true, fall back to extract_fixed_bit_field
+ if we can find no other means of implementing the operation.
+ if FALLBACK_P is false, return NULL instead. */
+
+static rtx
+extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
+ int unsignedp, rtx target, machine_mode mode,
+ machine_mode tmode, bool reverse, bool fallback_p,
+ rtx *alt_rtl)
+{
+ rtx op0 = str_rtx;
+ machine_mode mode1;
+
+ if (tmode == VOIDmode)
+ tmode = mode;
+
+ while (GET_CODE (op0) == SUBREG)
+ {
+ bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* If we have an out-of-bounds access to a register, just return an
+ uninitialized register of the required mode. This can occur if the
+ source code contains an out-of-bounds access to a small array. */
+ if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
+ return gen_reg_rtx (tmode);
+
+ if (REG_P (op0)
+ && mode == GET_MODE (op0)
+ && known_eq (bitnum, 0U)
+ && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
+ {
+ if (reverse)
+ op0 = flip_storage_order (mode, op0);
+ /* We're trying to extract a full register from itself. */
+ return op0;
+ }
+
+ /* First try to check for vector from vector extractions. */
+ if (VECTOR_MODE_P (GET_MODE (op0))
+ && !MEM_P (op0)
+ && VECTOR_MODE_P (tmode)
+ && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
+ && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
+ {
+ machine_mode new_mode = GET_MODE (op0);
+ if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
+ {
+ scalar_mode inner_mode = GET_MODE_INNER (tmode);
+ poly_uint64 nunits;
+ if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
+ GET_MODE_UNIT_BITSIZE (tmode), &nunits)
+ || !related_vector_mode (tmode, inner_mode,
+ nunits).exists (&new_mode)
+ || maybe_ne (GET_MODE_SIZE (new_mode),
+ GET_MODE_SIZE (GET_MODE (op0))))
+ new_mode = VOIDmode;
+ }
+ poly_uint64 pos;
+ if (new_mode != VOIDmode
+ && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
+ != CODE_FOR_nothing)
+ && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
+ {
+ class expand_operand ops[3];
+ machine_mode outermode = new_mode;
+ machine_mode innermode = tmode;
+ enum insn_code icode
+ = convert_optab_handler (vec_extract_optab, outermode, innermode);
+
+ if (new_mode != GET_MODE (op0))
+ op0 = gen_lowpart (new_mode, op0);
+ create_output_operand (&ops[0], target, innermode);
+ ops[0].target = 1;
+ create_input_operand (&ops[1], op0, outermode);
+ create_integer_operand (&ops[2], pos);
+ if (maybe_expand_insn (icode, 3, ops))
+ {
+ if (alt_rtl && ops[0].target)
+ *alt_rtl = target;
+ target = ops[0].value;
+ if (GET_MODE (target) != mode)
+ return gen_lowpart (tmode, target);
+ return target;
+ }
+ }
+ }
+
+ /* See if we can get a better vector mode before extracting. */
+ if (VECTOR_MODE_P (GET_MODE (op0))
+ && !MEM_P (op0)
+ && GET_MODE_INNER (GET_MODE (op0)) != tmode)
+ {
+ machine_mode new_mode;
+
+ if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
+ new_mode = MIN_MODE_VECTOR_FLOAT;
+ else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
+ new_mode = MIN_MODE_VECTOR_FRACT;
+ else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
+ new_mode = MIN_MODE_VECTOR_UFRACT;
+ else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
+ new_mode = MIN_MODE_VECTOR_ACCUM;
+ else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
+ new_mode = MIN_MODE_VECTOR_UACCUM;
+ else
+ new_mode = MIN_MODE_VECTOR_INT;
+
+ FOR_EACH_MODE_FROM (new_mode, new_mode)
+ if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
+ && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
+ && targetm.vector_mode_supported_p (new_mode)
+ && targetm.modes_tieable_p (GET_MODE (op0), new_mode))
+ break;
+ if (new_mode != VOIDmode)
+ op0 = gen_lowpart (new_mode, op0);
+ }
+
+ /* Use vec_extract patterns for extracting parts of vectors whenever
+ available. If that fails, see whether the current modes and bitregion
+ give a natural subreg. */
+ machine_mode outermode = GET_MODE (op0);
+ if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
+ {
+ scalar_mode innermode = GET_MODE_INNER (outermode);
+ enum insn_code icode
+ = convert_optab_handler (vec_extract_optab, outermode, innermode);
+ poly_uint64 pos;
+ if (icode != CODE_FOR_nothing
+ && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
+ && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
+ {
+ class expand_operand ops[3];
+
+ create_output_operand (&ops[0], target, innermode);
+ ops[0].target = 1;
+ create_input_operand (&ops[1], op0, outermode);
+ create_integer_operand (&ops[2], pos);
+ if (maybe_expand_insn (icode, 3, ops))
+ {
+ if (alt_rtl && ops[0].target)
+ *alt_rtl = target;
+ target = ops[0].value;
+ if (GET_MODE (target) != mode)
+ return gen_lowpart (tmode, target);
+ return target;
+ }
+ }
+ /* Using subregs is useful if we're extracting one register vector
+ from a multi-register vector. extract_bit_field_as_subreg checks
+ for valid bitsize and bitnum, so we don't need to do that here. */
+ if (VECTOR_MODE_P (mode))
+ {
+ rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum);
+ if (sub)
+ return sub;
+ }
+ }
+
+ /* Make sure we are playing with integral modes. Pun with subregs
+ if we aren't. */
+ opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
+ scalar_int_mode imode;
+ if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
+ {
+ if (MEM_P (op0))
+ op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
+ 0, MEM_SIZE (op0));
+ else if (op0_mode.exists (&imode))
+ {
+ op0 = gen_lowpart (imode, op0);
+
+ /* If we got a SUBREG, force it into a register since we
+ aren't going to be able to do another SUBREG on it. */
+ if (GET_CODE (op0) == SUBREG)
+ op0 = force_reg (imode, op0);
+ }
+ else
+ {
+ poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
+ rtx mem = assign_stack_temp (GET_MODE (op0), size);
+ emit_move_insn (mem, op0);
+ op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
+ }
+ }
+
+ /* ??? We currently assume TARGET is at least as big as BITSIZE.
+ If that's wrong, the solution is to test for it and set TARGET to 0
+ if needed. */
+
+ /* Get the mode of the field to use for atomic access or subreg
+ conversion. */
+ if (!SCALAR_INT_MODE_P (tmode)
+ || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
+ mode1 = mode;
+ gcc_assert (mode1 != BLKmode);
+
+ /* Extraction of a full MODE1 value can be done with a subreg as long
+ as the least significant bit of the value is the least significant
+ bit of either OP0 or a word of OP0. */
+ if (!MEM_P (op0) && !reverse)
+ {
+ rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
+ if (sub)
+ return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
+ }
+
+ /* Extraction of a full MODE1 value can be done with a load as long as
+ the field is on a byte boundary and is sufficiently aligned. */
+ poly_uint64 bytenum;
+ if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
+ {
+ op0 = adjust_bitfield_address (op0, mode1, bytenum);
+ if (reverse)
+ op0 = flip_storage_order (mode1, op0);
+ return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
+ }
+
+ /* If we have a memory source and a non-constant bit offset, restrict
+ the memory to the referenced bytes. This is a worst-case fallback
+ but is useful for things like vector booleans. */
+ if (MEM_P (op0) && !bitnum.is_constant ())
+ {
+ bytenum = bits_to_bytes_round_down (bitnum);
+ bitnum = num_trailing_bits (bitnum);
+ poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
+ op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
+ op0_mode = opt_scalar_int_mode ();
+ }
+
+ /* It's possible we'll need to handle other cases here for
+ polynomial bitnum and bitsize. */
+
+ /* From here on we need to be looking at a fixed-size insertion. */
+ return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
+ bitnum.to_constant (), unsignedp,
+ target, mode, tmode, reverse, fallback_p);
+}
+
+/* Subroutine of extract_bit_field_1, with the same arguments, except
+ that BITSIZE and BITNUM are constant. Handle cases specific to
+ integral modes. If OP0_MODE is defined, it is the mode of OP0,
+ otherwise OP0 is a BLKmode MEM. */
+
+static rtx
+extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, int unsignedp,
+ rtx target, machine_mode mode, machine_mode tmode,
+ bool reverse, bool fallback_p)
+{
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full. */
+
+ const bool backwards = WORDS_BIG_ENDIAN;
+ unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ unsigned int i;
+ rtx_insn *last;
+
+ if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ /* In case we're about to clobber a base register or something
+ (see gcc.c-torture/execute/20040625-1.c). */
+ if (reg_mentioned_p (target, op0))
+ target = gen_reg_rtx (mode);
+
+ /* Indicate for flow that the entire target reg is being set. */
+ emit_clobber (target);
+
+ /* The mode must be fixed-size, since extract_bit_field_1 handles
+ extractions from variable-sized objects before calling this
+ function. */
+ unsigned int target_size
+ = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
+ last = get_last_insn ();
+ for (i = 0; i < nwords; i++)
+ {
+ /* If I is 0, use the low-order word in both field and target;
+ if I is 1, use the next to lowest word; and so on. */
+ /* Word number in TARGET to use. */
+ unsigned int wordnum
+ = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
+ /* Offset from start of field in OP0. */
+ unsigned int bit_offset = (backwards ^ reverse
+ ? MAX ((int) bitsize - ((int) i + 1)
+ * BITS_PER_WORD,
+ 0)
+ : (int) i * BITS_PER_WORD);
+ rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
+ rtx result_part
+ = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
+ bitsize - i * BITS_PER_WORD),
+ bitnum + bit_offset, 1, target_part,
+ mode, word_mode, reverse, fallback_p, NULL);
+
+ gcc_assert (target_part);
+ if (!result_part)
+ {
+ delete_insns_since (last);
+ return NULL;
+ }
+
+ if (result_part != target_part)
+ emit_move_insn (target_part, result_part);
+ }
+
+ if (unsignedp)
+ {
+ /* Unless we've filled TARGET, the upper regs in a multi-reg value
+ need to be zero'd out. */
+ if (target_size > nwords * UNITS_PER_WORD)
+ {
+ unsigned int i, total_words;
+
+ total_words = target_size / UNITS_PER_WORD;
+ for (i = nwords; i < total_words; i++)
+ emit_move_insn
+ (operand_subword (target,
+ backwards ? total_words - i - 1 : i,
+ 1, VOIDmode),
+ const0_rtx);
+ }
+ return target;
+ }
+
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ target = expand_shift (LSHIFT_EXPR, mode, target,
+ GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, mode, target,
+ GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
+ }
+
+ /* If OP0 is a multi-word register, narrow it to the affected word.
+ If the region spans two words, defer to extract_split_bit_field. */
+ if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
+ {
+ if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
+ {
+ if (!fallback_p)
+ return NULL_RTX;
+ target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
+ unsignedp, reverse);
+ return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+ }
+ op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
+ bitnum / BITS_PER_WORD * UNITS_PER_WORD);
+ op0_mode = word_mode;
+ bitnum %= BITS_PER_WORD;
+ }
+
+ /* From here on we know the desired field is smaller than a word.
+ If OP0 is a register, it too fits within a word. */
+ enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
+ extraction_insn extv;
+ if (!MEM_P (op0)
+ && !reverse
+ /* ??? We could limit the structure size to the part of OP0 that
+ contains the field, with appropriate checks for endianness
+ and TARGET_TRULY_NOOP_TRUNCATION. */
+ && get_best_reg_extraction_insn (&extv, pattern,
+ GET_MODE_BITSIZE (op0_mode.require ()),
+ tmode))
+ {
+ rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
+ bitsize, bitnum,
+ unsignedp, target, mode,
+ tmode);
+ if (result)
+ return result;
+ }
+
+ /* If OP0 is a memory, try copying it to a register and seeing if a
+ cheap register alternative is available. */
+ if (MEM_P (op0) & !reverse)
+ {
+ if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
+ tmode))
+ {
+ rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
+ bitsize, bitnum,
+ unsignedp, target, mode,
+ tmode);
+ if (result)
+ return result;
+ }
+
+ rtx_insn *last = get_last_insn ();
+
+ /* Try loading part of OP0 into a register and extracting the
+ bitfield from that. */
+ unsigned HOST_WIDE_INT bitpos;
+ rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
+ 0, 0, tmode, &bitpos);
+ if (xop0)
+ {
+ xop0 = copy_to_reg (xop0);
+ rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
+ unsignedp, target,
+ mode, tmode, reverse, false, NULL);
+ if (result)
+ return result;
+ delete_insns_since (last);
+ }
+ }
+
+ if (!fallback_p)
+ return NULL;
+
+ /* Find a correspondingly-sized integer field, so we can apply
+ shifts and masks to it. */
+ scalar_int_mode int_mode;
+ if (!int_mode_for_mode (tmode).exists (&int_mode))
+ /* If this fails, we should probably push op0 out to memory and then
+ do a load. */
+ int_mode = int_mode_for_mode (mode).require ();
+
+ target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
+ bitnum, target, unsignedp, reverse);
+
+ /* Complex values must be reversed piecewise, so we need to undo the global
+ reversal, convert to the complex mode and reverse again. */
+ if (reverse && COMPLEX_MODE_P (tmode))
+ {
+ target = flip_storage_order (int_mode, target);
+ target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
+ target = flip_storage_order (tmode, target);
+ }
+ else
+ target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
+
+ return target;
+}
+
+/* Generate code to extract a byte-field from STR_RTX
+ containing BITSIZE bits, starting at BITNUM,
+ and put it in TARGET if possible (if TARGET is nonzero).
+ Regardless of TARGET, we return the rtx for where the value is placed.
+
+ STR_RTX is the structure containing the byte (a REG or MEM).
+ UNSIGNEDP is nonzero if this is an unsigned bit field.
+ MODE is the natural mode of the field value once extracted.
+ TMODE is the mode the caller would like the value to have;
+ but the value may be returned with type MODE instead.
+
+ If REVERSE is true, the extraction is to be done in reverse order.
+
+ If a TARGET is specified and we can store in it at no extra cost,
+ we do so, and return TARGET.
+ Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
+ if they are equally easy.
+
+ If the result can be stored at TARGET, and ALT_RTL is non-NULL,
+ then *ALT_RTL is set to TARGET (before legitimziation). */
+
+rtx
+extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
+ int unsignedp, rtx target, machine_mode mode,
+ machine_mode tmode, bool reverse, rtx *alt_rtl)
+{
+ machine_mode mode1;
+
+ /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
+ if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
+ mode1 = GET_MODE (str_rtx);
+ else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
+ mode1 = GET_MODE (target);
+ else
+ mode1 = tmode;
+
+ unsigned HOST_WIDE_INT ibitsize, ibitnum;
+ scalar_int_mode int_mode;
+ if (bitsize.is_constant (&ibitsize)
+ && bitnum.is_constant (&ibitnum)
+ && is_a <scalar_int_mode> (mode1, &int_mode)
+ && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
+ int_mode, 0, 0))
+ {
+ /* Extraction of a full INT_MODE value can be done with a simple load.
