diff options
author | Martin Liska <mliska@suse.cz> | 2022-01-14 16:56:44 +0100 |
---|---|---|
committer | Martin Liska <mliska@suse.cz> | 2022-01-17 22:12:04 +0100 |
commit | 5c69acb32329d49e58c26fa41ae74229a52b9106 (patch) | |
tree | ddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/expmed.cc | |
parent | 490e23032baaece71f2ec09fa1805064b150fbc2 (diff) | |
download | gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz |
Rename .c files to .cc files.
gcc/ada/ChangeLog:
* adadecode.c: Moved to...
* adadecode.cc: ...here.
* affinity.c: Moved to...
* affinity.cc: ...here.
* argv-lynxos178-raven-cert.c: Moved to...
* argv-lynxos178-raven-cert.cc: ...here.
* argv.c: Moved to...
* argv.cc: ...here.
* aux-io.c: Moved to...
* aux-io.cc: ...here.
* cio.c: Moved to...
* cio.cc: ...here.
* cstreams.c: Moved to...
* cstreams.cc: ...here.
* env.c: Moved to...
* env.cc: ...here.
* exit.c: Moved to...
* exit.cc: ...here.
* expect.c: Moved to...
* expect.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* gcc-interface/cuintp.c: Moved to...
* gcc-interface/cuintp.cc: ...here.
* gcc-interface/decl.c: Moved to...
* gcc-interface/decl.cc: ...here.
* gcc-interface/misc.c: Moved to...
* gcc-interface/misc.cc: ...here.
* gcc-interface/targtyps.c: Moved to...
* gcc-interface/targtyps.cc: ...here.
* gcc-interface/trans.c: Moved to...
* gcc-interface/trans.cc: ...here.
* gcc-interface/utils.c: Moved to...
* gcc-interface/utils.cc: ...here.
* gcc-interface/utils2.c: Moved to...
* gcc-interface/utils2.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* initialize.c: Moved to...
* initialize.cc: ...here.
* libgnarl/thread.c: Moved to...
* libgnarl/thread.cc: ...here.
* link.c: Moved to...
* link.cc: ...here.
* locales.c: Moved to...
* locales.cc: ...here.
* mkdir.c: Moved to...
* mkdir.cc: ...here.
* raise.c: Moved to...
* raise.cc: ...here.
* rtfinal.c: Moved to...
* rtfinal.cc: ...here.
* rtinit.c: Moved to...
* rtinit.cc: ...here.
* seh_init.c: Moved to...
* seh_init.cc: ...here.
* sigtramp-armdroid.c: Moved to...
* sigtramp-armdroid.cc: ...here.
* sigtramp-ios.c: Moved to...
* sigtramp-ios.cc: ...here.
* sigtramp-qnx.c: Moved to...
* sigtramp-qnx.cc: ...here.
* sigtramp-vxworks.c: Moved to...
* sigtramp-vxworks.cc: ...here.
* socket.c: Moved to...
* socket.cc: ...here.
* tracebak.c: Moved to...
* tracebak.cc: ...here.
* version.c: Moved to...
* version.cc: ...here.
* vx_stack_info.c: Moved to...
* vx_stack_info.cc: ...here.
gcc/ChangeLog:
* adjust-alignment.c: Moved to...
* adjust-alignment.cc: ...here.
* alias.c: Moved to...
* alias.cc: ...here.
* alloc-pool.c: Moved to...
* alloc-pool.cc: ...here.
* asan.c: Moved to...
* asan.cc: ...here.
* attribs.c: Moved to...
* attribs.cc: ...here.
* auto-inc-dec.c: Moved to...
* auto-inc-dec.cc: ...here.
* auto-profile.c: Moved to...
* auto-profile.cc: ...here.
* bb-reorder.c: Moved to...
* bb-reorder.cc: ...here.
* bitmap.c: Moved to...
* bitmap.cc: ...here.
* btfout.c: Moved to...
* btfout.cc: ...here.
* builtins.c: Moved to...
* builtins.cc: ...here.
* caller-save.c: Moved to...
* caller-save.cc: ...here.
* calls.c: Moved to...
* calls.cc: ...here.
* ccmp.c: Moved to...
* ccmp.cc: ...here.
* cfg.c: Moved to...
* cfg.cc: ...here.
* cfganal.c: Moved to...
* cfganal.cc: ...here.
* cfgbuild.c: Moved to...
* cfgbuild.cc: ...here.
* cfgcleanup.c: Moved to...
* cfgcleanup.cc: ...here.
* cfgexpand.c: Moved to...
* cfgexpand.cc: ...here.
* cfghooks.c: Moved to...
* cfghooks.cc: ...here.
* cfgloop.c: Moved to...
* cfgloop.cc: ...here.
* cfgloopanal.c: Moved to...
* cfgloopanal.cc: ...here.
* cfgloopmanip.c: Moved to...
* cfgloopmanip.cc: ...here.
* cfgrtl.c: Moved to...
* cfgrtl.cc: ...here.
* cgraph.c: Moved to...
* cgraph.cc: ...here.
* cgraphbuild.c: Moved to...
* cgraphbuild.cc: ...here.
* cgraphclones.c: Moved to...
* cgraphclones.cc: ...here.
* cgraphunit.c: Moved to...
* cgraphunit.cc: ...here.
* collect-utils.c: Moved to...
* collect-utils.cc: ...here.
* collect2-aix.c: Moved to...
* collect2-aix.cc: ...here.
* collect2.c: Moved to...
* collect2.cc: ...here.
* combine-stack-adj.c: Moved to...
* combine-stack-adj.cc: ...here.
* combine.c: Moved to...
* combine.cc: ...here.
* common/common-targhooks.c: Moved to...
* common/common-targhooks.cc: ...here.
* common/config/aarch64/aarch64-common.c: Moved to...
* common/config/aarch64/aarch64-common.cc: ...here.
* common/config/alpha/alpha-common.c: Moved to...
* common/config/alpha/alpha-common.cc: ...here.
* common/config/arc/arc-common.c: Moved to...
* common/config/arc/arc-common.cc: ...here.
* common/config/arm/arm-common.c: Moved to...
* common/config/arm/arm-common.cc: ...here.
* common/config/avr/avr-common.c: Moved to...
* common/config/avr/avr-common.cc: ...here.
* common/config/bfin/bfin-common.c: Moved to...
* common/config/bfin/bfin-common.cc: ...here.
* common/config/bpf/bpf-common.c: Moved to...
* common/config/bpf/bpf-common.cc: ...here.
* common/config/c6x/c6x-common.c: Moved to...
* common/config/c6x/c6x-common.cc: ...here.
* common/config/cr16/cr16-common.c: Moved to...
* common/config/cr16/cr16-common.cc: ...here.
* common/config/cris/cris-common.c: Moved to...
* common/config/cris/cris-common.cc: ...here.
* common/config/csky/csky-common.c: Moved to...
* common/config/csky/csky-common.cc: ...here.
* common/config/default-common.c: Moved to...
* common/config/default-common.cc: ...here.
* common/config/epiphany/epiphany-common.c: Moved to...
* common/config/epiphany/epiphany-common.cc: ...here.
* common/config/fr30/fr30-common.c: Moved to...
* common/config/fr30/fr30-common.cc: ...here.
* common/config/frv/frv-common.c: Moved to...
* common/config/frv/frv-common.cc: ...here.
* common/config/gcn/gcn-common.c: Moved to...
* common/config/gcn/gcn-common.cc: ...here.
* common/config/h8300/h8300-common.c: Moved to...
* common/config/h8300/h8300-common.cc: ...here.
* common/config/i386/i386-common.c: Moved to...
* common/config/i386/i386-common.cc: ...here.
* common/config/ia64/ia64-common.c: Moved to...
* common/config/ia64/ia64-common.cc: ...here.
* common/config/iq2000/iq2000-common.c: Moved to...
* common/config/iq2000/iq2000-common.cc: ...here.
* common/config/lm32/lm32-common.c: Moved to...
* common/config/lm32/lm32-common.cc: ...here.
* common/config/m32r/m32r-common.c: Moved to...
* common/config/m32r/m32r-common.cc: ...here.
* common/config/m68k/m68k-common.c: Moved to...
* common/config/m68k/m68k-common.cc: ...here.
* common/config/mcore/mcore-common.c: Moved to...
* common/config/mcore/mcore-common.cc: ...here.
* common/config/microblaze/microblaze-common.c: Moved to...
* common/config/microblaze/microblaze-common.cc: ...here.
* common/config/mips/mips-common.c: Moved to...
* common/config/mips/mips-common.cc: ...here.
* common/config/mmix/mmix-common.c: Moved to...
* common/config/mmix/mmix-common.cc: ...here.
* common/config/mn10300/mn10300-common.c: Moved to...
* common/config/mn10300/mn10300-common.cc: ...here.
* common/config/msp430/msp430-common.c: Moved to...
* common/config/msp430/msp430-common.cc: ...here.
* common/config/nds32/nds32-common.c: Moved to...
* common/config/nds32/nds32-common.cc: ...here.
* common/config/nios2/nios2-common.c: Moved to...
* common/config/nios2/nios2-common.cc: ...here.
* common/config/nvptx/nvptx-common.c: Moved to...
* common/config/nvptx/nvptx-common.cc: ...here.
* common/config/or1k/or1k-common.c: Moved to...
* common/config/or1k/or1k-common.cc: ...here.
* common/config/pa/pa-common.c: Moved to...
* common/config/pa/pa-common.cc: ...here.
* common/config/pdp11/pdp11-common.c: Moved to...
* common/config/pdp11/pdp11-common.cc: ...here.
* common/config/pru/pru-common.c: Moved to...
* common/config/pru/pru-common.cc: ...here.
* common/config/riscv/riscv-common.c: Moved to...
* common/config/riscv/riscv-common.cc: ...here.
* common/config/rs6000/rs6000-common.c: Moved to...
* common/config/rs6000/rs6000-common.cc: ...here.
* common/config/rx/rx-common.c: Moved to...
* common/config/rx/rx-common.cc: ...here.
* common/config/s390/s390-common.c: Moved to...
* common/config/s390/s390-common.cc: ...here.
* common/config/sh/sh-common.c: Moved to...
* common/config/sh/sh-common.cc: ...here.
* common/config/sparc/sparc-common.c: Moved to...
* common/config/sparc/sparc-common.cc: ...here.
* common/config/tilegx/tilegx-common.c: Moved to...
* common/config/tilegx/tilegx-common.cc: ...here.
* common/config/tilepro/tilepro-common.c: Moved to...
* common/config/tilepro/tilepro-common.cc: ...here.
* common/config/v850/v850-common.c: Moved to...
* common/config/v850/v850-common.cc: ...here.
* common/config/vax/vax-common.c: Moved to...
* common/config/vax/vax-common.cc: ...here.
* common/config/visium/visium-common.c: Moved to...
* common/config/visium/visium-common.cc: ...here.
* common/config/xstormy16/xstormy16-common.c: Moved to...
* common/config/xstormy16/xstormy16-common.cc: ...here.
* common/config/xtensa/xtensa-common.c: Moved to...
* common/config/xtensa/xtensa-common.cc: ...here.
* compare-elim.c: Moved to...
* compare-elim.cc: ...here.
* config/aarch64/aarch64-bti-insert.c: Moved to...
* config/aarch64/aarch64-bti-insert.cc: ...here.
* config/aarch64/aarch64-builtins.c: Moved to...
* config/aarch64/aarch64-builtins.cc: ...here.
* config/aarch64/aarch64-c.c: Moved to...
* config/aarch64/aarch64-c.cc: ...here.
* config/aarch64/aarch64-d.c: Moved to...
* config/aarch64/aarch64-d.cc: ...here.
* config/aarch64/aarch64.c: Moved to...
* config/aarch64/aarch64.cc: ...here.
* config/aarch64/cortex-a57-fma-steering.c: Moved to...
* config/aarch64/cortex-a57-fma-steering.cc: ...here.
* config/aarch64/driver-aarch64.c: Moved to...
* config/aarch64/driver-aarch64.cc: ...here.
* config/aarch64/falkor-tag-collision-avoidance.c: Moved to...
* config/aarch64/falkor-tag-collision-avoidance.cc: ...here.
* config/aarch64/host-aarch64-darwin.c: Moved to...
* config/aarch64/host-aarch64-darwin.cc: ...here.
* config/alpha/alpha.c: Moved to...
* config/alpha/alpha.cc: ...here.
* config/alpha/driver-alpha.c: Moved to...
* config/alpha/driver-alpha.cc: ...here.
* config/arc/arc-c.c: Moved to...
* config/arc/arc-c.cc: ...here.
* config/arc/arc.c: Moved to...
* config/arc/arc.cc: ...here.
* config/arc/driver-arc.c: Moved to...
* config/arc/driver-arc.cc: ...here.
* config/arm/aarch-common.c: Moved to...
* config/arm/aarch-common.cc: ...here.
* config/arm/arm-builtins.c: Moved to...
* config/arm/arm-builtins.cc: ...here.
* config/arm/arm-c.c: Moved to...
* config/arm/arm-c.cc: ...here.
* config/arm/arm-d.c: Moved to...
* config/arm/arm-d.cc: ...here.
* config/arm/arm.c: Moved to...
* config/arm/arm.cc: ...here.
* config/arm/driver-arm.c: Moved to...
* config/arm/driver-arm.cc: ...here.
* config/avr/avr-c.c: Moved to...
* config/avr/avr-c.cc: ...here.
* config/avr/avr-devices.c: Moved to...
* config/avr/avr-devices.cc: ...here.
* config/avr/avr-log.c: Moved to...
* config/avr/avr-log.cc: ...here.
* config/avr/avr.c: Moved to...
* config/avr/avr.cc: ...here.
* config/avr/driver-avr.c: Moved to...
* config/avr/driver-avr.cc: ...here.
* config/avr/gen-avr-mmcu-specs.c: Moved to...
* config/avr/gen-avr-mmcu-specs.cc: ...here.
* config/avr/gen-avr-mmcu-texi.c: Moved to...
* config/avr/gen-avr-mmcu-texi.cc: ...here.
* config/bfin/bfin.c: Moved to...
* config/bfin/bfin.cc: ...here.
* config/bpf/bpf.c: Moved to...
* config/bpf/bpf.cc: ...here.
* config/bpf/coreout.c: Moved to...
* config/bpf/coreout.cc: ...here.
* config/c6x/c6x.c: Moved to...
* config/c6x/c6x.cc: ...here.
* config/cr16/cr16.c: Moved to...
* config/cr16/cr16.cc: ...here.
* config/cris/cris.c: Moved to...
* config/cris/cris.cc: ...here.
* config/csky/csky.c: Moved to...
* config/csky/csky.cc: ...here.
* config/darwin-c.c: Moved to...
* config/darwin-c.cc: ...here.
* config/darwin-d.c: Moved to...
* config/darwin-d.cc: ...here.
* config/darwin-driver.c: Moved to...
* config/darwin-driver.cc: ...here.
* config/darwin-f.c: Moved to...
* config/darwin-f.cc: ...here.
* config/darwin.c: Moved to...
* config/darwin.cc: ...here.
* config/default-c.c: Moved to...
* config/default-c.cc: ...here.
* config/default-d.c: Moved to...
* config/default-d.cc: ...here.
* config/dragonfly-d.c: Moved to...
* config/dragonfly-d.cc: ...here.
* config/epiphany/epiphany.c: Moved to...
* config/epiphany/epiphany.cc: ...here.
* config/epiphany/mode-switch-use.c: Moved to...
* config/epiphany/mode-switch-use.cc: ...here.
* config/epiphany/resolve-sw-modes.c: Moved to...
* config/epiphany/resolve-sw-modes.cc: ...here.
* config/fr30/fr30.c: Moved to...
* config/fr30/fr30.cc: ...here.
* config/freebsd-d.c: Moved to...
* config/freebsd-d.cc: ...here.
* config/frv/frv.c: Moved to...
* config/frv/frv.cc: ...here.
* config/ft32/ft32.c: Moved to...
* config/ft32/ft32.cc: ...here.
* config/gcn/driver-gcn.c: Moved to...
* config/gcn/driver-gcn.cc: ...here.
* config/gcn/gcn-run.c: Moved to...
* config/gcn/gcn-run.cc: ...here.
* config/gcn/gcn-tree.c: Moved to...
* config/gcn/gcn-tree.cc: ...here.
* config/gcn/gcn.c: Moved to...
* config/gcn/gcn.cc: ...here.
* config/gcn/mkoffload.c: Moved to...
* config/gcn/mkoffload.cc: ...here.
* config/glibc-c.c: Moved to...
* config/glibc-c.cc: ...here.
* config/glibc-d.c: Moved to...
* config/glibc-d.cc: ...here.
* config/h8300/h8300.c: Moved to...
* config/h8300/h8300.cc: ...here.
* config/host-darwin.c: Moved to...
* config/host-darwin.cc: ...here.
* config/host-hpux.c: Moved to...
* config/host-hpux.cc: ...here.
* config/host-linux.c: Moved to...
* config/host-linux.cc: ...here.
* config/host-netbsd.c: Moved to...
* config/host-netbsd.cc: ...here.
* config/host-openbsd.c: Moved to...
* config/host-openbsd.cc: ...here.
* config/host-solaris.c: Moved to...
* config/host-solaris.cc: ...here.
* config/i386/djgpp.c: Moved to...
* config/i386/djgpp.cc: ...here.
* config/i386/driver-i386.c: Moved to...
* config/i386/driver-i386.cc: ...here.
* config/i386/driver-mingw32.c: Moved to...
* config/i386/driver-mingw32.cc: ...here.
* config/i386/gnu-property.c: Moved to...
* config/i386/gnu-property.cc: ...here.
* config/i386/host-cygwin.c: Moved to...
* config/i386/host-cygwin.cc: ...here.
* config/i386/host-i386-darwin.c: Moved to...
* config/i386/host-i386-darwin.cc: ...here.
* config/i386/host-mingw32.c: Moved to...
* config/i386/host-mingw32.cc: ...here.
* config/i386/i386-builtins.c: Moved to...
* config/i386/i386-builtins.cc: ...here.
* config/i386/i386-c.c: Moved to...
* config/i386/i386-c.cc: ...here.
* config/i386/i386-d.c: Moved to...
* config/i386/i386-d.cc: ...here.
* config/i386/i386-expand.c: Moved to...
* config/i386/i386-expand.cc: ...here.
* config/i386/i386-features.c: Moved to...
* config/i386/i386-features.cc: ...here.
* config/i386/i386-options.c: Moved to...
* config/i386/i386-options.cc: ...here.
* config/i386/i386.c: Moved to...
* config/i386/i386.cc: ...here.
* config/i386/intelmic-mkoffload.c: Moved to...
* config/i386/intelmic-mkoffload.cc: ...here.
* config/i386/msformat-c.c: Moved to...
* config/i386/msformat-c.cc: ...here.
* config/i386/winnt-cxx.c: Moved to...
* config/i386/winnt-cxx.cc: ...here.
* config/i386/winnt-d.c: Moved to...
* config/i386/winnt-d.cc: ...here.
* config/i386/winnt-stubs.c: Moved to...
* config/i386/winnt-stubs.cc: ...here.
* config/i386/winnt.c: Moved to...
* config/i386/winnt.cc: ...here.
* config/i386/x86-tune-sched-atom.c: Moved to...
* config/i386/x86-tune-sched-atom.cc: ...here.
* config/i386/x86-tune-sched-bd.c: Moved to...
* config/i386/x86-tune-sched-bd.cc: ...here.
* config/i386/x86-tune-sched-core.c: Moved to...
* config/i386/x86-tune-sched-core.cc: ...here.
* config/i386/x86-tune-sched.c: Moved to...
* config/i386/x86-tune-sched.cc: ...here.
* config/ia64/ia64-c.c: Moved to...
* config/ia64/ia64-c.cc: ...here.
* config/ia64/ia64.c: Moved to...
* config/ia64/ia64.cc: ...here.
* config/iq2000/iq2000.c: Moved to...
* config/iq2000/iq2000.cc: ...here.
* config/linux.c: Moved to...
* config/linux.cc: ...here.
* config/lm32/lm32.c: Moved to...
* config/lm32/lm32.cc: ...here.
* config/m32c/m32c-pragma.c: Moved to...
* config/m32c/m32c-pragma.cc: ...here.
* config/m32c/m32c.c: Moved to...
* config/m32c/m32c.cc: ...here.
* config/m32r/m32r.c: Moved to...
* config/m32r/m32r.cc: ...here.
* config/m68k/m68k.c: Moved to...
* config/m68k/m68k.cc: ...here.
* config/mcore/mcore.c: Moved to...
* config/mcore/mcore.cc: ...here.
* config/microblaze/microblaze-c.c: Moved to...
* config/microblaze/microblaze-c.cc: ...here.
* config/microblaze/microblaze.c: Moved to...
* config/microblaze/microblaze.cc: ...here.
* config/mips/driver-native.c: Moved to...
* config/mips/driver-native.cc: ...here.
* config/mips/frame-header-opt.c: Moved to...
* config/mips/frame-header-opt.cc: ...here.
* config/mips/mips-d.c: Moved to...
* config/mips/mips-d.cc: ...here.
* config/mips/mips.c: Moved to...
* config/mips/mips.cc: ...here.
* config/mmix/mmix.c: Moved to...
* config/mmix/mmix.cc: ...here.
* config/mn10300/mn10300.c: Moved to...
* config/mn10300/mn10300.cc: ...here.
* config/moxie/moxie.c: Moved to...
* config/moxie/moxie.cc: ...here.
* config/msp430/driver-msp430.c: Moved to...
* config/msp430/driver-msp430.cc: ...here.
* config/msp430/msp430-c.c: Moved to...
* config/msp430/msp430-c.cc: ...here.
* config/msp430/msp430-devices.c: Moved to...
* config/msp430/msp430-devices.cc: ...here.
* config/msp430/msp430.c: Moved to...
* config/msp430/msp430.cc: ...here.
* config/nds32/nds32-cost.c: Moved to...
* config/nds32/nds32-cost.cc: ...here.
* config/nds32/nds32-fp-as-gp.c: Moved to...
* config/nds32/nds32-fp-as-gp.cc: ...here.
* config/nds32/nds32-intrinsic.c: Moved to...
* config/nds32/nds32-intrinsic.cc: ...here.
* config/nds32/nds32-isr.c: Moved to...
* config/nds32/nds32-isr.cc: ...here.
* config/nds32/nds32-md-auxiliary.c: Moved to...
* config/nds32/nds32-md-auxiliary.cc: ...here.
* config/nds32/nds32-memory-manipulation.c: Moved to...
* config/nds32/nds32-memory-manipulation.cc: ...here.
* config/nds32/nds32-pipelines-auxiliary.c: Moved to...
* config/nds32/nds32-pipelines-auxiliary.cc: ...here.
* config/nds32/nds32-predicates.c: Moved to...
* config/nds32/nds32-predicates.cc: ...here.
* config/nds32/nds32-relax-opt.c: Moved to...
* config/nds32/nds32-relax-opt.cc: ...here.
* config/nds32/nds32-utils.c: Moved to...
* config/nds32/nds32-utils.cc: ...here.
* config/nds32/nds32.c: Moved to...
* config/nds32/nds32.cc: ...here.
* config/netbsd-d.c: Moved to...
* config/netbsd-d.cc: ...here.
* config/netbsd.c: Moved to...
* config/netbsd.cc: ...here.
* config/nios2/nios2.c: Moved to...
* config/nios2/nios2.cc: ...here.
* config/nvptx/mkoffload.c: Moved to...
* config/nvptx/mkoffload.cc: ...here.
* config/nvptx/nvptx-c.c: Moved to...
* config/nvptx/nvptx-c.cc: ...here.
* config/nvptx/nvptx.c: Moved to...
* config/nvptx/nvptx.cc: ...here.
* config/openbsd-d.c: Moved to...
* config/openbsd-d.cc: ...here.
* config/or1k/or1k.c: Moved to...
* config/or1k/or1k.cc: ...here.
* config/pa/pa-d.c: Moved to...
* config/pa/pa-d.cc: ...here.
* config/pa/pa.c: Moved to...
* config/pa/pa.cc: ...here.
* config/pdp11/pdp11.c: Moved to...
* config/pdp11/pdp11.cc: ...here.
* config/pru/pru-passes.c: Moved to...
* config/pru/pru-passes.cc: ...here.
* config/pru/pru-pragma.c: Moved to...
* config/pru/pru-pragma.cc: ...here.
* config/pru/pru.c: Moved to...
* config/pru/pru.cc: ...here.
* config/riscv/riscv-builtins.c: Moved to...
* config/riscv/riscv-builtins.cc: ...here.
* config/riscv/riscv-c.c: Moved to...
* config/riscv/riscv-c.cc: ...here.
* config/riscv/riscv-d.c: Moved to...
* config/riscv/riscv-d.cc: ...here.
* config/riscv/riscv-shorten-memrefs.c: Moved to...
* config/riscv/riscv-shorten-memrefs.cc: ...here.
* config/riscv/riscv-sr.c: Moved to...
* config/riscv/riscv-sr.cc: ...here.
* config/riscv/riscv.c: Moved to...
* config/riscv/riscv.cc: ...here.
* config/rl78/rl78-c.c: Moved to...
* config/rl78/rl78-c.cc: ...here.
* config/rl78/rl78.c: Moved to...
* config/rl78/rl78.cc: ...here.
* config/rs6000/driver-rs6000.c: Moved to...
* config/rs6000/driver-rs6000.cc: ...here.
* config/rs6000/host-darwin.c: Moved to...
* config/rs6000/host-darwin.cc: ...here.
* config/rs6000/host-ppc64-darwin.c: Moved to...
* config/rs6000/host-ppc64-darwin.cc: ...here.
* config/rs6000/rbtree.c: Moved to...
* config/rs6000/rbtree.cc: ...here.
* config/rs6000/rs6000-c.c: Moved to...
* config/rs6000/rs6000-c.cc: ...here.
* config/rs6000/rs6000-call.c: Moved to...
* config/rs6000/rs6000-call.cc: ...here.
* config/rs6000/rs6000-d.c: Moved to...
* config/rs6000/rs6000-d.cc: ...here.
* config/rs6000/rs6000-gen-builtins.c: Moved to...
* config/rs6000/rs6000-gen-builtins.cc: ...here.
* config/rs6000/rs6000-linux.c: Moved to...
* config/rs6000/rs6000-linux.cc: ...here.
* config/rs6000/rs6000-logue.c: Moved to...
* config/rs6000/rs6000-logue.cc: ...here.
* config/rs6000/rs6000-p8swap.c: Moved to...
* config/rs6000/rs6000-p8swap.cc: ...here.
* config/rs6000/rs6000-pcrel-opt.c: Moved to...
* config/rs6000/rs6000-pcrel-opt.cc: ...here.
* config/rs6000/rs6000-string.c: Moved to...
* config/rs6000/rs6000-string.cc: ...here.
* config/rs6000/rs6000.c: Moved to...
* config/rs6000/rs6000.cc: ...here.
* config/rx/rx.c: Moved to...
* config/rx/rx.cc: ...here.
* config/s390/driver-native.c: Moved to...
* config/s390/driver-native.cc: ...here.
* config/s390/s390-c.c: Moved to...
* config/s390/s390-c.cc: ...here.
* config/s390/s390-d.c: Moved to...
* config/s390/s390-d.cc: ...here.
* config/s390/s390.c: Moved to...
* config/s390/s390.cc: ...here.
* config/sh/divtab-sh4-300.c: Moved to...
* config/sh/divtab-sh4-300.cc: ...here.
* config/sh/divtab-sh4.c: Moved to...
* config/sh/divtab-sh4.cc: ...here.
* config/sh/divtab.c: Moved to...
* config/sh/divtab.cc: ...here.
* config/sh/sh-c.c: Moved to...
* config/sh/sh-c.cc: ...here.
* config/sh/sh.c: Moved to...
* config/sh/sh.cc: ...here.
* config/sol2-c.c: Moved to...
* config/sol2-c.cc: ...here.
* config/sol2-cxx.c: Moved to...
* config/sol2-cxx.cc: ...here.
* config/sol2-d.c: Moved to...
* config/sol2-d.cc: ...here.
* config/sol2-stubs.c: Moved to...
* config/sol2-stubs.cc: ...here.
* config/sol2.c: Moved to...
* config/sol2.cc: ...here.
* config/sparc/driver-sparc.c: Moved to...
* config/sparc/driver-sparc.cc: ...here.
* config/sparc/sparc-c.c: Moved to...
* config/sparc/sparc-c.cc: ...here.
* config/sparc/sparc-d.c: Moved to...
* config/sparc/sparc-d.cc: ...here.
* config/sparc/sparc.c: Moved to...
* config/sparc/sparc.cc: ...here.
* config/stormy16/stormy16.c: Moved to...
* config/stormy16/stormy16.cc: ...here.
* config/tilegx/mul-tables.c: Moved to...
* config/tilegx/mul-tables.cc: ...here.
* config/tilegx/tilegx-c.c: Moved to...
* config/tilegx/tilegx-c.cc: ...here.
* config/tilegx/tilegx.c: Moved to...
* config/tilegx/tilegx.cc: ...here.
* config/tilepro/mul-tables.c: Moved to...
* config/tilepro/mul-tables.cc: ...here.
* config/tilepro/tilepro-c.c: Moved to...
* config/tilepro/tilepro-c.cc: ...here.
* config/tilepro/tilepro.c: Moved to...
* config/tilepro/tilepro.cc: ...here.
* config/v850/v850-c.c: Moved to...
* config/v850/v850-c.cc: ...here.
* config/v850/v850.c: Moved to...
* config/v850/v850.cc: ...here.
* config/vax/vax.c: Moved to...
* config/vax/vax.cc: ...here.
* config/visium/visium.c: Moved to...
* config/visium/visium.cc: ...here.
* config/vms/vms-c.c: Moved to...
* config/vms/vms-c.cc: ...here.
* config/vms/vms-f.c: Moved to...
* config/vms/vms-f.cc: ...here.
* config/vms/vms.c: Moved to...
* config/vms/vms.cc: ...here.
* config/vxworks-c.c: Moved to...
* config/vxworks-c.cc: ...here.
* config/vxworks.c: Moved to...
* config/vxworks.cc: ...here.
* config/winnt-c.c: Moved to...
* config/winnt-c.cc: ...here.
* config/xtensa/xtensa.c: Moved to...
* config/xtensa/xtensa.cc: ...here.
* context.c: Moved to...
* context.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* coverage.c: Moved to...
* coverage.cc: ...here.
* cppbuiltin.c: Moved to...
* cppbuiltin.cc: ...here.
* cppdefault.c: Moved to...
* cppdefault.cc: ...here.
* cprop.c: Moved to...
* cprop.cc: ...here.
* cse.c: Moved to...
* cse.cc: ...here.
* cselib.c: Moved to...
* cselib.cc: ...here.
* ctfc.c: Moved to...
* ctfc.cc: ...here.
* ctfout.c: Moved to...
* ctfout.cc: ...here.
* data-streamer-in.c: Moved to...
* data-streamer-in.cc: ...here.
* data-streamer-out.c: Moved to...
* data-streamer-out.cc: ...here.
* data-streamer.c: Moved to...
* data-streamer.cc: ...here.
* dbgcnt.c: Moved to...
* dbgcnt.cc: ...here.
* dbxout.c: Moved to...
* dbxout.cc: ...here.
