summaryrefslogtreecommitdiff
path: root/gcc/expr.cc
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2022-01-14 16:56:44 +0100
committerMartin Liska <mliska@suse.cz>2022-01-17 22:12:04 +0100
commit5c69acb32329d49e58c26fa41ae74229a52b9106 (patch)
treeddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/expr.cc
parent490e23032baaece71f2ec09fa1805064b150fbc2 (diff)
downloadgcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz
Rename .c files to .cc files.
gcc/ada/ChangeLog: * adadecode.c: Moved to... * adadecode.cc: ...here. * affinity.c: Moved to... * affinity.cc: ...here. * argv-lynxos178-raven-cert.c: Moved to... * argv-lynxos178-raven-cert.cc: ...here. * argv.c: Moved to... * argv.cc: ...here. * aux-io.c: Moved to... * aux-io.cc: ...here. * cio.c: Moved to... * cio.cc: ...here. * cstreams.c: Moved to... * cstreams.cc: ...here. * env.c: Moved to... * env.cc: ...here. * exit.c: Moved to... * exit.cc: ...here. * expect.c: Moved to... * expect.cc: ...here. * final.c: Moved to... * final.cc: ...here. * gcc-interface/cuintp.c: Moved to... * gcc-interface/cuintp.cc: ...here. * gcc-interface/decl.c: Moved to... * gcc-interface/decl.cc: ...here. * gcc-interface/misc.c: Moved to... * gcc-interface/misc.cc: ...here. * gcc-interface/targtyps.c: Moved to... * gcc-interface/targtyps.cc: ...here. * gcc-interface/trans.c: Moved to... * gcc-interface/trans.cc: ...here. * gcc-interface/utils.c: Moved to... * gcc-interface/utils.cc: ...here. * gcc-interface/utils2.c: Moved to... * gcc-interface/utils2.cc: ...here. * init.c: Moved to... * init.cc: ...here. * initialize.c: Moved to... * initialize.cc: ...here. * libgnarl/thread.c: Moved to... * libgnarl/thread.cc: ...here. * link.c: Moved to... * link.cc: ...here. * locales.c: Moved to... * locales.cc: ...here. * mkdir.c: Moved to... * mkdir.cc: ...here. * raise.c: Moved to... * raise.cc: ...here. * rtfinal.c: Moved to... * rtfinal.cc: ...here. * rtinit.c: Moved to... * rtinit.cc: ...here. * seh_init.c: Moved to... * seh_init.cc: ...here. * sigtramp-armdroid.c: Moved to... * sigtramp-armdroid.cc: ...here. * sigtramp-ios.c: Moved to... * sigtramp-ios.cc: ...here. * sigtramp-qnx.c: Moved to... * sigtramp-qnx.cc: ...here. * sigtramp-vxworks.c: Moved to... * sigtramp-vxworks.cc: ...here. * socket.c: Moved to... * socket.cc: ...here. * tracebak.c: Moved to... * tracebak.cc: ...here. * version.c: Moved to... * version.cc: ...here. * vx_stack_info.c: Moved to... * vx_stack_info.cc: ...here. gcc/ChangeLog: * adjust-alignment.c: Moved to... * adjust-alignment.cc: ...here. * alias.c: Moved to... * alias.cc: ...here. * alloc-pool.c: Moved to... * alloc-pool.cc: ...here. * asan.c: Moved to... * asan.cc: ...here. * attribs.c: Moved to... * attribs.cc: ...here. * auto-inc-dec.c: Moved to... * auto-inc-dec.cc: ...here. * auto-profile.c: Moved to... * auto-profile.cc: ...here. * bb-reorder.c: Moved to... * bb-reorder.cc: ...here. * bitmap.c: Moved to... * bitmap.cc: ...here. * btfout.c: Moved to... * btfout.cc: ...here. * builtins.c: Moved to... * builtins.cc: ...here. * caller-save.c: Moved to... * caller-save.cc: ...here. * calls.c: Moved to... * calls.cc: ...here. * ccmp.c: Moved to... * ccmp.cc: ...here. * cfg.c: Moved to... * cfg.cc: ...here. * cfganal.c: Moved to... * cfganal.cc: ...here. * cfgbuild.c: Moved to... * cfgbuild.cc: ...here. * cfgcleanup.c: Moved to... * cfgcleanup.cc: ...here. * cfgexpand.c: Moved to... * cfgexpand.cc: ...here. * cfghooks.c: Moved to... * cfghooks.cc: ...here. * cfgloop.c: Moved to... * cfgloop.cc: ...here. * cfgloopanal.c: Moved to... * cfgloopanal.cc: ...here. * cfgloopmanip.c: Moved to... * cfgloopmanip.cc: ...here. * cfgrtl.c: Moved to... * cfgrtl.cc: ...here. * cgraph.c: Moved to... * cgraph.cc: ...here. * cgraphbuild.c: Moved to... * cgraphbuild.cc: ...here. * cgraphclones.c: Moved to... * cgraphclones.cc: ...here. * cgraphunit.c: Moved to... * cgraphunit.cc: ...here. * collect-utils.c: Moved to... * collect-utils.cc: ...here. * collect2-aix.c: Moved to... * collect2-aix.cc: ...here. * collect2.c: Moved to... * collect2.cc: ...here. * combine-stack-adj.c: Moved to... * combine-stack-adj.cc: ...here. * combine.c: Moved to... * combine.cc: ...here. * common/common-targhooks.c: Moved to... * common/common-targhooks.cc: ...here. * common/config/aarch64/aarch64-common.c: Moved to... * common/config/aarch64/aarch64-common.cc: ...here. * common/config/alpha/alpha-common.c: Moved to... * common/config/alpha/alpha-common.cc: ...here. * common/config/arc/arc-common.c: Moved to... * common/config/arc/arc-common.cc: ...here. * common/config/arm/arm-common.c: Moved to... * common/config/arm/arm-common.cc: ...here. * common/config/avr/avr-common.c: Moved to... * common/config/avr/avr-common.cc: ...here. * common/config/bfin/bfin-common.c: Moved to... * common/config/bfin/bfin-common.cc: ...here. * common/config/bpf/bpf-common.c: Moved to... * common/config/bpf/bpf-common.cc: ...here. * common/config/c6x/c6x-common.c: Moved to... * common/config/c6x/c6x-common.cc: ...here. * common/config/cr16/cr16-common.c: Moved to... * common/config/cr16/cr16-common.cc: ...here. * common/config/cris/cris-common.c: Moved to... * common/config/cris/cris-common.cc: ...here. * common/config/csky/csky-common.c: Moved to... * common/config/csky/csky-common.cc: ...here. * common/config/default-common.c: Moved to... * common/config/default-common.cc: ...here. * common/config/epiphany/epiphany-common.c: Moved to... * common/config/epiphany/epiphany-common.cc: ...here. * common/config/fr30/fr30-common.c: Moved to... * common/config/fr30/fr30-common.cc: ...here. * common/config/frv/frv-common.c: Moved to... * common/config/frv/frv-common.cc: ...here. * common/config/gcn/gcn-common.c: Moved to... * common/config/gcn/gcn-common.cc: ...here. * common/config/h8300/h8300-common.c: Moved to... * common/config/h8300/h8300-common.cc: ...here. * common/config/i386/i386-common.c: Moved to... * common/config/i386/i386-common.cc: ...here. * common/config/ia64/ia64-common.c: Moved to... * common/config/ia64/ia64-common.cc: ...here. * common/config/iq2000/iq2000-common.c: Moved to... * common/config/iq2000/iq2000-common.cc: ...here. * common/config/lm32/lm32-common.c: Moved to... * common/config/lm32/lm32-common.cc: ...here. * common/config/m32r/m32r-common.c: Moved to... * common/config/m32r/m32r-common.cc: ...here. * common/config/m68k/m68k-common.c: Moved to... * common/config/m68k/m68k-common.cc: ...here. * common/config/mcore/mcore-common.c: Moved to... * common/config/mcore/mcore-common.cc: ...here. * common/config/microblaze/microblaze-common.c: Moved to... * common/config/microblaze/microblaze-common.cc: ...here. * common/config/mips/mips-common.c: Moved to... * common/config/mips/mips-common.cc: ...here. * common/config/mmix/mmix-common.c: Moved to... * common/config/mmix/mmix-common.cc: ...here. * common/config/mn10300/mn10300-common.c: Moved to... * common/config/mn10300/mn10300-common.cc: ...here. * common/config/msp430/msp430-common.c: Moved to... * common/config/msp430/msp430-common.cc: ...here. * common/config/nds32/nds32-common.c: Moved to... * common/config/nds32/nds32-common.cc: ...here. * common/config/nios2/nios2-common.c: Moved to... * common/config/nios2/nios2-common.cc: ...here. * common/config/nvptx/nvptx-common.c: Moved to... * common/config/nvptx/nvptx-common.cc: ...here. * common/config/or1k/or1k-common.c: Moved to... * common/config/or1k/or1k-common.cc: ...here. * common/config/pa/pa-common.c: Moved to... * common/config/pa/pa-common.cc: ...here. * common/config/pdp11/pdp11-common.c: Moved to... * common/config/pdp11/pdp11-common.cc: ...here. * common/config/pru/pru-common.c: Moved to... * common/config/pru/pru-common.cc: ...here. * common/config/riscv/riscv-common.c: Moved to... * common/config/riscv/riscv-common.cc: ...here. * common/config/rs6000/rs6000-common.c: Moved to... * common/config/rs6000/rs6000-common.cc: ...here. * common/config/rx/rx-common.c: Moved to... * common/config/rx/rx-common.cc: ...here. * common/config/s390/s390-common.c: Moved to... * common/config/s390/s390-common.cc: ...here. * common/config/sh/sh-common.c: Moved to... * common/config/sh/sh-common.cc: ...here. * common/config/sparc/sparc-common.c: Moved to... * common/config/sparc/sparc-common.cc: ...here. * common/config/tilegx/tilegx-common.c: Moved to... * common/config/tilegx/tilegx-common.cc: ...here. * common/config/tilepro/tilepro-common.c: Moved to... * common/config/tilepro/tilepro-common.cc: ...here. * common/config/v850/v850-common.c: Moved to... * common/config/v850/v850-common.cc: ...here. * common/config/vax/vax-common.c: Moved to... * common/config/vax/vax-common.cc: ...here. * common/config/visium/visium-common.c: Moved to... * common/config/visium/visium-common.cc: ...here. * common/config/xstormy16/xstormy16-common.c: Moved to... * common/config/xstormy16/xstormy16-common.cc: ...here. * common/config/xtensa/xtensa-common.c: Moved to... * common/config/xtensa/xtensa-common.cc: ...here. * compare-elim.c: Moved to... * compare-elim.cc: ...here. * config/aarch64/aarch64-bti-insert.c: Moved to... * config/aarch64/aarch64-bti-insert.cc: ...here. * config/aarch64/aarch64-builtins.c: Moved to... * config/aarch64/aarch64-builtins.cc: ...here. * config/aarch64/aarch64-c.c: Moved to... * config/aarch64/aarch64-c.cc: ...here. * config/aarch64/aarch64-d.c: Moved to... * config/aarch64/aarch64-d.cc: ...here. * config/aarch64/aarch64.c: Moved to... * config/aarch64/aarch64.cc: ...here. * config/aarch64/cortex-a57-fma-steering.c: Moved to... * config/aarch64/cortex-a57-fma-steering.cc: ...here. * config/aarch64/driver-aarch64.c: Moved to... * config/aarch64/driver-aarch64.cc: ...here. * config/aarch64/falkor-tag-collision-avoidance.c: Moved to... * config/aarch64/falkor-tag-collision-avoidance.cc: ...here. * config/aarch64/host-aarch64-darwin.c: Moved to... * config/aarch64/host-aarch64-darwin.cc: ...here. * config/alpha/alpha.c: Moved to... * config/alpha/alpha.cc: ...here. * config/alpha/driver-alpha.c: Moved to... * config/alpha/driver-alpha.cc: ...here. * config/arc/arc-c.c: Moved to... * config/arc/arc-c.cc: ...here. * config/arc/arc.c: Moved to... * config/arc/arc.cc: ...here. * config/arc/driver-arc.c: Moved to... * config/arc/driver-arc.cc: ...here. * config/arm/aarch-common.c: Moved to... * config/arm/aarch-common.cc: ...here. * config/arm/arm-builtins.c: Moved to... * config/arm/arm-builtins.cc: ...here. * config/arm/arm-c.c: Moved to... * config/arm/arm-c.cc: ...here. * config/arm/arm-d.c: Moved to... * config/arm/arm-d.cc: ...here. * config/arm/arm.c: Moved to... * config/arm/arm.cc: ...here. * config/arm/driver-arm.c: Moved to... * config/arm/driver-arm.cc: ...here. * config/avr/avr-c.c: Moved to... * config/avr/avr-c.cc: ...here. * config/avr/avr-devices.c: Moved to... * config/avr/avr-devices.cc: ...here. * config/avr/avr-log.c: Moved to... * config/avr/avr-log.cc: ...here. * config/avr/avr.c: Moved to... * config/avr/avr.cc: ...here. * config/avr/driver-avr.c: Moved to... * config/avr/driver-avr.cc: ...here. * config/avr/gen-avr-mmcu-specs.c: Moved to... * config/avr/gen-avr-mmcu-specs.cc: ...here. * config/avr/gen-avr-mmcu-texi.c: Moved to... * config/avr/gen-avr-mmcu-texi.cc: ...here. * config/bfin/bfin.c: Moved to... * config/bfin/bfin.cc: ...here. * config/bpf/bpf.c: Moved to... * config/bpf/bpf.cc: ...here. * config/bpf/coreout.c: Moved to... * config/bpf/coreout.cc: ...here. * config/c6x/c6x.c: Moved to... * config/c6x/c6x.cc: ...here. * config/cr16/cr16.c: Moved to... * config/cr16/cr16.cc: ...here. * config/cris/cris.c: Moved to... * config/cris/cris.cc: ...here. * config/csky/csky.c: Moved to... * config/csky/csky.cc: ...here. * config/darwin-c.c: Moved to... * config/darwin-c.cc: ...here. * config/darwin-d.c: Moved to... * config/darwin-d.cc: ...here. * config/darwin-driver.c: Moved to... * config/darwin-driver.cc: ...here. * config/darwin-f.c: Moved to... * config/darwin-f.cc: ...here. * config/darwin.c: Moved to... * config/darwin.cc: ...here. * config/default-c.c: Moved to... * config/default-c.cc: ...here. * config/default-d.c: Moved to... * config/default-d.cc: ...here. * config/dragonfly-d.c: Moved to... * config/dragonfly-d.cc: ...here. * config/epiphany/epiphany.c: Moved to... * config/epiphany/epiphany.cc: ...here. * config/epiphany/mode-switch-use.c: Moved to... * config/epiphany/mode-switch-use.cc: ...here. * config/epiphany/resolve-sw-modes.c: Moved to... * config/epiphany/resolve-sw-modes.cc: ...here. * config/fr30/fr30.c: Moved to... * config/fr30/fr30.cc: ...here. * config/freebsd-d.c: Moved to... * config/freebsd-d.cc: ...here. * config/frv/frv.c: Moved to... * config/frv/frv.cc: ...here. * config/ft32/ft32.c: Moved to... * config/ft32/ft32.cc: ...here. * config/gcn/driver-gcn.c: Moved to... * config/gcn/driver-gcn.cc: ...here. * config/gcn/gcn-run.c: Moved to... * config/gcn/gcn-run.cc: ...here. * config/gcn/gcn-tree.c: Moved to... * config/gcn/gcn-tree.cc: ...here. * config/gcn/gcn.c: Moved to... * config/gcn/gcn.cc: ...here. * config/gcn/mkoffload.c: Moved to... * config/gcn/mkoffload.cc: ...here. * config/glibc-c.c: Moved to... * config/glibc-c.cc: ...here. * config/glibc-d.c: Moved to... * config/glibc-d.cc: ...here. * config/h8300/h8300.c: Moved to... * config/h8300/h8300.cc: ...here. * config/host-darwin.c: Moved to... * config/host-darwin.cc: ...here. * config/host-hpux.c: Moved to... * config/host-hpux.cc: ...here. * config/host-linux.c: Moved to... * config/host-linux.cc: ...here. * config/host-netbsd.c: Moved to... * config/host-netbsd.cc: ...here. * config/host-openbsd.c: Moved to... * config/host-openbsd.cc: ...here. * config/host-solaris.c: Moved to... * config/host-solaris.cc: ...here. * config/i386/djgpp.c: Moved to... * config/i386/djgpp.cc: ...here. * config/i386/driver-i386.c: Moved to... * config/i386/driver-i386.cc: ...here. * config/i386/driver-mingw32.c: Moved to... * config/i386/driver-mingw32.cc: ...here. * config/i386/gnu-property.c: Moved to... * config/i386/gnu-property.cc: ...here. * config/i386/host-cygwin.c: Moved to... * config/i386/host-cygwin.cc: ...here. * config/i386/host-i386-darwin.c: Moved to... * config/i386/host-i386-darwin.cc: ...here. * config/i386/host-mingw32.c: Moved to... * config/i386/host-mingw32.cc: ...here. * config/i386/i386-builtins.c: Moved to... * config/i386/i386-builtins.cc: ...here. * config/i386/i386-c.c: Moved to... * config/i386/i386-c.cc: ...here. * config/i386/i386-d.c: Moved to... * config/i386/i386-d.cc: ...here. * config/i386/i386-expand.c: Moved to... * config/i386/i386-expand.cc: ...here. * config/i386/i386-features.c: Moved to... * config/i386/i386-features.cc: ...here. * config/i386/i386-options.c: Moved to... * config/i386/i386-options.cc: ...here. * config/i386/i386.c: Moved to... * config/i386/i386.cc: ...here. * config/i386/intelmic-mkoffload.c: Moved to... * config/i386/intelmic-mkoffload.cc: ...here. * config/i386/msformat-c.c: Moved to... * config/i386/msformat-c.cc: ...here. * config/i386/winnt-cxx.c: Moved to... * config/i386/winnt-cxx.cc: ...here. * config/i386/winnt-d.c: Moved to... * config/i386/winnt-d.cc: ...here. * config/i386/winnt-stubs.c: Moved to... * config/i386/winnt-stubs.cc: ...here. * config/i386/winnt.c: Moved to... * config/i386/winnt.cc: ...here. * config/i386/x86-tune-sched-atom.c: Moved to... * config/i386/x86-tune-sched-atom.cc: ...here. * config/i386/x86-tune-sched-bd.c: Moved to... * config/i386/x86-tune-sched-bd.cc: ...here. * config/i386/x86-tune-sched-core.c: Moved to... * config/i386/x86-tune-sched-core.cc: ...here. * config/i386/x86-tune-sched.c: Moved to... * config/i386/x86-tune-sched.cc: ...here. * config/ia64/ia64-c.c: Moved to... * config/ia64/ia64-c.cc: ...here. * config/ia64/ia64.c: Moved to... * config/ia64/ia64.cc: ...here. * config/iq2000/iq2000.c: Moved to... * config/iq2000/iq2000.cc: ...here. * config/linux.c: Moved to... * config/linux.cc: ...here. * config/lm32/lm32.c: Moved to... * config/lm32/lm32.cc: ...here. * config/m32c/m32c-pragma.c: Moved to... * config/m32c/m32c-pragma.cc: ...here. * config/m32c/m32c.c: Moved to... * config/m32c/m32c.cc: ...here. * config/m32r/m32r.c: Moved to... * config/m32r/m32r.cc: ...here. * config/m68k/m68k.c: Moved to... * config/m68k/m68k.cc: ...here. * config/mcore/mcore.c: Moved to... * config/mcore/mcore.cc: ...here. * config/microblaze/microblaze-c.c: Moved to... * config/microblaze/microblaze-c.cc: ...here. * config/microblaze/microblaze.c: Moved to... * config/microblaze/microblaze.cc: ...here. * config/mips/driver-native.c: Moved to... * config/mips/driver-native.cc: ...here. * config/mips/frame-header-opt.c: Moved to... * config/mips/frame-header-opt.cc: ...here. * config/mips/mips-d.c: Moved to... * config/mips/mips-d.cc: ...here. * config/mips/mips.c: Moved to... * config/mips/mips.cc: ...here. * config/mmix/mmix.c: Moved to... * config/mmix/mmix.cc: ...here. * config/mn10300/mn10300.c: Moved to... * config/mn10300/mn10300.cc: ...here. * config/moxie/moxie.c: Moved to... * config/moxie/moxie.cc: ...here. * config/msp430/driver-msp430.c: Moved to... * config/msp430/driver-msp430.cc: ...here. * config/msp430/msp430-c.c: Moved to... * config/msp430/msp430-c.cc: ...here. * config/msp430/msp430-devices.c: Moved to... * config/msp430/msp430-devices.cc: ...here. * config/msp430/msp430.c: Moved to... * config/msp430/msp430.cc: ...here. * config/nds32/nds32-cost.c: Moved to... * config/nds32/nds32-cost.cc: ...here. * config/nds32/nds32-fp-as-gp.c: Moved to... * config/nds32/nds32-fp-as-gp.cc: ...here. * config/nds32/nds32-intrinsic.c: Moved to... * config/nds32/nds32-intrinsic.cc: ...here. * config/nds32/nds32-isr.c: Moved to... * config/nds32/nds32-isr.cc: ...here. * config/nds32/nds32-md-auxiliary.c: Moved to... * config/nds32/nds32-md-auxiliary.cc: ...here. * config/nds32/nds32-memory-manipulation.c: Moved to... * config/nds32/nds32-memory-manipulation.cc: ...here. * config/nds32/nds32-pipelines-auxiliary.c: Moved to... * config/nds32/nds32-pipelines-auxiliary.cc: ...here. * config/nds32/nds32-predicates.c: Moved to... * config/nds32/nds32-predicates.cc: ...here. * config/nds32/nds32-relax-opt.c: Moved to... * config/nds32/nds32-relax-opt.cc: ...here. * config/nds32/nds32-utils.c: Moved to... * config/nds32/nds32-utils.cc: ...here. * config/nds32/nds32.c: Moved to... * config/nds32/nds32.cc: ...here. * config/netbsd-d.c: Moved to... * config/netbsd-d.cc: ...here. * config/netbsd.c: Moved to... * config/netbsd.cc: ...here. * config/nios2/nios2.c: Moved to... * config/nios2/nios2.cc: ...here. * config/nvptx/mkoffload.c: Moved to... * config/nvptx/mkoffload.cc: ...here. * config/nvptx/nvptx-c.c: Moved to... * config/nvptx/nvptx-c.cc: ...here. * config/nvptx/nvptx.c: Moved to... * config/nvptx/nvptx.cc: ...here. * config/openbsd-d.c: Moved to... * config/openbsd-d.cc: ...here. * config/or1k/or1k.c: Moved to... * config/or1k/or1k.cc: ...here. * config/pa/pa-d.c: Moved to... * config/pa/pa-d.cc: ...here. * config/pa/pa.c: Moved to... * config/pa/pa.cc: ...here. * config/pdp11/pdp11.c: Moved to... * config/pdp11/pdp11.cc: ...here. * config/pru/pru-passes.c: Moved to... * config/pru/pru-passes.cc: ...here. * config/pru/pru-pragma.c: Moved to... * config/pru/pru-pragma.cc: ...here. * config/pru/pru.c: Moved to... * config/pru/pru.cc: ...here. * config/riscv/riscv-builtins.c: Moved to... * config/riscv/riscv-builtins.cc: ...here. * config/riscv/riscv-c.c: Moved to... * config/riscv/riscv-c.cc: ...here. * config/riscv/riscv-d.c: Moved to... * config/riscv/riscv-d.cc: ...here. * config/riscv/riscv-shorten-memrefs.c: Moved to... * config/riscv/riscv-shorten-memrefs.cc: ...here. * config/riscv/riscv-sr.c: Moved to... * config/riscv/riscv-sr.cc: ...here. * config/riscv/riscv.c: Moved to... * config/riscv/riscv.cc: ...here. * config/rl78/rl78-c.c: Moved to... * config/rl78/rl78-c.cc: ...here. * config/rl78/rl78.c: Moved to... * config/rl78/rl78.cc: ...here. * config/rs6000/driver-rs6000.c: Moved to... * config/rs6000/driver-rs6000.cc: ...here. * config/rs6000/host-darwin.c: Moved to... * config/rs6000/host-darwin.cc: ...here. * config/rs6000/host-ppc64-darwin.c: Moved to... * config/rs6000/host-ppc64-darwin.cc: ...here. * config/rs6000/rbtree.c: Moved to... * config/rs6000/rbtree.cc: ...here. * config/rs6000/rs6000-c.c: Moved to... * config/rs6000/rs6000-c.cc: ...here. * config/rs6000/rs6000-call.c: Moved to... * config/rs6000/rs6000-call.cc: ...here. * config/rs6000/rs6000-d.c: Moved to... * config/rs6000/rs6000-d.cc: ...here. * config/rs6000/rs6000-gen-builtins.c: Moved to... * config/rs6000/rs6000-gen-builtins.cc: ...here. * config/rs6000/rs6000-linux.c: Moved to... * config/rs6000/rs6000-linux.cc: ...here. * config/rs6000/rs6000-logue.c: Moved to... * config/rs6000/rs6000-logue.cc: ...here. * config/rs6000/rs6000-p8swap.c: Moved to... * config/rs6000/rs6000-p8swap.cc: ...here. * config/rs6000/rs6000-pcrel-opt.c: Moved to... * config/rs6000/rs6000-pcrel-opt.cc: ...here. * config/rs6000/rs6000-string.c: Moved to... * config/rs6000/rs6000-string.cc: ...here. * config/rs6000/rs6000.c: Moved to... * config/rs6000/rs6000.cc: ...here. * config/rx/rx.c: Moved to... * config/rx/rx.cc: ...here. * config/s390/driver-native.c: Moved to... * config/s390/driver-native.cc: ...here. * config/s390/s390-c.c: Moved to... * config/s390/s390-c.cc: ...here. * config/s390/s390-d.c: Moved to... * config/s390/s390-d.cc: ...here. * config/s390/s390.c: Moved to... * config/s390/s390.cc: ...here. * config/sh/divtab-sh4-300.c: Moved to... * config/sh/divtab-sh4-300.cc: ...here. * config/sh/divtab-sh4.c: Moved to... * config/sh/divtab-sh4.cc: ...here. * config/sh/divtab.c: Moved to... * config/sh/divtab.cc: ...here. * config/sh/sh-c.c: Moved to... * config/sh/sh-c.cc: ...here. * config/sh/sh.c: Moved to... * config/sh/sh.cc: ...here. * config/sol2-c.c: Moved to... * config/sol2-c.cc: ...here. * config/sol2-cxx.c: Moved to... * config/sol2-cxx.cc: ...here. * config/sol2-d.c: Moved to... * config/sol2-d.cc: ...here. * config/sol2-stubs.c: Moved to... * config/sol2-stubs.cc: ...here. * config/sol2.c: Moved to... * config/sol2.cc: ...here. * config/sparc/driver-sparc.c: Moved to... * config/sparc/driver-sparc.cc: ...here. * config/sparc/sparc-c.c: Moved to... * config/sparc/sparc-c.cc: ...here. * config/sparc/sparc-d.c: Moved to... * config/sparc/sparc-d.cc: ...here. * config/sparc/sparc.c: Moved to... * config/sparc/sparc.cc: ...here. * config/stormy16/stormy16.c: Moved to... * config/stormy16/stormy16.cc: ...here. * config/tilegx/mul-tables.c: Moved to... * config/tilegx/mul-tables.cc: ...here. * config/tilegx/tilegx-c.c: Moved to... * config/tilegx/tilegx-c.cc: ...here. * config/tilegx/tilegx.c: Moved to... * config/tilegx/tilegx.cc: ...here. * config/tilepro/mul-tables.c: Moved to... * config/tilepro/mul-tables.cc: ...here. * config/tilepro/tilepro-c.c: Moved to... * config/tilepro/tilepro-c.cc: ...here. * config/tilepro/tilepro.c: Moved to... * config/tilepro/tilepro.cc: ...here. * config/v850/v850-c.c: Moved to... * config/v850/v850-c.cc: ...here. * config/v850/v850.c: Moved to... * config/v850/v850.cc: ...here. * config/vax/vax.c: Moved to... * config/vax/vax.cc: ...here. * config/visium/visium.c: Moved to... * config/visium/visium.cc: ...here. * config/vms/vms-c.c: Moved to... * config/vms/vms-c.cc: ...here. * config/vms/vms-f.c: Moved to... * config/vms/vms-f.cc: ...here. * config/vms/vms.c: Moved to... * config/vms/vms.cc: ...here. * config/vxworks-c.c: Moved to... * config/vxworks-c.cc: ...here. * config/vxworks.c: Moved to... * config/vxworks.cc: ...here. * config/winnt-c.c: Moved to... * config/winnt-c.cc: ...here. * config/xtensa/xtensa.c: Moved to... * config/xtensa/xtensa.cc: ...here. * context.c: Moved to... * context.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * coverage.c: Moved to... * coverage.cc: ...here. * cppbuiltin.c: Moved to... * cppbuiltin.cc: ...here. * cppdefault.c: Moved to... * cppdefault.cc: ...here. * cprop.c: Moved to... * cprop.cc: ...here. * cse.c: Moved to... * cse.cc: ...here. * cselib.c: Moved to... * cselib.cc: ...here. * ctfc.c: Moved to... * ctfc.cc: ...here. * ctfout.c: Moved to... * ctfout.cc: ...here. * data-streamer-in.c: Moved to... * data-streamer-in.cc: ...here. * data-streamer-out.c: Moved to... * data-streamer-out.cc: ...here. * data-streamer.c: Moved to... * data-streamer.cc: ...here. * dbgcnt.c: Moved to... * dbgcnt.cc: ...here. * dbxout.c: Moved to... * dbxout.cc: ...here. * dce.c: Moved to... * dce.cc: ...here. * ddg.c: Moved to... * ddg.cc: ...here. * debug.c: Moved to... * debug.cc: ...here. * df-core.c: Moved to... * df-core.cc: ...here. * df-problems.c: Moved to... * df-problems.cc: ...here. * df-scan.c: Moved to... * df-scan.cc: ...here. * dfp.c: Moved to... * dfp.cc: ...here. * diagnostic-color.c: Moved to... * diagnostic-color.cc: ...here. * diagnostic-show-locus.c: Moved to... * diagnostic-show-locus.cc: ...here. * diagnostic-spec.c: Moved to... * diagnostic-spec.cc: ...here. * diagnostic.c: Moved to... * diagnostic.cc: ...here. * dojump.c: Moved to... * dojump.cc: ...here. * dominance.c: Moved to... * dominance.cc: ...here. * domwalk.c: Moved to... * domwalk.cc: ...here. * double-int.c: Moved to... * double-int.cc: ...here. * dse.c: Moved to... * dse.cc: ...here. * dumpfile.c: Moved to... * dumpfile.cc: ...here. * dwarf2asm.c: Moved to... * dwarf2asm.cc: ...here. * dwarf2cfi.c: Moved to... * dwarf2cfi.cc: ...here. * dwarf2ctf.c: Moved to... * dwarf2ctf.cc: ...here. * dwarf2out.c: Moved to... * dwarf2out.cc: ...here. * early-remat.c: Moved to... * early-remat.cc: ...here. * edit-context.c: Moved to... * edit-context.cc: ...here. * emit-rtl.c: Moved to... * emit-rtl.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * et-forest.c: Moved to... * et-forest.cc: ...here. * except.c: Moved to... * except.cc: ...here. * explow.c: Moved to... * explow.cc: ...here. * expmed.c: Moved to... * expmed.