+ We know here that the field can be accessed with one single
+ instruction. For targets that support unaligned memory,
+ an unaligned access may be necessary. */
+ if (ibitsize == GET_MODE_BITSIZE (int_mode))
+ {
+ rtx result = adjust_bitfield_address (str_rtx, int_mode,
+ ibitnum / BITS_PER_UNIT);
+ if (reverse)
+ result = flip_storage_order (int_mode, result);
+ gcc_assert (ibitnum % BITS_PER_UNIT == 0);
+ return convert_extracted_bit_field (result, mode, tmode, unsignedp);
+ }
+
+ str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
+ &ibitnum);
+ gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
+ str_rtx = copy_to_reg (str_rtx);
+ return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
+ target, mode, tmode, reverse, true, alt_rtl);
+ }
+
+ return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
+ target, mode, tmode, reverse, true, alt_rtl);
+}
+
+/* Use shifts and boolean operations to extract a field of BITSIZE bits
+ from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
+ otherwise OP0 is a BLKmode MEM.
+
+ UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
+ If REVERSE is true, the extraction is to be done in reverse order.
+
+ If TARGET is nonzero, attempts to store the value there
+ and return TARGET, but this is not guaranteed.
+ If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
+
+static rtx
+extract_fixed_bit_field (machine_mode tmode, rtx op0,
+ opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, rtx target,
+ int unsignedp, bool reverse)
+{
+ scalar_int_mode mode;
+ if (MEM_P (op0))
+ {
+ if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
+ BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
+ unsignedp, reverse);
+
+ op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
+ }
+ else
+ mode = op0_mode.require ();
+
+ return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
+ target, unsignedp, reverse);
+}
+
+/* Helper function for extract_fixed_bit_field, extracts
+ the bit field always using MODE, which is the mode of OP0.
+ The other arguments are as for extract_fixed_bit_field. */
+
+static rtx
+extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, rtx target,
+ int unsignedp, bool reverse)
+{
+ /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
+ for invalid input, such as extract equivalent of f5 from
+ gcc.dg/pr48335-2.c. */
+
+ if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ /* BITNUM is the distance between our msb and that of OP0.
+ Convert it to the distance from the lsb. */
+ bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
+
+ /* Now BITNUM is always the distance between the field's lsb and that of OP0.
+ We have reduced the big-endian case to the little-endian case. */
+ if (reverse)
+ op0 = flip_storage_order (mode, op0);
+
+ if (unsignedp)
+ {
+ if (bitnum)
+ {
+ /* If the field does not already start at the lsb,
+ shift it so it does. */
+ /* Maybe propagate the target for the shift. */
+ rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
+ if (tmode != mode)
+ subtarget = 0;
+ op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
+ }
+ /* Convert the value to the desired mode. TMODE must also be a
+ scalar integer for this conversion to make sense, since we
+ shouldn't reinterpret the bits. */
+ scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
+ if (mode != new_mode)
+ op0 = convert_to_mode (new_mode, op0, 1);
+
+ /* Unless the msb of the field used to be the msb when we shifted,
+ mask out the upper bits. */
+
+ if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
+ return expand_binop (new_mode, and_optab, op0,
+ mask_rtx (new_mode, 0, bitsize, 0),
+ target, 1, OPTAB_LIB_WIDEN);
+ return op0;
+ }
+
+ /* To extract a signed bit-field, first shift its msb to the msb of the word,
+ then arithmetic-shift its lsb to the lsb of the word. */
+ op0 = force_reg (mode, op0);
+
+ /* Find the narrowest integer mode that contains the field. */
+
+ opt_scalar_int_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
+ if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
+ break;
+
+ mode = mode_iter.require ();
+ op0 = convert_to_mode (mode, op0, 0);
+
+ if (mode != tmode)
+ target = 0;
+
+ if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
+ {
+ int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
+ /* Maybe propagate the target for the shift. */
+ rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
+ op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
+ }
+
+ return expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - bitsize, target, 0);
+}
+
+/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
+ VALUE << BITPOS. */
+
+static rtx
+lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
+ int bitpos)
+{
+ return immed_wide_int_const (wi::lshift (value, bitpos), mode);
+}
+
+/* Extract a bit field that is split across two words
+ and return an RTX for the result.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
+ BITSIZE is the field width; BITPOS, position of its first bit, in the word.
+ UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
+ If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
+ a BLKmode MEM.
+
+ If REVERSE is true, the extraction is to be done in reverse order. */
+
+static rtx
+extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitpos, int unsignedp,
+ bool reverse)
+{
+ unsigned int unit;
+ unsigned int bitsdone = 0;
+ rtx result = NULL_RTX;
+ int first = 1;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (REG_P (op0) || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
+
+ while (bitsdone < bitsize)
+ {
+ unsigned HOST_WIDE_INT thissize;
+ rtx part;
+ unsigned HOST_WIDE_INT thispos;
+ unsigned HOST_WIDE_INT offset;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ extract_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ /* If OP0 is a register, then handle OFFSET here. */
+ rtx op0_piece = op0;
+ opt_scalar_int_mode op0_piece_mode = op0_mode;
+ if (SUBREG_P (op0) || REG_P (op0))
+ {
+ op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
+ op0_piece_mode = word_mode;
+ offset = 0;
+ }
+
+ /* Extract the parts in bit-counting order,
+ whose meaning is determined by BYTES_PER_UNIT.
+ OFFSET is in UNITs, and UNIT is in bits. */
+ part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
+ thissize, offset * unit + thispos,
+ 0, 1, reverse);
+ bitsdone += thissize;
+
+ /* Shift this part into place for the result. */
+ if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ {
+ if (bitsize != bitsdone)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ bitsize - bitsdone, 0, 1);
+ }
+ else
+ {
+ if (bitsdone != thissize)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ bitsdone - thissize, 0, 1);
+ }
+
+ if (first)
+ result = part;
+ else
+ /* Combine the parts with bitwise or. This works
+ because we extracted each part as an unsigned bit field. */
+ result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
+ OPTAB_LIB_WIDEN);
+
+ first = 0;
+ }
+
+ /* Unsigned bit field: we are done. */
+ if (unsignedp)
+ return result;
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ result = expand_shift (LSHIFT_EXPR, word_mode, result,
+ BITS_PER_WORD - bitsize, NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, word_mode, result,
+ BITS_PER_WORD - bitsize, NULL_RTX, 0);
+}
+
+/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
+ the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
+ MODE, fill the upper bits with zeros. Fail if the layout of either
+ mode is unknown (as for CC modes) or if the extraction would involve
+ unprofitable mode punning. Return the value on success, otherwise
+ return null.
+
+ This is different from gen_lowpart* in these respects:
+
+ - the returned value must always be considered an rvalue
+
+ - when MODE is wider than SRC_MODE, the extraction involves
+ a zero extension
+
+ - when MODE is smaller than SRC_MODE, the extraction involves
+ a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
+
+ In other words, this routine performs a computation, whereas the
+ gen_lowpart* routines are conceptually lvalue or rvalue subreg
+ operations. */
+
+rtx
+extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
+{
+ scalar_int_mode int_mode, src_int_mode;
+
+ if (mode == src_mode)
+ return src;
+
+ if (CONSTANT_P (src))
+ {
+ /* simplify_gen_subreg can't be used here, as if simplify_subreg
+ fails, it will happily create (subreg (symbol_ref)) or similar
+ invalid SUBREGs. */
+ poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
+ rtx ret = simplify_subreg (mode, src, src_mode, byte);
+ if (ret)
+ return ret;
+
+ if (GET_MODE (src) == VOIDmode
+ || !validate_subreg (mode, src_mode, src, byte))
+ return NULL_RTX;
+
+ src = force_reg (GET_MODE (src), src);
+ return gen_rtx_SUBREG (mode, src, byte);
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
+ return NULL_RTX;
+
+ if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
+ && targetm.modes_tieable_p (mode, src_mode))
+ {
+ rtx x = gen_lowpart_common (mode, src);
+ if (x)
+ return x;
+ }
+
+ if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
+ || !int_mode_for_mode (mode).exists (&int_mode))
+ return NULL_RTX;
+
+ if (!targetm.modes_tieable_p (src_int_mode, src_mode))
+ return NULL_RTX;
+ if (!targetm.modes_tieable_p (int_mode, mode))
+ return NULL_RTX;
+
+ src = gen_lowpart (src_int_mode, src);
+ if (!validate_subreg (int_mode, src_int_mode, src,
+ subreg_lowpart_offset (int_mode, src_int_mode)))
+ return NULL_RTX;
+
+ src = convert_modes (int_mode, src_int_mode, src, true);
+ src = gen_lowpart (mode, src);
+ return src;
+}
+
+/* Add INC into TARGET. */
+
+void
+expand_inc (rtx target, rtx inc)
+{
+ rtx value = expand_binop (GET_MODE (target), add_optab,
+ target, inc,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Subtract DEC from TARGET. */
+
+void
+expand_dec (rtx target, rtx dec)
+{
+ rtx value = expand_binop (GET_MODE (target), sub_optab,
+ target, dec,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the rtx for the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is.
+ If that cannot be done, abort the compilation unless MAY_FAIL is true,
+ in which case 0 is returned. */
+
+static rtx
+expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
+ rtx amount, rtx target, int unsignedp, bool may_fail = false)
+{
+ rtx op1, temp = 0;
+ int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
+ int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
+ optab lshift_optab = ashl_optab;
+ optab rshift_arith_optab = ashr_optab;
+ optab rshift_uns_optab = lshr_optab;
+ optab lrotate_optab = rotl_optab;
+ optab rrotate_optab = rotr_optab;
+ machine_mode op1_mode;
+ scalar_mode scalar_mode = GET_MODE_INNER (mode);
+ int attempt;
+ bool speed = optimize_insn_for_speed_p ();
+
+ op1 = amount;
+ op1_mode = GET_MODE (op1);
+
+ /* Determine whether the shift/rotate amount is a vector, or scalar. If the
+ shift amount is a vector, use the vector/vector shift patterns. */
+ if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
+ {
+ lshift_optab = vashl_optab;
+ rshift_arith_optab = vashr_optab;
+ rshift_uns_optab = vlshr_optab;
+ lrotate_optab = vrotl_optab;
+ rrotate_optab = vrotr_optab;
+ }
+
+ /* Previously detected shift-counts computed by NEGATE_EXPR
+ and shifted in the other direction; but that does not work
+ on all machines. */
+
+ if (SHIFT_COUNT_TRUNCATED)
+ {
+ if (CONST_INT_P (op1)
+ && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
+ (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
+ op1 = gen_int_shift_amount (mode,
+ (unsigned HOST_WIDE_INT) INTVAL (op1)
+ % GET_MODE_BITSIZE (scalar_mode));
+ else if (GET_CODE (op1) == SUBREG
+ && subreg_lowpart_p (op1)
+ && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
+ && SCALAR_INT_MODE_P (GET_MODE (op1)))
+ op1 = SUBREG_REG (op1);
+ }
+
+ /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
+ prefer left rotation, if op1 is from bitsize / 2 + 1 to
+ bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
+ amount instead. */
+ if (rotate
+ && CONST_INT_P (op1)
+ && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
+ GET_MODE_BITSIZE (scalar_mode) - 1))
+ {
+ op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
+ - INTVAL (op1)));
+ left = !left;
+ code = left ? LROTATE_EXPR : RROTATE_EXPR;
+ }
+
+ /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
+ Note that this is not the case for bigger values. For instance a rotation
+ of 0x01020304 by 16 bits gives 0x03040102 which is different from
+ 0x04030201 (bswapsi). */
+ if (rotate
+ && CONST_INT_P (op1)
+ && INTVAL (op1) == BITS_PER_UNIT
+ && GET_MODE_SIZE (scalar_mode) == 2
+ && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
+ return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
+
+ if (op1 == const0_rtx)
+ return shifted;
+
+ /* Check whether its cheaper to implement a left shift by a constant
+ bit count by a sequence of additions. */
+ if (code == LSHIFT_EXPR
+ && CONST_INT_P (op1)
+ && INTVAL (op1) > 0
+ && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
+ && INTVAL (op1) < MAX_BITS_PER_WORD
+ && (shift_cost (speed, mode, INTVAL (op1))
+ > INTVAL (op1) * add_cost (speed, mode))
+ && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
+ {
+ int i;
+ for (i = 0; i < INTVAL (op1); i++)
+ {
+ temp = force_reg (mode, shifted);
+ shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
+ unsignedp, OPTAB_LIB_WIDEN);
+ }
+ return shifted;
+ }
+
+ for (attempt = 0; temp == 0 && attempt < 3; attempt++)
+ {
+ enum optab_methods methods;
+
+ if (attempt == 0)
+ methods = OPTAB_DIRECT;
+ else if (attempt == 1)
+ methods = OPTAB_WIDEN;
+ else
+ methods = OPTAB_LIB_WIDEN;
+
+ if (rotate)
+ {
+ /* Widening does not work for rotation. */
+ if (methods == OPTAB_WIDEN)
+ continue;
+ else if (methods == OPTAB_LIB_WIDEN)
+ {
+ /* If we have been unable to open-code this by a rotation,
+ do it as the IOR of two shifts. I.e., to rotate A
+ by N bits, compute
+ (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
+ where C is the bitsize of A.
+
+ It is theoretically possible that the target machine might
+ not be able to perform either shift and hence we would
+ be making two libcalls rather than just the one for the
+ shift (similarly if IOR could not be done). We will allow
+ this extremely unlikely lossage to avoid complicating the
+ code below. */
+
+ rtx subtarget = target == shifted ? 0 : target;
+ rtx new_amount, other_amount;
+ rtx temp1;
+
+ new_amount = op1;
+ if (op1 == const0_rtx)
+ return shifted;
+ else if (CONST_INT_P (op1))
+ other_amount = gen_int_shift_amount
+ (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
+ else
+ {
+ other_amount
+ = simplify_gen_unary (NEG, GET_MODE (op1),
+ op1, GET_MODE (op1));
+ HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
+ other_amount
+ = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
+ gen_int_mode (mask, GET_MODE (op1)));
+ }
+
+ shifted = force_reg (mode, shifted);
+
+ temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
+ mode, shifted, new_amount, 0, 1);
+ temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
+ mode, shifted, other_amount,
+ subtarget, 1);
+ return expand_binop (mode, ior_optab, temp, temp1, target,
+ unsignedp, methods);
+ }
+
+ temp = expand_binop (mode,
+ left ? lrotate_optab : rrotate_optab,
+ shifted, op1, target, unsignedp, methods);
+ }
+ else if (unsignedp)
+ temp = expand_binop (mode,
+ left ? lshift_optab : rshift_uns_optab,
+ shifted, op1, target, unsignedp, methods);
+
+ /* Do arithmetic shifts.