* dce.c: Moved to...
* dce.cc: ...here.
* ddg.c: Moved to...
* ddg.cc: ...here.
* debug.c: Moved to...
* debug.cc: ...here.
* df-core.c: Moved to...
* df-core.cc: ...here.
* df-problems.c: Moved to...
* df-problems.cc: ...here.
* df-scan.c: Moved to...
* df-scan.cc: ...here.
* dfp.c: Moved to...
* dfp.cc: ...here.
* diagnostic-color.c: Moved to...
* diagnostic-color.cc: ...here.
* diagnostic-show-locus.c: Moved to...
* diagnostic-show-locus.cc: ...here.
* diagnostic-spec.c: Moved to...
* diagnostic-spec.cc: ...here.
* diagnostic.c: Moved to...
* diagnostic.cc: ...here.
* dojump.c: Moved to...
* dojump.cc: ...here.
* dominance.c: Moved to...
* dominance.cc: ...here.
* domwalk.c: Moved to...
* domwalk.cc: ...here.
* double-int.c: Moved to...
* double-int.cc: ...here.
* dse.c: Moved to...
* dse.cc: ...here.
* dumpfile.c: Moved to...
* dumpfile.cc: ...here.
* dwarf2asm.c: Moved to...
* dwarf2asm.cc: ...here.
* dwarf2cfi.c: Moved to...
* dwarf2cfi.cc: ...here.
* dwarf2ctf.c: Moved to...
* dwarf2ctf.cc: ...here.
* dwarf2out.c: Moved to...
* dwarf2out.cc: ...here.
* early-remat.c: Moved to...
* early-remat.cc: ...here.
* edit-context.c: Moved to...
* edit-context.cc: ...here.
* emit-rtl.c: Moved to...
* emit-rtl.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* et-forest.c: Moved to...
* et-forest.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* explow.c: Moved to...
* explow.cc: ...here.
* expmed.c: Moved to...
* expmed.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* fibonacci_heap.c: Moved to...
* fibonacci_heap.cc: ...here.
* file-find.c: Moved to...
* file-find.cc: ...here.
* file-prefix-map.c: Moved to...
* file-prefix-map.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* fixed-value.c: Moved to...
* fixed-value.cc: ...here.
* fold-const-call.c: Moved to...
* fold-const-call.cc: ...here.
* fold-const.c: Moved to...
* fold-const.cc: ...here.
* fp-test.c: Moved to...
* fp-test.cc: ...here.
* function-tests.c: Moved to...
* function-tests.cc: ...here.
* function.c: Moved to...
* function.cc: ...here.
* fwprop.c: Moved to...
* fwprop.cc: ...here.
* gcc-ar.c: Moved to...
* gcc-ar.cc: ...here.
* gcc-main.c: Moved to...
* gcc-main.cc: ...here.
* gcc-rich-location.c: Moved to...
* gcc-rich-location.cc: ...here.
* gcc.c: Moved to...
* gcc.cc: ...here.
* gcov-dump.c: Moved to...
* gcov-dump.cc: ...here.
* gcov-io.c: Moved to...
* gcov-io.cc: ...here.
* gcov-tool.c: Moved to...
* gcov-tool.cc: ...here.
* gcov.c: Moved to...
* gcov.cc: ...here.
* gcse-common.c: Moved to...
* gcse-common.cc: ...here.
* gcse.c: Moved to...
* gcse.cc: ...here.
* genattr-common.c: Moved to...
* genattr-common.cc: ...here.
* genattr.c: Moved to...
* genattr.cc: ...here.
* genattrtab.c: Moved to...
* genattrtab.cc: ...here.
* genautomata.c: Moved to...
* genautomata.cc: ...here.
* gencfn-macros.c: Moved to...
* gencfn-macros.cc: ...here.
* gencheck.c: Moved to...
* gencheck.cc: ...here.
* genchecksum.c: Moved to...
* genchecksum.cc: ...here.
* gencodes.c: Moved to...
* gencodes.cc: ...here.
* genconditions.c: Moved to...
* genconditions.cc: ...here.
* genconfig.c: Moved to...
* genconfig.cc: ...here.
* genconstants.c: Moved to...
* genconstants.cc: ...here.
* genemit.c: Moved to...
* genemit.cc: ...here.
* genenums.c: Moved to...
* genenums.cc: ...here.
* generic-match-head.c: Moved to...
* generic-match-head.cc: ...here.
* genextract.c: Moved to...
* genextract.cc: ...here.
* genflags.c: Moved to...
* genflags.cc: ...here.
* gengenrtl.c: Moved to...
* gengenrtl.cc: ...here.
* gengtype-parse.c: Moved to...
* gengtype-parse.cc: ...here.
* gengtype-state.c: Moved to...
* gengtype-state.cc: ...here.
* gengtype.c: Moved to...
* gengtype.cc: ...here.
* genhooks.c: Moved to...
* genhooks.cc: ...here.
* genmatch.c: Moved to...
* genmatch.cc: ...here.
* genmddeps.c: Moved to...
* genmddeps.cc: ...here.
* genmddump.c: Moved to...
* genmddump.cc: ...here.
* genmodes.c: Moved to...
* genmodes.cc: ...here.
* genopinit.c: Moved to...
* genopinit.cc: ...here.
* genoutput.c: Moved to...
* genoutput.cc: ...here.
* genpeep.c: Moved to...
* genpeep.cc: ...here.
* genpreds.c: Moved to...
* genpreds.cc: ...here.
* genrecog.c: Moved to...
* genrecog.cc: ...here.
* gensupport.c: Moved to...
* gensupport.cc: ...here.
* gentarget-def.c: Moved to...
* gentarget-def.cc: ...here.
* genversion.c: Moved to...
* genversion.cc: ...here.
* ggc-common.c: Moved to...
* ggc-common.cc: ...here.
* ggc-none.c: Moved to...
* ggc-none.cc: ...here.
* ggc-page.c: Moved to...
* ggc-page.cc: ...here.
* ggc-tests.c: Moved to...
* ggc-tests.cc: ...here.
* gimple-builder.c: Moved to...
* gimple-builder.cc: ...here.
* gimple-expr.c: Moved to...
* gimple-expr.cc: ...here.
* gimple-fold.c: Moved to...
* gimple-fold.cc: ...here.
* gimple-iterator.c: Moved to...
* gimple-iterator.cc: ...here.
* gimple-laddress.c: Moved to...
* gimple-laddress.cc: ...here.
* gimple-loop-jam.c: Moved to...
* gimple-loop-jam.cc: ...here.
* gimple-low.c: Moved to...
* gimple-low.cc: ...here.
* gimple-match-head.c: Moved to...
* gimple-match-head.cc: ...here.
* gimple-pretty-print.c: Moved to...
* gimple-pretty-print.cc: ...here.
* gimple-ssa-backprop.c: Moved to...
* gimple-ssa-backprop.cc: ...here.
* gimple-ssa-evrp-analyze.c: Moved to...
* gimple-ssa-evrp-analyze.cc: ...here.
* gimple-ssa-evrp.c: Moved to...
* gimple-ssa-evrp.cc: ...here.
* gimple-ssa-isolate-paths.c: Moved to...
* gimple-ssa-isolate-paths.cc: ...here.
* gimple-ssa-nonnull-compare.c: Moved to...
* gimple-ssa-nonnull-compare.cc: ...here.
* gimple-ssa-split-paths.c: Moved to...
* gimple-ssa-split-paths.cc: ...here.
* gimple-ssa-sprintf.c: Moved to...
* gimple-ssa-sprintf.cc: ...here.
* gimple-ssa-store-merging.c: Moved to...
* gimple-ssa-store-merging.cc: ...here.
* gimple-ssa-strength-reduction.c: Moved to...
* gimple-ssa-strength-reduction.cc: ...here.
* gimple-ssa-warn-alloca.c: Moved to...
* gimple-ssa-warn-alloca.cc: ...here.
* gimple-ssa-warn-restrict.c: Moved to...
* gimple-ssa-warn-restrict.cc: ...here.
* gimple-streamer-in.c: Moved to...
* gimple-streamer-in.cc: ...here.
* gimple-streamer-out.c: Moved to...
* gimple-streamer-out.cc: ...here.
* gimple-walk.c: Moved to...
* gimple-walk.cc: ...here.
* gimple-warn-recursion.c: Moved to...
* gimple-warn-recursion.cc: ...here.
* gimple.c: Moved to...
* gimple.cc: ...here.
* gimplify-me.c: Moved to...
* gimplify-me.cc: ...here.
* gimplify.c: Moved to...
* gimplify.cc: ...here.
* godump.c: Moved to...
* godump.cc: ...here.
* graph.c: Moved to...
* graph.cc: ...here.
* graphds.c: Moved to...
* graphds.cc: ...here.
* graphite-dependences.c: Moved to...
* graphite-dependences.cc: ...here.
* graphite-isl-ast-to-gimple.c: Moved to...
* graphite-isl-ast-to-gimple.cc: ...here.
* graphite-optimize-isl.c: Moved to...
* graphite-optimize-isl.cc: ...here.
* graphite-poly.c: Moved to...
* graphite-poly.cc: ...here.
* graphite-scop-detection.c: Moved to...
* graphite-scop-detection.cc: ...here.
* graphite-sese-to-poly.c: Moved to...
* graphite-sese-to-poly.cc: ...here.
* graphite.c: Moved to...
* graphite.cc: ...here.
* haifa-sched.c: Moved to...
* haifa-sched.cc: ...here.
* hash-map-tests.c: Moved to...
* hash-map-tests.cc: ...here.
* hash-set-tests.c: Moved to...
* hash-set-tests.cc: ...here.
* hash-table.c: Moved to...
* hash-table.cc: ...here.
* hooks.c: Moved to...
* hooks.cc: ...here.
* host-default.c: Moved to...
* host-default.cc: ...here.
* hw-doloop.c: Moved to...
* hw-doloop.cc: ...here.
* hwint.c: Moved to...
* hwint.cc: ...here.
* ifcvt.c: Moved to...
* ifcvt.cc: ...here.
* inchash.c: Moved to...
* inchash.cc: ...here.
* incpath.c: Moved to...
* incpath.cc: ...here.
* init-regs.c: Moved to...
* init-regs.cc: ...here.
* input.c: Moved to...
* input.cc: ...here.
* internal-fn.c: Moved to...
* internal-fn.cc: ...here.
* intl.c: Moved to...
* intl.cc: ...here.
* ipa-comdats.c: Moved to...
* ipa-comdats.cc: ...here.
* ipa-cp.c: Moved to...
* ipa-cp.cc: ...here.
* ipa-devirt.c: Moved to...
* ipa-devirt.cc: ...here.
* ipa-fnsummary.c: Moved to...
* ipa-fnsummary.cc: ...here.
* ipa-icf-gimple.c: Moved to...
* ipa-icf-gimple.cc: ...here.
* ipa-icf.c: Moved to...
* ipa-icf.cc: ...here.
* ipa-inline-analysis.c: Moved to...
* ipa-inline-analysis.cc: ...here.
* ipa-inline-transform.c: Moved to...
* ipa-inline-transform.cc: ...here.
* ipa-inline.c: Moved to...
* ipa-inline.cc: ...here.
* ipa-modref-tree.c: Moved to...
* ipa-modref-tree.cc: ...here.
* ipa-modref.c: Moved to...
* ipa-modref.cc: ...here.
* ipa-param-manipulation.c: Moved to...
* ipa-param-manipulation.cc: ...here.
* ipa-polymorphic-call.c: Moved to...
* ipa-polymorphic-call.cc: ...here.
* ipa-predicate.c: Moved to...
* ipa-predicate.cc: ...here.
* ipa-profile.c: Moved to...
* ipa-profile.cc: ...here.
* ipa-prop.c: Moved to...
* ipa-prop.cc: ...here.
* ipa-pure-const.c: Moved to...
* ipa-pure-const.cc: ...here.
* ipa-ref.c: Moved to...
* ipa-ref.cc: ...here.
* ipa-reference.c: Moved to...
* ipa-reference.cc: ...here.
* ipa-split.c: Moved to...
* ipa-split.cc: ...here.
* ipa-sra.c: Moved to...
* ipa-sra.cc: ...here.
* ipa-utils.c: Moved to...
* ipa-utils.cc: ...here.
* ipa-visibility.c: Moved to...
* ipa-visibility.cc: ...here.
* ipa.c: Moved to...
* ipa.cc: ...here.
* ira-build.c: Moved to...
* ira-build.cc: ...here.
* ira-color.c: Moved to...
* ira-color.cc: ...here.
* ira-conflicts.c: Moved to...
* ira-conflicts.cc: ...here.
* ira-costs.c: Moved to...
* ira-costs.cc: ...here.
* ira-emit.c: Moved to...
* ira-emit.cc: ...here.
* ira-lives.c: Moved to...
* ira-lives.cc: ...here.
* ira.c: Moved to...
* ira.cc: ...here.
* jump.c: Moved to...
* jump.cc: ...here.
* langhooks.c: Moved to...
* langhooks.cc: ...here.
* lcm.c: Moved to...
* lcm.cc: ...here.
* lists.c: Moved to...
* lists.cc: ...here.
* loop-doloop.c: Moved to...
* loop-doloop.cc: ...here.
* loop-init.c: Moved to...
* loop-init.cc: ...here.
* loop-invariant.c: Moved to...
* loop-invariant.cc: ...here.
* loop-iv.c: Moved to...
* loop-iv.cc: ...here.
* loop-unroll.c: Moved to...
* loop-unroll.cc: ...here.
* lower-subreg.c: Moved to...
* lower-subreg.cc: ...here.
* lra-assigns.c: Moved to...
* lra-assigns.cc: ...here.
* lra-coalesce.c: Moved to...
* lra-coalesce.cc: ...here.
* lra-constraints.c: Moved to...
* lra-constraints.cc: ...here.
* lra-eliminations.c: Moved to...
* lra-eliminations.cc: ...here.
* lra-lives.c: Moved to...
* lra-lives.cc: ...here.
* lra-remat.c: Moved to...
* lra-remat.cc: ...here.
* lra-spills.c: Moved to...
* lra-spills.cc: ...here.
* lra.c: Moved to...
* lra.cc: ...here.
* lto-cgraph.c: Moved to...
* lto-cgraph.cc: ...here.
* lto-compress.c: Moved to...
* lto-compress.cc: ...here.
* lto-opts.c: Moved to...
* lto-opts.cc: ...here.
* lto-section-in.c: Moved to...
* lto-section-in.cc: ...here.
* lto-section-out.c: Moved to...
* lto-section-out.cc: ...here.
* lto-streamer-in.c: Moved to...
* lto-streamer-in.cc: ...here.
* lto-streamer-out.c: Moved to...
* lto-streamer-out.cc: ...here.
* lto-streamer.c: Moved to...
* lto-streamer.cc: ...here.
* lto-wrapper.c: Moved to...
* lto-wrapper.cc: ...here.
* main.c: Moved to...
* main.cc: ...here.
* mcf.c: Moved to...
* mcf.cc: ...here.
* mode-switching.c: Moved to...
* mode-switching.cc: ...here.
* modulo-sched.c: Moved to...
* modulo-sched.cc: ...here.
* multiple_target.c: Moved to...
* multiple_target.cc: ...here.
* omp-expand.c: Moved to...
* omp-expand.cc: ...here.
* omp-general.c: Moved to...
* omp-general.cc: ...here.
* omp-low.c: Moved to...
* omp-low.cc: ...here.
* omp-offload.c: Moved to...
* omp-offload.cc: ...here.
* omp-simd-clone.c: Moved to...
* omp-simd-clone.cc: ...here.
* opt-suggestions.c: Moved to...
* opt-suggestions.cc: ...here.
* optabs-libfuncs.c: Moved to...
* optabs-libfuncs.cc: ...here.
* optabs-query.c: Moved to...
* optabs-query.cc: ...here.
* optabs-tree.c: Moved to...
* optabs-tree.cc: ...here.
* optabs.c: Moved to...
* optabs.cc: ...here.
* opts-common.c: Moved to...
* opts-common.cc: ...here.
* opts-global.c: Moved to...
* opts-global.cc: ...here.
* opts.c: Moved to...
* opts.cc: ...here.
* passes.c: Moved to...
* passes.cc: ...here.
* plugin.c: Moved to...
* plugin.cc: ...here.
* postreload-gcse.c: Moved to...
* postreload-gcse.cc: ...here.
* postreload.c: Moved to...
* postreload.cc: ...here.
* predict.c: Moved to...
* predict.cc: ...here.
* prefix.c: Moved to...
* prefix.cc: ...here.
* pretty-print.c: Moved to...
* pretty-print.cc: ...here.
* print-rtl-function.c: Moved to...
* print-rtl-function.cc: ...here.
* print-rtl.c: Moved to...
* print-rtl.cc: ...here.
* print-tree.c: Moved to...
* print-tree.cc: ...here.
* profile-count.c: Moved to...
* profile-count.cc: ...here.
* profile.c: Moved to...
* profile.cc: ...here.
* read-md.c: Moved to...
* read-md.cc: ...here.
* read-rtl-function.c: Moved to...
* read-rtl-function.cc: ...here.
* read-rtl.c: Moved to...
* read-rtl.cc: ...here.
* real.c: Moved to...
* real.cc: ...here.
* realmpfr.c: Moved to...
* realmpfr.cc: ...here.
* recog.c: Moved to...
* recog.cc: ...here.
* ree.c: Moved to...
* ree.cc: ...here.
* reg-stack.c: Moved to...
* reg-stack.cc: ...here.
* regcprop.c: Moved to...
* regcprop.cc: ...here.
* reginfo.c: Moved to...
* reginfo.cc: ...here.
* regrename.c: Moved to...
* regrename.cc: ...here.
* regstat.c: Moved to...
* regstat.cc: ...here.
* reload.c: Moved to...
* reload.cc: ...here.
* reload1.c: Moved to...
* reload1.cc: ...here.
* reorg.c: Moved to...
* reorg.cc: ...here.
* resource.c: Moved to...
* resource.cc: ...here.
* rtl-error.c: Moved to...
* rtl-error.cc: ...here.
* rtl-tests.c: Moved to...
* rtl-tests.cc: ...here.
* rtl.c: Moved to...
* rtl.cc: ...here.
* rtlanal.c: Moved to...
* rtlanal.cc: ...here.
* rtlhash.c: Moved to...
* rtlhash.cc: ...here.
* rtlhooks.c: Moved to...
* rtlhooks.cc: ...here.
* rtx-vector-builder.c: Moved to...
* rtx-vector-builder.cc: ...here.
* run-rtl-passes.c: Moved to...
* run-rtl-passes.cc: ...here.
* sancov.c: Moved to...
* sancov.cc: ...here.
* sanopt.c: Moved to...
* sanopt.cc: ...here.
* sbitmap.c: Moved to...
* sbitmap.cc: ...here.
* sched-deps.c: Moved to...
* sched-deps.cc: ...here.
* sched-ebb.c: Moved to...
* sched-ebb.cc: ...here.
* sched-rgn.c: Moved to...
* sched-rgn.cc: ...here.
* sel-sched-dump.c: Moved to...
* sel-sched-dump.cc: ...here.
* sel-sched-ir.c: Moved to...
* sel-sched-ir.cc: ...here.
* sel-sched.c: Moved to...
* sel-sched.cc: ...here.
* selftest-diagnostic.c: Moved to...
* selftest-diagnostic.cc: ...here.
* selftest-rtl.c: Moved to...
* selftest-rtl.cc: ...here.
* selftest-run-tests.c: Moved to...
* selftest-run-tests.cc: ...here.
* selftest.c: Moved to...
* selftest.cc: ...here.
* sese.c: Moved to...
* sese.cc: ...here.
* shrink-wrap.c: Moved to...
* shrink-wrap.cc: ...here.
* simplify-rtx.c: Moved to...
* simplify-rtx.cc: ...here.
* sparseset.c: Moved to...
* sparseset.cc: ...here.
* spellcheck-tree.c: Moved to...
* spellcheck-tree.cc: ...here.
* spellcheck.c: Moved to...
* spellcheck.cc: ...here.
* sreal.c: Moved to...
* sreal.cc: ...here.
* stack-ptr-mod.c: Moved to...
* stack-ptr-mod.cc: ...here.
* statistics.c: Moved to...
* statistics.cc: ...here.
* stmt.c: Moved to...
* stmt.cc: ...here.
* stor-layout.c: Moved to...
* stor-layout.cc: ...here.
* store-motion.c: Moved to...
* store-motion.cc: ...here.
* streamer-hooks.c: Moved to...
* streamer-hooks.cc: ...here.
* stringpool.c: Moved to...
* stringpool.cc: ...here.
* substring-locations.c: Moved to...
* substring-locations.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* target-globals.c: Moved to...
* target-globals.cc: ...here.
* targhooks.c: Moved to...
* targhooks.cc: ...here.
* timevar.c: Moved to...
* timevar.cc: ...here.
* toplev.c: Moved to...
* toplev.cc: ...here.
* tracer.c: Moved to...
* tracer.cc: ...here.
* trans-mem.c: Moved to...
* trans-mem.cc: ...here.
* tree-affine.c: Moved to...
* tree-affine.cc: ...here.
* tree-call-cdce.c: Moved to...
* tree-call-cdce.cc: ...here.
* tree-cfg.c: Moved to...
* tree-cfg.cc: ...here.
* tree-cfgcleanup.c: Moved to...
* tree-cfgcleanup.cc: ...here.
* tree-chrec.c: Moved to...
* tree-chrec.cc: ...here.
* tree-complex.c: Moved to...
* tree-complex.cc: ...here.
* tree-data-ref.c: Moved to...
* tree-data-ref.cc: ...here.
* tree-dfa.c: Moved to...
* tree-dfa.cc: ...here.
* tree-diagnostic.c: Moved to...
* tree-diagnostic.cc: ...here.
* tree-dump.c: Moved to...
* tree-dump.cc: ...here.
* tree-eh.c: Moved to...
* tree-eh.cc: ...here.
* tree-emutls.c: Moved to...
* tree-emutls.cc: ...here.
* tree-if-conv.c: Moved to...
* tree-if-conv.cc: ...here.
* tree-inline.c: Moved to...
* tree-inline.cc: ...here.
* tree-into-ssa.c: Moved to...
* tree-into-ssa.cc: ...here.
* tree-iterator.c: Moved to...
* tree-iterator.cc: ...here.
* tree-loop-distribution.c: Moved to...
* tree-loop-distribution.cc: ...here.
* tree-nested.c: Moved to...
* tree-nested.cc: ...here.
* tree-nrv.c: Moved to...
* tree-nrv.cc: ...here.
* tree-object-size.c: Moved to...
* tree-object-size.cc: ...here.
* tree-outof-ssa.c: Moved to...
* tree-outof-ssa.cc: ...here.
* tree-parloops.c: Moved to...
* tree-parloops.cc: ...here.
* tree-phinodes.c: Moved to...
* tree-phinodes.cc: ...here.
* tree-predcom.c: Moved to...
* tree-predcom.cc: ...here.
* tree-pretty-print.c: Moved to...
* tree-pretty-print.cc: ...here.
* tree-profile.c: Moved to...
* tree-profile.cc: ...here.
* tree-scalar-evolution.c: Moved to...
* tree-scalar-evolution.cc: ...here.
* tree-sra.c: Moved to...
* tree-sra.cc: ...here.
* tree-ssa-address.c: Moved to...
* tree-ssa-address.cc: ...here.
* tree-ssa-alias.c: Moved to...
* tree-ssa-alias.cc: ...here.
* tree-ssa-ccp.c: Moved to...
* tree-ssa-ccp.cc: ...here.
* tree-ssa-coalesce.c: Moved to...
* tree-ssa-coalesce.cc: ...here.
* tree-ssa-copy.c: Moved to...
* tree-ssa-copy.cc: ...here.
* tree-ssa-dce.c: Moved to...
* tree-ssa-dce.cc: ...here.
* tree-ssa-dom.c: Moved to...
* tree-ssa-dom.cc: ...here.
* tree-ssa-dse.c: Moved to...
* tree-ssa-dse.cc: ...here.
* tree-ssa-forwprop.c: Moved to...
* tree-ssa-forwprop.cc: ...here.
* tree-ssa-ifcombine.c: Moved to...
* tree-ssa-ifcombine.cc: ...here.
* tree-ssa-live.c: Moved to...
* tree-ssa-live.cc: ...here.
* tree-ssa-loop-ch.c: Moved to...
* tree-ssa-loop-ch.cc: ...here.
* tree-ssa-loop-im.c: Moved to...
* tree-ssa-loop-im.cc: ...here.
* tree-ssa-loop-ivcanon.c: Moved to...
* tree-ssa-loop-ivcanon.cc: ...here.
* tree-ssa-loop-ivopts.c: Moved to...
* tree-ssa-loop-ivopts.cc: ...here.
* tree-ssa-loop-manip.c: Moved to...
* tree-ssa-loop-manip.cc: ...here.
* tree-ssa-loop-niter.c: Moved to...
* tree-ssa-loop-niter.cc: ...here.
* tree-ssa-loop-prefetch.c: Moved to...
* tree-ssa-loop-prefetch.cc: ...here.
* tree-ssa-loop-split.c: Moved to...
* tree-ssa-loop-split.cc: ...here.
* tree-ssa-loop-unswitch.c: Moved to...
* tree-ssa-loop-unswitch.cc: ...here.
* tree-ssa-loop.c: Moved to...
* tree-ssa-loop.cc: ...here.
* tree-ssa-math-opts.c: Moved to...
* tree-ssa-math-opts.cc: ...here.
* tree-ssa-operands.c: Moved to...
* tree-ssa-operands.cc: ...here.
* tree-ssa-phiopt.c: Moved to...
* tree-ssa-phiopt.cc: ...here.
* tree-ssa-phiprop.c: Moved to...
* tree-ssa-phiprop.cc: ...here.
* tree-ssa-pre.c: Moved to...
* tree-ssa-pre.cc: ...here.
* tree-ssa-propagate.c: Moved to...
* tree-ssa-propagate.cc: ...here.
* tree-ssa-reassoc.c: Moved to...
* tree-ssa-reassoc.cc: ...here.
* tree-ssa-sccvn.c: Moved to...
* tree-ssa-sccvn.cc: ...here.
* tree-ssa-scopedtables.c: Moved to...
* tree-ssa-scopedtables.cc: ...here.
* tree-ssa-sink.c: Moved to...
* tree-ssa-sink.cc: ...here.
* tree-ssa-strlen.c: Moved to...
* tree-ssa-strlen.cc: ...here.
* tree-ssa-structalias.c: Moved to...
* tree-ssa-structalias.cc: ...here.
* tree-ssa-tail-merge.c: Moved to...
* tree-ssa-tail-merge.cc: ...here.
* tree-ssa-ter.c: Moved to...
* tree-ssa-ter.cc: ...here.
* tree-ssa-threadbackward.c: Moved to...
* tree-ssa-threadbackward.cc: ...here.
* tree-ssa-threadedge.c: Moved to...
* tree-ssa-threadedge.cc: ...here.
* tree-ssa-threadupdate.c: Moved to...
* tree-ssa-threadupdate.cc: ...here.
* tree-ssa-uncprop.c: Moved to...
* tree-ssa-uncprop.cc: ...here.
* tree-ssa-uninit.c: Moved to...
* tree-ssa-uninit.cc: ...here.
* tree-ssa.c: Moved to...
* tree-ssa.cc: ...here.
* tree-ssanames.c: Moved to...
* tree-ssanames.cc: ...here.
* tree-stdarg.c: Moved to...
* tree-stdarg.cc: ...here.
* tree-streamer-in.c: Moved to...
* tree-streamer-in.cc: ...here.
* tree-streamer-out.c: Moved to...
* tree-streamer-out.cc: ...here.
* tree-streamer.c: Moved to...
* tree-streamer.cc: ...here.
* tree-switch-conversion.c: Moved to...
* tree-switch-conversion.cc: ...here.
* tree-tailcall.c: Moved to...
* tree-tailcall.cc: ...here.
* tree-vect-data-refs.c: Moved to...
* tree-vect-data-refs.cc: ...here.
* tree-vect-generic.c: Moved to...
* tree-vect-generic.cc: ...here.
* tree-vect-loop-manip.c: Moved to...
* tree-vect-loop-manip.cc: ...here.
* tree-vect-loop.c: Moved to...
* tree-vect-loop.cc: ...here.
* tree-vect-patterns.c: Moved to...
* tree-vect-patterns.cc: ...here.
* tree-vect-slp-patterns.c: Moved to...
* tree-vect-slp-patterns.cc: ...here.
* tree-vect-slp.c: Moved to...
* tree-vect-slp.cc: ...here.
* tree-vect-stmts.c: Moved to...
* tree-vect-stmts.cc: ...here.
* tree-vector-builder.c: Moved to...
* tree-vector-builder.cc: ...here.
* tree-vectorizer.c: Moved to...
* tree-vectorizer.cc: ...here.
* tree-vrp.c: Moved to...
* tree-vrp.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* tsan.c: Moved to...
* tsan.cc: ...here.
* typed-splay-tree.c: Moved to...
* typed-splay-tree.cc: ...here.
* ubsan.c: Moved to...
* ubsan.cc: ...here.
* valtrack.c: Moved to...
* valtrack.cc: ...here.
* value-prof.c: Moved to...
* value-prof.cc: ...here.
* var-tracking.c: Moved to...
* var-tracking.cc: ...here.
* varasm.c: Moved to...
* varasm.cc: ...here.
* varpool.c: Moved to...
* varpool.cc: ...here.
* vec-perm-indices.c: Moved to...
* vec-perm-indices.cc: ...here.
* vec.c: Moved to...
* vec.cc: ...here.
* vmsdbgout.c: Moved to...
* vmsdbgout.cc: ...here.
* vr-values.c: Moved to...
* vr-values.cc: ...here.
* vtable-verify.c: Moved to...
* vtable-verify.cc: ...here.
* web.c: Moved to...
* web.cc: ...here.
* xcoffout.c: Moved to...
* xcoffout.cc: ...here.
gcc/c-family/ChangeLog:
* c-ada-spec.c: Moved to...
* c-ada-spec.cc: ...here.
* c-attribs.c: Moved to...
* c-attribs.cc: ...here.
* c-common.c: Moved to...
* c-common.cc: ...here.
* c-cppbuiltin.c: Moved to...
* c-cppbuiltin.cc: ...here.
* c-dump.c: Moved to...
* c-dump.cc: ...here.
* c-format.c: Moved to...
* c-format.cc: ...here.
* c-gimplify.c: Moved to...
* c-gimplify.cc: ...here.
* c-indentation.c: Moved to...
* c-indentation.cc: ...here.
* c-lex.c: Moved to...
* c-lex.cc: ...here.
* c-omp.c: Moved to...
* c-omp.cc: ...here.
* c-opts.c: Moved to...
* c-opts.cc: ...here.
* c-pch.c: Moved to...
* c-pch.cc: ...here.
* c-ppoutput.c: Moved to...
* c-ppoutput.cc: ...here.
* c-pragma.c: Moved to...
* c-pragma.cc: ...here.
* c-pretty-print.c: Moved to...
* c-pretty-print.cc: ...here.
* c-semantics.c: Moved to...
* c-semantics.cc: ...here.
* c-ubsan.c: Moved to...
* c-ubsan.cc: ...here.
* c-warn.c: Moved to...
* c-warn.cc: ...here.