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * fibonacci_heap.c: Moved to... * fibonacci_heap.cc: ...here. * file-find.c: Moved to... * file-find.cc: ...here. * file-prefix-map.c: Moved to... * file-prefix-map.cc: ...here. * final.c: Moved to... * final.cc: ...here. * fixed-value.c: Moved to... * fixed-value.cc: ...here. * fold-const-call.c: Moved to... * fold-const-call.cc: ...here. * fold-const.c: Moved to... * fold-const.cc: ...here. * fp-test.c: Moved to... * fp-test.cc: ...here. * function-tests.c: Moved to... * function-tests.cc: ...here. * function.c: Moved to... * function.cc: ...here. * fwprop.c: Moved to... * fwprop.cc: ...here. * gcc-ar.c: Moved to... * gcc-ar.cc: ...here. * gcc-main.c: Moved to... * gcc-main.cc: ...here. * gcc-rich-location.c: Moved to... * gcc-rich-location.cc: ...here. * gcc.c: Moved to... * gcc.cc: ...here. * gcov-dump.c: Moved to... * gcov-dump.cc: ...here. * gcov-io.c: Moved to... * gcov-io.cc: ...here. * gcov-tool.c: Moved to... * gcov-tool.cc: ...here. * gcov.c: Moved to... * gcov.cc: ...here. * gcse-common.c: Moved to... * gcse-common.cc: ...here. * gcse.c: Moved to... * gcse.cc: ...here. * genattr-common.c: Moved to... * genattr-common.cc: ...here. * genattr.c: Moved to... * genattr.cc: ...here. * genattrtab.c: Moved to... * genattrtab.cc: ...here. * genautomata.c: Moved to... * genautomata.cc: ...here. * gencfn-macros.c: Moved to... * gencfn-macros.cc: ...here. * gencheck.c: Moved to... * gencheck.cc: ...here. * genchecksum.c: Moved to... * genchecksum.cc: ...here. * gencodes.c: Moved to... * gencodes.cc: ...here. * genconditions.c: Moved to... * genconditions.cc: ...here. * genconfig.c: Moved to... * genconfig.cc: ...here. * genconstants.c: Moved to... * genconstants.cc: ...here. * genemit.c: Moved to... * genemit.cc: ...here. * genenums.c: Moved to... * genenums.cc: ...here. * generic-match-head.c: Moved to... * generic-match-head.cc: ...here. * genextract.c: Moved to... * genextract.cc: ...here. * genflags.c: Moved to... * genflags.cc: ...here. * gengenrtl.c: Moved to... * gengenrtl.cc: ...here. * gengtype-parse.c: Moved to... * gengtype-parse.cc: ...here. * gengtype-state.c: Moved to... * gengtype-state.cc: ...here. * gengtype.c: Moved to... * gengtype.cc: ...here. * genhooks.c: Moved to... * genhooks.cc: ...here. * genmatch.c: Moved to... * genmatch.cc: ...here. * genmddeps.c: Moved to... * genmddeps.cc: ...here. * genmddump.c: Moved to... * genmddump.cc: ...here. * genmodes.c: Moved to... * genmodes.cc: ...here. * genopinit.c: Moved to... * genopinit.cc: ...here. * genoutput.c: Moved to... * genoutput.cc: ...here. * genpeep.c: Moved to... * genpeep.cc: ...here. * genpreds.c: Moved to... * genpreds.cc: ...here. * genrecog.c: Moved to... * genrecog.cc: ...here. * gensupport.c: Moved to... * gensupport.cc: ...here. * gentarget-def.c: Moved to... * gentarget-def.cc: ...here. * genversion.c: Moved to... * genversion.cc: ...here. * ggc-common.c: Moved to... * ggc-common.cc: ...here. * ggc-none.c: Moved to... * ggc-none.cc: ...here. * ggc-page.c: Moved to... * ggc-page.cc: ...here. * ggc-tests.c: Moved to... * ggc-tests.cc: ...here. * gimple-builder.c: Moved to... * gimple-builder.cc: ...here. * gimple-expr.c: Moved to... * gimple-expr.cc: ...here. * gimple-fold.c: Moved to... * gimple-fold.cc: ...here. * gimple-iterator.c: Moved to... * gimple-iterator.cc: ...here. * gimple-laddress.c: Moved to... * gimple-laddress.cc: ...here. * gimple-loop-jam.c: Moved to... * gimple-loop-jam.cc: ...here. * gimple-low.c: Moved to... * gimple-low.cc: ...here. * gimple-match-head.c: Moved to... * gimple-match-head.cc: ...here. * gimple-pretty-print.c: Moved to... * gimple-pretty-print.cc: ...here. * gimple-ssa-backprop.c: Moved to... * gimple-ssa-backprop.cc: ...here. * gimple-ssa-evrp-analyze.c: Moved to... * gimple-ssa-evrp-analyze.cc: ...here. * gimple-ssa-evrp.c: Moved to... * gimple-ssa-evrp.cc: ...here. * gimple-ssa-isolate-paths.c: Moved to... * gimple-ssa-isolate-paths.cc: ...here. * gimple-ssa-nonnull-compare.c: Moved to... * gimple-ssa-nonnull-compare.cc: ...here. * gimple-ssa-split-paths.c: Moved to... * gimple-ssa-split-paths.cc: ...here. * gimple-ssa-sprintf.c: Moved to... * gimple-ssa-sprintf.cc: ...here. * gimple-ssa-store-merging.c: Moved to... * gimple-ssa-store-merging.cc: ...here. * gimple-ssa-strength-reduction.c: Moved to... * gimple-ssa-strength-reduction.cc: ...here. * gimple-ssa-warn-alloca.c: Moved to... * gimple-ssa-warn-alloca.cc: ...here. * gimple-ssa-warn-restrict.c: Moved to... * gimple-ssa-warn-restrict.cc: ...here. * gimple-streamer-in.c: Moved to... * gimple-streamer-in.cc: ...here. * gimple-streamer-out.c: Moved to... * gimple-streamer-out.cc: ...here. * gimple-walk.c: Moved to... * gimple-walk.cc: ...here. * gimple-warn-recursion.c: Moved to... * gimple-warn-recursion.cc: ...here. * gimple.c: Moved to... * gimple.cc: ...here. * gimplify-me.c: Moved to... * gimplify-me.cc: ...here. * gimplify.c: Moved to... * gimplify.cc: ...here. * godump.c: Moved to... * godump.cc: ...here. * graph.c: Moved to... * graph.cc: ...here. * graphds.c: Moved to... * graphds.cc: ...here. * graphite-dependences.c: Moved to... * graphite-dependences.cc: ...here. * graphite-isl-ast-to-gimple.c: Moved to... * graphite-isl-ast-to-gimple.cc: ...here. * graphite-optimize-isl.c: Moved to... * graphite-optimize-isl.cc: ...here. * graphite-poly.c: Moved to... * graphite-poly.cc: ...here. * graphite-scop-detection.c: Moved to... * graphite-scop-detection.cc: ...here. * graphite-sese-to-poly.c: Moved to... * graphite-sese-to-poly.cc: ...here. * graphite.c: Moved to... * graphite.cc: ...here. * haifa-sched.c: Moved to... * haifa-sched.cc: ...here. * hash-map-tests.c: Moved to... * hash-map-tests.cc: ...here. * hash-set-tests.c: Moved to... * hash-set-tests.cc: ...here. * hash-table.c: Moved to... * hash-table.cc: ...here. * hooks.c: Moved to... * hooks.cc: ...here. * host-default.c: Moved to... * host-default.cc: ...here. * hw-doloop.c: Moved to... * hw-doloop.cc: ...here. * hwint.c: Moved to... * hwint.cc: ...here. * ifcvt.c: Moved to... * ifcvt.cc: ...here. * inchash.c: Moved to... * inchash.cc: ...here. * incpath.c: Moved to... * incpath.cc: ...here. * init-regs.c: Moved to... * init-regs.cc: ...here. * input.c: Moved to... * input.cc: ...here. * internal-fn.c: Moved to... * internal-fn.cc: ...here. * intl.c: Moved to... * intl.cc: ...here. * ipa-comdats.c: Moved to... * ipa-comdats.cc: ...here. * ipa-cp.c: Moved to... * ipa-cp.cc: ...here. * ipa-devirt.c: Moved to... * ipa-devirt.cc: ...here. * ipa-fnsummary.c: Moved to... * ipa-fnsummary.cc: ...here. * ipa-icf-gimple.c: Moved to... * ipa-icf-gimple.cc: ...here. * ipa-icf.c: Moved to... * ipa-icf.cc: ...here. * ipa-inline-analysis.c: Moved to... * ipa-inline-analysis.cc: ...here. * ipa-inline-transform.c: Moved to... * ipa-inline-transform.cc: ...here. * ipa-inline.c: Moved to... * ipa-inline.cc: ...here. * ipa-modref-tree.c: Moved to... * ipa-modref-tree.cc: ...here. * ipa-modref.c: Moved to... * ipa-modref.cc: ...here. * ipa-param-manipulation.c: Moved to... * ipa-param-manipulation.cc: ...here. * ipa-polymorphic-call.c: Moved to... * ipa-polymorphic-call.cc: ...here. * ipa-predicate.c: Moved to... * ipa-predicate.cc: ...here. * ipa-profile.c: Moved to... * ipa-profile.cc: ...here. * ipa-prop.c: Moved to... * ipa-prop.cc: ...here. * ipa-pure-const.c: Moved to... * ipa-pure-const.cc: ...here. * ipa-ref.c: Moved to... * ipa-ref.cc: ...here. * ipa-reference.c: Moved to... * ipa-reference.cc: ...here. * ipa-split.c: Moved to... * ipa-split.cc: ...here. * ipa-sra.c: Moved to... * ipa-sra.cc: ...here. * ipa-utils.c: Moved to... * ipa-utils.cc: ...here. * ipa-visibility.c: Moved to... * ipa-visibility.cc: ...here. * ipa.c: Moved to... * ipa.cc: ...here. * ira-build.c: Moved to... * ira-build.cc: ...here. * ira-color.c: Moved to... * ira-color.cc: ...here. * ira-conflicts.c: Moved to... * ira-conflicts.cc: ...here. * ira-costs.c: Moved to... * ira-costs.cc: ...here. * ira-emit.c: Moved to... * ira-emit.cc: ...here. * ira-lives.c: Moved to... * ira-lives.cc: ...here. * ira.c: Moved to... * ira.cc: ...here. * jump.c: Moved to... * jump.cc: ...here. * langhooks.c: Moved to... * langhooks.cc: ...here. * lcm.c: Moved to... * lcm.cc: ...here. * lists.c: Moved to... * lists.cc: ...here. * loop-doloop.c: Moved to... * loop-doloop.cc: ...here. * loop-init.c: Moved to... * loop-init.cc: ...here. * loop-invariant.c: Moved to... * loop-invariant.cc: ...here. * loop-iv.c: Moved to... * loop-iv.cc: ...here. * loop-unroll.c: Moved to... * loop-unroll.cc: ...here. * lower-subreg.c: Moved to... * lower-subreg.cc: ...here. * lra-assigns.c: Moved to... * lra-assigns.cc: ...here. * lra-coalesce.c: Moved to... * lra-coalesce.cc: ...here. * lra-constraints.c: Moved to... * lra-constraints.cc: ...here. * lra-eliminations.c: Moved to... * lra-eliminations.cc: ...here. * lra-lives.c: Moved to... * lra-lives.cc: ...here. * lra-remat.c: Moved to... * lra-remat.cc: ...here. * lra-spills.c: Moved to... * lra-spills.cc: ...here. * lra.c: Moved to... * lra.cc: ...here. * lto-cgraph.c: Moved to... * lto-cgraph.cc: ...here. * lto-compress.c: Moved to... * lto-compress.cc: ...here. * lto-opts.c: Moved to... * lto-opts.cc: ...here. * lto-section-in.c: Moved to... * lto-section-in.cc: ...here. * lto-section-out.c: Moved to... * lto-section-out.cc: ...here. * lto-streamer-in.c: Moved to... * lto-streamer-in.cc: ...here. * lto-streamer-out.c: Moved to... * lto-streamer-out.cc: ...here. * lto-streamer.c: Moved to... * lto-streamer.cc: ...here. * lto-wrapper.c: Moved to... * lto-wrapper.cc: ...here. * main.c: Moved to... * main.cc: ...here. * mcf.c: Moved to... * mcf.cc: ...here. * mode-switching.c: Moved to... * mode-switching.cc: ...here. * modulo-sched.c: Moved to... * modulo-sched.cc: ...here. * multiple_target.c: Moved to... * multiple_target.cc: ...here. * omp-expand.c: Moved to... * omp-expand.cc: ...here. * omp-general.c: Moved to... * omp-general.cc: ...here. * omp-low.c: Moved to... * omp-low.cc: ...here. * omp-offload.c: Moved to... * omp-offload.cc: ...here. * omp-simd-clone.c: Moved to... * omp-simd-clone.cc: ...here. * opt-suggestions.c: Moved to... * opt-suggestions.cc: ...here. * optabs-libfuncs.c: Moved to... * optabs-libfuncs.cc: ...here. * optabs-query.c: Moved to... * optabs-query.cc: ...here. * optabs-tree.c: Moved to... * optabs-tree.cc: ...here. * optabs.c: Moved to... * optabs.cc: ...here. * opts-common.c: Moved to... * opts-common.cc: ...here. * opts-global.c: Moved to... * opts-global.cc: ...here. * opts.c: Moved to... * opts.cc: ...here. * passes.c: Moved to... * passes.cc: ...here. * plugin.c: Moved to... * plugin.cc: ...here. * postreload-gcse.c: Moved to... * postreload-gcse.cc: ...here. * postreload.c: Moved to... * postreload.cc: ...here. * predict.c: Moved to... * predict.cc: ...here. * prefix.c: Moved to... * prefix.cc: ...here. * pretty-print.c: Moved to... * pretty-print.cc: ...here. * print-rtl-function.c: Moved to... * print-rtl-function.cc: ...here. * print-rtl.c: Moved to... * print-rtl.cc: ...here. * print-tree.c: Moved to... * print-tree.cc: ...here. * profile-count.c: Moved to... * profile-count.cc: ...here. * profile.c: Moved