+ Also, if we are going to widen the operand, we can just as well
+ use an arithmetic right-shift instead of a logical one. */
+ if (temp == 0 && ! rotate
+ && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
+ {
+ enum optab_methods methods1 = methods;
+
+ /* If trying to widen a log shift to an arithmetic shift,
+ don't accept an arithmetic shift of the same size. */
+ if (unsignedp)
+ methods1 = OPTAB_MUST_WIDEN;
+
+ /* Arithmetic shift */
+
+ temp = expand_binop (mode,
+ left ? lshift_optab : rshift_arith_optab,
+ shifted, op1, target, unsignedp, methods1);
+ }
+
+ /* We used to try extzv here for logical right shifts, but that was
+ only useful for one machine, the VAX, and caused poor code
+ generation there for lshrdi3, so the code was deleted and a
+ define_expand for lshrsi3 was added to vax.md. */
+ }
+
+ gcc_assert (temp != NULL_RTX || may_fail);
+ return temp;
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+rtx
+expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
+ poly_int64 amount, rtx target, int unsignedp)
+{
+ return expand_shift_1 (code, mode, shifted,
+ gen_int_shift_amount (mode, amount),
+ target, unsignedp);
+}
+
+/* Likewise, but return 0 if that cannot be done. */
+
+static rtx
+maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
+ int amount, rtx target, int unsignedp)
+{
+ return expand_shift_1 (code, mode,
+ shifted, GEN_INT (amount), target, unsignedp, true);
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the tree for the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+rtx
+expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
+ tree amount, rtx target, int unsignedp)
+{
+ return expand_shift_1 (code, mode,
+ shifted, expand_normal (amount), target, unsignedp);
+}
+
+
+static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
+ const struct mult_cost *, machine_mode mode);
+static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
+ const struct algorithm *, enum mult_variant);
+static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
+static rtx extract_high_half (scalar_int_mode, rtx);
+static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
+static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
+ int, int);
+/* Compute and return the best algorithm for multiplying by T.
+ The algorithm must cost less than cost_limit
+ If retval.cost >= COST_LIMIT, no algorithm was found and all
+ other field of the returned struct are undefined.
+ MODE is the machine mode of the multiplication. */
+
+static void
+synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
+ const struct mult_cost *cost_limit, machine_mode mode)
+{
+ int m;
+ struct algorithm *alg_in, *best_alg;
+ struct mult_cost best_cost;
+ struct mult_cost new_limit;
+ int op_cost, op_latency;
+ unsigned HOST_WIDE_INT orig_t = t;
+ unsigned HOST_WIDE_INT q;
+ int maxm, hash_index;
+ bool cache_hit = false;
+ enum alg_code cache_alg = alg_zero;
+ bool speed = optimize_insn_for_speed_p ();
+ scalar_int_mode imode;
+ struct alg_hash_entry *entry_ptr;
+
+ /* Indicate that no algorithm is yet found. If no algorithm
+ is found, this value will be returned and indicate failure. */
+ alg_out->cost.cost = cost_limit->cost + 1;
+ alg_out->cost.latency = cost_limit->latency + 1;
+
+ if (cost_limit->cost < 0
+ || (cost_limit->cost == 0 && cost_limit->latency <= 0))
+ return;
+
+ /* Be prepared for vector modes. */
+ imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
+
+ maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
+
+ /* Restrict the bits of "t" to the multiplication's mode. */
+ t &= GET_MODE_MASK (imode);
+
+ /* t == 1 can be done in zero cost. */
+ if (t == 1)
+ {
+ alg_out->ops = 1;
+ alg_out->cost.cost = 0;
+ alg_out->cost.latency = 0;
+ alg_out->op[0] = alg_m;
+ return;
+ }
+
+ /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
+ fail now. */
+ if (t == 0)
+ {
+ if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
+ return;
+ else
+ {
+ alg_out->ops = 1;
+ alg_out->cost.cost = zero_cost (speed);
+ alg_out->cost.latency = zero_cost (speed);
+ alg_out->op[0] = alg_zero;
+ return;
+ }
+ }
+
+ /* We'll be needing a couple extra algorithm structures now. */
+
+ alg_in = XALLOCA (struct algorithm);
+ best_alg = XALLOCA (struct algorithm);
+ best_cost = *cost_limit;
+
+ /* Compute the hash index. */
+ hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
+
+ /* See if we already know what to do for T. */
+ entry_ptr = alg_hash_entry_ptr (hash_index);
+ if (entry_ptr->t == t
+ && entry_ptr->mode == mode
+ && entry_ptr->speed == speed
+ && entry_ptr->alg != alg_unknown)
+ {
+ cache_alg = entry_ptr->alg;
+
+ if (cache_alg == alg_impossible)
+ {
+ /* The cache tells us that it's impossible to synthesize
+ multiplication by T within entry_ptr->cost. */
+ if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
+ /* COST_LIMIT is at least as restrictive as the one
+ recorded in the hash table, in which case we have no
+ hope of synthesizing a multiplication. Just
+ return. */
+ return;
+
+ /* If we get here, COST_LIMIT is less restrictive than the
+ one recorded in the hash table, so we may be able to
+ synthesize a multiplication. Proceed as if we didn't
+ have the cache entry. */
+ }
+ else
+ {
+ if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
+ /* The cached algorithm shows that this multiplication
+ requires more cost than COST_LIMIT. Just return. This
+ way, we don't clobber this cache entry with
+ alg_impossible but retain useful information. */
+ return;
+
+ cache_hit = true;
+
+ switch (cache_alg)
+ {
+ case alg_shift:
+ goto do_alg_shift;
+
+ case alg_add_t_m2:
+ case alg_sub_t_m2:
+ goto do_alg_addsub_t_m2;
+
+ case alg_add_factor:
+ case alg_sub_factor:
+ goto do_alg_addsub_factor;
+
+ case alg_add_t2_m:
+ goto do_alg_add_t2_m;
+
+ case alg_sub_t2_m:
+ goto do_alg_sub_t2_m;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+
+ /* If we have a group of zero bits at the low-order part of T, try
+ multiplying by the remaining bits and then doing a shift. */
+
+ if ((t & 1) == 0)
+ {
+ do_alg_shift:
+ m = ctz_or_zero (t); /* m = number of low zero bits */
+ if (m < maxm)
+ {
+ q = t >> m;
+ /* The function expand_shift will choose between a shift and
+ a sequence of additions, so the observed cost is given as
+ MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
+ op_cost = m * add_cost (speed, mode);
+ if (shift_cost (speed, mode, m) < op_cost)
+ op_cost = shift_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, q, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_shift;
+ }
+
+ /* See if treating ORIG_T as a signed number yields a better
+ sequence. Try this sequence only for a negative ORIG_T
+ as it would be useless for a non-negative ORIG_T. */
+ if ((HOST_WIDE_INT) orig_t < 0)
+ {
+ /* Shift ORIG_T as follows because a right shift of a
+ negative-valued signed type is implementation
+ defined. */
+ q = ~(~orig_t >> m);
+ /* The function expand_shift will choose between a shift
+ and a sequence of additions, so the observed cost is
+ given as MIN (m * add_cost(speed, mode),
+ shift_cost(speed, mode, m)). */
+ op_cost = m * add_cost (speed, mode);
+ if (shift_cost (speed, mode, m) < op_cost)
+ op_cost = shift_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, q, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_shift;
+ }
+ }
+ }
+ if (cache_hit)
+ goto done;
+ }
+
+ /* If we have an odd number, add or subtract one. */
+ if ((t & 1) != 0)
+ {
+ unsigned HOST_WIDE_INT w;
+
+ do_alg_addsub_t_m2:
+ for (w = 1; (w & t) != 0; w <<= 1)
+ ;
+ /* If T was -1, then W will be zero after the loop. This is another
+ case where T ends with ...111. Handling this with (T + 1) and
+ subtract 1 produces slightly better code and results in algorithm
+ selection much faster than treating it like the ...0111 case
+ below. */
+ if (w == 0
+ || (w > 2
+ /* Reject the case where t is 3.
+ Thus we prefer addition in that case. */
+ && t != 3))
+ {
+ /* T ends with ...111. Multiply by (T + 1) and subtract T. */
+
+ op_cost = add_cost (speed, mode);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, t + 1, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_sub_t_m2;
+ }
+ }
+ else
+ {
+ /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
+
+ op_cost = add_cost (speed, mode);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, t - 1, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_add_t_m2;
+ }
+ }
+
+ /* We may be able to calculate a * -7, a * -15, a * -31, etc
+ quickly with a - a * n for some appropriate constant n. */
+ m = exact_log2 (-orig_t + 1);
+ if (m >= 0 && m < maxm)
+ {
+ op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+ /* If the target has a cheap shift-and-subtract insn use
+ that in preference to a shift insn followed by a sub insn.
+ Assume that the shift-and-sub is "atomic" with a latency
+ equal to it's cost, otherwise assume that on superscalar
+ hardware the shift may be executed concurrently with the
+ earlier steps in the algorithm. */
+ if (shiftsub1_cost (speed, mode, m) <= op_cost)
+ {
+ op_cost = shiftsub1_cost (speed, mode, m);
+ op_latency = op_cost;
+ }
+ else
+ op_latency = add_cost (speed, mode);
+
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_latency;
+ synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
+ &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_latency;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_t_m2;
+ }
+ }
+
+ if (cache_hit)
+ goto done;
+ }
+
+ /* Look for factors of t of the form
+ t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
+ If we find such a factor, we can multiply by t using an algorithm that
+ multiplies by q, shift the result by m and add/subtract it to itself.
+
+ We search for large factors first and loop down, even if large factors
+ are less probable than small; if we find a large factor we will find a
+ good sequence quickly, and therefore be able to prune (by decreasing
+ COST_LIMIT) the search. */
+
+ do_alg_addsub_factor:
+ for (m = floor_log2 (t - 1); m >= 2; m--)
+ {
+ unsigned HOST_WIDE_INT d;
+
+ d = (HOST_WIDE_INT_1U << m) + 1;
+ if (t % d == 0 && t > d && m < maxm
+ && (!cache_hit || cache_alg == alg_add_factor))
+ {
+ op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+ if (shiftadd_cost (speed, mode, m) <= op_cost)
+ op_cost = shiftadd_cost (speed, mode, m);
+
+ op_latency = op_cost;
+
+
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_latency;
+ synth_mult (alg_in, t / d, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_latency;
+ if (alg_in->cost.latency < op_cost)
+ alg_in->cost.latency = op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_factor;
+ }
+ /* Other factors will have been taken care of in the recursion. */
+ break;
+ }
+
+ d = (HOST_WIDE_INT_1U << m) - 1;
+ if (t % d == 0 && t > d && m < maxm
+ && (!cache_hit || cache_alg == alg_sub_factor))
+ {
+ op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+ if (shiftsub0_cost (speed, mode, m) <= op_cost)
+ op_cost = shiftsub0_cost (speed, mode, m);
+
+ op_latency = op_cost;
+
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_latency;
+ synth_mult (alg_in, t / d, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_latency;
+ if (alg_in->cost.latency < op_cost)
+ alg_in->cost.latency = op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_factor;
+ }
+ break;
+ }
+ }
+ if (cache_hit)
+ goto done;
+
+ /* Try shift-and-add (load effective address) instructions,
+ i.e. do a*3, a*5, a*9. */
+ if ((t & 1) != 0)
+ {
+ do_alg_add_t2_m:
+ q = t - 1;
+ m = ctz_hwi (q);
+ if (q && m < maxm)
+ {
+ op_cost = shiftadd_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_t2_m;
+ }
+ }
+ if (cache_hit)
+ goto done;
+
+ do_alg_sub_t2_m:
+ q = t + 1;
+ m = ctz_hwi (q);
+ if (q && m < maxm)
+ {
+ op_cost = shiftsub0_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ best_cost = alg_in->cost;
+ std::swap (alg_in, best_alg);
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_t2_m;
+ }
+ }
+ if (cache_hit)
+ goto done;
+ }
+
+ done:
+ /* If best_cost has not decreased, we have not found any algorithm. */
+ if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
+ {
+ /* We failed to find an algorithm. Record alg_impossible for
+ this case (that is, <T, MODE, COST_LIMIT>) so that next time
+ we are asked to find an algorithm for T within the same or
+ lower COST_LIMIT, we can immediately return to the
+ caller. */
+ entry_ptr->t = t;
+ entry_ptr->mode = mode;
+ entry_ptr->speed = speed;
+ entry_ptr->alg = alg_impossible;
+ entry_ptr->cost = *cost_limit;
+ return;
+ }
+
+ /* Cache the result. */
+ if (!cache_hit)
+ {
+ entry_ptr->t = t;
+ entry_ptr->mode = mode;
+ entry_ptr->speed = speed;
+ entry_ptr->alg = best_alg->op[best_alg->ops];
+ entry_ptr->cost.cost = best_cost.cost;
+ entry_ptr->cost.latency = best_cost.latency;
+ }
+
+ /* If we are getting a too long sequence for `struct algorithm'
+ to record, make this search fail. */
+ if (best_alg->ops == MAX_BITS_PER_WORD)
+ return;
+
+ /* Copy the algorithm from temporary space to the space at alg_out.
+ We avoid using structure assignment because the majority of
+ best_alg is normally undefined, and this is a critical function. */
+ alg_out->ops = best_alg->ops + 1;
+ alg_out->cost = best_cost;
+ memcpy (alg_out->op, best_alg->op,
+ alg_out->ops * sizeof *alg_out->op);
+ memcpy (alg_out->log, best_alg->log,
+ alg_out->ops * sizeof *alg_out->log);
+}
+
+/* Find the cheapest way of multiplying a value of mode MODE by VAL.
+ Try three variations:
+
+ - a shift/add sequence based on VAL itself
+ - a shift/add sequence based on -VAL, followed by a negation
+ - a shift/add sequence based on VAL - 1, followed by an addition.
+
+ Return true if the cheapest of these cost less than MULT_COST,
+ describing the algorithm in *ALG and final fixup in *VARIANT. */
+
+bool
+choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
+ struct algorithm *alg, enum mult_variant *variant,
+ int mult_cost)
+{
+ struct algorithm alg2;
+ struct mult_cost limit;
+ int op_cost;
+ bool speed = optimize_insn_for_speed_p ();
+
+ /* Fail quickly for impossible bounds. */
+ if (mult_cost < 0)
+ return false;
+
+ /* Ensure that mult_cost provides a reasonable upper bound.
+ Any constant multiplication can be performed with less
+ than 2 * bits additions. */
+ op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
+ if (mult_cost > op_cost)
+ mult_cost = op_cost;
+
+ *variant = basic_variant;
+ limit.cost = mult_cost;
+ limit.latency = mult_cost;
+ synth_mult (alg, val, &limit, mode);
+
+ /* This works only if the inverted value actually fits in an
+ `unsigned int' */
+ if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
+ {
+ op_cost = neg_cost (speed, mode);
+ if (MULT_COST_LESS (&alg->cost, mult_cost))
+ {
+ limit.cost = alg->cost.cost - op_cost;
+ limit.latency = alg->cost.latency - op_cost;
+ }
+ else
+ {
+ limit.cost = mult_cost - op_cost;
+ limit.latency = mult_cost - op_cost;
+ }
+
+ synth_mult (&alg2, -val, &limit, mode);
+ alg2.cost.cost += op_cost;
+ alg2.cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
+ *alg = alg2, *variant = negate_variant;
+ }
+
+ /* This proves very useful for division-by-constant. */
+ op_cost = add_cost (speed, mode);
+ if (MULT_COST_LESS (&alg->cost, mult_cost))
+ {
+ limit.cost = alg->cost.cost - op_cost;
+ limit.latency = alg->cost.latency - op_cost;
+ }
+ else
+ {
+ limit.cost = mult_cost - op_cost;
+ limit.latency = mult_cost - op_cost;
+ }
+
+ synth_mult (&alg2, val - 1, &limit, mode);
+ alg2.cost.cost += op_cost;
+ alg2.cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
+ *alg = alg2, *variant = add_variant;
+
+ return MULT_COST_LESS (&alg->cost, mult_cost);
+}
+
+/* A subroutine of expand_mult, used for constant multiplications.
+ Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
+ convenient. Use the shift/add sequence described by ALG and apply
+ the final fixup specified by VARIANT. */
+
+static rtx
+expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
+ rtx target, const struct algorithm *alg,
+ enum mult_variant variant)
+{
+ unsigned HOST_WIDE_INT val_so_far;
+ rtx_insn *insn;
+ rtx accum, tem;
+ int opno;
+ machine_mode nmode;
+
+ /* Avoid referencing memory over and over and invalid sharing
+ on SUBREGs. */
+ op0 = force_reg (mode, op0);
+
+ /* ACCUM starts out either as OP0 or as a zero, depending on
+ the first operation. */
+
+ if (alg->op[0] == alg_zero)
+ {
+ accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
+ val_so_far = 0;
+ }
+ else if (alg->op[0] == alg_m)
+ {
+ accum = copy_to_mode_reg (mode, op0);
+ val_so_far = 1;
+ }
+ else
+ gcc_unreachable ();
+
+ for (opno = 1; opno < alg->ops; opno++)
+ {
+ int log = alg->log[opno];
+ rtx shift_subtarget = optimize ? 0 : accum;
+ rtx add_target
+ = (opno == alg->ops - 1 && target != 0 && variant != add_variant
+ && !optimize)
+ ? target : 0;
+ rtx accum_target = optimize ? 0 : accum;
+ rtx accum_inner;
+
+ switch (alg->op[opno])
+ {
+ case alg_shift:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ /* REG_EQUAL note will be attached to the following insn. */
+ emit_move_insn (accum, tem);
+ val_so_far <<= log;
+ break;
+
+ case alg_add_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += HOST_WIDE_INT_1U << log;
+ break;
+
+ case alg_sub_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far -= HOST_WIDE_INT_1U << log;
+ break;
+
+ case alg_add_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ log, shift_subtarget, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) + 1;
+ break;
+
+ case alg_sub_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ log, shift_subtarget, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) - 1;
+ break;
+
+ case alg_add_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += val_so_far << log;
+ break;
+
+ case alg_sub_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
+ (add_target
+ ? add_target : (optimize ? 0 : tem)));
+ val_so_far = (val_so_far << log) - val_so_far;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (SCALAR_INT_MODE_P (mode))
+ {
+ /* Write a REG_EQUAL note on the last insn so that we can cse
+ multiplication sequences. Note that if ACCUM is a SUBREG,
+ we've set the inner register and must properly indicate that. */
+ tem = op0, nmode = mode;
+ accum_inner = accum;
+ if (GET_CODE (accum) == SUBREG)
+ {
+ accum_inner = SUBREG_REG (accum);
+ nmode = GET_MODE (accum_inner);
+ tem = gen_lowpart (nmode, op0);
+ }
+
+ /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
+ In that case, only the low bits of accum would be guaranteed to
+ be equal to the content of the REG_EQUAL note, the upper bits
+ can be anything. */
+ if (!paradoxical_subreg_p (tem))
+ {
+ insn = get_last_insn ();
+ wide_int wval_so_far
+ = wi::uhwi (val_so_far,
+ GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
+ rtx c = immed_wide_int_const (wval_so_far, nmode);
+ set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
+ accum_inner);
+ }
+ }
+ }
+
+ if (variant == negate_variant)
+ {
+ val_so_far = -val_so_far;
+ accum = expand_unop (mode, neg_optab, accum, target, 0);
+ }
+ else if (variant == add_variant)
+ {
+ val_so_far = val_so_far + 1;
+ accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
+ }
+
+ /* Compare only the bits of val and val_so_far that are significant
+ in the result mode, to avoid sign-/zero-extension confusion. */
+ nmode = GET_MODE_INNER (mode);
+ val &= GET_MODE_MASK (nmode);
+ val_so_far &= GET_MODE_MASK (nmode);
+ gcc_assert (val == (HOST_WIDE_INT) val_so_far);
+
+ return accum;
+}
+
+/* Perform a multiplication and return an rtx for the result.
+ MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+ TARGET is a suggestion for where to store the result (an rtx).
+
+ We check specially for a constant integer as OP1.
+ If you want this check for OP0 as well, then before calling
+ you should swap the two operands if OP0 would be constant. */
+
+rtx
+expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
+ int unsignedp, bool no_libcall)
+{
+ enum mult_variant variant;
+ struct algorithm algorithm;
+ rtx scalar_op1;
+ int max_cost;
+ bool speed = optimize_insn_for_speed_p ();
+ bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
+
+ if (CONSTANT_P (op0))
+ std::swap (op0, op1);
+
+ /* For vectors, there are several simplifications that can be made if
+ all elements of the vector constant are identical. */
+ scalar_op1 = unwrap_const_vec_duplicate (op1);
+
+ if (INTEGRAL_MODE_P (mode))
+ {
+ rtx fake_reg;
+ HOST_WIDE_INT coeff;
+ bool is_neg;
+ int mode_bitsize;
+
+ if (op1 == CONST0_RTX (mode))
+ return op1;
+ if (op1 == CONST1_RTX (mode))
+ return op0;
+ if (op1 == CONSTM1_RTX (mode))
+ return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
+ op0, target, 0);
+
+ if (do_trapv)
+ goto skip_synth;
+
+ /* If mode is integer vector mode, check if the backend supports
+ vector lshift (by scalar or vector) at all. If not, we can't use
+ synthetized multiply. */
+ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
+ && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
+ && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
+ goto skip_synth;
+
+ /* These are the operations that are potentially turned into
+ a sequence of shifts and additions. */
+ mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
+
+ /* synth_mult does an `unsigned int' multiply. As long as the mode is
+ less than or equal in size to `unsigned int' this doesn't matter.
+ If the mode is larger than `unsigned int', then synth_mult works
+ only if the constant value exactly fits in an `unsigned int' without
+ any truncation. This means that multiplying by negative values does
+ not work; results are off by 2^32 on a 32 bit machine. */
+ if (CONST_INT_P (scalar_op1))
+ {
+ coeff = INTVAL (scalar_op1);
+ is_neg = coeff < 0;
+ }
+#if TARGET_SUPPORTS_WIDE_INT
+ else if (CONST_WIDE_INT_P (scalar_op1))
+#else
+ else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
+#endif
+ {
+ int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
+ /* Perfect power of 2 (other than 1, which is handled above). */
+ if (shift > 0)
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ shift, target, unsignedp);
+ else
+ goto skip_synth;
+ }
+ else
+ goto skip_synth;
+
+ /* We used to test optimize here, on the grounds that it's better to
+ produce a smaller program when -O is not used. But this causes
+ such a terrible slowdown sometimes that it seems better to always
+ use synth_mult. */
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
+ && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+
+ fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+
+ /* Attempt to handle multiplication of DImode values by negative
+ coefficients, by performing the multiplication by a positive
+ multiplier and then inverting the result. */
+ if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
+ {
+ /* Its safe to use -coeff even for INT_MIN, as the
+ result is interpreted as an unsigned coefficient.
+ Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ coeff = -(unsigned HOST_WIDE_INT) coeff;
+ max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
+ mode, speed)
+ - neg_cost (speed, mode));
+ if (max_cost <= 0)
+ goto skip_synth;
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+ {
+ rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+ return expand_unop (mode, neg_optab, temp, target, 0);
+ }
+
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+ max_cost))
+ {
+ rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
+ &algorithm, variant);
+ return expand_unop (mode, neg_optab, temp, target, 0);
+ }
+ goto skip_synth;
+ }
+
+ /* Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
+ return expand_mult_const (mode, op0, coeff, target,
+ &algorithm, variant);
+ }
+ skip_synth:
+
+ /* Expand x*2.0 as x+x. */
+ if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
+ && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
+ {
+ op0 = force_reg (GET_MODE (op0), op0);
+ return expand_binop (mode, add_optab, op0, op0,
+ target, unsignedp,
+ no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
+ }
+
+ /* This used to use umul_optab if unsigned, but for non-widening multiply
+ there is no difference between signed and unsigned. */
+ op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
+ op0, op1, target, unsignedp,
+ no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
+ gcc_assert (op0 || no_libcall);
+ return op0;
+}
+
+/* Return a cost estimate for multiplying a register by the given
+ COEFFicient in the given MODE and SPEED. */
+
+int
+mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
+{
+ int max_cost;
+ struct algorithm algorithm;
+ enum mult_variant variant;
+
+ rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+ max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
+ mode, speed);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
+ return algorithm.cost.cost;
+ else
+ return max_cost;
+}
+
+/* Perform a widening multiplication and return an rtx for the result.
+ MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+ TARGET is a suggestion for where to store the result (an rtx).
+ THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
+ or smul_widen_optab.
+
+ We check specially for a constant integer as OP1, comparing the
+ cost of a widening multiply against the cost of a sequence of shifts
+ and adds. */
+
+rtx
+expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
+ int unsignedp, optab this_optab)
+{
+ bool speed = optimize_insn_for_speed_p ();
+ rtx cop1;
+
+ if (CONST_INT_P (op1)
+ && GET_MODE (op0) != VOIDmode
+ && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
+ this_optab == umul_widen_optab))
+ && CONST_INT_P (cop1)
+ && (INTVAL (cop1) >= 0
+ || HWI_COMPUTABLE_MODE_P (mode)))
+ {
+ HOST_WIDE_INT coeff = INTVAL (cop1);
+ int max_cost;
+ enum mult_variant variant;
+ struct algorithm algorithm;
+
+ if (coeff == 0)
+ return CONST0_RTX (mode);
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+ {
+ op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+ }
+
+ /* Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ max_cost = mul_widen_cost (speed, mode);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+ max_cost))
+ {
+ op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+ return expand_mult_const (mode, op0, coeff, target,
+ &algorithm, variant);
+ }
+ }
+ return expand_binop (mode, this_optab, op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+}
+
+/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
+ replace division by D, and put the least significant N bits of the result
+ in *MULTIPLIER_PTR and return the most significant bit.
+
+ The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
+ needed precision is in PRECISION (should be <= N).
+
+ PRECISION should be as small as possible so this function can choose
+ multiplier more freely.
+
+ The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
+ is to be used for a final right shift is placed in *POST_SHIFT_PTR.
+
+ Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
+ where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
+
+unsigned HOST_WIDE_INT
+choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
+ unsigned HOST_WIDE_INT *multiplier_ptr,
+ int *post_shift_ptr, int *lgup_ptr)
+{
+ int lgup, post_shift;
+ int pow, pow2;
+
+ /* lgup = ceil(log2(divisor)); */
+ lgup = ceil_log2 (d);
+
+ gcc_assert (lgup <= n);
+
+ pow = n + lgup;
+ pow2 = n + lgup - precision;
+
+ /* mlow = 2^(N + lgup)/d */
+ wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
+ wide_int mlow = wi::udiv_trunc (val, d);
+
+ /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
+ val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
+ wide_int mhigh = wi::udiv_trunc (val, d);
+
+ /* If precision == N, then mlow, mhigh exceed 2^N
+ (but they do not exceed 2^(N+1)). */
+
+ /* Reduce to lowest terms. */
+ for (post_shift = lgup; post_shift > 0; post_shift--)
+ {
+ unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
+ HOST_BITS_PER_WIDE_INT);
+ unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
+ HOST_BITS_PER_WIDE_INT);
+ if (ml_lo >= mh_lo)
+ break;
+
+ mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
+ mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
+ }
+
+ *post_shift_ptr = post_shift;
+ *lgup_ptr = lgup;
+ if (n < HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
+ *multiplier_ptr = mhigh.to_uhwi () & mask;
+ return mhigh.to_uhwi () > mask;
+ }
+ else
+ {
+ *multiplier_ptr = mhigh.to_uhwi ();
+ return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
+ }
+}
+
+/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
+ congruent to 1 (mod 2**N). */
+
+static unsigned HOST_WIDE_INT
+invert_mod2n (unsigned HOST_WIDE_INT x, int n)
+{
+ /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
+
+ /* The algorithm notes that the choice y = x satisfies
+ x*y == 1 mod 2^3, since x is assumed odd.
+ Each iteration doubles the number of bits of significance in y. */
+
+ unsigned HOST_WIDE_INT mask;
+ unsigned HOST_WIDE_INT y = x;
+ int nbit = 3;
+
+ mask = (n == HOST_BITS_PER_WIDE_INT
+ ? HOST_WIDE_INT_M1U
+ : (HOST_WIDE_INT_1U << n) - 1);
+
+ while (nbit < n)
+ {
+ y = y * (2 - x*y) & mask; /* Modulo 2^N */
+ nbit *= 2;
+ }
+ return y;
+}
+
+/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
+ flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
+ product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
+ to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
+ become signed.
+
+ The result is put in TARGET if that is convenient.
+
+ MODE is the mode of operation. */
+
+rtx
+expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
+ rtx op1, rtx target, int unsignedp)
+{
+ rtx tem;
+ enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
+ tem = expand_and (mode, tem, op1, NULL_RTX);
+ adj_operand
+ = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
+ adj_operand);
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op1,
+ GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
+ tem = expand_and (mode, tem, op0, NULL_RTX);
+ target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
+ target);
+
+ return target;
+}
+
+/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
+
+static rtx
+extract_high_half (scalar_int_mode mode, rtx op)
+{
+ if (mode == word_mode)
+ return gen_highpart (mode, op);
+
+ scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
+
+ op = expand_shift (RSHIFT_EXPR, wider_mode, op,
+ GET_MODE_BITSIZE (mode), 0, 1);
+ return convert_modes (mode, wider_mode, op, 0);
+}
+
+/* Like expmed_mult_highpart, but only consider using a multiplication
+ optab. OP1 is an rtx for the constant operand. */
+
+static rtx
+expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
+ rtx target, int unsignedp, int max_cost)
+{
+ rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
+ optab moptab;
+ rtx tem;
+ int size;
+ bool speed = optimize_insn_for_speed_p ();
+
+ scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
+
+ size = GET_MODE_BITSIZE (mode);
+
+ /* Firstly, try using a multiplication insn that only generates the needed
+ high part of the product, and in the sign flavor of unsignedp. */
+ if (mul_highpart_cost (speed, mode) < max_cost)
+ {
+ moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
+ tem = expand_binop (mode, moptab, op0, narrow_op1, target,
+ unsignedp, OPTAB_DIRECT);
+ if (tem)
+ return tem;
+ }
+
+ /* Secondly, same as above, but use sign flavor opposite of unsignedp.
+ Need to adjust the result after the multiplication. */
+ if (size - 1 < BITS_PER_WORD
+ && (mul_highpart_cost (speed, mode)
+ + 2 * shift_cost (speed, mode, size-1)
+ + 4 * add_cost (speed, mode) < max_cost))
+ {
+ moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
+ tem = expand_binop (mode, moptab, op0, narrow_op1, target,
+ unsignedp, OPTAB_DIRECT);
+ if (tem)
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
+ tem, unsignedp);
+ }
+
+ /* Try widening multiplication. */
+ moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
+ if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
+ && mul_widen_cost (speed, wider_mode) < max_cost)
+ {
+ tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
+ unsignedp, OPTAB_WIDEN);
+ if (tem)
+ return extract_high_half (mode, tem);
+ }
+
+ /* Try widening the mode and perform a non-widening multiplication. */
+ if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
+ && size - 1 < BITS_PER_WORD
+ && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
+ < max_cost))
+ {
+ rtx_insn *insns;
+ rtx wop0, wop1;
+
+ /* We need to widen the operands, for example to ensure the
+ constant multiplier is correctly sign or zero extended.