* cppspec.c: Moved to...
* cppspec.cc: ...here.
* stub-objc.c: Moved to...
* stub-objc.cc: ...here.
gcc/c/ChangeLog:
* c-aux-info.c: Moved to...
* c-aux-info.cc: ...here.
* c-convert.c: Moved to...
* c-convert.cc: ...here.
* c-decl.c: Moved to...
* c-decl.cc: ...here.
* c-errors.c: Moved to...
* c-errors.cc: ...here.
* c-fold.c: Moved to...
* c-fold.cc: ...here.
* c-lang.c: Moved to...
* c-lang.cc: ...here.
* c-objc-common.c: Moved to...
* c-objc-common.cc: ...here.
* c-parser.c: Moved to...
* c-parser.cc: ...here.
* c-typeck.c: Moved to...
* c-typeck.cc: ...here.
* gccspec.c: Moved to...
* gccspec.cc: ...here.
* gimple-parser.c: Moved to...
* gimple-parser.cc: ...here.
gcc/cp/ChangeLog:
* call.c: Moved to...
* call.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constexpr.c: Moved to...
* constexpr.cc: ...here.
* cp-gimplify.c: Moved to...
* cp-gimplify.cc: ...here.
* cp-lang.c: Moved to...
* cp-lang.cc: ...here.
* cp-objcp-common.c: Moved to...
* cp-objcp-common.cc: ...here.
* cp-ubsan.c: Moved to...
* cp-ubsan.cc: ...here.
* cvt.c: Moved to...
* cvt.cc: ...here.
* cxx-pretty-print.c: Moved to...
* cxx-pretty-print.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* decl2.c: Moved to...
* decl2.cc: ...here.
* dump.c: Moved to...
* dump.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* friend.c: Moved to...
* friend.cc: ...here.
* g++spec.c: Moved to...
* g++spec.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lambda.c: Moved to...
* lambda.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* mangle.c: Moved to...
* mangle.cc: ...here.
* method.c: Moved to...
* method.cc: ...here.
* name-lookup.c: Moved to...
* name-lookup.cc: ...here.
* optimize.c: Moved to...
* optimize.cc: ...here.
* parser.c: Moved to...
* parser.cc: ...here.
* pt.c: Moved to...
* pt.cc: ...here.
* ptree.c: Moved to...
* ptree.cc: ...here.
* rtti.c: Moved to...
* rtti.cc: ...here.
* search.c: Moved to...
* search.cc: ...here.
* semantics.c: Moved to...
* semantics.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* typeck.c: Moved to...
* typeck.cc: ...here.
* typeck2.c: Moved to...
* typeck2.cc: ...here.
* vtable-class-hierarchy.c: Moved to...
* vtable-class-hierarchy.cc: ...here.
gcc/fortran/ChangeLog:
* arith.c: Moved to...
* arith.cc: ...here.
* array.c: Moved to...
* array.cc: ...here.
* bbt.c: Moved to...
* bbt.cc: ...here.
* check.c: Moved to...
* check.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constructor.c: Moved to...
* constructor.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* cpp.c: Moved to...
* cpp.cc: ...here.
* data.c: Moved to...
* data.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* dependency.c: Moved to...
* dependency.cc: ...here.
* dump-parse-tree.c: Moved to...
* dump-parse-tree.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* f95-lang.c: Moved to...
* f95-lang.cc: ...here.
* frontend-passes.c: Moved to...
* frontend-passes.cc: ...here.
* gfortranspec.c: Moved to...
* gfortranspec.cc: ...here.
* interface.c: Moved to...
* interface.cc: ...here.
* intrinsic.c: Moved to...
* intrinsic.cc: ...here.
* io.c: Moved to...
* io.cc: ...here.
* iresolve.c: Moved to...
* iresolve.cc: ...here.
* match.c: Moved to...
* match.cc: ...here.
* matchexp.c: Moved to...
* matchexp.cc: ...here.
* misc.c: Moved to...
* misc.cc: ...here.
* module.c: Moved to...
* module.cc: ...here.
* openmp.c: Moved to...
* openmp.cc: ...here.
* options.c: Moved to...
* options.cc: ...here.
* parse.c: Moved to...
* parse.cc: ...here.
* primary.c: Moved to...
* primary.cc: ...here.
* resolve.c: Moved to...
* resolve.cc: ...here.
* scanner.c: Moved to...
* scanner.cc: ...here.
* simplify.c: Moved to...
* simplify.cc: ...here.
* st.c: Moved to...
* st.cc: ...here.
* symbol.c: Moved to...
* symbol.cc: ...here.
* target-memory.c: Moved to...
* target-memory.cc: ...here.
* trans-array.c: Moved to...
* trans-array.cc: ...here.
* trans-common.c: Moved to...
* trans-common.cc: ...here.
* trans-const.c: Moved to...
* trans-const.cc: ...here.
* trans-decl.c: Moved to...
* trans-decl.cc: ...here.
* trans-expr.c: Moved to...
* trans-expr.cc: ...here.
* trans-intrinsic.c: Moved to...
* trans-intrinsic.cc: ...here.
* trans-io.c: Moved to...
* trans-io.cc: ...here.
* trans-openmp.c: Moved to...
* trans-openmp.cc: ...here.
* trans-stmt.c: Moved to...
* trans-stmt.cc: ...here.
* trans-types.c: Moved to...
* trans-types.cc: ...here.
* trans.c: Moved to...
* trans.cc: ...here.
gcc/go/ChangeLog:
* go-backend.c: Moved to...
* go-backend.cc: ...here.
* go-lang.c: Moved to...
* go-lang.cc: ...here.
* gospec.c: Moved to...
* gospec.cc: ...here.
gcc/jit/ChangeLog:
* dummy-frontend.c: Moved to...
* dummy-frontend.cc: ...here.
* jit-builtins.c: Moved to...
* jit-builtins.cc: ...here.
* jit-logging.c: Moved to...
* jit-logging.cc: ...here.
* jit-playback.c: Moved to...
* jit-playback.cc: ...here.
* jit-recording.c: Moved to...
* jit-recording.cc: ...here.
* jit-result.c: Moved to...
* jit-result.cc: ...here.
* jit-spec.c: Moved to...
* jit-spec.cc: ...here.
* jit-tempdir.c: Moved to...
* jit-tempdir.cc: ...here.
* jit-w32.c: Moved to...
* jit-w32.cc: ...here.
* libgccjit.c: Moved to...
* libgccjit.cc: ...here.
gcc/lto/ChangeLog:
* common.c: Moved to...
* common.cc: ...here.
* lto-common.c: Moved to...
* lto-common.cc: ...here.
* lto-dump.c: Moved to...
* lto-dump.cc: ...here.
* lto-lang.c: Moved to...
* lto-lang.cc: ...here.
* lto-object.c: Moved to...
* lto-object.cc: ...here.
* lto-partition.c: Moved to...
* lto-partition.cc: ...here.
* lto-symtab.c: Moved to...
* lto-symtab.cc: ...here.
* lto.c: Moved to...
* lto.cc: ...here.
gcc/objc/ChangeLog:
* objc-act.c: Moved to...
* objc-act.cc: ...here.
* objc-encoding.c: Moved to...
* objc-encoding.cc: ...here.
* objc-gnu-runtime-abi-01.c: Moved to...
* objc-gnu-runtime-abi-01.cc: ...here.
* objc-lang.c: Moved to...
* objc-lang.cc: ...here.
* objc-map.c: Moved to...
* objc-map.cc: ...here.
* objc-next-runtime-abi-01.c: Moved to...
* objc-next-runtime-abi-01.cc: ...here.
* objc-next-runtime-abi-02.c: Moved to...
* objc-next-runtime-abi-02.cc: ...here.
* objc-runtime-shared-support.c: Moved to...
* objc-runtime-shared-support.cc: ...here.
gcc/objcp/ChangeLog:
* objcp-decl.c: Moved to...
* objcp-decl.cc: ...here.
* objcp-lang.c: Moved to...
* objcp-lang.cc: ...here.
libcpp/ChangeLog:
* charset.c: Moved to...
* charset.cc: ...here.
* directives.c: Moved to...
* directives.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* files.c: Moved to...
* files.cc: ...here.
* identifiers.c: Moved to...
* identifiers.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* line-map.c: Moved to...
* line-map.cc: ...here.
* macro.c: Moved to...
* macro.cc: ...here.
* makeucnid.c: Moved to...
* makeucnid.cc: ...here.
* mkdeps.c: Moved to...
* mkdeps.cc: ...here.
* pch.c: Moved to...
* pch.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* traditional.c: Moved to...
* traditional.cc: ...here.
Diffstat (limited to 'gcc/expmed.cc')
-rw-r--r-- | gcc/expmed.cc | 6349 |
1 files changed, 6349 insertions, 0 deletions
diff --git a/gcc/expmed.cc b/gcc/expmed.cc new file mode 100644 index 00000000000..715005884d9 --- /dev/null +++ b/gcc/expmed.cc @@ -0,0 +1,6349 @@ +/* Medium-level subroutines: convert bit-field store and extract + and shifts, multiplies and divides to rtl instructions. + Copyright (C) 1987-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* Work around tree-optimization/91825. */ +#pragma GCC diagnostic warning "-Wmaybe-uninitialized" + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "rtl.h" +#include "tree.h" +#include "predict.h" +#include "memmodel.h" +#include "tm_p.h" +#include "optabs.h" +#include "expmed.h" +#include "regs.h" +#include "emit-rtl.h" +#include "diagnostic-core.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "dojump.h" +#include "explow.h" +#include "expr.h" +#include "langhooks.h" +#include "tree-vector-builder.h" + +struct target_expmed default_target_expmed; +#if SWITCHABLE_TARGET +struct target_expmed *this_target_expmed = &default_target_expmed; +#endif + +static bool store_integral_bit_field (rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + poly_uint64, poly_uint64, + machine_mode, rtx, bool, bool); +static void store_fixed_bit_field (rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + poly_uint64, poly_uint64, + rtx, scalar_int_mode, bool); +static void store_fixed_bit_field_1 (rtx, scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + rtx, scalar_int_mode, bool); +static void store_split_bit_field (rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + poly_uint64, poly_uint64, + rtx, scalar_int_mode, bool); +static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, int, rtx, + machine_mode, machine_mode, bool, bool); +static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, rtx, int, bool); +static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, rtx, int, bool); +static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int); +static rtx extract_split_bit_field (rtx, opt_scalar_int_mode, + unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, int, bool); +static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *); +static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT); +static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT); + +/* Return a constant integer mask value of mode MODE with BITSIZE ones + followed by BITPOS zeros, or the complement of that if COMPLEMENT. + The mask is truncated if necessary to the width of mode MODE. The + mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */ + +static inline rtx +mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement) +{ + return immed_wide_int_const + (wi::shifted_mask (bitpos, bitsize, complement, + GET_MODE_PRECISION (mode)), mode); +} + +/* Test whether a value is zero of a power of two. */ +#define EXACT_POWER_OF_2_OR_ZERO_P(x) \ + (((x) & ((x) - HOST_WIDE_INT_1U)) == 0) + +struct init_expmed_rtl +{ + rtx reg; + rtx plus; + rtx neg; + rtx mult; + rtx sdiv; + rtx udiv; + rtx sdiv_32; + rtx smod_32; + rtx wide_mult; + rtx wide_lshr; + rtx wide_trunc; + rtx shift; + rtx shift_mult; + rtx shift_add; + rtx shift_sub0; + rtx shift_sub1; + rtx zext; + rtx trunc; + + rtx pow2[MAX_BITS_PER_WORD]; + rtx cint[MAX_BITS_PER_WORD]; +}; + +static void +init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode, + scalar_int_mode from_mode, bool speed) +{ + int to_size, from_size; + rtx which; + + to_size = GET_MODE_PRECISION (to_mode); + from_size = GET_MODE_PRECISION (from_mode); + + /* Most partial integers have a precision less than the "full" + integer it requires for storage. In case one doesn't, for + comparison purposes here, reduce the bit size by one in that + case. */ + if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT + && pow2p_hwi (to_size)) + to_size --; + if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT + && pow2p_hwi (from_size)) + from_size --; + + /* Assume cost of zero-extend and sign-extend is the same. */ + which = (to_size < from_size ? all->trunc : all->zext); + + PUT_MODE (all->reg, from_mode); + set_convert_cost (to_mode, from_mode, speed, + set_src_cost (which, to_mode, speed)); + /* Restore all->reg's mode. */ + PUT_MODE (all->reg, to_mode); +} + +static void +init_expmed_one_mode (struct init_expmed_rtl *all, + machine_mode mode, int speed) +{ + int m, n, mode_bitsize; + machine_mode mode_from; + + mode_bitsize = GET_MODE_UNIT_BITSIZE (mode); + + PUT_MODE (all->reg, mode); + PUT_MODE (all->plus, mode); + PUT_MODE (all->neg, mode); + PUT_MODE (all->mult, mode); + PUT_MODE (all->sdiv, mode); + PUT_MODE (all->udiv, mode); + PUT_MODE (all->sdiv_32, mode); + PUT_MODE (all->smod_32, mode); + PUT_MODE (all->wide_trunc, mode); + PUT_MODE (all->shift, mode); + PUT_MODE (all->shift_mult, mode); + PUT_MODE (all->shift_add, mode); + PUT_MODE (all->shift_sub0, mode); + PUT_MODE (all->shift_sub1, mode); + PUT_MODE (all->zext, mode); + PUT_MODE (all->trunc, mode); + + set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed)); + set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed)); + set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed)); + set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed)); + set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed)); + + set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed) + <= 2 * add_cost (speed, mode))); + set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed) + <= 4 * add_cost (speed, mode))); + + set_shift_cost (speed, mode, 0, 0); + { + int cost = add_cost (speed, mode); + set_shiftadd_cost (speed, mode, 0, cost); + set_shiftsub0_cost (speed, mode, 0, cost); + set_shiftsub1_cost (speed, mode, 0, cost); + } + + n = MIN (MAX_BITS_PER_WORD, mode_bitsize); + for (m = 1; m < n; m++) + { + XEXP (all->shift, 1) = all->cint[m]; + XEXP (all->shift_mult, 1) = all->pow2[m]; + + set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed)); + set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode, + speed)); + set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode, + speed)); + set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode, + speed)); + } + + scalar_int_mode int_mode_to; + if (is_a <scalar_int_mode> (mode, &int_mode_to)) + { + for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT; + mode_from = (machine_mode)(mode_from + 1)) + init_expmed_one_conv (all, int_mode_to, + as_a <scalar_int_mode> (mode_from), speed); + + scalar_int_mode wider_mode; + if (GET_MODE_CLASS (int_mode_to) == MODE_INT + && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode)) + { + PUT_MODE (all->reg, mode); + PUT_MODE (all->zext, wider_mode); + PUT_MODE (all->wide_mult, wider_mode); + PUT_MODE (all->wide_lshr, wider_mode); + XEXP (all->wide_lshr, 1) + = gen_int_shift_amount (wider_mode, mode_bitsize); + + set_mul_widen_cost (speed, wider_mode, + set_src_cost (all->wide_mult, wider_mode, speed)); + set_mul_highpart_cost (speed, int_mode_to, + set_src_cost (all->wide_trunc, + int_mode_to, speed)); + } + } +} + +void +init_expmed (void) +{ + struct init_expmed_rtl all; + machine_mode mode = QImode; + int m, speed; + + memset (&all, 0, sizeof all); + for (m = 1; m < MAX_BITS_PER_WORD; m++) + { + all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m); + all.cint[m] = GEN_INT (m); + } + + /* Avoid using hard regs in ways which may be unsupported. */ + all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1); + all.plus = gen_rtx_PLUS (mode, all.reg, all.reg); + all.neg = gen_rtx_NEG (mode, all.reg); + all.mult = gen_rtx_MULT (mode, all.reg, all.reg); + all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg); + all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg); + all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]); + all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]); + all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg); + all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext); + all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg); + all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr); + all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg); + all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg); + all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg); + all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg); + all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult); + all.trunc = gen_rtx_TRUNCATE (mode, all.reg); + + for (speed = 0; speed < 2; speed++) + { + crtl->maybe_hot_insn_p = speed; + set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed)); + + for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT; + mode = (machine_mode)(mode + 1)) + init_expmed_one_mode (&all, mode, speed); + + if (MIN_MODE_PARTIAL_INT != VOIDmode) + for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT; + mode = (machine_mode)(mode + 1)) + init_expmed_one_mode (&all, mode, speed); + + if (MIN_MODE_VECTOR_INT != VOIDmode) + for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT; + mode = (machine_mode)(mode + 1)) + init_expmed_one_mode (&all, mode, speed); + } + + if (alg_hash_used_p ()) + { + struct alg_hash_entry *p = alg_hash_entry_ptr (0); + memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES); + } + else + set_alg_hash_used_p (true); + default_rtl_profile (); + + ggc_free (all.trunc); + ggc_free (all.shift_sub1); + ggc_free (all.shift_sub0); + ggc_free (all.shift_add); + ggc_free (all.shift_mult); + ggc_free (all.shift); + ggc_free (all.wide_trunc); + ggc_free (all.wide_lshr); + ggc_free (all.wide_mult); + ggc_free (all.zext); + ggc_free (all.smod_32); + ggc_free (all.sdiv_32); + ggc_free (all.udiv); + ggc_free (all.sdiv); + ggc_free (all.mult); + ggc_free (all.neg); + ggc_free (all.plus); + ggc_free (all.reg); +} + +/* Return an rtx representing minus the value of X. + MODE is the intended mode of the result, + useful if X is a CONST_INT. */ + +rtx +negate_rtx (machine_mode mode, rtx x) +{ + rtx result = simplify_unary_operation (NEG, mode, x, mode); + + if (result == 0) + result = expand_unop (mode, neg_optab, x, NULL_RTX, 0); + + return result; +} + +/* Whether reverse storage order is supported on the target. */ +static int reverse_storage_order_supported = -1; + +/* Check whether reverse storage order is supported on the target. */ + +static void +check_reverse_storage_order_support (void) +{ + if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) + { + reverse_storage_order_supported = 0; + sorry ("reverse scalar storage order"); + } + else + reverse_storage_order_supported = 1; +} + +/* Whether reverse FP storage order is supported on the target. */ +static int reverse_float_storage_order_supported = -1; + +/* Check whether reverse FP storage order is supported on the target. */ + +static void +check_reverse_float_storage_order_support (void) +{ + if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN) + { + reverse_float_storage_order_supported = 0; + sorry ("reverse floating-point scalar storage order"); + } + else + reverse_float_storage_order_supported = 1; +} + +/* Return an rtx representing value of X with reverse storage order. + MODE is the intended mode of the result, + useful if X is a CONST_INT. */ + +rtx +flip_storage_order (machine_mode mode, rtx x) +{ + scalar_int_mode int_mode; + rtx result; + + if (mode == QImode) + return x; + + if (COMPLEX_MODE_P (mode)) + { + rtx real = read_complex_part (x, false); + rtx imag = read_complex_part (x, true); + + real = flip_storage_order (GET_MODE_INNER (mode), real); + imag = flip_storage_order (GET_MODE_INNER (mode), imag); + + return gen_rtx_CONCAT (mode, real, imag); + } + + if (__builtin_expect (reverse_storage_order_supported < 0, 0)) + check_reverse_storage_order_support (); + + if (!is_a <scalar_int_mode> (mode, &int_mode)) + { + if (FLOAT_MODE_P (mode) + && __builtin_expect (reverse_float_storage_order_supported < 0, 0)) + check_reverse_float_storage_order_support (); + + if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode) + || !targetm.scalar_mode_supported_p (int_mode)) + { + sorry ("reverse storage order for %smode", GET_MODE_NAME (mode)); + return x; + } + x = gen_lowpart (int_mode, x); + } + + result = simplify_unary_operation (BSWAP, int_mode, x, int_mode); + if (result == 0) + result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1); + + if (int_mode != mode) + result = gen_lowpart (mode, result); + + return result; +} + +/* If MODE is set, adjust bitfield memory MEM so that it points to the + first unit of mode MODE that contains a bitfield of size BITSIZE at + bit position BITNUM. If MODE is not set, return a BLKmode reference + to every byte in the bitfield. Set *NEW_BITNUM to the bit position + of the field within the new memory. */ + +static rtx +narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + unsigned HOST_WIDE_INT *new_bitnum) +{ + scalar_int_mode imode; + if (mode.exists (&imode)) + { + unsigned int unit = GET_MODE_BITSIZE (imode); + *new_bitnum = bitnum % unit; + HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT; + return adjust_bitfield_address (mem, imode, offset); + } + else + { + *new_bitnum = bitnum % BITS_PER_UNIT; + HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT; + HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1) + / BITS_PER_UNIT); + return adjust_bitfield_address_size (mem, BLKmode, offset, size); + } +} + +/* The caller wants to perform insertion or extraction PATTERN on a + bitfield of size BITSIZE at BITNUM bits into memory operand OP0. + BITREGION_START and BITREGION_END are as for store_bit_field + and FIELDMODE is the natural mode of the field. + + Search for a mode that is compatible with the memory access + restrictions and (where applicable) with a register insertion or + extraction. Return the new memory on success, storing the adjusted + bit position in *NEW_BITNUM. Return null otherwise. */ + +static rtx +adjust_bit_field_mem_for_reg (enum extraction_pattern pattern, + rtx op0, HOST_WIDE_INT bitsize, + HOST_WIDE_INT bitnum, + poly_uint64 bitregion_start, + poly_uint64 bitregion_end, + machine_mode fieldmode, + unsigned HOST_WIDE_INT *new_bitnum) +{ + bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start, + bitregion_end, MEM_ALIGN (op0), + MEM_VOLATILE_P (op0)); + scalar_int_mode best_mode; + if (iter.next_mode (&best_mode)) + { + /* We can use a memory in BEST_MODE. See whether this is true for + any wider modes. All other things being equal, we prefer to + use the widest mode possible because it tends to expose more + CSE opportunities. */ + if (!iter.prefer_smaller_modes ()) + { + /* Limit the search to the mode required by the corresponding + register insertion or extraction instruction, if any. */ + scalar_int_mode limit_mode = word_mode; + extraction_insn insn; + if (get_best_reg_extraction_insn (&insn, pattern, + GET_MODE_BITSIZE (best_mode), + fieldmode)) + limit_mode = insn.field_mode; + + scalar_int_mode wider_mode; + while (iter.next_mode (&wider_mode) + && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode)) + best_mode = wider_mode; + } + return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, + new_bitnum); + } + return NULL_RTX; +} + +/* Return true if a bitfield of size BITSIZE at bit number BITNUM within + a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg + offset is then BITNUM / BITS_PER_UNIT. */ + +static bool +lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize, + machine_mode struct_mode) +{ + poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode); + if (BYTES_BIG_ENDIAN) + return (multiple_p (bitnum, BITS_PER_UNIT) + && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode)) + || multiple_p (bitnum + bitsize, + regsize * BITS_PER_UNIT))); + else + return multiple_p (bitnum, regsize * BITS_PER_UNIT); +} + +/* Return true if -fstrict-volatile-bitfields applies to an access of OP0 + containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE. + Return false if the access would touch memory outside the range + BITREGION_START to BITREGION_END for conformance to the C++ memory + model. */ + +static bool +strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + scalar_int_mode fieldmode, + poly_uint64 bitregion_start, + poly_uint64 bitregion_end) +{ + unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode); + + /* -fstrict-volatile-bitfields must be enabled and we must have a + volatile MEM. */ + if (!MEM_P (op0) + || !MEM_VOLATILE_P (op0) + || flag_strict_volatile_bitfields <= 0) + return false; + + /* The bit size must not be larger than the field mode, and + the field mode must not be larger than a word. */ + if (bitsize > modesize || modesize > BITS_PER_WORD) + return false; + + /* Check for cases of unaligned fields that must be split. */ + if (bitnum % modesize + bitsize > modesize) + return false; + + /* The memory must be sufficiently aligned for a MODESIZE access. + This condition guarantees, that the memory access will not + touch anything after the end of the structure. */ + if (MEM_ALIGN (op0) < modesize) + return false; + + /* Check for cases where the C++ memory model applies. */ + if (maybe_ne (bitregion_end, 0U) + && (maybe_lt (bitnum - bitnum % modesize, bitregion_start) + || maybe_gt (bitnum - bitnum % modesize + modesize - 1, + bitregion_end))) + return false; + + return true; +} + +/* Return true if OP is a memory and if a bitfield of size BITSIZE at + bit number BITNUM can be treated as a simple value of mode MODE. + Store the byte offset in *BYTENUM if so. */ + +static bool +simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum, + machine_mode mode, poly_uint64 *bytenum) +{ + return (MEM_P (op0) + && multiple_p (bitnum, BITS_PER_UNIT, bytenum) + && known_eq (bitsize, GET_MODE_BITSIZE (mode)) + && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0)) + || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode)) + && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode)))); +} + +/* Try to use instruction INSV to store VALUE into a field of OP0. + If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a + BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM + are as for store_bit_field. */ + +static bool +store_bit_field_using_insv (const extraction_insn *insv, rtx op0, + opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + rtx value, scalar_int_mode value_mode) +{ + class expand_operand ops[4]; + rtx value1; + rtx xop0 = op0; + rtx_insn *last = get_last_insn (); + bool copy_back = false; + + scalar_int_mode op_mode = insv->field_mode; + unsigned int unit = GET_MODE_BITSIZE (op_mode); + if (bitsize == 0 || bitsize > unit) + return false; + + if (MEM_P (xop0)) + /* Get a reference to the first byte of the field. */ + xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum, + &bitnum); + else + { + /* Convert from counting within OP0 to counting in OP_MODE. */ + if (BYTES_BIG_ENDIAN) + bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ()); + + /* If xop0 is a register, we need it in OP_MODE + to make it acceptable to the format of insv. */ + if (GET_CODE (xop0) == SUBREG) + { + /* If such a SUBREG can't be created, give up. */ + if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)), + SUBREG_REG (xop0), SUBREG_BYTE (xop0))) + return false; + /* We can't just change the mode, because this might clobber op0, + and we will need the original value of op0 if insv fails. */ + xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), + SUBREG_BYTE (xop0)); + } + if (REG_P (xop0) && GET_MODE (xop0) != op_mode) + xop0 = gen_lowpart_SUBREG (op_mode, xop0); + } + + /* If the destination is a paradoxical subreg such that we need a + truncate to the inner mode, perform the insertion on a temporary and + truncate the result to the original destination. Note that we can't + just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N + X) 0)) is (reg:N X). */ + if (GET_CODE (xop0) == SUBREG + && REG_P (SUBREG_REG (xop0)) + && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)), + op_mode)) + { + rtx tem = gen_reg_rtx (op_mode); + emit_move_insn (tem, xop0); + xop0 = tem; + copy_back = true; + } + + /* There are similar overflow check at the start of store_bit_field_1, + but that only check the situation where the field lies completely + outside the register, while there do have situation where the field + lies partialy in the register, we need to adjust bitsize for this + partial overflow situation. Without this fix, pr48335-2.c on big-endian + will broken on those arch support bit insert instruction, like arm, aarch64 + etc. */ + if (bitsize + bitnum > unit && bitnum < unit) + { + warning (OPT_Wextra, "write of %wu-bit data outside the bound of " + "destination object, data truncated into %wu-bit", + bitsize, unit - bitnum); + bitsize = unit - bitnum; + } + + /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count + "backwards" from the size of the unit we are inserting into. + Otherwise, we count bits from the most significant on a + BYTES/BITS_BIG_ENDIAN machine. */ + + if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) + bitnum = unit - bitsize - bitnum; + + /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */ + value1 = value; + if (value_mode != op_mode) + { + if (GET_MODE_BITSIZE (value_mode) >= bitsize) + { + rtx tmp; + /* Optimization: Don't bother really extending VALUE + if it has all the bits we will actually use. However, + if we must narrow it, be sure we do it correctly. */ + + if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode)) + { + tmp = simplify_subreg (op_mode, value1, value_mode, 0); + if (! tmp) + tmp = simplify_gen_subreg (op_mode, + force_reg (value_mode, value1), + value_mode, 0); + } + else + { + tmp = gen_lowpart_if_possible (op_mode, value1); + if (! tmp) + tmp = gen_lowpart (op_mode, force_reg (value_mode, value1)); + } + value1 = tmp; + } + else if (CONST_INT_P (value)) + value1 = gen_int_mode (INTVAL (value), op_mode); + else + /* Parse phase is supposed to make VALUE's data type + match that of the component reference, which is a type + at least as wide as the field; so VALUE should have + a mode that corresponds to that type. */ + gcc_assert (CONSTANT_P (value)); + } + + create_fixed_operand (&ops[0], xop0); + create_integer_operand (&ops[1], bitsize); + create_integer_operand (&ops[2], bitnum); + create_input_operand (&ops[3], value1, op_mode); + if (maybe_expand_insn (insv->icode, 4, ops)) + { + if (copy_back) + convert_move (op0, xop0, true); + return true; + } + delete_insns_since (last); + return false; +} + +/* A subroutine of store_bit_field, with the same arguments. Return true + if the operation could be implemented. + + If FALLBACK_P is true, fall back to store_fixed_bit_field if we have + no other way of implementing the operation. If FALLBACK_P is false, + return false instead. */ + +static bool +store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, + poly_uint64 bitregion_start, poly_uint64 bitregion_end, + machine_mode fieldmode, + rtx value, bool reverse, bool fallback_p) +{ + rtx op0 = str_rtx; + + while (GET_CODE (op0) == SUBREG) + { + bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT; + op0 = SUBREG_REG (op0); + } + + /* No action is needed if the target is a register and if the field + lies completely outside that register. This can occur if the source + code contains an out-of-bounds access to a small array. */ + if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0)))) + return true; + + /* Use vec_set patterns for inserting parts of vectors whenever + available. */ + machine_mode outermode = GET_MODE (op0); + scalar_mode innermode = GET_MODE_INNER (outermode); + poly_uint64 pos; + if (VECTOR_MODE_P (outermode) + && !MEM_P (op0) + && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing + && fieldmode == innermode + && known_eq (bitsize, GET_MODE_BITSIZE (innermode)) + && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos)) + { + class expand_operand ops[3]; + enum insn_code icode = optab_handler (vec_set_optab, outermode); + + create_fixed_operand (&ops[0], op0); + create_input_operand (&ops[1], value, innermode); + create_integer_operand (&ops[2], pos); + if (maybe_expand_insn (icode, 3, ops)) + return true; + } + + /* If the target is a register, overwriting the entire object, or storing + a full-word or multi-word field can be done with just a SUBREG. */ + if (!MEM_P (op0) + && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))) + { + /* Use the subreg machinery either to narrow OP0 to the required + words or to cope with mode punning between equal-sized modes. + In the latter case, use subreg on the rhs side, not lhs. */ + rtx sub; + HOST_WIDE_INT regnum; + poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0)); + if (known_eq (bitnum, 0U) + && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))) + { + sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0); + if (sub) + { + if (reverse) + sub = flip_storage_order (GET_MODE (op0), sub); + emit_move_insn (op0, sub); + return true; + } + } + else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, ®num) + && multiple_p (bitsize, regsize * BITS_PER_UNIT) + && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize)) + { + sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0), + regnum * regsize); + if (sub) + { + if (reverse) + value = flip_storage_order (fieldmode, value); + emit_move_insn (sub, value); + return true; + } + } + } + + /* If the target is memory, storing any naturally aligned field can be + done with a simple store. For targets that support fast unaligned + memory, any naturally sized, unit aligned field can be done directly. */ + poly_uint64 bytenum; + if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum)) + { + op0 = adjust_bitfield_address (op0, fieldmode, bytenum); + if (reverse) + value = flip_storage_order (fieldmode, value); + emit_move_insn (op0, value); + return true; + } + + /* It's possible we'll need to handle other cases here for + polynomial bitnum and bitsize. */ + + /* From here