+ Use a sequence to clean-up any instructions emitted by
+ the conversions if things don't work out. */
+ start_sequence ();
+ wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
+ wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
+ tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
+ unsignedp, OPTAB_WIDEN);
+ insns = get_insns ();
+ end_sequence ();
+
+ if (tem)
+ {
+ emit_insn (insns);
+ return extract_high_half (mode, tem);
+ }
+ }
+
+ /* Try widening multiplication of opposite signedness, and adjust. */
+ moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
+ if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
+ && size - 1 < BITS_PER_WORD
+ && (mul_widen_cost (speed, wider_mode)
+ + 2 * shift_cost (speed, mode, size-1)
+ + 4 * add_cost (speed, mode) < max_cost))
+ {
+ tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
+ NULL_RTX, ! unsignedp, OPTAB_WIDEN);
+ if (tem != 0)
+ {
+ tem = extract_high_half (mode, tem);
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
+ target, unsignedp);
+ }
+ }
+
+ return 0;
+}
+
+/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
+ putting the high half of the result in TARGET if that is convenient,
+ and return where the result is. If the operation cannot be performed,
+ 0 is returned.
+
+ MODE is the mode of operation and result.
+
+ UNSIGNEDP nonzero means unsigned multiply.
+
+ MAX_COST is the total allowed cost for the expanded RTL. */
+
+static rtx
+expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
+ rtx target, int unsignedp, int max_cost)
+{
+ unsigned HOST_WIDE_INT cnst1;
+ int extra_cost;
+ bool sign_adjust = false;
+ enum mult_variant variant;
+ struct algorithm alg;
+ rtx tem;
+ bool speed = optimize_insn_for_speed_p ();
+
+ /* We can't support modes wider than HOST_BITS_PER_INT. */
+ gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
+
+ cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
+
+ /* We can't optimize modes wider than BITS_PER_WORD.
+ ??? We might be able to perform double-word arithmetic if
+ mode == word_mode, however all the cost calculations in
+ synth_mult etc. assume single-word operations. */
+ scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
+ if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
+ return expmed_mult_highpart_optab (mode, op0, op1, target,
+ unsignedp, max_cost);
+
+ extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
+
+ /* Check whether we try to multiply by a negative constant. */
+ if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
+ {
+ sign_adjust = true;
+ extra_cost += add_cost (speed, mode);
+ }
+
+ /* See whether shift/add multiplication is cheap enough. */
+ if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
+ max_cost - extra_cost))
+ {
+ /* See whether the specialized multiplication optabs are
+ cheaper than the shift/add version. */
+ tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
+ alg.cost.cost + extra_cost);
+ if (tem)
+ return tem;
+
+ tem = convert_to_mode (wider_mode, op0, unsignedp);
+ tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
+ tem = extract_high_half (mode, tem);
+
+ /* Adjust result for signedness. */
+ if (sign_adjust)
+ tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
+
+ return tem;
+ }
+ return expmed_mult_highpart_optab (mode, op0, op1, target,
+ unsignedp, max_cost);
+}
+
+
+/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
+
+static rtx
+expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
+{
+ rtx result, temp, shift;
+ rtx_code_label *label;
+ int logd;
+ int prec = GET_MODE_PRECISION (mode);
+
+ logd = floor_log2 (d);
+ result = gen_reg_rtx (mode);
+
+ /* Avoid conditional branches when they're expensive. */
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
+ && optimize_insn_for_speed_p ())
+ {
+ rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
+ mode, 0, -1);
+ if (signmask)
+ {
+ HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
+ signmask = force_reg (mode, signmask);
+ shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
+
+ /* Use the rtx_cost of a LSHIFTRT instruction to determine
+ which instruction sequence to use. If logical right shifts
+ are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
+ use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
+
+ temp = gen_rtx_LSHIFTRT (mode, result, shift);
+ if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
+ || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
+ > COSTS_N_INSNS (2)))
+ {
+ temp = expand_binop (mode, xor_optab, op0, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, and_optab, temp,
+ gen_int_mode (masklow, mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, xor_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ }
+ else
+ {
+ signmask = expand_binop (mode, lshr_optab, signmask, shift,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ signmask = force_reg (mode, signmask);
+
+ temp = expand_binop (mode, add_optab, op0, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, and_optab, temp,
+ gen_int_mode (masklow, mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ }
+ return temp;
+ }
+ }
+
+ /* Mask contains the mode's signbit and the significant bits of the
+ modulus. By including the signbit in the operation, many targets
+ can avoid an explicit compare operation in the following comparison
+ against zero. */
+ wide_int mask = wi::mask (logd, false, prec);
+ mask = wi::set_bit (mask, prec - 1);
+
+ temp = expand_binop (mode, and_optab, op0,
+ immed_wide_int_const (mask, mode),
+ result, 1, OPTAB_LIB_WIDEN);
+ if (temp != result)
+ emit_move_insn (result, temp);
+
+ label = gen_label_rtx ();
+ do_cmp_and_jump (result, const0_rtx, GE, mode, label);
+
+ temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
+ 0, OPTAB_LIB_WIDEN);
+
+ mask = wi::mask (logd, true, prec);
+ temp = expand_binop (mode, ior_optab, temp,
+ immed_wide_int_const (mask, mode),
+ result, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
+ 0, OPTAB_LIB_WIDEN);
+ if (temp != result)
+ emit_move_insn (result, temp);
+ emit_label (label);
+ return result;
+}
+
+/* Expand signed division of OP0 by a power of two D in mode MODE.
+ This routine is only called for positive values of D. */
+
+static rtx
+expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
+{
+ rtx temp;
+ rtx_code_label *label;
+ int logd;
+
+ logd = floor_log2 (d);
+
+ if (d == 2
+ && BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 1)
+ {
+ temp = gen_reg_rtx (mode);
+ temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
+ if (temp != NULL_RTX)
+ {
+ temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+ 0, OPTAB_LIB_WIDEN);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+ }
+ }
+
+ if (HAVE_conditional_move
+ && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
+ {
+ rtx temp2;
+
+ start_sequence ();
+ temp2 = copy_to_mode_reg (mode, op0);
+ temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+
+ /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
+ temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
+ mode, temp, temp2, mode, 0);
+ if (temp2)
+ {
+ rtx_insn *seq = get_insns ();
+ end_sequence ();
+ emit_insn (seq);
+ return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
+ }
+ end_sequence ();
+ }
+
+ if (BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 2)
+ {
+ int ushift = GET_MODE_BITSIZE (mode) - logd;
+
+ temp = gen_reg_rtx (mode);
+ temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
+ if (temp != NULL_RTX)
+ {
+ if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
+ || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
+ > COSTS_N_INSNS (1))
+ temp = expand_binop (mode, and_optab, temp,
+ gen_int_mode (d - 1, mode),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ else
+ temp = expand_shift (RSHIFT_EXPR, mode, temp,
+ ushift, NULL_RTX, 1);
+ temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+ 0, OPTAB_LIB_WIDEN);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+ }
+ }
+
+ label = gen_label_rtx ();
+ temp = copy_to_mode_reg (mode, op0);
+ do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
+ expand_inc (temp, gen_int_mode (d - 1, mode));
+ emit_label (label);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+}
+
+/* Emit the code to divide OP0 by OP1, putting the result in TARGET
+ if that is convenient, and returning where the result is.
+ You may request either the quotient or the remainder as the result;
+ specify REM_FLAG nonzero to get the remainder.
+
+ CODE is the expression code for which kind of division this is;
+ it controls how rounding is done. MODE is the machine mode to use.
+ UNSIGNEDP nonzero means do unsigned division. */
+
+/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
+ and then correct it by or'ing in missing high bits
+ if result of ANDI is nonzero.
+ For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
+ This could optimize to a bfexts instruction.
+ But C doesn't use these operations, so their optimizations are
+ left for later. */
+/* ??? For modulo, we don't actually need the highpart of the first product,
+ the low part will do nicely. And for small divisors, the second multiply
+ can also be a low-part only multiply or even be completely left out.
+ E.g. to calculate the remainder of a division by 3 with a 32 bit
+ multiply, multiply with 0x55555556 and extract the upper two bits;
+ the result is exact for inputs up to 0x1fffffff.
+ The input range can be reduced by using cross-sum rules.
+ For odd divisors >= 3, the following table gives right shift counts
+ so that if a number is shifted by an integer multiple of the given
+ amount, the remainder stays the same:
+ 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
+ 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
+ 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
+ 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
+ 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
+
+ Cross-sum rules for even numbers can be derived by leaving as many bits
+ to the right alone as the divisor has zeros to the right.
+ E.g. if x is an unsigned 32 bit number:
+ (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
+ */
+
+rtx
+expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
+ rtx op0, rtx op1, rtx target, int unsignedp,
+ enum optab_methods methods)
+{
+ machine_mode compute_mode;
+ rtx tquotient;
+ rtx quotient = 0, remainder = 0;
+ rtx_insn *last;
+ rtx_insn *insn;
+ optab optab1, optab2;
+ int op1_is_constant, op1_is_pow2 = 0;
+ int max_cost, extra_cost;
+ static HOST_WIDE_INT last_div_const = 0;
+ bool speed = optimize_insn_for_speed_p ();
+
+ op1_is_constant = CONST_INT_P (op1);
+ if (op1_is_constant)
+ {
+ wide_int ext_op1 = rtx_mode_t (op1, mode);
+ op1_is_pow2 = (wi::popcount (ext_op1) == 1
+ || (! unsignedp
+ && wi::popcount (wi::neg (ext_op1)) == 1));
+ }
+
+ /*
+ This is the structure of expand_divmod:
+
+ First comes code to fix up the operands so we can perform the operations
+ correctly and efficiently.
+
+ Second comes a switch statement with code specific for each rounding mode.
+ For some special operands this code emits all RTL for the desired
+ operation, for other cases, it generates only a quotient and stores it in
+ QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
+ to indicate that it has not done anything.
+
+ Last comes code that finishes the operation. If QUOTIENT is set and
+ REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
+ QUOTIENT is not set, it is computed using trunc rounding.
+
+ We try to generate special code for division and remainder when OP1 is a
+ constant. If |OP1| = 2**n we can use shifts and some other fast
+ operations. For other values of OP1, we compute a carefully selected
+ fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
+ by m.
+
+ In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
+ half of the product. Different strategies for generating the product are
+ implemented in expmed_mult_highpart.
+
+ If what we actually want is the remainder, we generate that by another
+ by-constant multiplication and a subtraction. */
+
+ /* We shouldn't be called with OP1 == const1_rtx, but some of the
+ code below will malfunction if we are, so check here and handle
+ the special case if so. */
+ if (op1 == const1_rtx)
+ return rem_flag ? const0_rtx : op0;
+
+ /* When dividing by -1, we could get an overflow.
+ negv_optab can handle overflows. */
+ if (! unsignedp && op1 == constm1_rtx)
+ {
+ if (rem_flag)
+ return const0_rtx;
+ return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
+ ? negv_optab : neg_optab, op0, target, 0);
+ }
+
+ if (target
+ /* Don't use the function value register as a target
+ since we have to read it as well as write it,
+ and function-inlining gets confused by this. */
+ && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
+ /* Don't clobber an operand while doing a multi-step calculation. */
+ || ((rem_flag || op1_is_constant)
+ && (reg_mentioned_p (target, op0)
+ || (MEM_P (op0) && MEM_P (target))))
+ || reg_mentioned_p (target, op1)
+ || (MEM_P (op1) && MEM_P (target))))
+ target = 0;
+
+ /* Get the mode in which to perform this computation. Normally it will
+ be MODE, but sometimes we can't do the desired operation in MODE.
+ If so, pick a wider mode in which we can do the operation. Convert
+ to that mode at the start to avoid repeated conversions.
+
+ First see what operations we need. These depend on the expression
+ we are evaluating. (We assume that divxx3 insns exist under the
+ same conditions that modxx3 insns and that these insns don't normally
+ fail. If these assumptions are not correct, we may generate less
+ efficient code in some cases.)
+
+ Then see if we find a mode in which we can open-code that operation
+ (either a division, modulus, or shift). Finally, check for the smallest
+ mode for which we can do the operation with a library call. */
+
+ /* We might want to refine this now that we have division-by-constant
+ optimization. Since expmed_mult_highpart tries so many variants, it is
+ not straightforward to generalize this. Maybe we should make an array
+ of possible modes in init_expmed? Save this for GCC 2.7. */
+
+ optab1 = (op1_is_pow2
+ ? (unsignedp ? lshr_optab : ashr_optab)
+ : (unsignedp ? udiv_optab : sdiv_optab));
+ optab2 = (op1_is_pow2 ? optab1
+ : (unsignedp ? udivmod_optab : sdivmod_optab));
+
+ if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN)
+ {
+ FOR_EACH_MODE_FROM (compute_mode, mode)
+ if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
+ || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
+ break;
+
+ if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN)
+ FOR_EACH_MODE_FROM (compute_mode, mode)
+ if (optab_libfunc (optab1, compute_mode)
+ || optab_libfunc (optab2, compute_mode))
+ break;
+ }
+ else
+ compute_mode = mode;
+
+ /* If we still couldn't find a mode, use MODE, but expand_binop will
+ probably die. */
+ if (compute_mode == VOIDmode)
+ compute_mode = mode;
+
+ if (target && GET_MODE (target) == compute_mode)
+ tquotient = target;
+ else
+ tquotient = gen_reg_rtx (compute_mode);
+
+#if 0
+ /* It should be possible to restrict the precision to GET_MODE_BITSIZE
+ (mode), and thereby get better code when OP1 is a constant. Do that
+ later. It will require going over all usages of SIZE below. */
+ size = GET_MODE_BITSIZE (mode);
+#endif
+
+ /* Only deduct something for a REM if the last divide done was
+ for a different constant. Then set the constant of the last
+ divide. */
+ max_cost = (unsignedp
+ ? udiv_cost (speed, compute_mode)
+ : sdiv_cost (speed, compute_mode));
+ if (rem_flag && ! (last_div_const != 0 && op1_is_constant
+ && INTVAL (op1) == last_div_const))
+ max_cost -= (mul_cost (speed, compute_mode)
+ + add_cost (speed, compute_mode));
+
+ last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
+
+ /* Now convert to the best mode to use. */
+ if (compute_mode != mode)
+ {
+ op0 = convert_modes (compute_mode, mode, op0, unsignedp);
+ op1 = convert_modes (compute_mode, mode, op1, unsignedp);
+
+ /* convert_modes may have placed op1 into a register, so we
+ must recompute the following. */
+ op1_is_constant = CONST_INT_P (op1);
+ if (op1_is_constant)
+ {
+ wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
+ op1_is_pow2 = (wi::popcount (ext_op1) == 1
+ || (! unsignedp
+ && wi::popcount (wi::neg (ext_op1)) == 1));
+ }
+ else
+ op1_is_pow2 = 0;
+ }
+
+ /* If one of the operands is a volatile MEM, copy it into a register. */
+
+ if (MEM_P (op0) && MEM_VOLATILE_P (op0))
+ op0 = force_reg (compute_mode, op0);
+ if (MEM_P (op1) && MEM_VOLATILE_P (op1))
+ op1 = force_reg (compute_mode, op1);
+
+ /* If we need the remainder or if OP1 is constant, we need to
+ put OP0 in a register in case it has any queued subexpressions. */
+ if (rem_flag || op1_is_constant)
+ op0 = force_reg (compute_mode, op0);
+
+ last = get_last_insn ();
+
+ /* Promote floor rounding to trunc rounding for unsigned operations. */
+ if (unsignedp)
+ {
+ if (code == FLOOR_DIV_EXPR)
+ code = TRUNC_DIV_EXPR;
+ if (code == FLOOR_MOD_EXPR)
+ code = TRUNC_MOD_EXPR;
+ if (code == EXACT_DIV_EXPR && op1_is_pow2)
+ code = TRUNC_DIV_EXPR;
+ }
+
+ if (op1 != const0_rtx)
+ switch (code)
+ {
+ case TRUNC_MOD_EXPR:
+ case TRUNC_DIV_EXPR:
+ if (op1_is_constant)
+ {
+ scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
+ int size = GET_MODE_BITSIZE (int_mode);
+ if (unsignedp)
+ {
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, post_shift;
+ int dummy;
+ wide_int wd = rtx_mode_t (op1, int_mode);
+ unsigned HOST_WIDE_INT d = wd.to_uhwi ();
+
+ if (wi::popcount (wd) == 1)
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ unsigned HOST_WIDE_INT mask
+ = (HOST_WIDE_INT_1U << pre_shift) - 1;
+ remainder
+ = expand_binop (int_mode, and_optab, op0,
+ gen_int_mode (mask, int_mode),
+ remainder, 1, methods);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
+ pre_shift, tquotient, 1);
+ }
+ else if (size <= HOST_BITS_PER_WIDE_INT)
+ {
+ if (d >= (HOST_WIDE_INT_1U << (size - 1)))
+ {
+ /* Most significant bit of divisor is set; emit an scc
+ insn. */
+ quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
+ int_mode, 1, 1);
+ }
+ else
+ {
+ /* Find a suitable multiplier and right shift count
+ instead of multiplying with D. */
+
+ mh = choose_multiplier (d, size, size,
+ &ml, &post_shift, &dummy);
+
+ /* If the suggested multiplier is more than SIZE bits,
+ we can do better for even divisors, using an
+ initial right shift. */
+ if (mh != 0 && (d & 1) == 0)
+ {
+ pre_shift = ctz_or_zero (d);
+ mh = choose_multiplier (d >> pre_shift, size,
+ size - pre_shift,
+ &ml, &post_shift, &dummy);
+ gcc_assert (!mh);
+ }
+ else
+ pre_shift = 0;
+
+ if (mh != 0)
+ {
+ rtx t1, t2, t3, t4;
+
+ if (post_shift - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ extra_cost
+ = (shift_cost (speed, int_mode, post_shift - 1)
+ + shift_cost (speed, int_mode, 1)
+ + 2 * add_cost (speed, int_mode));
+ t1 = expmed_mult_highpart
+ (int_mode, op0, gen_int_mode (ml, int_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx_MINUS (int_mode,
+ op0, t1),
+ NULL_RTX);
+ t3 = expand_shift (RSHIFT_EXPR, int_mode,
+ t2, 1, NULL_RTX, 1);
+ t4 = force_operand (gen_rtx_PLUS (int_mode,
+ t1, t3),
+ NULL_RTX);
+ quotient = expand_shift
+ (RSHIFT_EXPR, int_mode, t4,
+ post_shift - 1, tquotient, 1);
+ }
+ else
+ {
+ rtx t1, t2;
+
+ if (pre_shift >= BITS_PER_WORD
+ || post_shift >= BITS_PER_WORD)
+ goto fail1;
+
+ t1 = expand_shift
+ (RSHIFT_EXPR, int_mode, op0,
+ pre_shift, NULL_RTX, 1);
+ extra_cost
+ = (shift_cost (speed, int_mode, pre_shift)
+ + shift_cost (speed, int_mode, post_shift));
+ t2 = expmed_mult_highpart
+ (int_mode, t1,
+ gen_int_mode (ml, int_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t2 == 0)
+ goto fail1;
+ quotient = expand_shift
+ (RSHIFT_EXPR, int_mode, t2,
+ post_shift, tquotient, 1);
+ }
+ }
+ }
+ else /* Too wide mode to use tricky code */
+ break;
+
+ insn = get_last_insn ();
+ if (insn != last)
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_UDIV (int_mode, op0, op1),
+ quotient);
+ }
+ else /* TRUNC_DIV, signed */
+ {
+ unsigned HOST_WIDE_INT ml;
+ int lgup, post_shift;
+ rtx mlr;
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT abs_d;
+
+ /* Not prepared to handle division/remainder by
+ 0xffffffffffffffff8000000000000000 etc. */
+ if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
+ break;
+
+ /* Since d might be INT_MIN, we have to cast to
+ unsigned HOST_WIDE_INT before negating to avoid
+ undefined signed overflow. */
+ abs_d = (d >= 0
+ ? (unsigned HOST_WIDE_INT) d
+ : - (unsigned HOST_WIDE_INT) d);
+
+ /* n rem d = n rem -d */
+ if (rem_flag && d < 0)
+ {
+ d = abs_d;
+ op1 = gen_int_mode (abs_d, int_mode);
+ }
+
+ if (d == 1)
+ quotient = op0;
+ else if (d == -1)
+ quotient = expand_unop (int_mode, neg_optab, op0,
+ tquotient, 0);
+ else if (size <= HOST_BITS_PER_WIDE_INT
+ && abs_d == HOST_WIDE_INT_1U << (size - 1))
+ {
+ /* This case is not handled correctly below. */
+ quotient = emit_store_flag (tquotient, EQ, op0, op1,
+ int_mode, 1, 1);
+ if (quotient == 0)
+ goto fail1;
+ }
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
+ && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
+ && (rem_flag
+ ? smod_pow2_cheap (speed, int_mode)
+ : sdiv_pow2_cheap (speed, int_mode))
+ /* We assume that cheap metric is true if the
+ optab has an expander for this mode. */
+ && ((optab_handler ((rem_flag ? smod_optab
+ : sdiv_optab),
+ int_mode)
+ != CODE_FOR_nothing)
+ || (optab_handler (sdivmod_optab, int_mode)
+ != CODE_FOR_nothing)))
+ ;
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
+ {
+ if (rem_flag)
+ {
+ remainder = expand_smod_pow2 (int_mode, op0, d);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+
+ if (sdiv_pow2_cheap (speed, int_mode)
+ && ((optab_handler (sdiv_optab, int_mode)
+ != CODE_FOR_nothing)
+ || (optab_handler (sdivmod_optab, int_mode)
+ != CODE_FOR_nothing)))
+ quotient = expand_divmod (0, TRUNC_DIV_EXPR,
+ int_mode, op0,
+ gen_int_mode (abs_d,
+ int_mode),
+ NULL_RTX, 0);
+ else
+ quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
+
+ /* We have computed OP0 / abs(OP1). If OP1 is negative,
+ negate the quotient. */
+ if (d < 0)
+ {
+ insn = get_last_insn ();
+ if (insn != last
+ && abs_d < (HOST_WIDE_INT_1U
+ << (HOST_BITS_PER_WIDE_INT - 1)))
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_DIV (int_mode, op0,
+ gen_int_mode
+ (abs_d,
+ int_mode)),
+ quotient);
+
+ quotient = expand_unop (int_mode, neg_optab,
+ quotient, quotient, 0);
+ }
+ }
+ else if (size <= HOST_BITS_PER_WIDE_INT)
+ {
+ choose_multiplier (abs_d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ if (ml < HOST_WIDE_INT_1U << (size - 1))
+ {
+ rtx t1, t2, t3;
+
+ if (post_shift >= BITS_PER_WORD
+ || size - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ extra_cost = (shift_cost (speed, int_mode, post_shift)
+ + shift_cost (speed, int_mode, size - 1)
+ + add_cost (speed, int_mode));
+ t1 = expmed_mult_highpart
+ (int_mode, op0, gen_int_mode (ml, int_mode),
+ NULL_RTX, 0, max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = expand_shift
+ (RSHIFT_EXPR, int_mode, t1,
+ post_shift, NULL_RTX, 0);
+ t3 = expand_shift
+ (RSHIFT_EXPR, int_mode, op0,
+ size - 1, NULL_RTX, 0);
+ if (d < 0)
+ quotient
+ = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
+ tquotient);
+ else
+ quotient
+ = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
+ tquotient);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ if (post_shift >= BITS_PER_WORD
+ || size - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ ml |= HOST_WIDE_INT_M1U << (size - 1);
+ mlr = gen_int_mode (ml, int_mode);
+ extra_cost = (shift_cost (speed, int_mode, post_shift)
+ + shift_cost (speed, int_mode, size - 1)
+ + 2 * add_cost (speed, int_mode));
+ t1 = expmed_mult_highpart (int_mode, op0, mlr,
+ NULL_RTX, 0,
+ max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
+ NULL_RTX);
+ t3 = expand_shift
+ (RSHIFT_EXPR, int_mode, t2,
+ post_shift, NULL_RTX, 0);
+ t4 = expand_shift
+ (RSHIFT_EXPR, int_mode, op0,
+ size - 1, NULL_RTX, 0);
+ if (d < 0)
+ quotient
+ = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
+ tquotient);
+ else
+ quotient
+ = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
+ tquotient);
+ }
+ }
+ else /* Too wide mode to use tricky code */
+ break;
+
+ insn = get_last_insn ();
+ if (insn != last)
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_DIV (int_mode, op0, op1),
+ quotient);
+ }
+ break;
+ }
+ fail1:
+ delete_insns_since (last);
+ break;
+
+ case FLOOR_DIV_EXPR:
+ case FLOOR_MOD_EXPR:
+ /* We will come here only for signed operations. */
+ if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
+ {
+ scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
+ int size = GET_MODE_BITSIZE (int_mode);
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, lgup, post_shift;
+ HOST_WIDE_INT d = INTVAL (op1);
+
+ if (d > 0)
+ {
+ /* We could just as easily deal with negative constants here,
+ but it does not seem worth the trouble for GCC 2.6. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (d))
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ unsigned HOST_WIDE_INT mask
+ = (HOST_WIDE_INT_1U << pre_shift) - 1;
+ remainder = expand_binop
+ (int_mode, and_optab, op0,
+ gen_int_mode (mask, int_mode),
+ remainder, 0, methods);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift
+ (RSHIFT_EXPR, int_mode, op0,
+ pre_shift, tquotient, 0);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ mh = choose_multiplier (d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ gcc_assert (!mh);
+
+ if (post_shift < BITS_PER_WORD
+ && size - 1 < BITS_PER_WORD)
+ {
+ t1 = expand_shift
+ (RSHIFT_EXPR, int_mode, op0,
+ size - 1, NULL_RTX, 0);
+ t2 = expand_binop (int_mode, xor_optab, op0, t1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ extra_cost = (shift_cost (speed, int_mode, post_shift)
+ + shift_cost (speed, int_mode, size - 1)
+ + 2 * add_cost (speed, int_mode));
+ t3 = expmed_mult_highpart
+ (int_mode, t2, gen_int_mode (ml, int_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t3 != 0)
+ {
+ t4 = expand_shift
+ (RSHIFT_EXPR, int_mode, t3,
+ post_shift, NULL_RTX, 1);
+ quotient = expand_binop (int_mode, xor_optab,
+ t4, t1, tquotient, 0,
+ OPTAB_WIDEN);
+ }
+ }
+ }
+ }
+ else
+ {
+ rtx nsign, t1, t2, t3, t4;
+ t1 = force_operand (gen_rtx_PLUS (int_mode,
+ op0, constm1_rtx), NULL_RTX);
+ t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
+ 0, OPTAB_WIDEN);
+ nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
+ size - 1, NULL_RTX, 0);
+ t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
+ NULL_RTX);
+ t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
+ NULL_RTX, 0);
+ if (t4)
+ {
+ rtx t5;
+ t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
+ NULL_RTX, 0);
+ quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
+ tquotient);
+ }
+ }
+ }
+
+ if (quotient != 0)
+ break;
+ delete_insns_since (last);
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the quotient
+ or remainder to get floor rounding, once we have the remainder.
+ Notice that we compute also the final remainder value here,
+ and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder
+ = REG_P (target) ? target : gen_reg_rtx (compute_mode);
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient
+ = REG_P (target) ? target : gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1,
+ quotient, remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx_code_label *label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
+ expand_dec (quotient, const1_rtx);
+ expand_inc (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx_code_label *label1, *label2, *label3, *label4, *label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (targetm.gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_jump_insn (targetm.gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (targetm.gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_dec (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ break;
+
+ case CEIL_DIV_EXPR:
+ case CEIL_MOD_EXPR:
+ if (unsignedp)
+ {
+ if (op1_is_constant
+ && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ && (HWI_COMPUTABLE_MODE_P (compute_mode)
+ || INTVAL (op1) >= 0))
+ {
+ scalar_int_mode int_mode
+ = as_a <scalar_int_mode> (compute_mode);
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
+ floor_log2 (d), tquotient, 1);
+ t2 = expand_binop (int_mode, and_optab, op0,
+ gen_int_mode (d - 1, int_mode),
+ NULL_RTX, 1, methods);
+ t3 = gen_reg_rtx (int_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx_code_label *lab;
+ lab = gen_label_rtx ();
+ do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
+ remainder, 1))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx_code_label *label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ,
+ compute_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx_code_label *label1, *label2;
+ rtx adjusted_op0, tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
+ compute_mode, label1);
+ emit_move_insn (quotient, const0_rtx);
+ emit_jump_insn (targetm.gen_jump (label2));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
+ quotient, 1, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label2);
+ }
+ }
+ else /* signed */
+ {
+ if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ && INTVAL (op1) >= 0)
+ {
+ /* This is extremely similar to the code for the unsigned case
+ above. For 2.7 we should merge these variants, but for
+ 2.6.1 I don't want to touch the code for unsigned since that
+ get used in C. The signed case will only be used by other
+ languages (Ada). */
+
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ floor_log2 (d), tquotient, 0);
+ t2 = expand_binop (compute_mode, and_optab, op0,
+ gen_int_mode (d - 1, compute_mode),
+ NULL_RTX, 1, methods);
+ t3 = gen_reg_rtx (compute_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx,
+ compute_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx_code_label *lab;
+ lab = gen_label_rtx ();
+ do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx_PLUS (compute_mode,
+ t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+ if (rem_flag)
+ {
+ remainder= (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
+ remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx_code_label *label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ,
+ compute_mode, label);
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx_code_label *label1, *label2, *label3, *label4, *label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
+ compute_mode, label1);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (targetm.gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_jump_insn (targetm.gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
+ compute_mode, label3);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (targetm.gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, methods);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ }
+ break;
+
+ case EXACT_DIV_EXPR:
+ if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
+ {
+ scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
+ int size = GET_MODE_BITSIZE (int_mode);
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT ml;
+ int pre_shift;
+ rtx t1;
+
+ pre_shift = ctz_or_zero (d);
+ ml = invert_mod2n (d >> pre_shift, size);
+ t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
+ pre_shift, NULL_RTX, unsignedp);
+ quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
+ NULL_RTX, 1);
+
+ insn = get_last_insn ();
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
+ int_mode, op0, op1),
+ quotient);
+ }
+ break;
+
+ case ROUND_DIV_EXPR:
+ case ROUND_MOD_EXPR:
+ if (unsignedp)
+ {
+ scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
+ rtx tem;
+ rtx_code_label *label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (int_mode);
+ remainder = gen_reg_rtx (int_mode);
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (int_mode, udiv_optab, op0, op1,
+ quotient, 1, methods);
+ tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
+ remainder = expand_binop (int_mode, sub_optab, op0, tem,
+ remainder, 1, methods);
+ }
+ tem = plus_constant (int_mode, op1, -1);
+ tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
+ do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ }
+ else
+ {
+ scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
+ int size = GET_MODE_BITSIZE (int_mode);
+ rtx abs_rem, abs_op1, tem, mask;
+ rtx_code_label *label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (int_mode);
+ remainder = gen_reg_rtx (int_mode);
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
+ quotient, 0, methods);
+ tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
+ remainder = expand_binop (int_mode, sub_optab, op0, tem,
+ remainder, 0, methods);
+ }
+ abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
+ abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
+ tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
+ 1, NULL_RTX, 1);
+ do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
+ tem = expand_binop (int_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
+ size - 1, NULL_RTX, 0);
+ tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (int_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_inc (quotient, tem);
+ tem = expand_binop (int_mode, xor_optab, mask, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (int_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_dec (remainder, tem);
+ emit_label (label);
+ }
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (quotient == 0)
+ {
+ if (target && GET_MODE (target) != compute_mode)
+ target = 0;
+
+ if (rem_flag)
+ {
+ /* Try to produce the remainder without producing the quotient.