on we need to be looking at a fixed-size insertion. */ + unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant (); + unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant (); + + /* Make sure we are playing with integral modes. Pun with subregs + if we aren't. This must come after the entire register case above, + since that case is valid for any mode. The following cases are only + valid for integral modes. */ + opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0)); + scalar_int_mode imode; + if (!op0_mode.exists (&imode) || imode != GET_MODE (op0)) + { + if (MEM_P (op0)) + op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (), + 0, MEM_SIZE (op0)); + else if (!op0_mode.exists ()) + { + if (ibitnum == 0 + && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0))) + && MEM_P (value) + && !reverse) + { + value = adjust_address (value, GET_MODE (op0), 0); + emit_move_insn (op0, value); + return true; + } + if (!fallback_p) + return false; + rtx temp = assign_stack_temp (GET_MODE (op0), + GET_MODE_SIZE (GET_MODE (op0))); + emit_move_insn (temp, op0); + store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value, + reverse, fallback_p); + emit_move_insn (op0, temp); + return true; + } + else + op0 = gen_lowpart (op0_mode.require (), op0); + } + + return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum, + bitregion_start, bitregion_end, + fieldmode, value, reverse, fallback_p); +} + +/* Subroutine of store_bit_field_1, with the same arguments, except + that BITSIZE and BITNUM are constant. Handle cases specific to + integral modes. If OP0_MODE is defined, it is the mode of OP0, + otherwise OP0 is a BLKmode MEM. */ + +static bool +store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + poly_uint64 bitregion_start, + poly_uint64 bitregion_end, + machine_mode fieldmode, + rtx value, bool reverse, bool fallback_p) +{ + /* Storing an lsb-aligned field in a register + can be done with a movstrict instruction. */ + + if (!MEM_P (op0) + && !reverse + && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ()) + && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)) + && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing) + { + class expand_operand ops[2]; + enum insn_code icode = optab_handler (movstrict_optab, fieldmode); + rtx arg0 = op0; + unsigned HOST_WIDE_INT subreg_off; + + if (GET_CODE (arg0) == SUBREG) + { + /* Else we've got some float mode source being extracted into + a different float mode destination -- this combination of + subregs results in Severe Tire Damage. */ + gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode + || GET_MODE_CLASS (fieldmode) == MODE_INT + || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT); + arg0 = SUBREG_REG (arg0); + } + + subreg_off = bitnum / BITS_PER_UNIT; + if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off) + /* STRICT_LOW_PART must have a non-paradoxical subreg as + operand. */ + && !paradoxical_subreg_p (fieldmode, GET_MODE (arg0))) + { + arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off); + + create_fixed_operand (&ops[0], arg0); + /* Shrink the source operand to FIELDMODE. */ + create_convert_operand_to (&ops[1], value, fieldmode, false); + if (maybe_expand_insn (icode, 2, ops)) + return true; + } + } + + /* Handle fields bigger than a word. */ + + if (bitsize > BITS_PER_WORD) + { + /* Here we transfer the words of the field + in the order least significant first. + This is because the most significant word is the one which may + be less than full. + However, only do that if the value is not BLKmode. */ + + const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode; + const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; + rtx_insn *last; + + /* This is the mode we must force value to, so that there will be enough + subwords to extract. Note that fieldmode will often (always?) be + VOIDmode, because that is what store_field uses to indicate that this + is a bit field, but passing VOIDmode to operand_subword_force + is not allowed. + + The mode must be fixed-size, since insertions into variable-sized + objects are meant to be handled before calling this function. */ + fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value)); + if (value_mode == VOIDmode) + value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD); + + last = get_last_insn (); + for (int i = 0; i < nwords; i++) + { + /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD + except maybe for the last iteration. */ + const unsigned HOST_WIDE_INT new_bitsize + = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD); + /* Bit offset from the starting bit number in the target. */ + const unsigned int bit_offset + = backwards ^ reverse + ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0) + : i * BITS_PER_WORD; + /* Starting word number in the value. */ + const unsigned int wordnum + = backwards + ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1) + : i; + /* The chunk of the value in word_mode. We use bit-field extraction + in BLKmode to handle unaligned memory references and to shift the + last chunk right on big-endian machines if need be. */ + rtx value_word + = fieldmode == BLKmode + ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD, + 1, NULL_RTX, word_mode, word_mode, false, + NULL) + : operand_subword_force (value, wordnum, value_mode); + + if (!store_bit_field_1 (op0, new_bitsize, + bitnum + bit_offset, + bitregion_start, bitregion_end, + word_mode, + value_word, reverse, fallback_p)) + { + delete_insns_since (last); + return false; + } + } + return true; + } + + /* If VALUE has a floating-point or complex mode, access it as an + integer of the corresponding size. This can occur on a machine + with 64 bit registers that uses SFmode for float. It can also + occur for unaligned float or complex fields. */ + rtx orig_value = value; + scalar_int_mode value_mode; + if (GET_MODE (value) == VOIDmode) + /* By this point we've dealt with values that are bigger than a word, + so word_mode is a conservatively correct choice. */ + value_mode = word_mode; + else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode)) + { + value_mode = int_mode_for_mode (GET_MODE (value)).require (); + value = gen_reg_rtx (value_mode); + emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value); + } + + /* If OP0 is a multi-word register, narrow it to the affected word. + If the region spans two words, defer to store_split_bit_field. + Don't do this if op0 is a single hard register wider than word + such as a float or vector register. */ + if (!MEM_P (op0) + && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD + && (!REG_P (op0) + || !HARD_REGISTER_P (op0) + || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1)) + { + if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD) + { + if (!fallback_p) + return false; + + store_split_bit_field (op0, op0_mode, bitsize, bitnum, + bitregion_start, bitregion_end, + value, value_mode, reverse); + return true; + } + op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (), + bitnum / BITS_PER_WORD * UNITS_PER_WORD); + gcc_assert (op0); + op0_mode = word_mode; + bitnum %= BITS_PER_WORD; + } + + /* From here on we can assume that the field to be stored in fits + within a word. If the destination is a register, it too fits + in a word. */ + + extraction_insn insv; + if (!MEM_P (op0) + && !reverse + && get_best_reg_extraction_insn (&insv, EP_insv, + GET_MODE_BITSIZE (op0_mode.require ()), + fieldmode) + && store_bit_field_using_insv (&insv, op0, op0_mode, + bitsize, bitnum, value, value_mode)) + return true; + + /* If OP0 is a memory, try copying it to a register and seeing if a + cheap register alternative is available. */ + if (MEM_P (op0) && !reverse) + { + if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum, + fieldmode) + && store_bit_field_using_insv (&insv, op0, op0_mode, + bitsize, bitnum, value, value_mode)) + return true; + + rtx_insn *last = get_last_insn (); + + /* Try loading part of OP0 into a register, inserting the bitfield + into that, and then copying the result back to OP0. */ + unsigned HOST_WIDE_INT bitpos; + rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum, + bitregion_start, bitregion_end, + fieldmode, &bitpos); + if (xop0) + { + rtx tempreg = copy_to_reg (xop0); + if (store_bit_field_1 (tempreg, bitsize, bitpos, + bitregion_start, bitregion_end, + fieldmode, orig_value, reverse, false)) + { + emit_move_insn (xop0, tempreg); + return true; + } + delete_insns_since (last); + } + } + + if (!fallback_p) + return false; + + store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start, + bitregion_end, value, value_mode, reverse); + return true; +} + +/* Generate code to store value from rtx VALUE + into a bit-field within structure STR_RTX + containing BITSIZE bits starting at bit BITNUM. + + BITREGION_START is bitpos of the first bitfield in this region. + BITREGION_END is the bitpos of the ending bitfield in this region. + These two fields are 0, if the C++ memory model does not apply, + or we are not interested in keeping track of bitfield regions. + + FIELDMODE is the machine-mode of the FIELD_DECL node for this field. + + If REVERSE is true, the store is to be done in reverse order. */ + +void +store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, + poly_uint64 bitregion_start, poly_uint64 bitregion_end, + machine_mode fieldmode, + rtx value, bool reverse) +{ + /* Handle -fstrict-volatile-bitfields in the cases where it applies. */ + unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0; + scalar_int_mode int_mode; + if (bitsize.is_constant (&ibitsize) + && bitnum.is_constant (&ibitnum) + && is_a <scalar_int_mode> (fieldmode, &int_mode) + && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode, + bitregion_start, bitregion_end)) + { + /* Storing of a full word can be done with a simple store. + We know here that the field can be accessed with one single + instruction. For targets that support unaligned memory, + an unaligned access may be necessary. */ + if (ibitsize == GET_MODE_BITSIZE (int_mode)) + { + str_rtx = adjust_bitfield_address (str_rtx, int_mode, + ibitnum / BITS_PER_UNIT); + if (reverse) + value = flip_storage_order (int_mode, value); + gcc_assert (ibitnum % BITS_PER_UNIT == 0); + emit_move_insn (str_rtx, value); + } + else + { + rtx temp; + + str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, + ibitnum, &ibitnum); + gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode)); + temp = copy_to_reg (str_rtx); + if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0, + int_mode, value, reverse, true)) + gcc_unreachable (); + + emit_move_insn (str_rtx, temp); + } + + return; + } + + /* Under the C++0x memory model, we must not touch bits outside the + bit region. Adjust the address to start at the beginning of the + bit region. */ + if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U)) + { + scalar_int_mode best_mode; + machine_mode addr_mode = VOIDmode; + + poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT); + bitnum -= bitregion_start; + poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize); + bitregion_end -= bitregion_start; + bitregion_start = 0; + if (bitsize.is_constant (&ibitsize) + && bitnum.is_constant (&ibitnum) + && get_best_mode (ibitsize, ibitnum, + bitregion_start, bitregion_end, + MEM_ALIGN (str_rtx), INT_MAX, + MEM_VOLATILE_P (str_rtx), &best_mode)) + addr_mode = best_mode; + str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode, + offset, size); + } + + if (!store_bit_field_1 (str_rtx, bitsize, bitnum, + bitregion_start, bitregion_end, + fieldmode, value, reverse, true)) + gcc_unreachable (); +} + +/* Use shifts and boolean operations to store VALUE into a bit field of + width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined, + it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is + the mode of VALUE. + + If REVERSE is true, the store is to be done in reverse order. */ + +static void +store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + poly_uint64 bitregion_start, poly_uint64 bitregion_end, + rtx value, scalar_int_mode value_mode, bool reverse) +{ + /* There is a case not handled here: + a structure with a known alignment of just a halfword + and a field split across two aligned halfwords within the structure. + Or likewise a structure with a known alignment of just a byte + and a field split across two bytes. + Such cases are not supposed to be able to occur. */ + + scalar_int_mode best_mode; + if (MEM_P (op0)) + { + unsigned int max_bitsize = BITS_PER_WORD; + scalar_int_mode imode; + if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize) + max_bitsize = GET_MODE_BITSIZE (imode); + + if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end, + MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0), + &best_mode)) + { + /* The only way this should occur is if the field spans word + boundaries. */ + store_split_bit_field (op0, op0_mode, bitsize, bitnum, + bitregion_start, bitregion_end, + value, value_mode, reverse); + return; + } + + op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum); + } + else + best_mode = op0_mode.require (); + + store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum, + value, value_mode, reverse); +} + +/* Helper function for store_fixed_bit_field, stores + the bit field always using MODE, which is the mode of OP0. The other + arguments are as for store_fixed_bit_field. */ + +static void +store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + rtx value, scalar_int_mode value_mode, bool reverse) +{ + rtx temp; + int all_zero = 0; + int all_one = 0; + + /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode) + for invalid input, such as f5 from gcc.dg/pr48335-2.c. */ + + if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) + /* BITNUM is the distance between our msb + and that of the containing datum. + Convert it to the distance from the lsb. */ + bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum; + + /* Now BITNUM is always the distance between our lsb + and that of OP0. */ + + /* Shift VALUE left by BITNUM bits. If VALUE is not constant, + we must first convert its mode to MODE. */ + + if (CONST_INT_P (value)) + { + unsigned HOST_WIDE_INT v = UINTVAL (value); + + if (bitsize < HOST_BITS_PER_WIDE_INT) + v &= (HOST_WIDE_INT_1U << bitsize) - 1; + + if (v == 0) + all_zero = 1; + else if ((bitsize < HOST_BITS_PER_WIDE_INT + && v == (HOST_WIDE_INT_1U << bitsize) - 1) + || (bitsize == HOST_BITS_PER_WIDE_INT + && v == HOST_WIDE_INT_M1U)) + all_one = 1; + + value = lshift_value (mode, v, bitnum); + } + else + { + int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize + && bitnum + bitsize != GET_MODE_BITSIZE (mode)); + + if (value_mode != mode) + value = convert_to_mode (mode, value, 1); + + if (must_and) + value = expand_binop (mode, and_optab, value, + mask_rtx (mode, 0, bitsize, 0), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + if (bitnum > 0) + value = expand_shift (LSHIFT_EXPR, mode, value, + bitnum, NULL_RTX, 1); + } + + if (reverse) + value = flip_storage_order (mode, value); + + /* Now clear the chosen bits in OP0, + except that if VALUE is -1 we need not bother. */ + /* We keep the intermediates in registers to allow CSE to combine + consecutive bitfield assignments. */ + + temp = force_reg (mode, op0); + + if (! all_one) + { + rtx mask = mask_rtx (mode, bitnum, bitsize, 1); + if (reverse) + mask = flip_storage_order (mode, mask); + temp = expand_binop (mode, and_optab, temp, mask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = force_reg (mode, temp); + } + + /* Now logical-or VALUE into OP0, unless it is zero. */ + + if (! all_zero) + { + temp = expand_binop (mode, ior_optab, temp, value, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = force_reg (mode, temp); + } + + if (op0 != temp) + { + op0 = copy_rtx (op0); + emit_move_insn (op0, temp); + } +} + +/* Store a bit field that is split across multiple accessible memory objects. + + OP0 is the REG, SUBREG or MEM rtx for the first of the objects. + BITSIZE is the field width; BITPOS the position of its first bit + (within the word). + VALUE is the value to store, which has mode VALUE_MODE. + If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is + a BLKmode MEM. + + If REVERSE is true, the store is to be done in reverse order. + + This does not yet handle fields wider than BITS_PER_WORD. */ + +static void +store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitpos, + poly_uint64 bitregion_start, poly_uint64 bitregion_end, + rtx value, scalar_int_mode value_mode, bool reverse) +{ + unsigned int unit, total_bits, bitsdone = 0; + + /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that + much at a time. */ + if (REG_P (op0) || GET_CODE (op0) == SUBREG) + unit = BITS_PER_WORD; + else + unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD); + + /* If OP0 is a memory with a mode, then UNIT must not be larger than + OP0's mode as well. Otherwise, store_fixed_bit_field will call us + again, and we will mutually recurse forever. */ + if (MEM_P (op0) && op0_mode.exists ()) + unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ())); + + /* If VALUE is a constant other than a CONST_INT, get it into a register in + WORD_MODE. If we can do this using gen_lowpart_common, do so. Note + that VALUE might be a floating-point constant. */ + if (CONSTANT_P (value) && !CONST_INT_P (value)) + { + rtx word = gen_lowpart_common (word_mode, value); + + if (word && (value != word)) + value = word; + else + value = gen_lowpart_common (word_mode, force_reg (value_mode, value)); + value_mode = word_mode; + } + + total_bits = GET_MODE_BITSIZE (value_mode); + + while (bitsdone < bitsize) + { + unsigned HOST_WIDE_INT thissize; + unsigned HOST_WIDE_INT thispos; + unsigned HOST_WIDE_INT offset; + rtx part; + + offset = (bitpos + bitsdone) / unit; + thispos = (bitpos + bitsdone) % unit; + + /* When region of bytes we can touch is restricted, decrease + UNIT close to the end of the region as needed. If op0 is a REG + or SUBREG of REG, don't do this, as there can't be data races + on a register and we can expand shorter code in some cases. */ + if (maybe_ne (bitregion_end, 0U) + && unit > BITS_PER_UNIT + && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1) + && !REG_P (op0) + && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0)))) + { + unit = unit / 2; + continue; + } + + /* THISSIZE must not overrun a word boundary. Otherwise, + store_fixed_bit_field will call us again, and we will mutually + recurse forever. */ + thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); + thissize = MIN (thissize, unit - thispos); + + if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) + { + /* Fetch successively less significant portions. */ + if (CONST_INT_P (value)) + part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) + >> (bitsize - bitsdone - thissize)) + & ((HOST_WIDE_INT_1 << thissize) - 1)); + /* Likewise, but the source is little-endian. */ + else if (reverse) + part = extract_fixed_bit_field (word_mode, value, value_mode, + thissize, + bitsize - bitsdone - thissize, + NULL_RTX, 1, false); + else + /* The args are chosen so that the last part includes the + lsb. Give extract_bit_field the value it needs (with + endianness compensation) to fetch the piece we want. */ + part = extract_fixed_bit_field (word_mode, value, value_mode, + thissize, + total_bits - bitsize + bitsdone, + NULL_RTX, 1, false); + } + else + { + /* Fetch successively more significant portions. */ + if (CONST_INT_P (value)) + part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) + >> bitsdone) + & ((HOST_WIDE_INT_1 << thissize) - 1)); + /* Likewise, but the source is big-endian. */ + else if (reverse) + part = extract_fixed_bit_field (word_mode, value, value_mode, + thissize, + total_bits - bitsdone - thissize, + NULL_RTX, 1, false); + else + part = extract_fixed_bit_field (word_mode, value, value_mode, + thissize, bitsdone, NULL_RTX, + 1, false); + } + + /* If OP0 is a register, then handle OFFSET here. */ + rtx op0_piece = op0; + opt_scalar_int_mode op0_piece_mode = op0_mode; + if (SUBREG_P (op0) || REG_P (op0)) + { + scalar_int_mode imode; + if (op0_mode.exists (&imode) + && GET_MODE_SIZE (imode) < UNITS_PER_WORD) + { + if (offset) + op0_piece = const0_rtx; + } + else + { + op0_piece = operand_subword_force (op0, + offset * unit / BITS_PER_WORD, + GET_MODE (op0)); + op0_piece_mode = word_mode; + } + offset &= BITS_PER_WORD / unit - 1; + } + + /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx, + it is just an out-of-bounds access. Ignore it. */ + if (op0_piece != const0_rtx) + store_fixed_bit_field (op0_piece, op0_piece_mode, thissize, + offset * unit + thispos, bitregion_start, + bitregion_end, part, word_mode, reverse); + bitsdone += thissize; + } +} + +/* A subroutine of extract_bit_field_1 that converts return value X + to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments + to extract_bit_field. */ + +static rtx +convert_extracted_bit_field (rtx x, machine_mode mode, + machine_mode tmode, bool unsignedp) +{ + if (GET_MODE (x) == tmode || GET_MODE (x) == mode) + return x; + + /* If the x mode is not a scalar integral, first convert to the + integer mode of that size and then access it as a floating-point + value via a SUBREG. */ + if (!SCALAR_INT_MODE_P (tmode)) + { + scalar_int_mode int_mode = int_mode_for_mode (tmode).require (); + x = convert_to_mode (int_mode, x, unsignedp); + x = force_reg (int_mode, x); + return gen_lowpart (tmode, x); + } + + return convert_to_mode (tmode, x, unsignedp); +} + +/* Try to use an ext(z)v pattern to extract a field from OP0. + Return the extracted value on success, otherwise return null. + EXTV describes the extraction instruction to use. If OP0_MODE + is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM. + The other arguments are as for extract_bit_field. */ + +static rtx +extract_bit_field_using_extv (const extraction_insn *extv, rtx op0, + opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, + int unsignedp, rtx target, + machine_mode mode, machine_mode tmode) +{ + class expand_operand ops[4]; + rtx spec_target = target; + rtx spec_target_subreg = 0; + scalar_int_mode ext_mode = extv->field_mode; + unsigned unit = GET_MODE_BITSIZE (ext_mode); + + if (bitsize == 0 || unit < bitsize) + return NULL_RTX; + + if (MEM_P (op0)) + /* Get a reference to the first byte of the field. */ + op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum, + &bitnum); + else + { + /* Convert from counting within OP0 to counting in EXT_MODE. */ + if (BYTES_BIG_ENDIAN) + bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ()); + + /* If op0 is a register, we need it in EXT_MODE to make it + acceptable to the format of ext(z)v. */ + if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode) + return NULL_RTX; + if (REG_P (op0) && op0_mode.require () != ext_mode) + op0 = gen_lowpart_SUBREG (ext_mode, op0); + } + + /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count + "backwards" from the size of the unit we are extracting from. + Otherwise, we count bits from the most significant on a + BYTES/BITS_BIG_ENDIAN machine. */ + + if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) + bitnum = unit - bitsize - bitnum; + + if (target == 0) + target = spec_target = gen_reg_rtx (tmode); + + if (GET_MODE (target) != ext_mode) + { + rtx temp; + /* Don't use LHS paradoxical subreg if explicit truncation is needed + between the mode of the extraction (word_mode) and the target + mode. Instead, create a temporary and use convert_move to set + the target. */ + if (REG_P (target) + && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode) + && (temp = gen_lowpart_if_possible (ext_mode, target))) + { + target = temp; + if (partial_subreg_p (GET_MODE (spec_target), ext_mode)) + spec_target_subreg = target; + } + else + target = gen_reg_rtx (ext_mode); + } + + create_output_operand (&ops[0], target, ext_mode); + create_fixed_operand (&ops[1], op0); + create_integer_operand (&ops[2], bitsize); + create_integer_operand (&ops[3], bitnum); + if (maybe_expand_insn (extv->icode, 4, ops)) + { + target = ops[0].value; + if (target == spec_target) + return target; + if (target == spec_target_subreg) + return spec_target; + return convert_extracted_bit_field (target, mode, tmode, unsignedp); + } + return NULL_RTX; +} + +/* See whether it would be valid to extract the part of OP0 described + by BITNUM and BITSIZE into a value of mode MODE using a subreg + operation. Return the subreg if so, otherwise return null. */ + +static rtx +extract_bit_field_as_subreg (machine_mode mode, rtx op0, + poly_uint64 bitsize, poly_uint64 bitnum) +{ + poly_uint64 bytenum; + if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum) + && known_eq (bitsize, GET_MODE_BITSIZE (mode)) + && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0)) + && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0))) + return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum); + return NULL_RTX; +} + +/* A subroutine of extract_bit_field, with the same arguments. + If FALLBACK_P is true, fall back to extract_fixed_bit_field + if we can find no other means of implementing the operation. + if FALLBACK_P is false, return NULL instead. */ + +static rtx +extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, + int unsignedp, rtx target, machine_mode mode, + machine_mode tmode, bool reverse, bool fallback_p, + rtx *alt_rtl) +{ + rtx op0 = str_rtx; + machine_mode mode1; + + if (tmode == VOIDmode) + tmode = mode; + + while (GET_CODE (op0) == SUBREG) + { + bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT; + op0 = SUBREG_REG (op0); + } + + /* If we have an out-of-bounds access to a register, just return an + uninitialized register of the required mode. This can occur if the + source code contains an out-of-bounds access to a small array. */ + if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0)))) + return gen_reg_rtx (tmode); + + if (REG_P (op0) + && mode == GET_MODE (op0) + && known_eq (bitnum, 0U) + && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))) + { + if (reverse) + op0 = flip_storage_order (mode, op0); + /* We're trying to extract a full register from itself. */ + return op0; + } + + /* First try to check for vector from vector extractions. */ + if (VECTOR_MODE_P (GET_MODE (op0)) + && !MEM_P (op0) + && VECTOR_MODE_P (tmode) + && known_eq (bitsize, GET_MODE_BITSIZE (tmode)) + && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode))) + { + machine_mode new_mode = GET_MODE (op0); + if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)) + { + scalar_mode inner_mode = GET_MODE_INNER (tmode); + poly_uint64 nunits; + if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)), + GET_MODE_UNIT_BITSIZE (tmode), &nunits) + || !related_vector_mode (tmode, inner_mode, + nunits).exists (&new_mode) + || maybe_ne (GET_MODE_SIZE (new_mode), + GET_MODE_SIZE (GET_MODE (op0)))) + new_mode = VOIDmode; + } + poly_uint64 pos; + if (new_mode != VOIDmode + && (convert_optab_handler (vec_extract_optab, new_mode, tmode) + != CODE_FOR_nothing) + && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos)) + { + class expand_operand ops[3]; + machine_mode outermode = new_mode; + machine_mode innermode = tmode; + enum insn_code icode + = convert_optab_handler (vec_extract_optab, outermode, innermode); + + if (new_mode != GET_MODE (op0)) + op0 = gen_lowpart (new_mode, op0); + create_output_operand (&ops[0], target, innermode); + ops[0].target = 1; + create_input_operand (&ops[1], op0, outermode); + create_integer_operand (&ops[2], pos); + if (maybe_expand_insn (icode, 3, ops)) + { + if (alt_rtl && ops[0].target) + *alt_rtl = target; + target = ops[0].value; + if (GET_MODE (target) != mode) + return gen_lowpart (tmode, target); + return target; + } + } + } + + /* See if we can get a better vector mode before extracting. */ + if (VECTOR_MODE_P (GET_MODE (op0)) + && !MEM_P (op0) + && GET_MODE_INNER (GET_MODE (op0)) != tmode) + { + machine_mode new_mode; + + if (GET_MODE_CLASS (tmode) == MODE_FLOAT) + new_mode = MIN_MODE_VECTOR_FLOAT; + else if (GET_MODE_CLASS (tmode) == MODE_FRACT) + new_mode = MIN_MODE_VECTOR_FRACT; + else if (GET_MODE_CLASS (tmode) == MODE_UFRACT) + new_mode = MIN_MODE_VECTOR_UFRACT; + else if (GET_MODE_CLASS (tmode) == MODE_ACCUM) + new_mode = MIN_MODE_VECTOR_ACCUM; + else if (GET_MODE_CLASS (tmode) == MODE_UACCUM) + new_mode = MIN_MODE_VECTOR_UACCUM; + else + new_mode = MIN_MODE_VECTOR_INT; + + FOR_EACH_MODE_FROM (new_mode, new_mode) + if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0))) + && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode)) + && targetm.vector_mode_supported_p (new_mode) + && targetm.modes_tieable_p (GET_MODE (op0), new_mode)) + break; + if (new_mode != VOIDmode) + op0 = gen_lowpart (new_mode, op0); + } + + /* Use vec_extract patterns for extracting parts of vectors whenever + available. If that fails, see whether the current modes and bitregion + give a natural subreg. */ + machine_mode outermode = GET_MODE (op0); + if (VECTOR_MODE_P (outermode) && !MEM_P (op0)) + { + scalar_mode innermode = GET_MODE_INNER (outermode); + enum insn_code icode + = convert_optab_handler (vec_extract_optab, outermode, innermode); + poly_uint64 pos; + if (icode != CODE_FOR_nothing + && known_eq (bitsize, GET_MODE_BITSIZE (innermode)) + && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos)) + { + class expand_operand ops[3]; + + create_output_operand (&ops[0], target, innermode); + ops[0].target = 1; + create_input_operand (&ops[1], op0, outermode); + create_integer_operand (&ops[2], pos); + if (maybe_expand_insn (icode, 3, ops)) + { + if (alt_rtl && ops[0].target) + *alt_rtl = target; + target = ops[0].value; + if (GET_MODE (target) != mode) + return gen_lowpart (tmode, target); + return target; + } + } + /* Using subregs is useful if we're extracting one register vector + from a multi-register vector. extract_bit_field_as_subreg checks + for valid bitsize and bitnum, so we don't need to do that here. */ + if (VECTOR_MODE_P (mode)) + { + rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum); + if (sub) + return sub; + } + } + + /* Make sure we are playing with integral modes. Pun with subregs + if we aren't. */ + opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0)); + scalar_int_mode imode; + if (!op0_mode.exists (&imode) || imode != GET_MODE (op0)) + { + if (MEM_P (op0)) + op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (), + 0, MEM_SIZE (op0)); + else if (op0_mode.exists (&imode)) + { + op0 = gen_lowpart (imode, op0); + + /* If we got a SUBREG, force it into a register since we + aren't going to be able to do another SUBREG on it. */ + if (GET_CODE (op0) == SUBREG) + op0 = force_reg (imode, op0); + } + else + { + poly_int64 size = GET_MODE_SIZE (GET_MODE (op0)); + rtx mem = assign_stack_temp (GET_MODE (op0), size); + emit_move_insn (mem, op0); + op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size); + } + } + + /* ??? We currently assume TARGET is at least as big as BITSIZE. + If that's wrong, the solution is to test for it and set TARGET to 0 + if needed. */ + + /* Get the mode of the field to use for atomic access or subreg + conversion. */ + if (!SCALAR_INT_MODE_P (tmode) + || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1)) + mode1 = mode; + gcc_assert (mode1 != BLKmode); + + /* Extraction of a full MODE1 value can be done with a subreg as long + as the least significant bit of the value is the least significant + bit of either OP0 or a word of OP0. */ + if (!MEM_P (op0) && !reverse) + { + rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum); + if (sub) + return convert_extracted_bit_field (sub, mode, tmode, unsignedp); + } + + /* Extraction of a full MODE1 value can be done with a load as long as + the field is on a byte boundary and is sufficiently aligned. */ + poly_uint64 bytenum; + if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum)) + { + op0 = adjust_bitfield_address (op0, mode1, bytenum); + if (reverse) + op0 = flip_storage_order (mode1, op0); + return convert_extracted_bit_field (op0, mode, tmode, unsignedp); + } + + /* If we have a memory source and a non-constant bit offset, restrict + the memory to the referenced bytes. This is a worst-case fallback + but is useful for things like vector booleans. */ + if (MEM_P (op0) && !bitnum.is_constant ()) + { + bytenum = bits_to_bytes_round_down (bitnum); + bitnum = num_trailing_bits (bitnum); + poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize); + op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize); + op0_mode = opt_scalar_int_mode (); + } + + /* It's possible we'll need to handle other cases here for + polynomial bitnum and bitsize. */ + + /* From here on we need to be looking at a fixed-size insertion. */ + return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (), + bitnum.to_constant (), unsignedp, + target, mode, tmode, reverse, fallback_p); +} + +/* Subroutine