+ If we seem to have a divmod pattern that does not require widening,
+ don't try widening here. We should really have a WIDEN argument
+ to expand_twoval_binop, since what we'd really like to do here is
+ 1) try a mod insn in compute_mode
+ 2) try a divmod insn in compute_mode
+ 3) try a div insn in compute_mode and multiply-subtract to get
+ remainder
+ 4) try the same things with widening allowed. */
+ remainder
+ = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp,
+ ((optab_handler (optab2, compute_mode)
+ != CODE_FOR_nothing)
+ ? OPTAB_DIRECT : OPTAB_WIDEN));
+ if (remainder == 0)
+ {
+ /* No luck there. Can we do remainder and divide at once
+ without a library call? */
+ remainder = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop ((unsignedp
+ ? udivmod_optab
+ : sdivmod_optab),
+ op0, op1,
+ NULL_RTX, remainder, unsignedp))
+ remainder = 0;
+ }
+
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+
+ /* Produce the quotient. Try a quotient insn, but not a library call.
+ If we have a divmod in this mode, use it in preference to widening
+ the div (for this test we assume it will not fail). Note that optab2
+ is set to the one of the two optabs that the call below will use. */
+ quotient
+ = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
+ op0, op1, rem_flag ? NULL_RTX : target,
+ unsignedp,
+ ((optab_handler (optab2, compute_mode)
+ != CODE_FOR_nothing)
+ ? OPTAB_DIRECT : OPTAB_WIDEN));
+
+ if (quotient == 0)
+ {
+ /* No luck there. Try a quotient-and-remainder insn,
+ keeping the quotient alone. */
+ quotient = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
+ op0, op1,
+ quotient, NULL_RTX, unsignedp))
+ {
+ quotient = 0;
+ if (! rem_flag)
+ /* Still no luck. If we are not computing the remainder,
+ use a library call for the quotient. */
+ quotient = sign_expand_binop (compute_mode,
+ udiv_optab, sdiv_optab,
+ op0, op1, target,
+ unsignedp, methods);
+ }
+ }
+ }
+
+ if (rem_flag)
+ {
+ if (target && GET_MODE (target) != compute_mode)
+ target = 0;
+
+ if (quotient == 0)
+ {
+ /* No divide instruction either. Use library for remainder. */
+ remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp, methods);
+ /* No remainder function. Try a quotient-and-remainder
+ function, keeping the remainder. */
+ if (!remainder
+ && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
+ {
+ remainder = gen_reg_rtx (compute_mode);
+ if (!expand_twoval_binop_libfunc
+ (unsignedp ? udivmod_optab : sdivmod_optab,
+ op0, op1,
+ NULL_RTX, remainder,
+ unsignedp ? UMOD : MOD))
+ remainder = NULL_RTX;
+ }
+ }
+ else
+ {
+ /* We divided. Now finish doing X - Y * (X / Y). */
+ remainder = expand_mult (compute_mode, quotient, op1,
+ NULL_RTX, unsignedp);
+ remainder = expand_binop (compute_mode, sub_optab, op0,
+ remainder, target, unsignedp,
+ methods);
+ }
+ }
+
+ if (methods != OPTAB_LIB_WIDEN
+ && (rem_flag ? remainder : quotient) == NULL_RTX)
+ return NULL_RTX;
+
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+}
+
+/* Return a tree node with data type TYPE, describing the value of X.
+ Usually this is an VAR_DECL, if there is no obvious better choice.
+ X may be an expression, however we only support those expressions
+ generated by loop.c. */
+
+tree
+make_tree (tree type, rtx x)
+{
+ tree t;
+
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ case CONST_WIDE_INT:
+ t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
+ return t;
+
+ case CONST_DOUBLE:
+ STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
+ if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
+ t = wide_int_to_tree (type,
+ wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
+ HOST_BITS_PER_WIDE_INT * 2));
+ else
+ t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
+
+ return t;
+
+ case CONST_VECTOR:
+ {
+ unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
+ unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
+ tree itype = TREE_TYPE (type);
+
+ /* Build a tree with vector elements. */
+ tree_vector_builder elts (type, npatterns, nelts_per_pattern);
+ unsigned int count = elts.encoded_nelts ();
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ rtx elt = CONST_VECTOR_ELT (x, i);
+ elts.quick_push (make_tree (itype, elt));
+ }
+
+ return elts.build ();
+ }
+
+ case PLUS:
+ return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case MINUS:
+ return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case NEG:
+ return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
+
+ case MULT:
+ return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case ASHIFT:
+ return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case LSHIFTRT:
+ t = unsigned_type_for (type);
+ return fold_convert (type, build2 (RSHIFT_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case ASHIFTRT:
+ t = signed_type_for (type);
+ return fold_convert (type, build2 (RSHIFT_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case DIV:
+ if (TREE_CODE (type) != REAL_TYPE)
+ t = signed_type_for (type);
+ else
+ t = type;
+
+ return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1))));
+ case UDIV:
+ t = unsigned_type_for (type);
+ return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1))));
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
+ GET_CODE (x) == ZERO_EXTEND);
+ return fold_convert (type, make_tree (t, XEXP (x, 0)));
+
+ case CONST:
+ return make_tree (type, XEXP (x, 0));
+
+ case SYMBOL_REF:
+ t = SYMBOL_REF_DECL (x);
+ if (t)
+ return fold_convert (type, build_fold_addr_expr (t));
+ /* fall through. */
+
+ default:
+ if (CONST_POLY_INT_P (x))
+ return wide_int_to_tree (t, const_poly_int_value (x));
+
+ t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
+
+ /* If TYPE is a POINTER_TYPE, we might need to convert X from
+ address mode to pointer mode. */
+ if (POINTER_TYPE_P (type))
+ x = convert_memory_address_addr_space
+ (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
+
+ /* Note that we do *not* use SET_DECL_RTL here, because we do not
+ want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
+ t->decl_with_rtl.rtl = x;
+
+ return t;
+ }
+}
+
+/* Compute the logical-and of OP0 and OP1, storing it in TARGET
+ and returning TARGET.
+
+ If TARGET is 0, a pseudo-register or constant is returned. */
+
+rtx
+expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
+{
+ rtx tem = 0;
+
+ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
+ tem = simplify_binary_operation (AND, mode, op0, op1);
+ if (tem == 0)
+ tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
+
+ if (target == 0)
+ target = tem;
+ else if (tem != target)
+ emit_move_insn (target, tem);
+ return target;
+}
+
+/* Helper function for emit_store_flag. */
+rtx
+emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
+ machine_mode mode, machine_mode compare_mode,
+ int unsignedp, rtx x, rtx y, int normalizep,
+ machine_mode target_mode)
+{
+ class expand_operand ops[4];
+ rtx op0, comparison, subtarget;
+ rtx_insn *last;
+ scalar_int_mode result_mode = targetm.cstore_mode (icode);
+ scalar_int_mode int_target_mode;
+
+ last = get_last_insn ();
+ x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
+ y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
+ if (!x || !y)
+ {
+ delete_insns_since (last);
+ return NULL_RTX;
+ }
+
+ if (target_mode == VOIDmode)
+ int_target_mode = result_mode;
+ else
+ int_target_mode = as_a <scalar_int_mode> (target_mode);
+ if (!target)
+ target = gen_reg_rtx (int_target_mode);
+
+ comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
+
+ create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
+ create_fixed_operand (&ops[1], comparison);
+ create_fixed_operand (&ops[2], x);
+ create_fixed_operand (&ops[3], y);
+ if (!maybe_expand_insn (icode, 4, ops))
+ {
+ delete_insns_since (last);
+ return NULL_RTX;
+ }
+ subtarget = ops[0].value;
+
+ /* If we are converting to a wider mode, first convert to
+ INT_TARGET_MODE, then normalize. This produces better combining
+ opportunities on machines that have a SIGN_EXTRACT when we are
+ testing a single bit. This mostly benefits the 68k.
+
+ If STORE_FLAG_VALUE does not have the sign bit set when
+ interpreted in MODE, we can do this conversion as unsigned, which
+ is usually more efficient. */
+ if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode))
+ {
+ gcc_assert (GET_MODE_PRECISION (result_mode) != 1
+ || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);
+
+ bool unsignedp = (STORE_FLAG_VALUE >= 0);
+ convert_move (target, subtarget, unsignedp);
+
+ op0 = target;
+ result_mode = int_target_mode;
+ }
+ else
+ op0 = subtarget;
+
+ /* If we want to keep subexpressions around, don't reuse our last
+ target. */
+ if (optimize)
+ subtarget = 0;
+
+ /* Now normalize to the proper value in MODE. Sometimes we don't
+ have to do anything. */
+ if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
+ ;
+ /* STORE_FLAG_VALUE might be the most negative number, so write
+ the comparison this way to avoid a compiler-time warning. */
+ else if (- normalizep == STORE_FLAG_VALUE)
+ op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
+
+ /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
+ it hard to use a value of just the sign bit due to ANSI integer
+ constant typing rules. */
+ else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
+ op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
+ GET_MODE_BITSIZE (result_mode) - 1, subtarget,
+ normalizep == 1);
+ else
+ {
+ gcc_assert (STORE_FLAG_VALUE & 1);
+
+ op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
+ if (normalizep == -1)
+ op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
+ }
+
+ /* If we were converting to a smaller mode, do the conversion now. */
+ if (int_target_mode != result_mode)
+ {
+ convert_move (target, op0, 0);
+ return target;
+ }
+ else
+ return op0;
+}
+
+
+/* A subroutine of emit_store_flag only including "tricks" that do not
+ need a recursive call. These are kept separate to avoid infinite
+ loops. */
+
+static rtx
+emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ machine_mode mode, int unsignedp, int normalizep,
+ machine_mode target_mode)
+{
+ rtx subtarget;
+ enum insn_code icode;
+ machine_mode compare_mode;
+ enum mode_class mclass;
+ enum rtx_code scode;
+
+ if (unsignedp)
+ code = unsigned_condition (code);
+ scode = swap_condition (code);
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+
+ if (swap_commutative_operands_p (op0, op1))
+ {
+ std::swap (op0, op1);
+ code = swap_condition (code);
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op0);
+
+ if (CONST_SCALAR_INT_P (op1))
+ canonicalize_comparison (mode, &code, &op1);
+
+ /* For some comparisons with 1 and -1, we can convert this to
+ comparisons with zero. This will often produce more opportunities for
+ store-flag insns. */
+
+ switch (code)
+ {
+ case LT:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = LE;
+ break;
+ case LE:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = LT;
+ break;
+ case GE:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = GT;
+ break;
+ case GT:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = GE;
+ break;
+ case GEU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = NE;
+ break;
+ case LTU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = EQ;
+ break;
+ default:
+ break;
+ }
+
+ /* If we are comparing a double-word integer with zero or -1, we can
+ convert the comparison into one involving a single word. */
+ scalar_int_mode int_mode;
+ if (is_int_mode (mode, &int_mode)
+ && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
+ && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
+ {
+ rtx tem;
+ if ((code == EQ || code == NE)
+ && (op1 == const0_rtx || op1 == constm1_rtx))
+ {
+ rtx op00, op01;
+
+ /* Do a logical OR or AND of the two words and compare the
+ result. */
+ op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
+ op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
+ tem = expand_binop (word_mode,
+ op1 == const0_rtx ? ior_optab : and_optab,
+ op00, op01, NULL_RTX, unsignedp,
+ OPTAB_DIRECT);
+
+ if (tem != 0)
+ tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
+ unsignedp, normalizep);
+ }
+ else if ((code == LT || code == GE) && op1 == const0_rtx)
+ {
+ rtx op0h;
+
+ /* If testing the sign bit, can just test on high word. */
+ op0h = simplify_gen_subreg (word_mode, op0, int_mode,
+ subreg_highpart_offset (word_mode,
+ int_mode));
+ tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
+ unsignedp, normalizep);
+ }
+ else
+ tem = NULL_RTX;
+
+ if (tem)
+ {
+ if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
+ return tem;
+ if (!target)
+ target = gen_reg_rtx (target_mode);
+
+ convert_move (target, tem,
+ !val_signbit_known_set_p (word_mode,
+ (normalizep ? normalizep
+ : STORE_FLAG_VALUE)));
+ return target;
+ }
+ }
+
+ /* If this is A < 0 or A >= 0, we can do this by taking the ones
+ complement of A (for GE) and shifting the sign bit to the low bit. */
+ if (op1 == const0_rtx && (code == LT || code == GE)
+ && is_int_mode (mode, &int_mode)
+ && (normalizep || STORE_FLAG_VALUE == 1
+ || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
+ {
+ scalar_int_mode int_target_mode;
+ subtarget = target;
+
+ if (!target)
+ int_target_mode = int_mode;
+ else
+ {
+ /* If the result is to be wider than OP0, it is best to convert it
+ first. If it is to be narrower, it is *incorrect* to convert it
+ first. */
+ int_target_mode = as_a <scalar_int_mode> (target_mode);
+ if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
+ {
+ op0 = convert_modes (int_target_mode, int_mode, op0, 0);
+ int_mode = int_target_mode;
+ }
+ }
+
+ if (int_target_mode != int_mode)
+ subtarget = 0;
+
+ if (code == GE)
+ op0 = expand_unop (int_mode, one_cmpl_optab, op0,
+ ((STORE_FLAG_VALUE == 1 || normalizep)
+ ? 0 : subtarget), 0);
+
+ if (STORE_FLAG_VALUE == 1 || normalizep)
+ /* If we are supposed to produce a 0/1 value, we want to do
+ a logical shift from the sign bit to the low-order bit; for
+ a -1/0 value, we do an arithmetic shift. */
+ op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
+ GET_MODE_BITSIZE (int_mode) - 1,
+ subtarget, normalizep != -1);
+
+ if (int_mode != int_target_mode)
+ op0 = convert_modes (int_target_mode, int_mode, op0, 0);
+
+ return op0;
+ }
+
+ mclass = GET_MODE_CLASS (mode);
+ FOR_EACH_MODE_FROM (compare_mode, mode)
+ {
+ machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
+ icode = optab_handler (cstore_optab, optab_mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ do_pending_stack_adjust ();
+ rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
+ unsignedp, op0, op1, normalizep, target_mode);
+ if (tem)
+ return tem;
+
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ tem = emit_cstore (target, icode, scode, mode, compare_mode,
+ unsignedp, op1, op0, normalizep, target_mode);
+ if (tem)
+ return tem;
+ }
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Subroutine of emit_store_flag that handles cases in which the operands
+ are scalar integers. SUBTARGET is the target to use for temporary
+ operations and TRUEVAL is the value to store when the condition is
+ true. All other arguments are as for emit_store_flag. */
+
+rtx
+emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
+ rtx op1, scalar_int_mode mode, int unsignedp,
+ int normalizep, rtx trueval)
+{
+ machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
+ rtx_insn *last = get_last_insn ();
+
+ /* If this is an equality comparison of integers, we can try to exclusive-or
+ (or subtract) the two operands and use a recursive call to try the
+ comparison with zero. Don't do any of these cases if branches are
+ very cheap. */
+
+ if ((code == EQ || code == NE) && op1 != const0_rtx)
+ {
+ rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+
+ if (tem == 0)
+ tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+ if (tem != 0)
+ tem = emit_store_flag (target, code, tem, const0_rtx,
+ mode, unsignedp, normalizep);
+ if (tem != 0)
+ return tem;
+
+ delete_insns_since (last);
+ }
+
+ /* For integer comparisons, try the reverse comparison. However, for
+ small X and if we'd have anyway to extend, implementing "X != 0"
+ as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
+ rtx_code rcode = reverse_condition (code);
+ if (can_compare_p (rcode, mode, ccp_store_flag)
+ && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
+ && code == NE
+ && GET_MODE_SIZE (mode) < UNITS_PER_WORD
+ && op1 == const0_rtx))
+ {
+ int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+ || (STORE_FLAG_VALUE == -1 && normalizep == 1));
+
+ /* Again, for the reverse comparison, use either an addition or a XOR. */
+ if (want_add
+ && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ STORE_FLAG_VALUE, target_mode);
+ if (tem != 0)
+ tem = expand_binop (target_mode, add_optab, tem,
+ gen_int_mode (normalizep, target_mode),
+ target, 0, OPTAB_WIDEN);
+ if (tem != 0)
+ return tem;
+ }
+ else if (!want_add
+ && rtx_cost (trueval, mode, XOR, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem != 0)
+ tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
+ INTVAL (trueval) >= 0, OPTAB_WIDEN);
+ if (tem != 0)
+ return tem;
+ }
+
+ delete_insns_since (last);
+ }
+
+ /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
+ the constant zero. Reject all other comparisons at this point. Only
+ do LE and GT if branches are expensive since they are expensive on
+ 2-operand machines. */
+
+ if (op1 != const0_rtx
+ || (code != EQ && code != NE
+ && (BRANCH_COST (optimize_insn_for_speed_p (),
+ false) <= 1 || (code != LE && code != GT))))
+ return 0;
+
+ /* Try to put the result of the comparison in the sign bit. Assume we can't
+ do the necessary operation below. */
+
+ rtx tem = 0;
+
+ /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
+ the sign bit set. */
+
+ if (code == LE)
+ {
+ /* This is destructive, so SUBTARGET can't be OP0. */
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
+ OPTAB_WIDEN);
+ if (tem)
+ tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
+ number of bits in the mode of OP0, minus one. */
+
+ if (code == GT)
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - 1,
+ subtarget, 0);
+ if (tem)
+ tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ if (code == EQ || code == NE)
+ {
+ /* For EQ or NE, one way to do the comparison is to apply an operation
+ that converts the operand into a positive number if it is nonzero
+ or zero if it was originally zero. Then, for EQ, we subtract 1 and
+ for NE we negate. This puts the result in the sign bit. Then we
+ normalize with a shift, if needed.