of extract_bit_field_1, with the same arguments, except + that BITSIZE and BITNUM are constant. Handle cases specific to + integral modes. If OP0_MODE is defined, it is the mode of OP0, + otherwise OP0 is a BLKmode MEM. */ + +static rtx +extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, int unsignedp, + rtx target, machine_mode mode, machine_mode tmode, + bool reverse, bool fallback_p) +{ + /* Handle fields bigger than a word. */ + + if (bitsize > BITS_PER_WORD) + { + /* Here we transfer the words of the field + in the order least significant first. + This is because the most significant word is the one which may + be less than full. */ + + const bool backwards = WORDS_BIG_ENDIAN; + unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; + unsigned int i; + rtx_insn *last; + + if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target)) + target = gen_reg_rtx (mode); + + /* In case we're about to clobber a base register or something + (see gcc.c-torture/execute/20040625-1.c). */ + if (reg_mentioned_p (target, op0)) + target = gen_reg_rtx (mode); + + /* Indicate for flow that the entire target reg is being set. */ + emit_clobber (target); + + /* The mode must be fixed-size, since extract_bit_field_1 handles + extractions from variable-sized objects before calling this + function. */ + unsigned int target_size + = GET_MODE_SIZE (GET_MODE (target)).to_constant (); + last = get_last_insn (); + for (i = 0; i < nwords; i++) + { + /* If I is 0, use the low-order word in both field and target; + if I is 1, use the next to lowest word; and so on. */ + /* Word number in TARGET to use. */ + unsigned int wordnum + = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i); + /* Offset from start of field in OP0. */ + unsigned int bit_offset = (backwards ^ reverse + ? MAX ((int) bitsize - ((int) i + 1) + * BITS_PER_WORD, + 0) + : (int) i * BITS_PER_WORD); + rtx target_part = operand_subword (target, wordnum, 1, VOIDmode); + rtx result_part + = extract_bit_field_1 (op0, MIN (BITS_PER_WORD, + bitsize - i * BITS_PER_WORD), + bitnum + bit_offset, 1, target_part, + mode, word_mode, reverse, fallback_p, NULL); + + gcc_assert (target_part); + if (!result_part) + { + delete_insns_since (last); + return NULL; + } + + if (result_part != target_part) + emit_move_insn (target_part, result_part); + } + + if (unsignedp) + { + /* Unless we've filled TARGET, the upper regs in a multi-reg value + need to be zero'd out. */ + if (target_size > nwords * UNITS_PER_WORD) + { + unsigned int i, total_words; + + total_words = target_size / UNITS_PER_WORD; + for (i = nwords; i < total_words; i++) + emit_move_insn + (operand_subword (target, + backwards ? total_words - i - 1 : i, + 1, VOIDmode), + const0_rtx); + } + return target; + } + + /* Signed bit field: sign-extend with two arithmetic shifts. */ + target = expand_shift (LSHIFT_EXPR, mode, target, + GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0); + return expand_shift (RSHIFT_EXPR, mode, target, + GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0); + } + + /* If OP0 is a multi-word register, narrow it to the affected word. + If the region spans two words, defer to extract_split_bit_field. */ + if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD) + { + if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD) + { + if (!fallback_p) + return NULL_RTX; + target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum, + unsignedp, reverse); + return convert_extracted_bit_field (target, mode, tmode, unsignedp); + } + op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (), + bitnum / BITS_PER_WORD * UNITS_PER_WORD); + op0_mode = word_mode; + bitnum %= BITS_PER_WORD; + } + + /* From here on we know the desired field is smaller than a word. + If OP0 is a register, it too fits within a word. */ + enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv; + extraction_insn extv; + if (!MEM_P (op0) + && !reverse + /* ??? We could limit the structure size to the part of OP0 that + contains the field, with appropriate checks for endianness + and TARGET_TRULY_NOOP_TRUNCATION. */ + && get_best_reg_extraction_insn (&extv, pattern, + GET_MODE_BITSIZE (op0_mode.require ()), + tmode)) + { + rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode, + bitsize, bitnum, + unsignedp, target, mode, + tmode); + if (result) + return result; + } + + /* If OP0 is a memory, try copying it to a register and seeing if a + cheap register alternative is available. */ + if (MEM_P (op0) & !reverse) + { + if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum, + tmode)) + { + rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode, + bitsize, bitnum, + unsignedp, target, mode, + tmode); + if (result) + return result; + } + + rtx_insn *last = get_last_insn (); + + /* Try loading part of OP0 into a register and extracting the + bitfield from that. */ + unsigned HOST_WIDE_INT bitpos; + rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum, + 0, 0, tmode, &bitpos); + if (xop0) + { + xop0 = copy_to_reg (xop0); + rtx result = extract_bit_field_1 (xop0, bitsize, bitpos, + unsignedp, target, + mode, tmode, reverse, false, NULL); + if (result) + return result; + delete_insns_since (last); + } + } + + if (!fallback_p) + return NULL; + + /* Find a correspondingly-sized integer field, so we can apply + shifts and masks to it. */ + scalar_int_mode int_mode; + if (!int_mode_for_mode (tmode).exists (&int_mode)) + /* If this fails, we should probably push op0 out to memory and then + do a load. */ + int_mode = int_mode_for_mode (mode).require (); + + target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize, + bitnum, target, unsignedp, reverse); + + /* Complex values must be reversed piecewise, so we need to undo the global + reversal, convert to the complex mode and reverse again. */ + if (reverse && COMPLEX_MODE_P (tmode)) + { + target = flip_storage_order (int_mode, target); + target = convert_extracted_bit_field (target, mode, tmode, unsignedp); + target = flip_storage_order (tmode, target); + } + else + target = convert_extracted_bit_field (target, mode, tmode, unsignedp); + + return target; +} + +/* Generate code to extract a byte-field from STR_RTX + containing BITSIZE bits, starting at BITNUM, + and put it in TARGET if possible (if TARGET is nonzero). + Regardless of TARGET, we return the rtx for where the value is placed. + + STR_RTX is the structure containing the byte (a REG or MEM). + UNSIGNEDP is nonzero if this is an unsigned bit field. + MODE is the natural mode of the field value once extracted. + TMODE is the mode the caller would like the value to have; + but the value may be returned with type MODE instead. + + If REVERSE is true, the extraction is to be done in reverse order. + + If a TARGET is specified and we can store in it at no extra cost, + we do so, and return TARGET. + Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred + if they are equally easy. + + If the result can be stored at TARGET, and ALT_RTL is non-NULL, + then *ALT_RTL is set to TARGET (before legitimziation). */ + +rtx +extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, + int unsignedp, rtx target, machine_mode mode, + machine_mode tmode, bool reverse, rtx *alt_rtl) +{ + machine_mode mode1; + + /* Handle -fstrict-volatile-bitfields in the cases where it applies. */ + if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0)) + mode1 = GET_MODE (str_rtx); + else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0)) + mode1 = GET_MODE (target); + else + mode1 = tmode; + + unsigned HOST_WIDE_INT ibitsize, ibitnum; + scalar_int_mode int_mode; + if (bitsize.is_constant (&ibitsize) + && bitnum.is_constant (&ibitnum) + && is_a <scalar_int_mode> (mode1, &int_mode) + && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, + int_mode, 0, 0)) + { + /* Extraction of a full INT_MODE value can be done with a simple load. + We know here that the field can be accessed with one single + instruction. For targets that support unaligned memory, + an unaligned access may be necessary. */ + if (ibitsize == GET_MODE_BITSIZE (int_mode)) + { + rtx result = adjust_bitfield_address (str_rtx, int_mode, + ibitnum / BITS_PER_UNIT); + if (reverse) + result = flip_storage_order (int_mode, result); + gcc_assert (ibitnum % BITS_PER_UNIT == 0); + return convert_extracted_bit_field (result, mode, tmode, unsignedp); + } + + str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum, + &ibitnum); + gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode)); + str_rtx = copy_to_reg (str_rtx); + return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp, + target, mode, tmode, reverse, true, alt_rtl); + } + + return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, + target, mode, tmode, reverse, true, alt_rtl); +} + +/* Use shifts and boolean operations to extract a field of BITSIZE bits + from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0, + otherwise OP0 is a BLKmode MEM. + + UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value). + If REVERSE is true, the extraction is to be done in reverse order. + + If TARGET is nonzero, attempts to store the value there + and return TARGET, but this is not guaranteed. + If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */ + +static rtx +extract_fixed_bit_field (machine_mode tmode, rtx op0, + opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, rtx target, + int unsignedp, bool reverse) +{ + scalar_int_mode mode; + if (MEM_P (op0)) + { + if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), + BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode)) + /* The only way this should occur is if the field spans word + boundaries. */ + return extract_split_bit_field (op0, op0_mode, bitsize, bitnum, + unsignedp, reverse); + + op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum); + } + else + mode = op0_mode.require (); + + return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum, + target, unsignedp, reverse); +} + +/* Helper function for extract_fixed_bit_field, extracts + the bit field always using MODE, which is the mode of OP0. + The other arguments are as for extract_fixed_bit_field. */ + +static rtx +extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitnum, rtx target, + int unsignedp, bool reverse) +{ + /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode) + for invalid input, such as extract equivalent of f5 from + gcc.dg/pr48335-2.c. */ + + if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) + /* BITNUM is the distance between our msb and that of OP0. + Convert it to the distance from the lsb. */ + bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum; + + /* Now BITNUM is always the distance between the field's lsb and that of OP0. + We have reduced the big-endian case to the little-endian case. */ + if (reverse) + op0 = flip_storage_order (mode, op0); + + if (unsignedp) + { + if (bitnum) + { + /* If the field does not already start at the lsb, + shift it so it does. */ + /* Maybe propagate the target for the shift. */ + rtx subtarget = (target != 0 && REG_P (target) ? target : 0); + if (tmode != mode) + subtarget = 0; + op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1); + } + /* Convert the value to the desired mode. TMODE must also be a + scalar integer for this conversion to make sense, since we + shouldn't reinterpret the bits. */ + scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode); + if (mode != new_mode) + op0 = convert_to_mode (new_mode, op0, 1); + + /* Unless the msb of the field used to be the msb when we shifted, + mask out the upper bits. */ + + if (GET_MODE_BITSIZE (mode) != bitnum + bitsize) + return expand_binop (new_mode, and_optab, op0, + mask_rtx (new_mode, 0, bitsize, 0), + target, 1, OPTAB_LIB_WIDEN); + return op0; + } + + /* To extract a signed bit-field, first shift its msb to the msb of the word, + then arithmetic-shift its lsb to the lsb of the word. */ + op0 = force_reg (mode, op0); + + /* Find the narrowest integer mode that contains the field. */ + + opt_scalar_int_mode mode_iter; + FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) + if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum) + break; + + mode = mode_iter.require (); + op0 = convert_to_mode (mode, op0, 0); + + if (mode != tmode) + target = 0; + + if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum)) + { + int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum); + /* Maybe propagate the target for the shift. */ + rtx subtarget = (target != 0 && REG_P (target) ? target : 0); + op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1); + } + + return expand_shift (RSHIFT_EXPR, mode, op0, + GET_MODE_BITSIZE (mode) - bitsize, target, 0); +} + +/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value + VALUE << BITPOS. */ + +static rtx +lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value, + int bitpos) +{ + return immed_wide_int_const (wi::lshift (value, bitpos), mode); +} + +/* Extract a bit field that is split across two words + and return an RTX for the result. + + OP0 is the REG, SUBREG or MEM rtx for the first of the two words. + BITSIZE is the field width; BITPOS, position of its first bit, in the word. + UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. + If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is + a BLKmode MEM. + + If REVERSE is true, the extraction is to be done in reverse order. */ + +static rtx +extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode, + unsigned HOST_WIDE_INT bitsize, + unsigned HOST_WIDE_INT bitpos, int unsignedp, + bool reverse) +{ + unsigned int unit; + unsigned int bitsdone = 0; + rtx result = NULL_RTX; + int first = 1; + + /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that + much at a time. */ + if (REG_P (op0) || GET_CODE (op0) == SUBREG) + unit = BITS_PER_WORD; + else + unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD); + + while (bitsdone < bitsize) + { + unsigned HOST_WIDE_INT thissize; + rtx part; + unsigned HOST_WIDE_INT thispos; + unsigned HOST_WIDE_INT offset; + + offset = (bitpos + bitsdone) / unit; + thispos = (bitpos + bitsdone) % unit; + + /* THISSIZE must not overrun a word boundary. Otherwise, + extract_fixed_bit_field will call us again, and we will mutually + recurse forever. */ + thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); + thissize = MIN (thissize, unit - thispos); + + /* If OP0 is a register, then handle OFFSET here. */ + rtx op0_piece = op0; + opt_scalar_int_mode op0_piece_mode = op0_mode; + if (SUBREG_P (op0) || REG_P (op0)) + { + op0_piece = operand_subword_force (op0, offset, op0_mode.require ()); + op0_piece_mode = word_mode; + offset = 0; + } + + /* Extract the parts in bit-counting order, + whose meaning is determined by BYTES_PER_UNIT. + OFFSET is in UNITs, and UNIT is in bits. */ + part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode, + thissize, offset * unit + thispos, + 0, 1, reverse); + bitsdone += thissize; + + /* Shift this part into place for the result. */ + if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) + { + if (bitsize != bitsdone) + part = expand_shift (LSHIFT_EXPR, word_mode, part, + bitsize - bitsdone, 0, 1); + } + else + { + if (bitsdone != thissize) + part = expand_shift (LSHIFT_EXPR, word_mode, part, + bitsdone - thissize, 0, 1); + } + + if (first) + result = part; + else + /* Combine the parts with bitwise or. This works + because we extracted each part as an unsigned bit field. */ + result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1, + OPTAB_LIB_WIDEN); + + first = 0; + } + + /* Unsigned bit field: we are done. */ + if (unsignedp) + return result; + /* Signed bit field: sign-extend with two arithmetic shifts. */ + result = expand_shift (LSHIFT_EXPR, word_mode, result, + BITS_PER_WORD - bitsize, NULL_RTX, 0); + return expand_shift (RSHIFT_EXPR, word_mode, result, + BITS_PER_WORD - bitsize, NULL_RTX, 0); +} + +/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving + the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than + MODE, fill the upper bits with zeros. Fail if the layout of either + mode is unknown (as for CC modes) or if the extraction would involve + unprofitable mode punning. Return the value on success, otherwise + return null. + + This is different from gen_lowpart* in these respects: + + - the returned value must always be considered an rvalue + + - when MODE is wider than SRC_MODE, the extraction involves + a zero extension + + - when MODE is smaller than SRC_MODE, the extraction involves + a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION). + + In other words, this routine performs a computation, whereas the + gen_lowpart* routines are conceptually lvalue or rvalue subreg + operations. */ + +rtx +extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src) +{ + scalar_int_mode int_mode, src_int_mode; + + if (mode == src_mode) + return src; + + if (CONSTANT_P (src)) + { + /* simplify_gen_subreg can't be used here, as if simplify_subreg + fails, it will happily create (subreg (symbol_ref)) or similar + invalid SUBREGs. */ + poly_uint64 byte = subreg_lowpart_offset (mode, src_mode); + rtx ret = simplify_subreg (mode, src, src_mode, byte); + if (ret) + return ret; + + if (GET_MODE (src) == VOIDmode + || !validate_subreg (mode, src_mode, src, byte)) + return NULL_RTX; + + src = force_reg (GET_MODE (src), src); + return gen_rtx_SUBREG (mode, src, byte); + } + + if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC) + return NULL_RTX; + + if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode)) + && targetm.modes_tieable_p (mode, src_mode)) + { + rtx x = gen_lowpart_common (mode, src); + if (x) + return x; + } + + if (!int_mode_for_mode (src_mode).exists (&src_int_mode) + || !int_mode_for_mode (mode).exists (&int_mode)) + return NULL_RTX; + + if (!targetm.modes_tieable_p (src_int_mode, src_mode)) + return NULL_RTX; + if (!targetm.modes_tieable_p (int_mode, mode)) + return NULL_RTX; + + src = gen_lowpart (src_int_mode, src); + if (!validate_subreg (int_mode, src_int_mode, src, + subreg_lowpart_offset (int_mode, src_int_mode))) + return NULL_RTX; + + src = convert_modes (int_mode, src_int_mode, src, true); + src = gen_lowpart (mode, src); + return src; +} + +/* Add INC into TARGET. */ + +void +expand_inc (rtx target, rtx inc) +{ + rtx value = expand_binop (GET_MODE (target), add_optab, + target, inc, + target, 0, OPTAB_LIB_WIDEN); + if (value != target) + emit_move_insn (target, value); +} + +/* Subtract DEC from TARGET. */ + +void +expand_dec (rtx target, rtx dec) +{ + rtx value = expand_binop (GET_MODE (target), sub_optab, + target, dec, + target, 0, OPTAB_LIB_WIDEN); + if (value != target) + emit_move_insn (target, value); +} + +/* Output a shift instruction for expression code CODE, + with SHIFTED being the rtx for the value to shift, + and AMOUNT the rtx for the amount to shift by. + Store the result in the rtx TARGET, if that is convenient. + If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. + Return the rtx for where the value is. + If that cannot be done, abort the compilation unless MAY_FAIL is true, + in which case 0 is returned. */ + +static rtx +expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted, + rtx amount, rtx target, int unsignedp, bool may_fail = false) +{ + rtx op1, temp = 0; + int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR); + int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR); + optab lshift_optab = ashl_optab; + optab rshift_arith_optab = ashr_optab; + optab rshift_uns_optab = lshr_optab; + optab lrotate_optab = rotl_optab; + optab rrotate_optab = rotr_optab; + machine_mode op1_mode; + scalar_mode scalar_mode = GET_MODE_INNER (mode); + int attempt; + bool speed = optimize_insn_for_speed_p (); + + op1 = amount; + op1_mode = GET_MODE (op1); + + /* Determine whether the shift/rotate amount is a vector, or scalar. If the + shift amount is a vector, use the vector/vector shift patterns. */ + if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode)) + { + lshift_optab = vashl_optab; + rshift_arith_optab = vashr_optab; + rshift_uns_optab = vlshr_optab; + lrotate_optab = vrotl_optab; + rrotate_optab = vrotr_optab; + } + + /* Previously detected shift-counts computed by NEGATE_EXPR + and shifted in the other direction; but that does not work + on all machines. */ + + if (SHIFT_COUNT_TRUNCATED) + { + if (CONST_INT_P (op1) + && ((unsigned HOST_WIDE_INT) INTVAL (op1) >= + (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode))) + op1 = gen_int_shift_amount (mode, + (unsigned HOST_WIDE_INT) INTVAL (op1) + % GET_MODE_BITSIZE (scalar_mode)); + else if (GET_CODE (op1) == SUBREG + && subreg_lowpart_p (op1) + && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1))) + && SCALAR_INT_MODE_P (GET_MODE (op1))) + op1 = SUBREG_REG (op1); + } + + /* Canonicalize rotates by constant amount. If op1 is bitsize / 2, + prefer left rotation, if op1 is from bitsize / 2 + 1 to + bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1 + amount instead. */ + if (rotate + && CONST_INT_P (op1) + && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left, + GET_MODE_BITSIZE (scalar_mode) - 1)) + { + op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode) + - INTVAL (op1))); + left = !left; + code = left ? LROTATE_EXPR : RROTATE_EXPR; + } + + /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi. + Note that this is not the case for bigger values. For instance a rotation + of 0x01020304 by 16 bits gives 0x03040102 which is different from + 0x04030201 (bswapsi). */ + if (rotate + && CONST_INT_P (op1) + && INTVAL (op1) == BITS_PER_UNIT + && GET_MODE_SIZE (scalar_mode) == 2 + && optab_handler (bswap_optab, mode) != CODE_FOR_nothing) + return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp); + + if (op1 == const0_rtx) + return shifted; + + /* Check whether its cheaper to implement a left shift by a constant + bit count by a sequence of additions. */ + if (code == LSHIFT_EXPR + && CONST_INT_P (op1) + && INTVAL (op1) > 0 + && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode) + && INTVAL (op1) < MAX_BITS_PER_WORD + && (shift_cost (speed, mode, INTVAL (op1)) + > INTVAL (op1) * add_cost (speed, mode)) + && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST) + { + int i; + for (i = 0; i < INTVAL (op1); i++) + { + temp = force_reg (mode, shifted); + shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX, + unsignedp, OPTAB_LIB_WIDEN); + } + return shifted; + } + + for (attempt = 0; temp == 0 && attempt < 3; attempt++) + { + enum optab_methods methods; + + if (attempt == 0) + methods = OPTAB_DIRECT; + else if (attempt == 1) + methods = OPTAB_WIDEN; + else + methods = OPTAB_LIB_WIDEN; + + if (rotate) + { + /* Widening does not work for rotation. */ + if (methods == OPTAB_WIDEN) + continue; + else if (methods == OPTAB_LIB_WIDEN) + { + /* If we have been unable to open-code this by a rotation, + do it as the IOR of two shifts. I.e., to rotate A + by N bits, compute + (A << N) | ((unsigned) A >> ((-N) & (C - 1))) + where C is the bitsize of A. + + It is theoretically possible that the target machine might + not be able to perform either shift and hence we would + be making two libcalls rather than just the one for the + shift (similarly if IOR could not be done). We will allow + this extremely unlikely lossage to avoid complicating the + code below. */ + + rtx subtarget = target == shifted ? 0 : target; + rtx new_amount, other_amount; + rtx temp1; + + new_amount = op1; + if (op1 == const0_rtx) + return shifted; + else if (CONST_INT_P (op1)) + other_amount = gen_int_shift_amount + (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1)); + else + { + other_amount + = simplify_gen_unary (NEG, GET_MODE (op1), + op1, GET_MODE (op1)); + HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1; + other_amount + = simplify_gen_binary (AND, GET_MODE (op1), other_amount, + gen_int_mode (mask, GET_MODE (op1))); + } + + shifted = force_reg (mode, shifted); + + temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR, + mode, shifted, new_amount, 0, 1); + temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR, + mode, shifted, other_amount, + subtarget, 1); + return expand_binop (mode, ior_optab, temp, temp1, target, + unsignedp, methods); + } + + temp = expand_binop (mode, + left ? lrotate_optab : rrotate_optab, + shifted, op1, target, unsignedp, methods); + } + else if (unsignedp) + temp = expand_binop (mode, + left ? lshift_optab : rshift_uns_optab, + shifted, op1, target, unsignedp, methods); + + /* Do arithmetic shifts. + Also, if we are going to widen the operand, we can just as well + use an arithmetic right-shift instead of a logical one. */ + if (temp == 0 && ! rotate + && (! unsignedp || (! left && methods == OPTAB_WIDEN))) + { + enum optab_methods methods1 = methods; + + /* If trying to widen a log shift to an arithmetic shift, + don't accept an arithmetic shift of the same size. */ + if (unsignedp) + methods1 = OPTAB_MUST_WIDEN; + + /* Arithmetic shift */ + + temp = expand_binop (mode, + left ? lshift_optab : rshift_arith_optab, + shifted, op1, target, unsignedp, methods1); + } + + /* We used to try extzv here for logical right shifts, but that was + only useful for one machine, the VAX, and caused poor code + generation there for lshrdi3, so the code was deleted and a + define_expand for lshrsi3 was added to vax.md. */ + } + + gcc_assert (temp != NULL_RTX || may_fail); + return temp; +} + +/* Output a shift instruction for expression code CODE, + with SHIFTED being the rtx for the value to shift, + and AMOUNT the amount to shift by. + Store the result in the rtx TARGET, if that is convenient. + If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. + Return the rtx for where the value is. */ + +rtx +expand_shift (enum tree_code code, machine_mode mode, rtx shifted, + poly_int64 amount, rtx target, int unsignedp) +{ + return expand_shift_1 (code, mode, shifted, + gen_int_shift_amount (mode, amount), + target, unsignedp); +} + +/* Likewise, but return 0 if that cannot be done. */ + +static rtx +maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted, + int amount, rtx target, int unsignedp) +{ + return expand_shift_1 (code, mode, + shifted, GEN_INT (amount), target, unsignedp, true); +} + +/* Output a shift instruction for expression code CODE, + with SHIFTED being the rtx for the value to shift, + and AMOUNT the tree for the amount to shift by. + Store the result in the rtx TARGET, if that is convenient. + If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. + Return the rtx for where the value is. */ + +rtx +expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted, + tree amount, rtx target, int unsignedp) +{ + return expand_shift_1 (code, mode, + shifted, expand_normal (amount), target, unsignedp); +} + + +static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT, + const struct mult_cost *, machine_mode mode); +static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx, + const struct algorithm *, enum mult_variant); +static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int); +static rtx extract_high_half (scalar_int_mode, rtx); +static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int); +static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx, + int, int); +/* Compute and return the best algorithm for multiplying by T. + The algorithm must cost less than cost_limit + If retval.cost >= COST_LIMIT, no algorithm was found and all + other field of the returned struct are undefined. + MODE is the machine mode of the multiplication. */ + +static void +synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t, + const struct mult_cost *cost_limit, machine_mode mode) +{ + int m; + struct algorithm *alg_in, *best_alg; + struct mult_cost best_cost; + struct mult_cost new_limit; + int op_cost, op_latency; + unsigned HOST_WIDE_INT orig_t = t; + unsigned HOST_WIDE_INT q; + int maxm, hash_index; + bool cache_hit = false; + enum alg_code cache_alg = alg_zero; + bool speed = optimize_insn_for_speed_p (); + scalar_int_mode imode; + struct alg_hash_entry *entry_ptr; + + /* Indicate that no algorithm is yet found. If no algorithm + is found, this value will be returned and indicate failure. */ + alg_out->cost.cost = cost_limit->cost + 1; + alg_out->cost.latency = cost_limit->latency + 1; + + if (cost_limit->cost < 0 + || (cost_limit->cost == 0 && cost_limit->latency <= 0)) + return; + + /* Be prepared for vector modes. */ + imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode)); + + maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode)); + + /* Restrict the bits of "t" to the multiplication's mode. */ + t &= GET_MODE_MASK (imode); + + /* t == 1 can be done in zero cost. */ + if (t == 1) + { + alg_out->ops = 1; + alg_out->cost.cost = 0; + alg_out->cost.latency = 0; + alg_out->op[0] = alg_m; + return; + } + + /* t == 0 sometimes has a cost. If it does and it exceeds our limit, + fail now. */ + if (t == 0) + { + if (MULT_COST_LESS (cost_limit, zero_cost (speed))) + return; + else + { + alg_out->ops = 1; + alg_out->cost.cost = zero_cost (speed); + alg_out->cost.latency = zero_cost (speed); + alg_out->op[0] = alg_zero; + return; + } + } + + /* We'll be needing a couple extra algorithm structures now. */ + + alg_in = XALLOCA (struct algorithm); + best_alg = XALLOCA (struct algorithm); + best_cost = *cost_limit; + + /* Compute the hash index. */ + hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES; + + /* See if we already know what to do for T. */ + entry_ptr = alg_hash_entry_ptr (hash_index); + if (entry_ptr->t == t + && entry_ptr->mode == mode + && entry_ptr->speed == speed + && entry_ptr->alg != alg_unknown) + { + cache_alg = entry_ptr->alg; + + if (cache_alg == alg_impossible) + { + /* The cache tells us that it's impossible to synthesize + multiplication by T within entry_ptr->cost. */ + if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit)) + /* COST_LIMIT is at least as restrictive as the one + recorded in the hash table, in which case we have no + hope of synthesizing a multiplication. Just + return. */ + return; + + /* If we get here, COST_LIMIT is less restrictive than the + one recorded in the hash table, so we may be able to + synthesize a multiplication. Proceed as if we didn't + have the cache entry. */ + } + else + { + if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost)) + /* The cached algorithm shows that this multiplication + requires more cost than COST_LIMIT. Just return. This + way, we don't clobber this cache entry with + alg_impossible but retain useful information. */ + return; + + cache_hit = true; + + switch (cache_alg) + { + case alg_shift: + goto do_alg_shift; + + case alg_add_t_m2: + case alg_sub_t_m2: + goto do_alg_addsub_t_m2; + + case alg_add_factor: + case alg_sub_factor: + goto do_alg_addsub_factor; + + case alg_add_t2_m: + goto do_alg_add_t2_m; + + case alg_sub_t2_m: + goto do_alg_sub_t2_m; + + default: + gcc_unreachable (); + } + } + } + + /* If we have a group of zero bits at the low-order part of T, try + multiplying by the remaining bits and then doing a shift. */ + + if ((t & 1) == 0) + { + do_alg_shift: + m = ctz_or_zero (t); /* m = number of low zero bits */ + if (m < maxm) + { + q = t >> m; + /* The function expand_shift will choose between a shift and + a sequence of additions, so the observed cost is given as + MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */ + op_cost = m * add_cost (speed, mode); + if (shift_cost (speed, mode, m) < op_cost) + op_cost = shift_cost (speed, mode, m); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, q, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_shift; + } + + /* See if treating ORIG_T as a signed number yields a better + sequence. Try this sequence only for a negative ORIG_T + as it would be useless for a non-negative ORIG_T. */ + if ((HOST_WIDE_INT) orig_t < 0) + { + /* Shift ORIG_T as follows because a right shift of a + negative-valued signed type is implementation + defined. */ + q = ~(~orig_t >> m); + /* The function expand_shift will choose between a shift + and a sequence of additions, so the observed cost is + given as MIN (m * add_cost(speed, mode), + shift_cost(speed, mode, m)). */ + op_cost = m * add_cost (speed, mode); + if (shift_cost (speed, mode, m) < op_cost) + op_cost = shift_cost (speed, mode, m); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, q, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_shift; + } + } + } + if (cache_hit) + goto done; + } + + /* If we have an odd number, add or subtract one. */ + if ((t & 1) != 0) + { + unsigned HOST_WIDE_INT w; + + do_alg_addsub_t_m2: + for (w = 1; (w & t) != 0; w <<= 1) + ; + /* If T was -1, then W will be zero after the loop. This is another + case where T ends with ...111. Handling this with (T + 1) and + subtract 1 produces slightly better code and results in algorithm + selection much faster than treating it like the ...0111 case + below. */ + if (w == 0 + || (w > 2 + /* Reject the case where t is 3. + Thus we prefer addition in that case. */ + && t != 3)) + { + /* T ends with ...111. Multiply by (T + 1) and subtract T. */ + + op_cost = add_cost (speed, mode); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, t + 1, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = 0; + best_alg->op[best_alg->ops] = alg_sub_t_m2; + } + } + else + { + /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */ + + op_cost = add_cost (speed, mode); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, t - 1, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = 0; + best_alg->op[best_alg->ops] = alg_add_t_m2; + } + } + + /* We may be able to calculate a * -7, a * -15, a * -31, etc + quickly with a - a * n for some appropriate constant n. */ + m = exact_log2 (-orig_t + 1); + if (m >= 0 && m < maxm) + { + op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); + /* If the target has a cheap shift-and-subtract insn use + that in preference to a shift insn followed by a sub insn. + Assume that the shift-and-sub is "atomic" with a latency + equal to it's cost, otherwise assume that on superscalar + hardware the shift may be executed concurrently with the + earlier steps in the algorithm. */ + if (shiftsub1_cost (speed, mode, m) <= op_cost) + { + op_cost = shiftsub1_cost (speed, mode, m); + op_latency = op_cost; + } + else + op_latency = add_cost (speed, mode); + + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_latency; + synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, + &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_latency; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_sub_t_m2; + } + } + + if (cache_hit) + goto done; + } + + /* Look for factors of t of the form + t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)). + If we find such a factor, we can multiply by t using an algorithm that + multiplies by q, shift the result by m and add/subtract it to itself. + + We search for large factors first and loop down, even if large factors + are less probable than small; if we find a large factor we will find a + good sequence quickly, and therefore be able to prune (by decreasing + COST_LIMIT) the search. */ + + do_alg_addsub_factor: + for (m = floor_log2 (t - 1); m >= 2; m--) + { + unsigned HOST_WIDE_INT d; + + d = (HOST_WIDE_INT_1U << m) + 1; + if (t % d == 0 && t > d && m < maxm + && (!cache_hit || cache_alg == alg_add_factor)) + { + op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); + if (shiftadd_cost (speed, mode, m) <= op_cost) + op_cost = shiftadd_cost (speed, mode, m); + + op_latency = op_cost; + + + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_latency; + synth_mult (alg_in, t / d, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_latency; + if (alg_in->cost.latency < op_cost) + alg_in->cost.latency = op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_add_factor; + } + /* Other factors will have been taken care of in the recursion. */ + break; + } + + d = (HOST_WIDE_INT_1U << m) - 1; + if (t % d == 0 && t > d && m < maxm + && (!cache_hit || cache_alg == alg_sub_factor)) + { + op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); + if (shiftsub0_cost (speed, mode, m) <= op_cost) + op_cost = shiftsub0_cost (speed, mode, m); + + op_latency = op_cost; + + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_latency; + synth_mult (alg_in, t / d, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_latency; + if (alg_in->cost.latency < op_cost) + alg_in->cost.latency = op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_sub_factor; + } + break; + } + } + if (cache_hit) + goto done; + + /* Try shift-and-add (load effective address) instructions, + i.e. do a*3, a*5, a*9. */ + if ((t & 1) != 0) + { + do_alg_add_t2_m: + q = t - 1; + m = ctz_hwi (q); + if (q && m < maxm) + { + op_cost = shiftadd_cost (speed, mode, m); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, (t - 1) >> m, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_add_t2_m; + } + } + if (cache_hit) + goto done; + + do_alg_sub_t2_m: + q = t + 1; + m = ctz_hwi (q); + if (q && m < maxm) + { + op_cost = shiftsub0_cost (speed, mode, m); + new_limit.cost = best_cost.cost - op_cost; + new_limit.latency = best_cost.latency - op_cost; + synth_mult (alg_in, (t + 1) >> m, &new_limit, mode); + + alg_in->cost.cost += op_cost; + alg_in->cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) + { + best_cost = alg_in->cost; + std::swap (alg_in, best_alg); + best_alg->log[best_alg->ops] = m; + best_alg->op[best_alg->ops] = alg_sub_t2_m; + } + } + if (cache_hit) + goto done; + } + + done: + /* If best_cost has not decreased, we have not found any algorithm. */ + if (!CHEAPER_MULT_COST (&best_cost, cost_limit)) + { + /* We failed to find an algorithm. Record alg_impossible for + this case (that is, <T, MODE, COST_LIMIT>) so that next time + we are asked to find an algorithm for T within the same or + lower COST_LIMIT, we can immediately return to the + caller. */ + entry_ptr->t = t; + entry_ptr->mode = mode; + entry_ptr->speed = speed; + entry_ptr->alg = alg_impossible; + entry_ptr->cost = *cost_limit; + return; + } + + /* Cache the result. */ + if (!cache_hit) + { + entry_ptr->t = t; + entry_ptr->mode = mode; + entry_ptr->speed = speed; + entry_ptr->alg = best_alg->op[best_alg->ops]; + entry_ptr->cost.cost = best_cost.cost; + entry_ptr->cost.latency = best_cost.latency; + } + + /* If we are getting a too long sequence for `struct algorithm' + to record, make this search fail. */ + if (best_alg->ops == MAX_BITS_PER_WORD) + return; + + /* Copy the algorithm from temporary space to the space at alg_out. + We avoid using structure assignment because the majority of + best_alg is normally undefined, and this is a critical function. */ + alg_out->ops = best_alg->ops + 1; + alg_out->cost = best_cost; + memcpy (alg_out->op, best_alg->op, + alg_out->ops * sizeof *alg_out->op); + memcpy (alg_out->log, best_alg->log, + alg_out->ops * sizeof *alg_out->log); +} + +/* Find the cheapest way of multiplying a value of mode MODE by VAL. + Try three variations: + + - a shift/add sequence based on VAL itself + - a shift/add sequence based on -VAL, followed by a negation + - a shift/add sequence based on VAL - 1, followed by an addition. + + Return true if the cheapest of these cost less than MULT_COST, + describing the algorithm in *ALG and final fixup in *VARIANT. */ + +bool +choose_mult_variant (machine_mode mode, HOST_WIDE_INT val, + struct algorithm *alg, enum mult_variant *variant, + int mult_cost) +{ + struct algorithm alg2; + struct mult_cost limit; + int op_cost; + bool speed = optimize_insn_for_speed_p (); + + /* Fail quickly for impossible bounds. */ + if (mult_cost < 0) + return false; + + /* Ensure that mult_cost provides a reasonable upper bound. + Any constant multiplication can be performed with less + than 2 * bits additions. */ + op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode); + if (mult_cost > op_cost) + mult_cost = op_cost; + + *variant = basic_variant; + limit.cost = mult_cost; + limit.latency = mult_cost; + synth_mult (alg, val, &limit, mode); + + /* This works only if the inverted value actually fits in an + `unsigned int' */ + if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode)) + { + op_cost = neg_cost (speed, mode); + if (MULT_COST_LESS (&alg->cost, mult_cost)) + { + limit.cost = alg->cost.cost - op_cost; + limit.latency = alg->cost.latency - op_cost; + } + else + { + limit.cost = mult_cost - op_cost; + limit.latency = mult_cost - op_cost; + } + + synth_mult (&alg2, -val, &limit, mode); + alg2.cost.cost += op_cost; + alg2.cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost)) + *alg = alg2, *variant = negate_variant; + } + + /* This proves very useful for division-by-constant. */ + op_cost = add_cost (speed, mode); + if (MULT_COST_LESS (&alg->cost, mult_cost)) + { + limit.cost = alg->cost.cost - op_cost; + limit.latency = alg->cost.latency - op_cost; + } + else + { + limit.cost = mult_cost - op_cost; + limit.latency = mult_cost - op_cost; + } + + synth_mult (&alg2, val - 1, &limit, mode); + alg2.cost.cost += op_cost; + alg2.cost.latency += op_cost; + if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost)) + *alg = alg2, *variant = add_variant; + + return MULT_COST_LESS (&alg->cost, mult_cost); +} + +/* A subroutine of expand_mult, used for constant multiplications. + Multiply OP0 by VAL in mode MODE, storing the result in TARGET if + convenient. Use the shift/add sequence described by ALG and apply + the final fixup specified by VARIANT. */ + +static rtx +expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val, + rtx target, const struct algorithm *alg, + enum mult_variant variant) +{ + unsigned HOST_WIDE_INT val_so_far; + rtx_insn *insn; + rtx accum, tem; + int opno; + machine_mode nmode; + + /* Avoid referencing memory over and over and invalid sharing + on SUBREGs. */ + op0 = force_reg (mode, op0); + + /* ACCUM starts out either as OP0 or as a zero, depending on + the first operation. */ + + if (alg->op[0] == alg_zero) + { + accum = copy_to_mode_reg (mode, CONST0_RTX (mode)); + val_so_far = 0; + } + else if (alg->op[0] == alg_m) + { + accum = copy_to_mode_reg (mode, op0); + val_so_far = 1; + } + else + gcc_unreachable (); + + for (opno = 1; opno < alg->ops; opno++) + { + int log = alg->log[opno]; + rtx shift_subtarget = optimize ? 0 : accum; + rtx add_target + = (opno == alg->ops - 1 && target != 0 && variant != add_variant + && !optimize) + ? target : 0; + rtx accum_target = optimize ? 0 : accum; + rtx accum_inner; + + switch (alg->op[opno]) + { + case alg_shift: + tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0); + /* REG_EQUAL note will be attached to the following insn. */ + emit_move_insn (accum, tem); + val_so_far <<= log; + break; + + case alg_add_t_m2: + tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0); + accum = force_operand (gen_rtx_PLUS (mode, accum, tem), + add_target ? add_target : accum_target); + val_so_far += HOST_WIDE_INT_1U << log; + break; + + case alg_sub_t_m2: + tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0); + accum = force_operand (gen_rtx_MINUS (mode, accum, tem), + add_target ? add_target : accum_target); + val_so_far -= HOST_WIDE_INT_1U << log; + break; + + case alg_add_t2_m: + accum = expand_shift (LSHIFT_EXPR, mode, accum, + log, shift_subtarget, 0); + accum = force_operand (gen_rtx_PLUS (mode, accum, op0), + add_target ? add_target : accum_target); + val_so_far = (val_so_far << log) + 1; + break; + + case alg_sub_t2_m: + accum = expand_shift (LSHIFT_EXPR, mode, accum, + log, shift_subtarget, 0); + accum = force_operand (gen_rtx_MINUS (mode, accum, op0), + add_target ? add_target : accum_target); + val_so_far = (val_so_far << log) - 1; + break; + + case alg_add_factor: + tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0); + accum = force_operand (gen_rtx_PLUS (mode, accum, tem), + add_target ? add_target : accum_target); + val_so_far += val_so_far << log; + break; + + case alg_sub_factor: + tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0); + accum = force_operand (gen_rtx_MINUS (mode, tem, accum), + (add_target + ? add_target : (optimize ? 0 : tem))); + val_so_far = (val_so_far << log) - val_so_far; + break; + + default: + gcc_unreachable (); + } + + if (SCALAR_INT_MODE_P (mode)) + { + /* Write a REG_EQUAL note on the last insn so that we can cse + multiplication sequences. Note that if ACCUM is a SUBREG, + we've set the inner register and must properly indicate that. */ + tem = op0, nmode = mode; + accum_inner = accum; + if (GET_CODE (accum) == SUBREG) + { + accum_inner = SUBREG_REG (accum); + nmode = GET_MODE (accum_inner); + tem = gen_lowpart (nmode, op0); + } + + /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG. + In that case, only the low bits of accum would be guaranteed to + be equal to the content of the REG_EQUAL note, the upper bits + can be anything. */ + if (!paradoxical_subreg_p (tem)) + { + insn = get_last_insn (); + wide_int wval_so_far + = wi::uhwi (val_so_far, + GET_MODE_PRECISION (as_a <scalar_mode> (nmode))); + rtx c = immed_wide_int_const (wval_so_far, nmode); + set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c), + accum_inner); + } + } + } + + if (variant == negate_variant) + { + val_so_far = -val_so_far; + accum = expand_unop (mode, neg_optab, accum, target, 0); + } + else if (variant == add_variant) + { + val_so_far = val_so_far + 1; + accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target); + } + + /* Compare only the bits of val and val_so_far that are significant + in the result mode, to avoid sign-/zero-extension confusion. */ + nmode = GET_MODE_INNER (mode); + val &= GET_MODE_MASK (nmode); + val_so_far &= GET_MODE_MASK (nmode); + gcc_assert (val == (HOST_WIDE_INT) val_so_far); + + return accum; +} + +/* Perform a multiplication and return an rtx for the result. + MODE is mode of value; OP0 and OP1 are what to multiply (rtx's); + TARGET is a suggestion for where to store the result (an rtx). + + We check specially for a constant integer as OP1. + If you want this check for OP0 as well, then before calling + you should swap the two operands if OP0 would be constant. */ + +rtx +expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target, + int unsignedp, bool no_libcall) +{ + enum mult_variant variant; + struct algorithm algorithm; + rtx scalar_op1; + int max_cost; + bool speed = optimize_insn_for_speed_p (); + bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp; + + if (CONSTANT_P (op0)) + std::swap (op0, op1); + + /* For vectors, there are several simplifications that can be made if + all elements of the vector constant are identical. */ + scalar_op1 = unwrap_const_vec_duplicate (op1); + + if (INTEGRAL_MODE_P (mode)) + { + rtx fake_reg; + HOST_WIDE_INT coeff; + bool is_neg; + int mode_bitsize; + + if (op1 == CONST0_RTX (mode)) + return op1; + if (op1 == CONST1_RTX (mode)) + return op0; + if (op1 == CONSTM1_RTX (mode)) + return expand_unop (mode, do_trapv ? negv_optab : neg_optab, + op0, target, 0); + + if (do_trapv) + goto skip_synth; + + /* If mode is integer vector mode, check if the backend supports + vector lshift (by scalar or vector) at all. If not, we can't use + synthetized multiply. */ + if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT + && optab_handler (vashl_optab, mode) == CODE_FOR_nothing + && optab_handler (ashl_optab, mode) == CODE_FOR_nothing) + goto skip_synth; + + /* These are the operations that are potentially turned into + a sequence of shifts and additions. */ + mode_bitsize = GET_MODE_UNIT_BITSIZE (mode); + + /* synth_mult does an `unsigned int' multiply. As long as the mode is + less than or equal in size to `unsigned int' this doesn't matter. + If the mode is larger than `unsigned int', then synth_mult works + only if the constant value exactly fits in an `unsigned int' without + any truncation. This means that multiplying by negative values does + not work; results are off by 2^32 on a 32 bit machine. */ + if (CONST_INT_P (scalar_op1)) + { + coeff = INTVAL (scalar_op1); + is_neg = coeff < 0; + } +#if TARGET_SUPPORTS_WIDE_INT + else if (CONST_WIDE_INT_P (scalar_op1)) +#else + else if (CONST_DOUBLE_AS_INT_P (scalar_op1)) +#endif + { + int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode)); + /* Perfect power of 2 (other than 1, which is handled above). */ + if (shift > 0) + return expand_shift (LSHIFT_EXPR, mode, op0, + shift, target, unsignedp); + else + goto skip_synth; + } + else + goto skip_synth; + + /* We used to test optimize here, on the grounds that it's better to + produce a smaller program when -O is not used. But this causes + such a terrible slowdown sometimes that it seems better to always + use synth_mult. */ + + /* Special case powers of two. */ + if (EXACT_POWER_OF_2_OR_ZERO_P (coeff) + && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)) + return expand_shift (LSHIFT_EXPR, mode, op0, + floor_log2 (coeff), target, unsignedp); + + fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1); + + /* Attempt to handle multiplication of DImode values by negative + coefficients, by performing the multiplication by a positive + multiplier and then inverting the result. */ + if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT) + { + /* Its safe to use -coeff even for INT_MIN, as the + result is interpreted as an unsigned coefficient. + Exclude cost of op0 from max_cost to match the cost + calculation of the synth_mult. */ + coeff = -(unsigned HOST_WIDE_INT) coeff; + max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), + mode, speed) + - neg_cost (speed, mode)); + if (max_cost <= 0) + goto skip_synth; + + /* Special case powers of two. */ + if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)) + { + rtx temp = expand_shift (LSHIFT_EXPR, mode, op0, + floor_log2 (coeff), target, unsignedp); + return expand_unop (mode, neg_optab, temp, target, 0); + } + + if (choose_mult_variant (mode, coeff, &algorithm, &variant, + max_cost)) + { + rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX, + &algorithm, variant); + return expand_unop (mode, neg_optab, temp, target, 0); + } + goto skip_synth; + } + + /* Exclude cost of op0 from max_cost to match the cost + calculation of the synth_mult. */ + max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed); + if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost)) + return expand_mult_const (mode, op0, coeff, target, + &algorithm, variant); + } + skip_synth: + + /* Expand x*2.0 as x+x. */ + if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1) + && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2)) + { + op0 = force_reg (GET_MODE (op0), op0); + return expand_binop (mode, add_optab, op0, op0, + target, unsignedp, + no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN); + } + + /* This used to use umul_optab if unsigned, but for non-widening multiply + there is no difference between signed and unsigned. */ + op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab, + op0, op1, target, unsignedp, + no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN); + gcc_assert (op0 || no_libcall); + return op0; +} + +/* Return a cost estimate for multiplying a register by the given + COEFFicient in the given MODE and SPEED. */ + +int +mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed) +{ + int max_cost; + struct algorithm algorithm; + enum mult_variant variant; + + rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1); + max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), + mode, speed); + if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost)) + return algorithm.cost.cost; + else + return max_cost; +} + +/* Perform a widening multiplication and return an rtx for the result. + MODE is mode of value; OP0 and OP1 are what to multiply (rtx's); + TARGET is a suggestion for where to store the result (an rtx). + THIS_OPTAB is the optab we should use, it must be either umul_widen_optab + or smul_widen_optab. + + We check specially for a constant integer as OP1, comparing the + cost of a widening multiply against the cost of a sequence of shifts + and adds. */ + +rtx +expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target, + int unsignedp, optab this_optab) +{ + bool speed = optimize_insn_for_speed_p (); + rtx cop1; + + if (CONST_INT_P (op1) + && GET_MODE (op0) != VOIDmode + && (cop1 = convert_modes (mode, GET_MODE (op0), op1, + this_optab == umul_widen_optab)) + && CONST_INT_P (cop1) + && (INTVAL (cop1) >= 0 + || HWI_COMPUTABLE_MODE_P (mode))) + { + HOST_WIDE_INT coeff = INTVAL (cop1); + int max_cost; + enum mult_variant variant; + struct algorithm algorithm; + + if (coeff == 0) + return CONST0_RTX (mode); + + /* Special case powers of two. */ + if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)) + { + op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab); + return expand_shift (LSHIFT_EXPR, mode, op0, + floor_log2 (coeff), target, unsignedp); + } + + /* Exclude cost of op0 from max_cost to match the cost + calculation of the synth_mult. */ + max_cost = mul_widen_cost (speed, mode); + if (choose_mult_variant (mode, coeff, &algorithm, &variant, + max_cost)) + { + op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab); + return expand_mult_const (mode, op0, coeff, target, + &algorithm, variant); + } + } + return expand_binop (mode, this_optab, op0, op1, target, + unsignedp, OPTAB_LIB_WIDEN); +} + +/* Choose a minimal N + 1 bit approximation to 1/D that can be used to + replace division by D, and put the least significant N bits of the result + in *MULTIPLIER_PTR and return the most significant bit. + + The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the + needed precision is in PRECISION (should be <= N). + + PRECISION should be as small as possible so this function can choose + multiplier more freely. + + The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that + is to be used for a final right shift is placed in *POST_SHIFT_PTR. + + Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR), + where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */ + +unsigned HOST_WIDE_INT +choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision, + unsigned HOST_WIDE_INT *multiplier_ptr, + int *post_shift_ptr, int *lgup_ptr) +{ + int lgup, post_shift; + int pow, pow2; + + /* lgup = ceil(log2(divisor)); */ + lgup = ceil_log2 (d); + + gcc_assert (lgup <= n); + + pow = n + lgup; + pow2 = n + lgup - precision; + + /* mlow = 2^(N + lgup)/d */ + wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT); + wide_int mlow = wi::udiv_trunc (val, d); + + /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */ + val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT); + wide_int mhigh = wi::udiv_trunc (val, d); + + /* If precision == N, then mlow, mhigh exceed 2^N + (but they do not exceed 2^(N+1)). */ + + /* Reduce to lowest terms. */ + for (post_shift = lgup; post_shift > 0; post_shift--) + { + unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1, + HOST_BITS_PER_WIDE_INT); + unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1, + HOST_BITS_PER_WIDE_INT); + if (ml_lo >= mh_lo) + break; + + mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT); + mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT); + } + + *post_shift_ptr = post_shift; + *lgup_ptr = lgup; + if (n < HOST_BITS_PER_WIDE_INT) + { + unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1; + *multiplier_ptr = mhigh.to_uhwi () & mask; + return mhigh.to_uhwi () > mask; + } + else + { + *multiplier_ptr = mhigh.to_uhwi (); + return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1); + } +} + +/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is + congruent to 1 (mod 2**N). */ + +static unsigned HOST_WIDE_INT +invert_mod2n (unsigned HOST_WIDE_INT x, int n) +{ + /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */ + + /* The algorithm notes that the choice y = x satisfies + x*y == 1 mod 2^3, since x is assumed odd. + Each iteration doubles the number of bits of significance in y. */ + + unsigned HOST_WIDE_INT mask; + unsigned HOST_WIDE_INT y = x; + int nbit = 3; + + mask = (n == HOST_BITS_PER_WIDE_INT + ? HOST_WIDE_INT_M1U + : (HOST_WIDE_INT_1U << n) - 1); + + while (nbit < n) + { + y = y * (2 - x*y) & mask; /* Modulo 2^N */ + nbit *= 2; + } + return y; +} + +/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness + flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the + product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product + to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to + become signed. + + The result is put in TARGET if that is convenient. + + MODE is the mode of operation. */ + +rtx +expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0, + rtx op1, rtx target, int unsignedp) +{ + rtx tem; + enum rtx_code adj_code = unsignedp ? PLUS : MINUS; + + tem = expand_shift (RSHIFT_EXPR, mode, op0, + GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0); + tem = expand_and (mode, tem, op1, NULL_RTX); + adj_operand + = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem), + adj_operand); + + tem = expand_shift (RSHIFT_EXPR, mode, op1, + GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0); + tem = expand_and (mode, tem, op0, NULL_RTX); + target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem), + target); + + return target; +} + +/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */ + +static rtx +extract_high_half (scalar_int_mode mode, rtx op) +{ + if (mode == word_mode) + return gen_highpart (mode, op); + + scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require (); + + op = expand_shift (RSHIFT_EXPR, wider_mode, op, + GET_MODE_BITSIZE (mode), 0, 1); + return convert_modes (mode, wider_mode, op, 0); +} + +/* Like expmed_mult_highpart, but only consider using a multiplication + optab. OP1 is an rtx for the constant operand. */ + +static rtx +expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1, + rtx target, int unsignedp, int max_cost) +{ + rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode); + optab moptab; + rtx tem; + int size; + bool speed = optimize_insn_for_speed_p (); + + scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require (); + + size = GET_MODE_BITSIZE (mode); + + /* Firstly, try using a multiplication insn that only generates the needed + high part of the product, and in the sign flavor of unsignedp. */ + if (mul_highpart_cost (speed, mode) < max_cost) + { + moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab; + tem = expand_binop (mode, moptab, op0, narrow_op1, target, + unsignedp, OPTAB_DIRECT); + if (tem) + return tem; + } + + /* Secondly, same as above, but use sign flavor opposite of unsignedp. + Need to adjust the result after the multiplication. */ + if (size - 1 < BITS_PER_WORD + && (mul_highpart_cost (speed, mode) + + 2 * shift_cost (speed, mode, size-1) + + 4 * add_cost (speed, mode) < max_cost)) + { + moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab; + tem = expand_binop (mode, moptab, op0, narrow_op1, target, + unsignedp, OPTAB_DIRECT); + if (tem) + /* We used the wrong signedness. Adjust the result. */ + return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1, + tem, unsignedp); + } + + /* Try widening multiplication. */ + moptab = unsignedp ? umul_widen_optab : smul_widen_optab; + if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing + && mul_widen_cost (speed, wider_mode) < max_cost) + { + tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0, + unsignedp, OPTAB_WIDEN); + if (tem) + return extract_high_half (mode, tem); + } + + /* Try widening the mode and perform a non-widening multiplication. */ + if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing + && size - 1 < BITS_PER_WORD + && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1) + < max_cost)) + { + rtx_insn *insns; + rtx wop0, wop1; + + /* We need to widen the operands, for example to ensure the + constant multiplier is correctly sign or zero extended. + Use a sequence to clean-up any instructions emitted by + the conversions if things don't work out. */ + start_sequence (); + wop0 = convert_modes (wider_mode, mode, op0, unsignedp); + wop1 = convert_modes (wider_mode, mode, op1, unsignedp); + tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0, + unsignedp, OPTAB_WIDEN); + insns = get_insns (); + end_sequence (); + + if (tem) + { + emit_insn (insns); + return extract_high_half (mode, tem); + } + } + + /* Try widening multiplication of opposite signedness, and adjust. */ + moptab = unsignedp ? smul_widen_optab : umul_widen_optab; + if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing + && size - 1 < BITS_PER_WORD + && (mul_widen_cost (speed, wider_mode) + + 2 * shift_cost (speed, mode, size-1) + + 4 * add_cost (speed, mode) < max_cost)) + { + tem = expand_binop (wider_mode, moptab, op0, narrow_op1, + NULL_RTX, ! unsignedp, OPTAB_WIDEN); + if (tem != 0) + { + tem = extract_high_half (mode, tem); + /* We used the wrong signedness. Adjust the result. */ + return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1, + target, unsignedp); + } + } + + return 0; +} + +/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant), + putting the high half of the result in TARGET if that is convenient, + and return where the result is. If the operation cannot be performed, + 0 is returned. + + MODE is the mode of operation and result. + + UNSIGNEDP nonzero means unsigned multiply. + + MAX_COST is the total allowed cost for the expanded RTL. */ + +static rtx +expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1, + rtx target, int unsignedp, int max_cost) +{ + unsigned HOST_WIDE_INT cnst1; + int extra_cost; + bool sign_adjust = false; + enum mult_variant variant; + struct algorithm alg; + rtx tem; + bool speed = optimize_insn_for_speed_p (); + + /* We can't support modes wider than HOST_BITS_PER_INT. */ + gcc_assert (HWI_COMPUTABLE_MODE_P (mode)); + + cnst1 = INTVAL (op1) & GET_MODE_MASK (mode); + + /* We can't optimize modes wider than BITS_PER_WORD. + ??? We might be able to perform double-word arithmetic if + mode == word_mode, however all the cost calculations in + synth_mult etc. assume single-word operations. */ + scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require (); + if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD) + return expmed_mult_highpart_optab (mode, op0, op1, target, + unsignedp, max_cost); + + extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1); + + /* Check whether we try to multiply by a negative constant. */ + if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1)) + { + sign_adjust = true; + extra_cost += add_cost (speed, mode); + } + + /* See whether shift/add multiplication is cheap enough. */ + if (choose_mult_variant (wider_mode, cnst1, &alg, &variant, + max_cost - extra_cost)) + { + /* See whether the specialized multiplication optabs are + cheaper than the shift/add version. */ + tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp, + alg.cost.cost + extra_cost); + if (tem) + return tem; + + tem = convert_to_mode (wider_mode, op0, unsignedp); + tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant); + tem = extract_high_half (mode, tem); + + /* Adjust result for signedness. */ + if (sign_adjust) + tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem); + + return tem; + } + return expmed_mult_highpart_optab (mode, op0, op1, target, + unsignedp, max_cost); +} + + +/* Expand signed modulus of OP0 by a power of two D in mode MODE. */ + +static rtx +expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d) +{ + rtx result, temp, shift; + rtx_code_label *label; + int logd; + int prec = GET_MODE_PRECISION (mode); + + logd = floor_log2 (d); + result = gen_reg_rtx (mode); + + /* Avoid conditional branches when they're expensive. */ + if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2 + && optimize_insn_for_speed_p ()) + { + rtx signmask = emit_store_flag (result, LT, op0, const0_rtx, + mode, 0, -1); + if (signmask) + { + HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1; + signmask = force_reg (mode, signmask); + shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd); + + /* Use the rtx_cost of a LSHIFTRT instruction to determine + which instruction sequence to use. If logical right shifts + are expensive the use 2 XORs, 2 SUBs and an AND, otherwise + use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */ + + temp = gen_rtx_LSHIFTRT (mode, result, shift); + if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing + || (set_src_cost (temp, mode, optimize_insn_for_speed_p ()) + > COSTS_N_INSNS (2))) + { + temp = expand_binop (mode, xor_optab, op0, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, sub_optab, temp, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, and_optab, temp, + gen_int_mode (masklow, mode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, xor_optab, temp, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, sub_optab, temp, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + } + else + { + signmask = expand_binop (mode, lshr_optab, signmask, shift, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + signmask = force_reg (mode, signmask); + + temp = expand_binop (mode, add_optab, op0, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, and_optab, temp, + gen_int_mode (masklow, mode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, sub_optab, temp, signmask, + NULL_RTX, 1, OPTAB_LIB_WIDEN); + } + return temp; + } + } + + /* Mask contains the mode's signbit and the significant bits of the + modulus. By including the signbit in the operation, many targets + can avoid an explicit compare operation in the following comparison + against zero. */ + wide_int mask = wi::mask (logd, false, prec); + mask = wi::set_bit (mask, prec - 1); + + temp = expand_binop (mode, and_optab, op0, + immed_wide_int_const (mask, mode), + result, 1, OPTAB_LIB_WIDEN); + if (temp != result) + emit_move_insn (result, temp); + + label = gen_label_rtx (); + do_cmp_and_jump (result, const0_rtx, GE, mode, label); + + temp = expand_binop (mode, sub_optab, result, const1_rtx, result, + 0, OPTAB_LIB_WIDEN); + + mask = wi::mask (logd, true, prec); + temp = expand_binop (mode, ior_optab, temp, + immed_wide_int_const (mask, mode), + result, 1, OPTAB_LIB_WIDEN); + temp = expand_binop (mode, add_optab, temp, const1_rtx, result, + 0, OPTAB_LIB_WIDEN); + if (temp != result) + emit_move_insn (result, temp); + emit_label (label); + return result; +} + +/* Expand signed division of OP0 by a power of two D in mode MODE. + This routine is only called for positive values of D. */ + +static rtx +expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d) +{ + rtx temp; + rtx_code_label *label; + int logd; + + logd = floor_log2 (d); + + if (d == 2 + && BRANCH_COST (optimize_insn_for_speed_p (), + false) >= 1) + { + temp = gen_reg_rtx (mode); + temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1); + if (temp != NULL_RTX) + { + temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX, + 0, OPTAB_LIB_WIDEN); + return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0); + } + } + + if (HAVE_conditional_move + && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2) + { + rtx temp2; + + start_sequence (); + temp2 = copy_to_mode_reg (mode, op0); + temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode), + NULL_RTX, 0, OPTAB_LIB_WIDEN); + temp = force_reg (mode, temp); + + /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */ + temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx, + mode, temp, temp2, mode, 0); + if (temp2) + { + rtx_insn *seq = get_insns (); + end_sequence (); + emit_insn (seq); + return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0); + } + end_sequence (); + } + + if (BRANCH_COST (optimize_insn_for_speed_p (), + false) >= 2) + { + int ushift = GET_MODE_BITSIZE (mode) - logd; + + temp = gen_reg_rtx (mode); + temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1); + if (temp != NULL_RTX) + { + if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD + || shift_cost (optimize_insn_for_speed_p (), mode, ushift) + > COSTS_N_INSNS (1)) + temp = expand_binop (mode, and_optab, temp, + gen_int_mode (d - 1, mode), + NULL_RTX, 0, OPTAB_LIB_WIDEN); + else + temp = expand_shift (RSHIFT_EXPR, mode, temp, + ushift, NULL_RTX, 1); + temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX, + 0, OPTAB_LIB_WIDEN); + return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0); + } + } + + label = gen_label_rtx (); + temp = copy_to_mode_reg (mode, op0); + do_cmp_and_jump (temp, const0_rtx, GE, mode, label); + expand_inc (temp, gen_int_mode (d - 1, mode)); + emit_label (label); + return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0); +} + +/* Emit the code to divide OP0 by OP1, putting the result in TARGET + if that is convenient, and returning where the result is. + You may request either the quotient or the remainder as the result; + specify REM_FLAG nonzero to get the remainder. + + CODE is the expression code for which kind of division this is; + it controls how rounding is done. MODE is the machine mode to use. + UNSIGNEDP nonzero means do unsigned division. */ + +/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI + and then correct it by or'ing in missing high bits + if result of ANDI is nonzero. + For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result. + This could optimize to a bfexts instruction. + But C doesn't use these operations, so their optimizations are + left for later. */ +/* ??? For modulo, we don't actually need the highpart of the first product, + the low part will do nicely. And for small divisors, the second multiply + can also be a low-part only multiply or even be completely left out. + E.g. to calculate the remainder of a division by 3 with a 32 bit + multiply, multiply with 0x55555556 and extract the upper two bits; + the result is exact for inputs up to 0x1fffffff. + The input range can be reduced by using cross-sum rules. + For odd divisors >= 3, the following table gives right shift counts + so that if a number is shifted by an integer multiple of the given + amount, the remainder stays the same: + 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20, + 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0, + 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0, + 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33, + 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12 + + Cross-sum rules for even numbers can be derived by leaving as many bits + to the right alone as the divisor has zeros to the right. + E.g. if x is an unsigned 32 bit number: + (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28 + */ + +rtx +expand_divmod (int rem_flag, enum tree_code code, machine_mode mode, + rtx op0, rtx op1, rtx target, int unsignedp, + enum optab_methods methods) +{ + machine_mode compute_mode; + rtx tquotient; + rtx quotient = 0, remainder = 0; + rtx_insn *last; + rtx_insn *insn; + optab optab1, optab2; + int op1_is_constant, op1_is_pow2 = 0; + int max_cost, extra_cost; + static HOST_WIDE_INT last_div_const = 0; + bool speed = optimize_insn_for_speed_p (); + + op1_is_constant = CONST_INT_P (op1); + if (op1_is_constant) + { + wide_int ext_op1 = rtx_mode_t (op1, mode); + op1_is_pow2 = (wi::popcount (ext_op1) == 1 + || (! unsignedp + && wi::popcount (wi::neg (ext_op1)) == 1)); + } + + /* + This is the structure of expand_divmod: + + First comes code to fix up the operands so we can perform the operations + correctly and efficiently. + + Second comes a switch statement with code specific for each rounding mode. + For some special operands this code emits all RTL for the desired + operation, for other cases, it generates only a quotient and stores it in + QUOTIENT. The case for trunc division/remainder might leave quotient = 0, + to indicate that it has not done anything. + + Last comes code that finishes the operation. If QUOTIENT is set and + REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If + QUOTIENT is not set, it is computed using trunc rounding. + + We try to generate special code for division and remainder when OP1 is a + constant. If |OP1| = 2**n we can use shifts and some other fast + operations. For other values of OP1, we compute a carefully selected + fixed-point approximation m = 1/OP1, and generate code that multiplies OP0 + by m. + + In all cases but EXACT_DIV_EXPR, this multiplication requires the upper + half of the product. Different strategies for generating the product are + implemented in expmed_mult_highpart. + + If what we actually want is the remainder, we generate that by another + by-constant multiplication and a subtraction. */ + + /* We shouldn't be called with OP1 == const1_rtx, but some of the + code below will malfunction if we are, so check here and handle + the special case if so. */ + if (op1 == const1_rtx) + return rem_flag ? const0_rtx : op0; + + /* When dividing by -1, we could get an overflow. + negv_optab can handle overflows. */ + if (! unsignedp && op1 == constm1_rtx) + { + if (rem_flag) + return const0_rtx; + return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT + ? negv_optab : neg_optab, op0, target, 0); + } + + if (target + /* Don't use the function value register as a target + since we have to read it as well as write it, + and function-inlining gets confused by this. */ + && ((REG_P (target) && REG_FUNCTION_VALUE_P (target)) + /* Don't clobber an operand while doing a multi-step calculation. */ + || ((rem_flag || op1_is_constant) + && (reg_mentioned_p (target, op0) + || (MEM_P (op0) && MEM_P (target)))) + || reg_mentioned_p (target, op1) + || (MEM_P (op1) && MEM_P (target)))) + target = 0; + + /* Get the mode in which to perform this computation. Normally it will + be MODE, but sometimes we can't do the desired operation in MODE. + If so, pick a wider mode in which we can do the operation. Convert + to that mode at the start to avoid repeated conversions. + + First see what operations we need. These depend on the expression + we are evaluating. (We assume that divxx3 insns exist under the + same conditions that modxx3 insns and that these insns don't normally + fail. If these assumptions are not correct, we may generate less + efficient code in some cases.) + + Then see if we find a mode in which we can open-code that operation + (either a division, modulus, or shift). Finally, check for the smallest + mode for which we can do the operation with a library call. */ + + /* We might want to refine this now that we have division-by-constant + optimization. Since expmed_mult_highpart tries so many variants, it is + not straightforward to generalize this. Maybe we should make an array + of possible modes in init_expmed? Save this for GCC 2.7. */ + + optab1 = (op1_is_pow2 + ? (unsignedp ? lshr_optab : ashr_optab) + : (unsignedp ? udiv_optab : sdiv_optab)); + optab2 = (op1_is_pow2 ? optab1 + : (unsignedp ? udivmod_optab : sdivmod_optab)); + + if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN) + { + FOR_EACH_MODE_FROM (compute_mode, mode) + if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing + || optab_handler (optab2, compute_mode) != CODE_FOR_nothing) + break; + + if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN) + FOR_EACH_MODE_FROM (compute_mode, mode) + if (optab_libfunc (optab1, compute_mode) + || optab_libfunc (optab2, compute_mode)) + break; + } + else + compute_mode = mode; + + /* If we still couldn't find a mode, use MODE, but expand_binop will + probably die. */ + if (compute_mode == VOIDmode) + compute_mode = mode; + + if (target && GET_MODE (target) == compute_mode) + tquotient = target; + else + tquotient = gen_reg_rtx (compute_mode); + +#if 0 + /* It should be possible to restrict the precision to GET_MODE_BITSIZE + (mode), and thereby get better code when OP1 is a constant. Do that + later. It will require going over all usages of SIZE below. */ + size = GET_MODE_BITSIZE (mode); +#endif + + /* Only deduct something for a REM if the last divide done was + for a different constant. Then set the constant of the last + divide. */ + max_cost = (unsignedp + ? udiv_cost (speed, compute_mode) + : sdiv_cost (speed, compute_mode)); + if (rem_flag && ! (last_div_const != 0 && op1_is_constant + && INTVAL (op1) == last_div_const)) + max_cost -= (mul_cost (speed, compute_mode) + + add_cost (speed, compute_mode)); + + last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0; + + /* Now convert to the best mode to use. */ + if (compute_mode != mode) + { + op0 = convert_modes (compute_mode, mode, op0, unsignedp); + op1 = convert_modes (compute_mode, mode, op1, unsignedp); + + /* convert_modes may have placed op1 into a register, so we + must recompute the following. */ + op1_is_constant = CONST_INT_P (op1); + if (op1_is_constant) + { + wide_int ext_op1 = rtx_mode_t (op1, compute_mode); + op1_is_pow2 = (wi::popcount (ext_op1) == 1 + || (! unsignedp + && wi::popcount (wi::neg (ext_op1)) == 1)); + } + else + op1_is_pow2 = 0; + } + + /* If one of the operands is a volatile MEM, copy it into a register. */ + + if (MEM_P (op0) && MEM_VOLATILE_P (op0)) + op0 = force_reg (compute_mode, op0); + if (MEM_P (op1) && MEM_VOLATILE_P (op1)) + op1 = force_reg (compute_mode, op1); + + /* If we need the remainder or if OP1 is constant, we need to + put OP0 in a register in case it has any queued subexpressions. */ + if (rem_flag || op1_is_constant) + op0 = force_reg (compute_mode, op0); + + last = get_last_insn (); + + /* Promote floor rounding to trunc rounding for unsigned operations. */ + if (unsignedp) + { + if (code == FLOOR_DIV_EXPR) + code = TRUNC_DIV_EXPR; + if (code == FLOOR_MOD_EXPR) + code = TRUNC_MOD_EXPR; + if (code == EXACT_DIV_EXPR && op1_is_pow2) + code = TRUNC_DIV_EXPR; + } + + if (op1 != const0_rtx) + switch (code) + { + case TRUNC_MOD_EXPR: + case TRUNC_DIV_EXPR: + if (op1_is_constant) + { + scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode); + int size = GET_MODE_BITSIZE (int_mode); + if (unsignedp) + { + unsigned HOST_WIDE_INT mh, ml; + int pre_shift, post_shift; + int dummy; + wide_int wd = rtx_mode_t (op1, int_mode); + unsigned HOST_WIDE_INT d = wd.to_uhwi (); + + if (wi::popcount (wd) == 1) + { + pre_shift = floor_log2 (d); + if (rem_flag) + { + unsigned HOST_WIDE_INT mask + = (HOST_WIDE_INT_1U << pre_shift) - 1; + remainder + = expand_binop (int_mode, and_optab, op0, + gen_int_mode (mask, int_mode), + remainder, 1, methods); + if (remainder) + return gen_lowpart (mode, remainder); + } + quotient = expand_shift (RSHIFT_EXPR, int_mode, op0, + pre_shift, tquotient, 1); + } + else if (size <= HOST_BITS_PER_WIDE_INT) + { + if (d >= (HOST_WIDE_INT_1U << (size - 1))) + { + /* Most significant bit of divisor is set; emit an scc + insn. */ + quotient = emit_store_flag_force (tquotient, GEU, op0, op1, + int_mode, 1, 1); + } + else + { + /* Find a suitable multiplier and right shift count + instead of multiplying with D. */ + + mh = choose_multiplier (d, size, size, + &ml, &post_shift, &dummy); + + /* If the suggested multiplier is more than SIZE bits, + we can do better for even divisors, using an + initial right shift. */ + if (mh != 0 && (d & 1) == 0) + { + pre_shift = ctz_or_zero (d); + mh = choose_multiplier (d >> pre_shift, size, + size - pre_shift, + &ml, &post_shift, &dummy); + gcc_assert (!mh); + } + else + pre_shift = 0; + + if (mh != 0) + { + rtx t1, t2, t3, t4; + + if (post_shift - 1 >= BITS_PER_WORD) + goto fail1; + + extra_cost + = (shift_cost (speed, int_mode, post_shift - 1) + + shift_cost (speed, int_mode, 1) + + 2 * add_cost (speed, int_mode)); + t1 = expmed_mult_highpart + (int_mode, op0, gen_int_mode (ml, int_mode), + NULL_RTX, 1, max_cost - extra_cost); + if (t1 == 0) + goto fail1; + t2 = force_operand (gen_rtx_MINUS (int_mode, + op0, t1), + NULL_RTX); + t3 = expand_shift (RSHIFT_EXPR, int_mode, + t2, 1, NULL_RTX, 1); + t4 = force_operand (gen_rtx_PLUS (int_mode, + t1, t3), + NULL_RTX); + quotient = expand_shift + (RSHIFT_EXPR, int_mode, t4, + post_shift - 1, tquotient, 1); + } + else + { + rtx t1, t2; + + if (pre_shift >= BITS_PER_WORD + || post_shift >= BITS_PER_WORD) + goto fail1; + + t1 = expand_shift + (RSHIFT_EXPR, int_mode, op0, + pre_shift, NULL_RTX, 1); + extra_cost + = (shift_cost (speed, int_mode, pre_shift) + + shift_cost (speed, int_mode, post_shift)); + t2 = expmed_mult_highpart + (int_mode, t1, + gen_int_mode (ml, int_mode), + NULL_RTX, 1, max_cost - extra_cost); + if (t2 == 0) + goto fail1; + quotient = expand_shift + (RSHIFT_EXPR, int_mode, t2, + post_shift, tquotient, 1); + } + } + } + else /* Too wide mode to use tricky code */ + break; + + insn = get_last_insn (); + if (insn != last) + set_dst_reg_note (insn, REG_EQUAL, + gen_rtx_UDIV (int_mode, op0, op1), + quotient); + } + else /* TRUNC_DIV, signed */ + { + unsigned HOST_WIDE_INT ml; + int lgup, post_shift; + rtx mlr; + HOST_WIDE_INT d = INTVAL (op1); + unsigned HOST_WIDE_INT abs_d; + + /* Not prepared to handle division/remainder by + 0xffffffffffffffff8000000000000000 etc. */ + if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT) + break; + + /* Since d might be INT_MIN, we have to cast to + unsigned HOST_WIDE_INT before negating to avoid + undefined signed overflow. */ + abs_d = (d >= 0 + ? (unsigned HOST_WIDE_INT) d + : - (unsigned HOST_WIDE_INT) d); + + /* n rem d = n rem -d */ + if (rem_flag && d < 0) + { + d = abs_d; + op1 = gen_int_mode (abs_d, int_mode); + } + + if (d == 1) + quotient = op0; + else if (d == -1) + quotient = expand_unop (int_mode, neg_optab, op0, + tquotient, 0); + else if (size <= HOST_BITS_PER_WIDE_INT + && abs_d == HOST_WIDE_INT_1U << (size - 1)) + { + /* This case is not handled correctly below. */ + quotient = emit_store_flag (tquotient, EQ, op0, op1, + int_mode, 1, 1); + if (quotient == 0) + goto fail1; + } + else if (EXACT_POWER_OF_2_OR_ZERO_P (d) + && (size <= HOST_BITS_PER_WIDE_INT || d >= 0) + && (rem_flag + ? smod_pow2_cheap (speed, int_mode) + : sdiv_pow2_cheap (speed, int_mode)) + /* We assume that cheap metric is true if the + optab has an expander for this mode. */ + && ((optab_handler ((rem_flag ? smod_optab + : sdiv_optab), + int_mode) + != CODE_FOR_nothing) + || (optab_handler (sdivmod_optab, int_mode) + != CODE_FOR_nothing))) + ; + else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d)) + { + if (rem_flag) + { + remainder = expand_smod_pow2 (int_mode, op0, d); + if (remainder) + return gen_lowpart (mode, remainder); + } + + if (sdiv_pow2_cheap (speed, int_mode) + && ((optab_handler (sdiv_optab, int_mode) + != CODE_FOR_nothing) + || (optab_handler (sdivmod_optab, int_mode) + != CODE_FOR_nothing))) + quotient = expand_divmod (0, TRUNC_DIV_EXPR, + int_mode, op0, + gen_int_mode (abs_d, + int_mode), + NULL_RTX, 0); + else + quotient = expand_sdiv_pow2 (int_mode, op0, abs_d); + + /* We have computed OP0 / abs(OP1). If OP1 is negative, + negate the quotient. */ + if (d < 0) + { + insn = get_last_insn (); + if (insn != last + && abs_d < (HOST_WIDE_INT_1U + << (HOST_BITS_PER_WIDE_INT - 1))) + set_dst_reg_note (insn, REG_EQUAL, + gen_rtx_DIV (int_mode, op0, + gen_int_mode + (abs_d, + int_mode)), + quotient); + + quotient = expand_unop (int_mode, neg_optab, + quotient, quotient, 0); + } + } + else if (size <= HOST_BITS_PER_WIDE_INT) + { + choose_multiplier (abs_d, size, size - 1, + &ml, &post_shift, &lgup); + if (ml < HOST_WIDE_INT_1U << (size - 1)) + { + rtx t1, t2, t3; + + if (post_shift >= BITS_PER_WORD + || size - 1 >= BITS_PER_WORD) + goto fail1; + + extra_cost = (shift_cost (speed, int_mode, post_shift) + + shift_cost (speed, int_mode, size - 1) + + add_cost (speed, int_mode)); + t1 = expmed_mult_highpart + (int_mode, op0, gen_int_mode (ml, int_mode), + NULL_RTX, 0, max_cost - extra_cost); + if (t1 == 0) + goto fail1; + t2 = expand_shift + (RSHIFT_EXPR, int_mode, t1, + post_shift, NULL_RTX, 0); + t3 = expand_shift + (RSHIFT_EXPR, int_mode, op0, + size - 1, NULL_RTX, 0); + if (d < 0) + quotient + = force_operand (gen_rtx_MINUS (int_mode, t3, t2), + tquotient); + else + quotient + = force_operand (gen_rtx_MINUS (int_mode, t2, t3), + tquotient); + } + else + { + rtx t1, t2, t3, t4; + + if (post_shift >= BITS_PER_WORD + || size - 1 >= BITS_PER_WORD) + goto fail1; + + ml |= HOST_WIDE_INT_M1U << (size - 1); + mlr = gen_int_mode (ml, int_mode); + extra_cost = (shift_cost (speed, int_mode, post_shift) + + shift_cost (speed, int_mode, size - 1) + + 2 * add_cost (speed, int_mode)); + t1 = expmed_mult_highpart (int_mode, op0, mlr, + NULL_RTX, 0, + max_cost - extra_cost); + if (t1 == 0) + goto fail1; + t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0), + NULL_RTX); + t3 = expand_shift + (RSHIFT_EXPR, int_mode, t2, + post_shift, NULL_RTX, 0); + t4 = expand_shift + (RSHIFT_EXPR, int_mode, op0, + size - 1, NULL_RTX, 0); + if (d < 0) + quotient + = force_operand (gen_rtx_MINUS (int_mode, t4, t3), + tquotient); + else + quotient + = force_operand (gen_rtx_MINUS (int_mode, t3, t4), + tquotient); + } + } + else /* Too wide mode to use tricky code */ + break; + + insn = get_last_insn (); + if (insn != last) + set_dst_reg_note (insn, REG_EQUAL, + gen_rtx_DIV (int_mode, op0, op1), + quotient); + } + break; + } + fail1: + delete_insns_since (last); + break; + + case FLOOR_DIV_EXPR: + case FLOOR_MOD_EXPR: + /* We will come here only for signed operations. */ + if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode)) + { + scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode); + int size = GET_MODE_BITSIZE (int_mode); + unsigned HOST_WIDE_INT mh, ml; + int pre_shift, lgup, post_shift; + HOST_WIDE_INT d = INTVAL (op1); + + if (d > 0) + { + /* We could just as easily deal with negative constants here, + but it does not seem worth the trouble for GCC 2.6. */ + if (EXACT_POWER_OF_2_OR_ZERO_P (d)) + { + pre_shift = floor_log2 (d); + if (rem_flag) + { + unsigned HOST_WIDE_INT mask + = (HOST_WIDE_INT_1U << pre_shift) - 1; + remainder = expand_binop + (int_mode, and_optab, op0, + gen_int_mode (mask, int_mode), + remainder, 0, methods); + if (remainder) + return gen_lowpart (mode, remainder); + } + quotient = expand_shift + (RSHIFT_EXPR, int_mode, op0, + pre_shift, tquotient, 0); + } + else + { + rtx t1, t2, t3, t4; + + mh = choose_multiplier (d, size, size - 1, + &ml, &post_shift, &lgup); + gcc_assert (!mh); + + if (post_shift < BITS_PER_WORD + && size - 1 < BITS_PER_WORD) + { + t1 = expand_shift + (RSHIFT_EXPR, int_mode, op0, + size - 1, NULL_RTX, 0); + t2 = expand_binop (int_mode, xor_optab, op0, t1, + NULL_RTX, 0, OPTAB_WIDEN); + extra_cost = (shift_cost (speed, int_mode, post_shift) + + shift_cost (speed, int_mode, size - 1) + + 2 * add_cost (speed, int_mode)); + t3 = expmed_mult_highpart + (int_mode, t2, gen_int_mode (ml, int_mode), + NULL_RTX, 1, max_cost - extra_cost); + if (t3 != 0) + { + t4 = expand_shift + (RSHIFT_EXPR, int_mode, t3, + post_shift, NULL_RTX, 1); + quotient = expand_binop (int_mode, xor_optab, + t4, t1, tquotient, 0, + OPTAB_WIDEN); + } + } + } + } + else + { + rtx nsign, t1, t2, t3, t4; + t1 = force_operand (gen_rtx_PLUS (int_mode, + op0, constm1_rtx), NULL_RTX); + t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX, + 0, OPTAB_WIDEN); + nsign = expand_shift (RSHIFT_EXPR, int_mode, t2, + size - 1, NULL_RTX, 0); + t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign), + NULL_RTX); + t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1, + NULL_RTX, 0); + if (t4) + { + rtx t5; + t5 = expand_unop (int_mode, one_cmpl_optab, nsign, + NULL_RTX, 0); + quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5), + tquotient); + } + } + } + + if (quotient != 0) + break; + delete_insns_since (last); + + /* Try using an instruction that produces both the quotient and + remainder, using truncation. We can easily compensate the quotient + or remainder to get floor rounding, once we have the remainder. + Notice that we compute also the final remainder value here, + and return the result right away. */ + if (target == 0 || GET_MODE (target) != compute_mode) + target = gen_reg_rtx (compute_mode); + + if (rem_flag) + { + remainder + = REG_P (target) ? target : gen_reg_rtx (compute_mode); + quotient = gen_reg_rtx (compute_mode); + } + else + { + quotient + = REG_P (target) ? target : gen_reg_rtx (compute_mode); + remainder = gen_reg_rtx (compute_mode); + } + + if (expand_twoval_binop (sdivmod_optab, op0, op1, + quotient, remainder, 0)) + { + /* This could be computed with a branch-less sequence. + Save that for later. */ + rtx tem; + rtx_code_label *label = gen_label_rtx (); + do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label); + tem = expand_binop (compute_mode, xor_optab, op0, op1, + NULL_RTX, 0, OPTAB_WIDEN); + do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label); + expand_dec (quotient, const1_rtx); + expand_inc (remainder, op1); + emit_label (label); + return gen_lowpart (mode, rem_flag ? remainder : quotient); + } + + /* No luck with division elimination or divmod. Have to do it + by conditionally adjusting op0 *and* the result. */ + { + rtx_code_label *label1, *label2, *label3, *label4, *label5; + rtx adjusted_op0; + rtx tem; + + quotient = gen_reg_rtx (compute_mode); + adjusted_op0 = copy_to_mode_reg (compute_mode, op0); + label1 = gen_label_rtx (); + label2 = gen_label_rtx (); + label3 = gen_label_rtx (); + label4 = gen_label_rtx (); + label5 = gen_label_rtx (); + do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2); + do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + emit_jump_insn (targetm.gen_jump (label5)); + emit_barrier (); + emit_label (label1); + expand_inc (adjusted_op0, const1_rtx); + emit_jump_insn (targetm.gen_jump (label4)); + emit_barrier (); + emit_label (label2); + do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + emit_jump_insn (targetm.gen_jump (label5)); + emit_barrier (); + emit_label (label3); + expand_dec (adjusted_op0, const1_rtx); + emit_label (label4); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + expand_dec (quotient, const1_rtx); + emit_label (label5); + } + break; + + case CEIL_DIV_EXPR: + case CEIL_MOD_EXPR: + if (unsignedp) + { + if (op1_is_constant + && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)) + && (HWI_COMPUTABLE_MODE_P (compute_mode) + || INTVAL (op1) >= 0)) + { + scalar_int_mode int_mode + = as_a <scalar_int_mode> (compute_mode); + rtx t1, t2, t3; + unsigned HOST_WIDE_INT d = INTVAL (op1); + t1 = expand_shift (RSHIFT_EXPR, int_mode, op0, + floor_log2 (d), tquotient, 1); + t2 = expand_binop (int_mode, and_optab, op0, + gen_int_mode (d - 1, int_mode), + NULL_RTX, 1, methods); + t3 = gen_reg_rtx (int_mode); + t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1); + if (t3 == 0) + { + rtx_code_label *lab; + lab = gen_label_rtx (); + do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab); + expand_inc (t1, const1_rtx); + emit_label (lab); + quotient = t1; + } + else + quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3), + tquotient); + break; + } + + /* Try using an instruction that produces both the quotient and + remainder, using truncation. We can easily compensate the + quotient or remainder to get ceiling rounding, once we have the + remainder. Notice that we compute also the final remainder + value here, and return the result right away. */ + if (target == 0 || GET_MODE (target) != compute_mode) + target = gen_reg_rtx (compute_mode); + + if (rem_flag) + { + remainder = (REG_P (target) + ? target : gen_reg_rtx (compute_mode)); + quotient = gen_reg_rtx (compute_mode); + } + else + { + quotient = (REG_P (target) + ? target : gen_reg_rtx (compute_mode)); + remainder = gen_reg_rtx (compute_mode); + } + + if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, + remainder, 1)) + { + /* This could be computed with a branch-less sequence. + Save that for later. */ + rtx_code_label *label = gen_label_rtx (); + do_cmp_and_jump (remainder, const0_rtx, EQ, + compute_mode, label); + expand_inc (quotient, const1_rtx); + expand_dec (remainder, op1); + emit_label (label); + return gen_lowpart (mode, rem_flag ? remainder : quotient); + } + + /* No luck with division elimination or divmod. Have to do it + by conditionally adjusting op0 *and* the result. */ + { + rtx_code_label *label1, *label2; + rtx adjusted_op0, tem; + + quotient = gen_reg_rtx (compute_mode); + adjusted_op0 = copy_to_mode_reg (compute_mode, op0); + label1 = gen_label_rtx (); + label2 = gen_label_rtx (); + do_cmp_and_jump (adjusted_op0, const0_rtx, NE, + compute_mode, label1); + emit_move_insn (quotient, const0_rtx); + emit_jump_insn (targetm.gen_jump (label2)); + emit_barrier (); + emit_label (label1); + expand_dec (adjusted_op0, const1_rtx); + tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1, + quotient, 1, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + expand_inc (quotient, const1_rtx); + emit_label (label2); + } + } + else /* signed */ + { + if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)) + && INTVAL (op1) >= 0) + { + /* This is extremely similar to the code for the unsigned case + above. For 2.7 we should merge these variants, but for + 2.6.1 I don't want to touch the code for unsigned since that + get used in C. The signed case will only be used by other + languages (Ada). */ + + rtx t1, t2, t3; + unsigned HOST_WIDE_INT d = INTVAL (op1); + t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0, + floor_log2 (d), tquotient, 0); + t2 = expand_binop (compute_mode, and_optab, op0, + gen_int_mode (d - 1, compute_mode), + NULL_RTX, 1, methods); + t3 = gen_reg_rtx (compute_mode); + t3 = emit_store_flag (t3, NE, t2, const0_rtx, + compute_mode, 1, 1); + if (t3 == 0) + { + rtx_code_label *lab; + lab = gen_label_rtx (); + do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab); + expand_inc (t1, const1_rtx); + emit_label (lab); + quotient = t1; + } + else + quotient = force_operand (gen_rtx_PLUS (compute_mode, + t1, t3), + tquotient); + break; + } + + /* Try using an instruction that produces both the quotient and + remainder, using truncation. We can easily compensate the + quotient or remainder to get ceiling rounding, once we have the + remainder. Notice that we compute also the final remainder + value here, and return the result right away. */ + if (target == 0 || GET_MODE (target) != compute_mode) + target = gen_reg_rtx (compute_mode); + if (rem_flag) + { + remainder= (REG_P (target) + ? target : gen_reg_rtx (compute_mode)); + quotient = gen_reg_rtx (compute_mode); + } + else + { + quotient = (REG_P (target) + ? target : gen_reg_rtx (compute_mode)); + remainder = gen_reg_rtx (compute_mode); + } + + if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, + remainder, 0)) + { + /* This could be computed with a branch-less sequence. + Save that for later. */ + rtx tem; + rtx_code_label *label = gen_label_rtx (); + do_cmp_and_jump (remainder, const0_rtx, EQ, + compute_mode, label); + tem = expand_binop (compute_mode, xor_optab, op0, op1, + NULL_RTX, 0, OPTAB_WIDEN); + do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label); + expand_inc (quotient, const1_rtx); + expand_dec (remainder, op1); + emit_label (label); + return gen_lowpart (mode, rem_flag ? remainder : quotient); + } + + /* No luck with division elimination or divmod. Have to do it + by conditionally adjusting op0 *and* the result. */ + { + rtx_code_label *label1, *label2, *label3, *label4, *label5; + rtx adjusted_op0; + rtx tem; + + quotient = gen_reg_rtx (compute_mode); + adjusted_op0 = copy_to_mode_reg (compute_mode, op0); + label1 = gen_label_rtx (); + label2 = gen_label_rtx (); + label3 = gen_label_rtx (); + label4 = gen_label_rtx (); + label5 = gen_label_rtx (); + do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2); + do_cmp_and_jump (adjusted_op0, const0_rtx, GT, + compute_mode, label1); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + emit_jump_insn (targetm.gen_jump (label5)); + emit_barrier (); + emit_label (label1); + expand_dec (adjusted_op0, const1_rtx); + emit_jump_insn (targetm.gen_jump (label4)); + emit_barrier (); + emit_label (label2); + do_cmp_and_jump (adjusted_op0, const0_rtx, LT, + compute_mode, label3); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + emit_jump_insn (targetm.gen_jump (label5)); + emit_barrier (); + emit_label (label3); + expand_inc (adjusted_op0, const1_rtx); + emit_label (label4); + tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1, + quotient, 0, methods); + if (tem != quotient) + emit_move_insn (quotient, tem); + expand_inc (quotient, const1_rtx); + emit_label (label5); + } + } + break; + + case EXACT_DIV_EXPR: + if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode)) + { + scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode); + int size = GET_MODE_BITSIZE (int_mode); + HOST_WIDE_INT d = INTVAL (op1); + unsigned HOST_WIDE_INT ml; + int pre_shift; + rtx t1; + + pre_shift = ctz_or_zero (d); + ml = invert_mod2n (d >> pre_shift, size); + t1 = expand_shift (RSHIFT_EXPR, int_mode, op0, + pre_shift, NULL_RTX, unsignedp); + quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode), + NULL_RTX, 1); + + insn = get_last_insn (); + set_dst_reg_note (insn, REG_EQUAL, + gen_rtx_fmt_ee (unsignedp ? UDIV : DIV, + int_mode, op0, op1), + quotient); + } + break; + + case ROUND_DIV_EXPR: + case ROUND_MOD_EXPR: + if (unsignedp) + { + scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode); + rtx tem; + rtx_code_label *label; + label = gen_label_rtx (); + quotient = gen_reg_rtx (int_mode); + remainder = gen_reg_rtx (int_mode); + if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0) + { + rtx tem; + quotient = expand_binop (int_mode, udiv_optab, op0, op1, + quotient, 1, methods); + tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1); + remainder = expand_binop (int_mode, sub_optab, op0, tem, + remainder, 1, methods); + } + tem = plus_constant (int_mode, op1, -1); + tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1); + do_cmp_and_jump (remainder, tem, LEU, int_mode, label); + expand_inc (quotient, const1_rtx); + expand_dec (remainder, op1); + emit_label (label); + } + else + { + scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode); + int size = GET_MODE_BITSIZE (int_mode); + rtx abs_rem, abs_op1, tem, mask; + rtx_code_label *label; + label = gen_label_rtx (); + quotient = gen_reg_rtx (int_mode); + remainder = gen_reg_rtx (int_mode); + if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0) + { + rtx tem; + quotient = expand_binop (int_mode, sdiv_optab, op0, op1, + quotient, 0, methods); + tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0); + remainder = expand_binop (int_mode, sub_optab, op0, tem, + remainder, 0, methods); + } + abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0); + abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0); + tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem, + 1, NULL_RTX, 1); + do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label); + tem = expand_binop (int_mode, xor_optab, op0, op1, + NULL_RTX, 0, OPTAB_WIDEN); + mask = expand_shift (RSHIFT_EXPR, int_mode, tem, + size - 1, NULL_RTX, 0); + tem = expand_binop (int_mode, xor_optab, mask, const1_rtx, + NULL_RTX, 0, OPTAB_WIDEN); + tem = expand_binop (int_mode, sub_optab, tem, mask, + NULL_RTX, 0, OPTAB_WIDEN); + expand_inc (quotient, tem); + tem = expand_binop (int_mode, xor_optab, mask, op1, + NULL_RTX, 0, OPTAB_WIDEN); + tem = expand_binop (int_mode, sub_optab, tem, mask, + NULL_RTX, 0, OPTAB_WIDEN); + expand_dec (remainder, tem); + emit_label (label); + } + return gen_lowpart (mode, rem_flag ? remainder : quotient); + + default: + gcc_unreachable (); + } + + if (quotient == 0) + { + if (target && GET_MODE (target) != compute_mode) + target = 0; + + if (rem_flag) + { + /* Try to produce the remainder without producing the quotient. + If we seem to have a divmod pattern that does not require widening, + don't try widening here. We should really have a WIDEN argument + to expand_twoval_binop, since what we'd really like to do here is + 1) try a mod insn in compute_mode + 2) try a divmod insn in compute_mode + 3) try a div insn in compute_mode and multiply-subtract to get + remainder + 4) try the same things with widening allowed. */ + remainder + = sign_expand_binop (compute_mode, umod_optab, smod_optab, + op0, op1, target, + unsignedp, + ((optab_handler (optab2, compute_mode) + != CODE_FOR_nothing) + ? OPTAB_DIRECT : OPTAB_WIDEN)); + if (remainder == 0) + { + /* No luck there. Can we do remainder and divide at once + without a library call? */ + remainder = gen_reg_rtx (compute_mode); + if (! expand_twoval_binop ((unsignedp + ? udivmod_optab + : sdivmod_optab), + op0, op1, + NULL_RTX, remainder, unsignedp)) + remainder = 0; + } + + if (remainder) + return gen_lowpart (mode, remainder); + } + + /* Produce the quotient. Try a quotient insn, but not a library call. + If we have a divmod in this mode, use it in preference to widening + the div (for this test we assume it will not fail). Note that optab2 + is set to the one of the two optabs that the call below will use. */ + quotient + = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab, + op0, op1, rem_flag ? NULL_RTX : target, + unsignedp, + ((optab_handler (optab2, compute_mode) + != CODE_FOR_nothing) + ? OPTAB_DIRECT : OPTAB_WIDEN)); + + if (quotient == 0) + { + /* No luck there. Try a quotient-and-remainder insn, + keeping the quotient alone. */ + quotient = gen_reg_rtx (compute_mode); + if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab, + op0, op1, + quotient, NULL_RTX, unsignedp)) + { + quotient = 0; + if (! rem_flag) + /* Still no luck. If we are not computing the remainder, + use a library call for the quotient. */ + quotient = sign_expand_binop (compute_mode, + udiv_optab, sdiv_optab, + op0, op1, target, + unsignedp, methods); + } + } + } + + if (rem_flag) + { + if (target && GET_MODE (target) != compute_mode) + target = 0; + + if (quotient == 0) + { + /* No divide instruction either. Use library for remainder. */ + remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab, + op0, op1, target, + unsignedp, methods); + /* No remainder function. Try a quotient-and-remainder + function, keeping the remainder. */ + if (!remainder + && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) + { + remainder = gen_reg_rtx (compute_mode); + if (!expand_twoval_binop_libfunc + (unsignedp ? udivmod_optab : sdivmod_optab, + op0, op1, + NULL_RTX, remainder, + unsignedp ? UMOD : MOD)) + remainder = NULL_RTX; + } + } + else + { + /* We divided. Now finish doing X - Y * (X / Y). */ + remainder = expand_mult (compute_mode, quotient, op1, + NULL_RTX, unsignedp); + remainder = expand_binop (compute_mode, sub_optab, op0, + remainder, target, unsignedp, + methods); + } + } + + if (methods != OPTAB_LIB_WIDEN + && (rem_flag ? remainder : quotient) == NULL_RTX) + return NULL_RTX; + + return gen_lowpart (mode, rem_flag ? remainder : quotient); +} + +/* Return a tree node with data type TYPE, describing the value of X. + Usually this is an VAR_DECL, if there is no obvious better choice. + X may be an expression, however we only support those expressions + generated by loop.c. */ + +tree +make_tree (tree type, rtx x) +{ + tree t; + + switch (GET_CODE (x)) + { + case CONST_INT: + case CONST_WIDE_INT: + t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type))); + return t; + + case CONST_DOUBLE: + STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT); + if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode) + t = wide_int_to_tree (type, + wide_int::from_array (&CONST_DOUBLE_LOW (x), 2, + HOST_BITS_PER_WIDE_INT * 2)); + else + t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x)); + + return t; + + case CONST_VECTOR: + { + unsigned int npatterns = CONST_VECTOR_NPATTERNS (x); + unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x); + tree itype = TREE_TYPE (type); + + /* Build a tree with vector elements. */ + tree_vector_builder elts (type, npatterns, nelts_per_pattern); + unsigned int count = elts.encoded_nelts (); + for (unsigned int i = 0; i < count; ++i) + { + rtx elt = CONST_VECTOR_ELT (x, i); + elts.quick_push (make_tree (itype, elt)); + } + + return elts.build (); + } + + case PLUS: + return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)), + make_tree (type, XEXP (x, 1))); + + case MINUS: + return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)), + make_tree (type, XEXP (x, 1))); + + case NEG: + return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))); + + case MULT: + return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)), + make_tree (type, XEXP (x, 1))); + + case ASHIFT: + return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)), + make_tree (type, XEXP (x, 1))); + + case LSHIFTRT: + t = unsigned_type_for (type); + return fold_convert (type, build2 (RSHIFT_EXPR, t, + make_tree (t, XEXP (x, 0)), + make_tree (type, XEXP (x, 1)))); + + case ASHIFTRT: + t = signed_type_for (type); + return fold_convert (type, build2 (RSHIFT_EXPR, t, + make_tree (t, XEXP (x, 0)), + make_tree (type, XEXP (x, 1)))); + + case DIV: + if (TREE_CODE (type) != REAL_TYPE) + t = signed_type_for (type); + else + t = type; + + return fold_convert (type, build2 (TRUNC_DIV_EXPR, t, + make_tree (t, XEXP (x, 0)), + make_tree (t, XEXP (x, 1)))); + case UDIV: + t = unsigned_type_for (type); + return fold_convert (type, build2 (TRUNC_DIV_EXPR, t, + make_tree (t, XEXP (x, 0)), + make_tree (t, XEXP (x, 1)))); + + case SIGN_EXTEND: + case ZERO_EXTEND: + t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)), + GET_CODE (x) == ZERO_EXTEND); + return fold_convert (type, make_tree (t, XEXP (x, 0))); + + case CONST: + return make_tree (type, XEXP (x, 0)); + + case SYMBOL_REF: + t = SYMBOL_REF_DECL (x); + if (t) + return fold_convert (type, build_fold_addr_expr (t)); + /* fall through. */ + + default: + if (CONST_POLY_INT_P (x)) + return wide_int_to_tree (t, const_poly_int_value (x)); + + t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type); + + /* If TYPE is a POINTER_TYPE, we might need to convert X from + address mode to pointer mode. */ + if (POINTER_TYPE_P (type)) + x = convert_memory_address_addr_space + (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type))); + + /* Note that we do *not* use SET_DECL_RTL here, because we do not + want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */ + t->decl_with_rtl.rtl = x; + + return t; + } +} + +/* Compute the logical-and of OP0 and OP1, storing it in TARGET + and returning TARGET. + + If TARGET is 0, a pseudo-register or constant is returned. */ + +rtx +expand_and (machine_mode mode, rtx op0, rtx op1, rtx target) +{ + rtx tem = 0; + + if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) + tem = simplify_binary_operation (AND, mode, op0, op1); + if (tem == 0) + tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN); + + if (target == 0) + target = tem; + else if (tem != target) + emit_move_insn (target, tem); + return target; +} + +/* Helper function for emit_store_flag. */ +rtx +emit_cstore (rtx target, enum insn_code icode, enum rtx_code code, + machine_mode mode, machine_mode compare_mode, + int unsignedp, rtx x, rtx y, int normalizep, + machine_mode target_mode) +{ + class expand_operand ops[4]; + rtx op0, comparison, subtarget; + rtx_insn *last; + scalar_int_mode result_mode = targetm.cstore_mode (icode); + scalar_int_mode int_target_mode; + + last = get_last_insn (); + x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp); + y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp); + if (!x || !y) + { + delete_insns_since (last); + return NULL_RTX; + } + + if (target_mode == VOIDmode) + int_target_mode = result_mode; + else + int_target_mode = as_a <scalar_int_mode> (target_mode); + if (!target) + target = gen_reg_rtx (int_target_mode); + + comparison = gen_rtx_fmt_ee (code, result_mode, x, y); + + create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode); + create_fixed_operand (&ops[1], comparison); + create_fixed_operand (&ops[2], x); + create_fixed_operand (&ops[3], y); + if (!maybe_expand_insn (icode, 4, ops)) + { + delete_insns_since (last); + return NULL_RTX; + } + subtarget = ops[0].value; + + /* If we are converting to a wider mode, first convert to + INT_TARGET_MODE, then normalize. This produces better combining + opportunities on machines that have a SIGN_EXTRACT when we are + testing a single bit. This mostly benefits the 68k. + + If STORE_FLAG_VALUE does not have the sign bit set when + interpreted in MODE, we can do this conversion as unsigned, which + is usually more efficient. */ + if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode)) + { + gcc_assert (GET_MODE_PRECISION (result_mode) != 1 + || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1); + + bool unsignedp = (STORE_FLAG_VALUE >= 0); + convert_move (target, subtarget, unsignedp); + + op0 = target; + result_mode = int_target_mode; + } + else + op0 = subtarget; + + /* If we want to keep subexpressions around, don't reuse our last + target. */ + if (optimize) + subtarget = 0; + + /* Now normalize to the proper value in MODE. Sometimes we don't + have to do anything. */ + if (normalizep == 0 || normalizep == STORE_FLAG_VALUE) + ; + /* STORE_FLAG_VALUE might be the most negative number, so write + the comparison this way to avoid a compiler-time warning. */ + else if (- normalizep == STORE_FLAG_VALUE) + op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0); + + /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes + it hard to use a value of just the sign bit due to ANSI integer + constant typing rules. */ + else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE)) + op0 = expand_shift (RSHIFT_EXPR, result_mode, op0, + GET_MODE_BITSIZE (result_mode) - 1, subtarget, + normalizep == 1); + else + { + gcc_assert (STORE_FLAG_VALUE & 1); + + op0 = expand_and (result_mode, op0, const1_rtx, subtarget); + if (normalizep == -1) + op0 = expand_unop (result_mode, neg_optab, op0, op0, 0); + } + + /* If we were converting to a smaller mode, do the conversion now. */ + if (int_target_mode != result_mode) + { + convert_move (target, op0, 0); + return target; + } + else + return op0; +} + + +/* A subroutine of emit_store_flag only including "tricks" that do not + need a recursive call. These are kept separate to avoid infinite + loops. */ + +static rtx +emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1, + machine_mode mode, int unsignedp, int normalizep, + machine_mode target_mode) +{ + rtx subtarget; + enum insn_code icode; + machine_mode compare_mode; + enum mode_class mclass; + enum rtx_code scode; + + if (unsignedp) + code = unsigned_condition (code); + scode = swap_condition (code); + + /* If one operand is constant, make it the second one. Only do this + if the other operand is not constant as well. */ + + if (swap_commutative_operands_p (op0, op1)) + { + std::swap (op0, op1); + code = swap_condition (code); + } + + if (mode == VOIDmode) + mode = GET_MODE (op0); + + if (CONST_SCALAR_INT_P (op1)) + canonicalize_comparison (mode, &code, &op1); + + /* For some comparisons with 1 and -1, we can convert this to + comparisons with zero. This will often produce more opportunities for + store-flag insns. */ + + switch (code) + { + case LT: + if (op1 == const1_rtx) + op1 = const0_rtx, code = LE; + break; + case LE: + if (op1 == constm1_rtx) + op1 = const0_rtx, code = LT; + break; + case GE: + if (op1 == const1_rtx) + op1 = const0_rtx, code = GT; + break; + case GT: + if (op1 == constm1_rtx) + op1 = const0_rtx, code = GE; + break; + case GEU: + if (op1 == const1_rtx) + op1 = const0_rtx, code = NE; + break; + case LTU: + if (op1 == const1_rtx) + op1 = const0_rtx, code = EQ; + break; + default: + break; + } + + /* If we are comparing a double-word integer with zero or -1, we can + convert the comparison into one involving a single word. */ + scalar_int_mode int_mode; + if (is_int_mode (mode, &int_mode) + && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2 + && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0))) + { + rtx tem; + if ((code == EQ || code == NE) + && (op1 == const0_rtx || op1 == constm1_rtx)) + { + rtx op00, op01; + + /* Do a logical OR or AND of the two words and compare the + result. */ + op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0); + op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD); + tem = expand_binop (word_mode, + op1 == const0_rtx ? ior_optab : and_optab, + op00, op01, NULL_RTX, unsignedp, + OPTAB_DIRECT); + + if (tem != 0) + tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode, + unsignedp, normalizep); + } + else if ((code == LT || code == GE) && op1 == const0_rtx) + { + rtx op0h; + + /* If testing the sign bit, can just test on high word. */ + op0h = simplify_gen_subreg (word_mode, op0, int_mode, + subreg_highpart_offset (word_mode, + int_mode)); + tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode, + unsignedp, normalizep); + } + else + tem = NULL_RTX; + + if (tem) + { + if (target_mode == VOIDmode || GET_MODE (tem) == target_mode) + return tem; + if (!target) + target = gen_reg_rtx (target_mode); + + convert_move (target, tem, + !val_signbit_known_set_p (word_mode, + (normalizep ? normalizep + : STORE_FLAG_VALUE))); + return target; + } + } + + /* If this is A < 0 or A >= 0, we can do this by taking the ones + complement of A (for GE) and shifting the sign bit to the low bit. */ + if (op1 == const0_rtx && (code == LT || code == GE) + && is_int_mode (mode, &int_mode) + && (normalizep || STORE_FLAG_VALUE == 1 + || val_signbit_p (int_mode, STORE_FLAG_VALUE))) + { + scalar_int_mode int_target_mode; + subtarget = target; + + if (!target) + int_target_mode = int_mode; + else + { + /* If the result is to be wider than OP0, it is best to convert it + first. If it is to be narrower, it is *incorrect* to convert it + first. */ + int_target_mode = as_a <scalar_int_mode> (target_mode); + if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode)) + { + op0 = convert_modes (int_target_mode, int_mode, op0, 0); + int_mode = int_target_mode; + } + } + + if (int_target_mode != int_mode) + subtarget = 0; + + if (code == GE) + op0 = expand_unop (int_mode, one_cmpl_optab, op0, + ((STORE_FLAG_VALUE == 1 || normalizep) + ? 0 : subtarget), 0); + + if (STORE_FLAG_VALUE == 1 || normalizep) + /* If we are supposed to produce a 0/1 value, we want to do + a logical shift from the sign bit to the low-order bit; for + a -1/0 value, we do an arithmetic shift. */ + op0 = expand_shift (RSHIFT_EXPR, int_mode, op0, + GET_MODE_BITSIZE (int_mode) - 1, + subtarget, normalizep != -1); + + if (int_mode != int_target_mode) + op0 = convert_modes (int_target_mode, int_mode, op0, 0); + + return op0; + } + + mclass = GET_MODE_CLASS (mode); + FOR_EACH_MODE_FROM (compare_mode, mode) + { + machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode; + icode = optab_handler (cstore_optab, optab_mode); + if (icode != CODE_FOR_nothing) + { + do_pending_stack_adjust (); + rtx tem = emit_cstore (target, icode, code, mode, compare_mode, + unsignedp, op0, op1, normalizep, target_mode); + if (tem) + return tem; + + if (GET_MODE_CLASS (mode) == MODE_FLOAT) + { + tem = emit_cstore (target, icode, scode, mode, compare_mode, + unsignedp, op1, op0, normalizep, target_mode); + if (tem) + return tem; + } + break; + } + } + + return 0; +} + +/* Subroutine of emit_store_flag that handles cases in which the operands + are scalar integers. SUBTARGET is the target to use for temporary + operations and TRUEVAL is the value to store when the condition is + true. All other arguments are as for emit_store_flag. */ + +rtx +emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0, + rtx op1, scalar_int_mode mode, int unsignedp, + int normalizep, rtx trueval) +{ + machine_mode target_mode = target ? GET_MODE (target) : VOIDmode; + rtx_insn *last = get_last_insn (); + + /* If this is an equality comparison of integers, we can try to exclusive-or + (or subtract) the two operands and use a recursive call to try the + comparison with zero. Don't do any of these cases if branches are + very cheap. */ + + if ((code == EQ || code == NE) && op1 != const0_rtx) + { + rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1, + OPTAB_WIDEN); + + if (tem == 0) + tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1, + OPTAB_WIDEN); + if (tem != 0) + tem = emit_store_flag (target, code, tem, const0_rtx, + mode, unsignedp, normalizep); + if (tem != 0) + return tem; + + delete_insns_since (last); + } + + /* For integer comparisons, try the reverse comparison. However, for + small X and if we'd have anyway to extend, implementing "X != 0" + as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */ + rtx_code rcode = reverse_condition (code); + if (can_compare_p (rcode, mode, ccp_store_flag) + && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing + && code == NE + && GET_MODE_SIZE (mode) < UNITS_PER_WORD + && op1 == const0_rtx)) + { + int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1) + || (STORE_FLAG_VALUE == -1 && normalizep == 1)); + + /* Again, for the reverse comparison, use either an addition or a XOR. */ + if (want_add + && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1, + optimize_insn_for_speed_p ()) == 0) + { + rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0, + STORE_FLAG_VALUE, target_mode); + if (tem != 0) + tem = expand_binop (target_mode, add_optab, tem, + gen_int_mode (normalizep, target_mode), + target, 0, OPTAB_WIDEN); + if (tem != 0) + return tem; + } + else if (!want_add + && rtx_cost (trueval, mode, XOR, 1, + optimize_insn_for_speed_p ()) == 0) + { + rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0, + normalizep, target_mode); + if (tem != 0) + tem = expand_binop (target_mode, xor_optab, tem, trueval, target, + INTVAL (trueval) >= 0, OPTAB_WIDEN); + if (tem != 0) + return tem; + } + + delete_insns_since (last); + } + + /* Some other cases we can do are EQ, NE, LE, and GT comparisons with + the constant zero. Reject all other comparisons at this point. Only + do LE and GT if branches are expensive since they are expensive on + 2-operand machines. */ + + if (op1 != const0_rtx + || (code != EQ && code != NE + && (BRANCH_COST (optimize_insn_for_speed_p (), + false) <= 1 || (code != LE && code != GT)))) + return 0; + + /* Try to put the result of the comparison in the sign bit. Assume we can't + do the necessary operation below. */ + + rtx tem = 0; + + /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has + the sign bit set. */ + + if (code == LE) + { + /* This is destructive, so SUBTARGET can't be OP0. */ + if (rtx_equal_p (subtarget, op0)) + subtarget = 0; + + tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0, + OPTAB_WIDEN); + if (tem) + tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0, + OPTAB_WIDEN); + } + + /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the + number of bits in the mode of OP0, minus one. */ + + if (code == GT) + { + if (rtx_equal_p (subtarget, op0)) + subtarget = 0; + + tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0, + GET_MODE_BITSIZE (mode) - 1, + subtarget, 0); + if (tem) + tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0, + OPTAB_WIDEN); + } + + if (code == EQ || code == NE) + { + /* For EQ or NE, one way to do the comparison is to apply an operation + that converts the operand into a positive number if it is nonzero + or zero if it was originally zero. Then, for EQ, we subtract 1 and + for NE we negate. This puts the result in the sign bit. Then we + normalize with a shift, if needed. + + Two operations that can do the above actions are ABS and FFS, so try + them. If that doesn't work, and MODE is smaller than a full word, + we can use zero-extension to the wider mode (an unsigned conversion) + as the operation. */ + + /* Note that ABS doesn't yield a positive number for INT_MIN, but + that is compensated by the subsequent overflow when subtracting + one / negating. */ + + if (optab_handler (abs_optab, mode) != CODE_FOR_nothing) + tem = expand_unop (mode, abs_optab, op0, subtarget, 1); + else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing) + tem = expand_unop (mode, ffs_optab, op0, subtarget, 1); + else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) + { + tem = convert_modes (word_mode, mode, op0, 1); + mode = word_mode; + } + + if (tem != 0) + { + if (code == EQ) + tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget, + 0, OPTAB_WIDEN); + else + tem = expand_unop (mode, neg_optab, tem, subtarget, 0); + } + + /* If we couldn't do it that way, for NE we can "or" the two's complement + of the value with itself. For EQ, we take the one's complement of + that "or", which is an extra insn, so we only handle EQ if branches + are expensive. */ + + if (tem == 0 + && (code == NE + || BRANCH_COST (optimize_insn_for_speed_p (), + false) > 1)) + { + if (rtx_equal_p (subtarget, op0)) + subtarget = 0; + + tem = expand_unop (mode, neg_optab, op0, subtarget, 0); + tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0, + OPTAB_WIDEN); + + if (tem && code == EQ) + tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0); + } + } + + if (tem && normalizep) + tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem, + GET_MODE_BITSIZE (mode) - 1, + subtarget, normalizep == 1); + + if (tem) + { + if (!target) + ; + else if (GET_MODE (tem) != target_mode) + { + convert_move (target, tem, 0); + tem = target; + } + else if (!subtarget) + { + emit_move_insn (target, tem); + tem = target; + } + } + else + delete_insns_since (last); + + return tem; +} + +/* Emit a store-flags instruction for comparison CODE on OP0 and OP1 + and storing in TARGET. Normally return TARGET. + Return 0 if that cannot be done. + + MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If + it is VOIDmode, they cannot both be CONST_INT. + + UNSIGNEDP is for the case where we have to widen the operands + to perform the operation. It says to use zero-extension. + + NORMALIZEP is 1 if we should convert the result to be either zero + or one. Normalize is -1 if we should convert the result to be + either zero or -1. If NORMALIZEP is zero, the result will be left + "raw" out of the scc insn. */ + +rtx +emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1, + machine_mode mode, int unsignedp, int normalizep) +{ + machine_mode target_mode = target ? GET_MODE (target) : VOIDmode; + enum rtx_code rcode; + rtx subtarget; + rtx tem, trueval; + rtx_insn *last; + + /* If we compare constants, we shouldn't use a store-flag operation, + but a constant load. We can get there via the vanilla route that + usually generates a compare-branch sequence, but will in this case + fold the comparison to a constant, and thus elide the branch. */ + if (CONSTANT_P (op0) && CONSTANT_P (op1)) + return NULL_RTX; + + tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep, + target_mode); + if (tem) + return tem; + + /* If we reached here, we can't do this with a scc insn, however there + are some comparisons that can be done in other ways. Don't do any + of these cases if branches are very cheap. */ + if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0) + return 0; + + /* See what we need to return. We can only return a 1, -1, or the + sign bit. */ + + if (normalizep == 0) + { + if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1) + normalizep = STORE_FLAG_VALUE; + + else if (val_signbit_p (mode, STORE_FLAG_VALUE)) + ; + else + return 0; + } + + last = get_last_insn (); + + /* If optimizing, use different pseudo registers for each insn, instead + of reusing the same pseudo. This leads to better CSE, but slows + down the compiler, since there are more pseudos. */ + subtarget = (!optimize + && (target_mode == mode)) ? target : NULL_RTX; + trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE); + + /* For floating-point comparisons, try the reverse comparison or try + changing the "orderedness" of the comparison. */ + if (GET_MODE_CLASS (mode) == MODE_FLOAT) + { + enum rtx_code first_code; + bool and_them; + + rcode = reverse_condition_maybe_unordered (code); + if (can_compare_p (rcode, mode, ccp_store_flag) + && (code == ORDERED || code == UNORDERED + || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ)) + || (! HONOR_SNANS (mode) && (code == EQ || code == NE)))) + { + int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1) + || (STORE_FLAG_VALUE == -1 && normalizep == 1)); + + /* For the reverse comparison, use either an addition or a XOR. */ + if (want_add + && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1, + optimize_insn_for_speed_p ()) == 0) + { + tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0, + STORE_FLAG_VALUE, target_mode); + if (tem) + return expand_binop (target_mode, add_optab, tem, + gen_int_mode (normalizep, target_mode), + target, 0, OPTAB_WIDEN); + } + else if (!want_add + && rtx_cost (trueval, mode, XOR, 1, + optimize_insn_for_speed_p ()) == 0) + { + tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0, + normalizep, target_mode); + if (tem) + return expand_binop (target_mode, xor_optab, tem, trueval, + target, INTVAL (trueval) >= 0, + OPTAB_WIDEN); + } + } + + delete_insns_since (last); + + /* Cannot split ORDERED and UNORDERED, only try the above trick. */ + if (code == ORDERED || code == UNORDERED) + return 0; + + and_them = split_comparison (code, mode, &first_code, &code); + + /* If there are no NaNs, the first comparison should always fall through. + Effectively change the comparison to the other one. */ + if (!HONOR_NANS (mode)) + { + gcc_assert (first_code == (and_them ? ORDERED : UNORDERED)); + return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep, + target_mode); + } + + if (!HAVE_conditional_move) + return 0; + + /* Do not turn a trapping comparison into a non-trapping one. */ + if ((code != EQ && code != NE && code != UNEQ && code != LTGT) + && flag_trapping_math) + return 0; + + /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a + conditional move. */ + tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0, + normalizep, target_mode); + if (tem == 0) + return 0; + + if (and_them) + tem = emit_conditional_move (target, code, op0, op1, mode, + tem, const0_rtx, GET_MODE (tem), 0); + else + tem = emit_conditional_move (target, code, op0, op1, mode, + trueval, tem, GET_MODE (tem), 0); + + if (tem == 0) + delete_insns_since (last); + return tem; + } + + /* The remaining tricks only apply to integer comparisons. */ + + scalar_int_mode int_mode; + if (is_int_mode (mode, &int_mode)) + return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode, + unsignedp, normalizep, trueval); + + return 0; +} + +/* Like emit_store_flag, but always succeeds. */ + +rtx +emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1, + machine_mode mode, int unsignedp, int normalizep) +{ + rtx tem; + rtx_code_label *label; + rtx trueval, falseval; + + /* First see if emit_store_flag can do the job. */ + tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep); + if (tem != 0) + return tem; + + /* If one operand is constant, make it the second one. Only do this + if the other operand is not constant as well. */ + if (swap_commutative_operands_p (op0, op1)) + { + std::swap (op0, op1); + code = swap_condition (code); + } + + if (mode == VOIDmode) + mode = GET_MODE (op0); + + if (!target) + target = gen_reg_rtx (word_mode); + + /* If this failed, we have to do this with set/compare/jump/set code. + For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */ + trueval = normalizep ? GEN_INT (normalizep) : const1_rtx; + if (code == NE + && GET_MODE_CLASS (mode) == MODE_INT + && REG_P (target) + && op0 == target + && op1 == const0_rtx) + { + label = gen_label_rtx (); + do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode, + NULL_RTX, NULL, label, + profile_probability::uninitialized ()); + emit_move_insn (target, trueval); + emit_label (label); + return target; + } + + if (!REG_P (target) + || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1)) + target = gen_reg_rtx (GET_MODE (target)); + + /* Jump in the right direction if the target cannot implement CODE + but can jump on its reverse condition. */ + falseval = const0_rtx; + if (! can_compare_p (code, mode, ccp_jump) + && (! FLOAT_MODE_P (mode) + || code == ORDERED || code == UNORDERED + || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ)) + || (! HONOR_SNANS (mode) && (code == EQ || code == NE)))) + { + enum rtx_code rcode; + if (FLOAT_MODE_P (mode)) + rcode = reverse_condition_maybe_unordered (code); + else + rcode = reverse_condition (code); + + /* Canonicalize to UNORDERED for the libcall. */ + if (can_compare_p (rcode, mode, ccp_jump) + || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump))) + { + falseval = trueval; + trueval = const0_rtx; + code = rcode; + } + } + + emit_move_insn (target, trueval); + label = gen_label_rtx (); + do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL, + label, profile_probability::uninitialized ()); + + emit_move_insn (target, falseval); + emit_label (label); + + return target; +} + +/* Helper function for canonicalize_cmp_for_target. Swap between inclusive + and exclusive ranges in order to create an equivalent comparison. See + canonicalize_cmp_for_target for the possible cases. */ + +static enum rtx_code +equivalent_cmp_code (enum rtx_code code) +{ + switch (code) + { + case GT: + return GE; + case GE: + return GT; + case LT: + return LE; + case LE: + return LT; + case GTU: + return GEU; + case GEU: + return GTU; + case LTU: + return LEU; + case LEU: + return LTU; + + default: + return code; + } +} + +/* Choose the more appropiate immediate in scalar integer comparisons. The + purpose of this is to end up with an immediate which can be loaded into a + register in fewer moves, if possible. + + For each integer comparison there exists an equivalent choice: + i) a > b or a >= b + 1 + ii) a <= b or a < b + 1 + iii) a >= b or a > b - 1 + iv) a < b or a <= b - 1 + + MODE is the mode of the first operand. + CODE points to the comparison code. + IMM points to the rtx containing the immediate. *IMM must satisfy + CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P + on exit. */ + +void +canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm) +{ + if (!SCALAR_INT_MODE_P (mode)) + return; + + int to_add = 0; + enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED; + + /* Extract the immediate value from the rtx. */ + wide_int imm_val = rtx_mode_t (*imm, mode); + + if (*code == GT || *code == GTU || *code == LE || *code == LEU) + to_add = 1; + else if (*code == GE || *code == GEU || *code == LT || *code == LTU) + to_add = -1; + else + return; + + /* Check for overflow/underflow in the case of signed values and + wrapping around in the case of unsigned values. If any occur + cancel the optimization. */ + wi::overflow_type overflow = wi::OVF_NONE; + wide_int imm_modif; + + if (to_add == 1) + imm_modif = wi::add (imm_val, 1, sgn, &overflow); + else + imm_modif = wi::sub (imm_val, 1, sgn, &overflow); + + if (overflow) + return; + + /* The following creates a pseudo; if we cannot do that, bail out. */ + if (!can_create_pseudo_p ()) + return; + + rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1); + rtx new_imm = immed_wide_int_const (imm_modif, mode); + + rtx_insn *old_rtx = gen_move_insn (reg, *imm); + rtx_insn *new_rtx = gen_move_insn (reg, new_imm); + + /* Update the immediate and the code. */ + if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true)) + { + *code = equivalent_cmp_code (*code); + *imm = new_imm; + } +} + + + +/* Perform possibly multi-word comparison and conditional jump to LABEL + if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is + now a thin wrapper around do_compare_rtx_and_jump. */ + +static void +do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode, + rtx_code_label *label) +{ + int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU); + do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX, + NULL, label, profile_probability::uninitialized ()); +} |