+
+ Two operations that can do the above actions are ABS and FFS, so try
+ them. If that doesn't work, and MODE is smaller than a full word,
+ we can use zero-extension to the wider mode (an unsigned conversion)
+ as the operation. */
+
+ /* Note that ABS doesn't yield a positive number for INT_MIN, but
+ that is compensated by the subsequent overflow when subtracting
+ one / negating. */
+
+ if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
+ tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
+ else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
+ tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
+ else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ {
+ tem = convert_modes (word_mode, mode, op0, 1);
+ mode = word_mode;
+ }
+
+ if (tem != 0)
+ {
+ if (code == EQ)
+ tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
+ 0, OPTAB_WIDEN);
+ else
+ tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
+ }
+
+ /* If we couldn't do it that way, for NE we can "or" the two's complement
+ of the value with itself. For EQ, we take the one's complement of
+ that "or", which is an extra insn, so we only handle EQ if branches
+ are expensive. */
+
+ if (tem == 0
+ && (code == NE
+ || BRANCH_COST (optimize_insn_for_speed_p (),
+ false) > 1))
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
+ tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+
+ if (tem && code == EQ)
+ tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
+ }
+ }
+
+ if (tem && normalizep)
+ tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
+ GET_MODE_BITSIZE (mode) - 1,
+ subtarget, normalizep == 1);
+
+ if (tem)
+ {
+ if (!target)
+ ;
+ else if (GET_MODE (tem) != target_mode)
+ {
+ convert_move (target, tem, 0);
+ tem = target;
+ }
+ else if (!subtarget)
+ {
+ emit_move_insn (target, tem);
+ tem = target;
+ }
+ }
+ else
+ delete_insns_since (last);
+
+ return tem;
+}
+
+/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
+ and storing in TARGET. Normally return TARGET.
+ Return 0 if that cannot be done.
+
+ MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
+ it is VOIDmode, they cannot both be CONST_INT.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ NORMALIZEP is 1 if we should convert the result to be either zero
+ or one. Normalize is -1 if we should convert the result to be
+ either zero or -1. If NORMALIZEP is zero, the result will be left
+ "raw" out of the scc insn. */
+
+rtx
+emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ machine_mode mode, int unsignedp, int normalizep)
+{
+ machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
+ enum rtx_code rcode;
+ rtx subtarget;
+ rtx tem, trueval;
+ rtx_insn *last;
+
+ /* If we compare constants, we shouldn't use a store-flag operation,
+ but a constant load. We can get there via the vanilla route that
+ usually generates a compare-branch sequence, but will in this case
+ fold the comparison to a constant, and thus elide the branch. */
+ if (CONSTANT_P (op0) && CONSTANT_P (op1))
+ return NULL_RTX;
+
+ tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
+ target_mode);
+ if (tem)
+ return tem;
+
+ /* If we reached here, we can't do this with a scc insn, however there
+ are some comparisons that can be done in other ways. Don't do any
+ of these cases if branches are very cheap. */
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
+ return 0;
+
+ /* See what we need to return. We can only return a 1, -1, or the
+ sign bit. */
+
+ if (normalizep == 0)
+ {
+ if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+ normalizep = STORE_FLAG_VALUE;
+
+ else if (val_signbit_p (mode, STORE_FLAG_VALUE))
+ ;
+ else
+ return 0;
+ }
+
+ last = get_last_insn ();
+
+ /* If optimizing, use different pseudo registers for each insn, instead
+ of reusing the same pseudo. This leads to better CSE, but slows
+ down the compiler, since there are more pseudos. */
+ subtarget = (!optimize
+ && (target_mode == mode)) ? target : NULL_RTX;
+ trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
+
+ /* For floating-point comparisons, try the reverse comparison or try
+ changing the "orderedness" of the comparison. */
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ enum rtx_code first_code;
+ bool and_them;
+
+ rcode = reverse_condition_maybe_unordered (code);
+ if (can_compare_p (rcode, mode, ccp_store_flag)
+ && (code == ORDERED || code == UNORDERED
+ || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+ || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+ {
+ int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+ || (STORE_FLAG_VALUE == -1 && normalizep == 1));
+
+ /* For the reverse comparison, use either an addition or a XOR. */
+ if (want_add
+ && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ STORE_FLAG_VALUE, target_mode);
+ if (tem)
+ return expand_binop (target_mode, add_optab, tem,
+ gen_int_mode (normalizep, target_mode),
+ target, 0, OPTAB_WIDEN);
+ }
+ else if (!want_add
+ && rtx_cost (trueval, mode, XOR, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem)
+ return expand_binop (target_mode, xor_optab, tem, trueval,
+ target, INTVAL (trueval) >= 0,
+ OPTAB_WIDEN);
+ }
+ }
+
+ delete_insns_since (last);
+
+ /* Cannot split ORDERED and UNORDERED, only try the above trick. */
+ if (code == ORDERED || code == UNORDERED)
+ return 0;
+
+ and_them = split_comparison (code, mode, &first_code, &code);
+
+ /* If there are no NaNs, the first comparison should always fall through.
+ Effectively change the comparison to the other one. */
+ if (!HONOR_NANS (mode))
+ {
+ gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
+ return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
+ target_mode);
+ }
+
+ if (!HAVE_conditional_move)
+ return 0;
+
+ /* Do not turn a trapping comparison into a non-trapping one. */
+ if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
+ && flag_trapping_math)
+ return 0;
+
+ /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
+ conditional move. */
+ tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem == 0)
+ return 0;
+
+ if (and_them)
+ tem = emit_conditional_move (target, code, op0, op1, mode,
+ tem, const0_rtx, GET_MODE (tem), 0);
+ else
+ tem = emit_conditional_move (target, code, op0, op1, mode,
+ trueval, tem, GET_MODE (tem), 0);
+
+ if (tem == 0)
+ delete_insns_since (last);
+ return tem;
+ }
+
+ /* The remaining tricks only apply to integer comparisons. */
+
+ scalar_int_mode int_mode;
+ if (is_int_mode (mode, &int_mode))
+ return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
+ unsignedp, normalizep, trueval);
+
+ return 0;
+}
+
+/* Like emit_store_flag, but always succeeds. */
+
+rtx
+emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ machine_mode mode, int unsignedp, int normalizep)
+{
+ rtx tem;
+ rtx_code_label *label;
+ rtx trueval, falseval;
+
+ /* First see if emit_store_flag can do the job. */
+ tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
+ if (tem != 0)
+ return tem;
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+ if (swap_commutative_operands_p (op0, op1))
+ {
+ std::swap (op0, op1);
+ code = swap_condition (code);
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op0);
+
+ if (!target)
+ target = gen_reg_rtx (word_mode);
+
+ /* If this failed, we have to do this with set/compare/jump/set code.
+ For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
+ trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
+ if (code == NE
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && REG_P (target)
+ && op0 == target
+ && op1 == const0_rtx)
+ {
+ label = gen_label_rtx ();
+ do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
+ NULL_RTX, NULL, label,
+ profile_probability::uninitialized ());
+ emit_move_insn (target, trueval);
+ emit_label (label);
+ return target;
+ }
+
+ if (!REG_P (target)
+ || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
+ target = gen_reg_rtx (GET_MODE (target));
+
+ /* Jump in the right direction if the target cannot implement CODE
+ but can jump on its reverse condition. */
+ falseval = const0_rtx;
+ if (! can_compare_p (code, mode, ccp_jump)
+ && (! FLOAT_MODE_P (mode)
+ || code == ORDERED || code == UNORDERED
+ || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+ || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+ {
+ enum rtx_code rcode;
+ if (FLOAT_MODE_P (mode))
+ rcode = reverse_condition_maybe_unordered (code);
+ else
+ rcode = reverse_condition (code);
+
+ /* Canonicalize to UNORDERED for the libcall. */
+ if (can_compare_p (rcode, mode, ccp_jump)
+ || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
+ {
+ falseval = trueval;
+ trueval = const0_rtx;
+ code = rcode;
+ }
+ }
+
+ emit_move_insn (target, trueval);
+ label = gen_label_rtx ();
+ do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
+ label, profile_probability::uninitialized ());
+
+ emit_move_insn (target, falseval);
+ emit_label (label);
+
+ return target;
+}
+
+/* Helper function for canonicalize_cmp_for_target. Swap between inclusive
+ and exclusive ranges in order to create an equivalent comparison. See
+ canonicalize_cmp_for_target for the possible cases. */
+
+static enum rtx_code
+equivalent_cmp_code (enum rtx_code code)
+{
+ switch (code)
+ {
+ case GT:
+ return GE;
+ case GE:
+ return GT;
+ case LT:
+ return LE;
+ case LE:
+ return LT;
+ case GTU:
+ return GEU;
+ case GEU:
+ return GTU;
+ case LTU:
+ return LEU;
+ case LEU:
+ return LTU;
+
+ default:
+ return code;
+ }
+}
+
+/* Choose the more appropiate immediate in scalar integer comparisons. The
+ purpose of this is to end up with an immediate which can be loaded into a
+ register in fewer moves, if possible.
+
+ For each integer comparison there exists an equivalent choice:
+ i) a > b or a >= b + 1
+ ii) a <= b or a < b + 1
+ iii) a >= b or a > b - 1
+ iv) a < b or a <= b - 1
+
+ MODE is the mode of the first operand.
+ CODE points to the comparison code.
+ IMM points to the rtx containing the immediate. *IMM must satisfy
+ CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
+ on exit. */
+
+void
+canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
+{
+ if (!SCALAR_INT_MODE_P (mode))
+ return;
+
+ int to_add = 0;
+ enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;
+
+ /* Extract the immediate value from the rtx. */
+ wide_int imm_val = rtx_mode_t (*imm, mode);
+
+ if (*code == GT || *code == GTU || *code == LE || *code == LEU)
+ to_add = 1;
+ else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
+ to_add = -1;
+ else
+ return;
+
+ /* Check for overflow/underflow in the case of signed values and
+ wrapping around in the case of unsigned values. If any occur
+ cancel the optimization. */
+ wi::overflow_type overflow = wi::OVF_NONE;
+ wide_int imm_modif;
+
+ if (to_add == 1)
+ imm_modif = wi::add (imm_val, 1, sgn, &overflow);
+ else
+ imm_modif = wi::sub (imm_val, 1, sgn, &overflow);
+
+ if (overflow)
+ return;
+
+ /* The following creates a pseudo; if we cannot do that, bail out. */
+ if (!can_create_pseudo_p ())
+ return;
+
+ rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+ rtx new_imm = immed_wide_int_const (imm_modif, mode);
+
+ rtx_insn *old_rtx = gen_move_insn (reg, *imm);
+ rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
+
+ /* Update the immediate and the code. */
+ if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
+ {
+ *code = equivalent_cmp_code (*code);
+ *imm = new_imm;
+ }
+}
+
+
+
+/* Perform possibly multi-word comparison and conditional jump to LABEL
+ if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
+ now a thin wrapper around do_compare_rtx_and_jump. */
+
+static void
+do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
+ rtx_code_label *label)
+{
+ int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
+ do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
+ NULL, label, profile_probability::uninitialized ());
+}