to... * profile.cc: ...here. * read-md.c: Moved to... * read-md.cc: ...here. * read-rtl-function.c: Moved to... * read-rtl-function.cc: ...here. * read-rtl.c: Moved to... * read-rtl.cc: ...here. * real.c: Moved to... * real.cc: ...here. * realmpfr.c: Moved to... * realmpfr.cc: ...here. * recog.c: Moved to... * recog.cc: ...here. * ree.c: Moved to... * ree.cc: ...here. * reg-stack.c: Moved to... * reg-stack.cc: ...here. * regcprop.c: Moved to... * regcprop.cc: ...here. * reginfo.c: Moved to... * reginfo.cc: ...here. * regrename.c: Moved to... * regrename.cc: ...here. * regstat.c: Moved to... * regstat.cc: ...here. * reload.c: Moved to... * reload.cc: ...here. * reload1.c: Moved to... * reload1.cc: ...here. * reorg.c: Moved to... * reorg.cc: ...here. * resource.c: Moved to... * resource.cc: ...here. * rtl-error.c: Moved to... * rtl-error.cc: ...here. * rtl-tests.c: Moved to... * rtl-tests.cc: ...here. * rtl.c: Moved to... * rtl.cc: ...here. * rtlanal.c: Moved to... * rtlanal.cc: ...here. * rtlhash.c: Moved to... * rtlhash.cc: ...here. * rtlhooks.c: Moved to... * rtlhooks.cc: ...here. * rtx-vector-builder.c: Moved to... * rtx-vector-builder.cc: ...here. * run-rtl-passes.c: Moved to... * run-rtl-passes.cc: ...here. * sancov.c: Moved to... * sancov.cc: ...here. * sanopt.c: Moved to... * sanopt.cc: ...here. * sbitmap.c: Moved to... * sbitmap.cc: ...here. * sched-deps.c: Moved to... * sched-deps.cc: ...here. * sched-ebb.c: Moved to... * sched-ebb.cc: ...here. * sched-rgn.c: Moved to... * sched-rgn.cc: ...here. * sel-sched-dump.c: Moved to... * sel-sched-dump.cc: ...here. * sel-sched-ir.c: Moved to... * sel-sched-ir.cc: ...here. * sel-sched.c: Moved to... * sel-sched.cc: ...here. * selftest-diagnostic.c: Moved to... * selftest-diagnostic.cc: ...here. * selftest-rtl.c: Moved to... * selftest-rtl.cc: ...here. * selftest-run-tests.c: Moved to... * selftest-run-tests.cc: ...here. * selftest.c: Moved to... * selftest.cc: ...here. * sese.c: Moved to... * sese.cc: ...here. * shrink-wrap.c: Moved to... * shrink-wrap.cc: ...here. * simplify-rtx.c: Moved to... * simplify-rtx.cc: ...here. * sparseset.c: Moved to... * sparseset.cc: ...here. * spellcheck-tree.c: Moved to... * spellcheck-tree.cc: ...here. * spellcheck.c: Moved to... * spellcheck.cc: ...here. * sreal.c: Moved to... * sreal.cc: ...here. * stack-ptr-mod.c: Moved to... * stack-ptr-mod.cc: ...here. * statistics.c: Moved to... * statistics.cc: ...here. * stmt.c: Moved to... * stmt.cc: ...here. * stor-layout.c: Moved to... * stor-layout.cc: ...here. * store-motion.c: Moved to... * store-motion.cc: ...here. * streamer-hooks.c: Moved to... * streamer-hooks.cc: ...here. * stringpool.c: Moved to... * stringpool.cc: ...here. * substring-locations.c: Moved to... * substring-locations.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * target-globals.c: Moved to... * target-globals.cc: ...here. * targhooks.c: Moved to... * targhooks.cc: ...here. * timevar.c: Moved to... * timevar.cc: ...here. * toplev.c: Moved to... * toplev.cc: ...here. * tracer.c: Moved to... * tracer.cc: ...here. * trans-mem.c: Moved to... * trans-mem.cc: ...here. * tree-affine.c: Moved to... * tree-affine.cc: ...here. * tree-call-cdce.c: Moved to... * tree-call-cdce.cc: ...here. * tree-cfg.c: Moved to... * tree-cfg.cc: ...here. * tree-cfgcleanup.c: Moved to... * tree-cfgcleanup.cc: ...here. * tree-chrec.c: Moved to... * tree-chrec.cc: ...here. * tree-complex.c: Moved to... * tree-complex.cc: ...here. * tree-data-ref.c: Moved to... * tree-data-ref.cc: ...here. * tree-dfa.c: Moved to... * tree-dfa.cc: ...here. * tree-diagnostic.c: Moved to... * tree-diagnostic.cc: ...here. * tree-dump.c: Moved to... * tree-dump.cc: ...here. * tree-eh.c: Moved to... * tree-eh.cc: ...here. * tree-emutls.c: Moved to... * tree-emutls.cc: ...here. * tree-if-conv.c: Moved to... * tree-if-conv.cc: ...here. * tree-inline.c: Moved to... * tree-inline.cc: ...here. * tree-into-ssa.c: Moved to... * tree-into-ssa.cc: ...here. * tree-iterator.c: Moved to... * tree-iterator.cc: ...here. * tree-loop-distribution.c: Moved to... * tree-loop-distribution.cc: ...here. * tree-nested.c: Moved to... * tree-nested.cc: ...here. * tree-nrv.c: Moved to... * tree-nrv.cc: ...here. * tree-object-size.c: Moved to... * tree-object-size.cc: ...here. * tree-outof-ssa.c: Moved to... * tree-outof-ssa.cc: ...here. * tree-parloops.c: Moved to... * tree-parloops.cc: ...here. * tree-phinodes.c: Moved to... * tree-phinodes.cc: ...here. * tree-predcom.c: Moved to... * tree-predcom.cc: ...here. * tree-pretty-print.c: Moved to... * tree-pretty-print.cc: ...here. * tree-profile.c: Moved to... * tree-profile.cc: ...here. * tree-scalar-evolution.c: Moved to... * tree-scalar-evolution.cc: ...here. * tree-sra.c: Moved to... * tree-sra.cc: ...here. * tree-ssa-address.c: Moved to... * tree-ssa-address.cc: ...here. * tree-ssa-alias.c: Moved to... * tree-ssa-alias.cc: ...here. * tree-ssa-ccp.c: Moved to... * tree-ssa-ccp.cc: ...here. * tree-ssa-coalesce.c: Moved to... * tree-ssa-coalesce.cc: ...here. * tree-ssa-copy.c: Moved to... * tree-ssa-copy.cc: ...here. * tree-ssa-dce.c: Moved to... * tree-ssa-dce.cc: ...here. * tree-ssa-dom.c: Moved to... * tree-ssa-dom.cc: ...here. * tree-ssa-dse.c: Moved to... * tree-ssa-dse.cc: ...here. * tree-ssa-forwprop.c: Moved to... * tree-ssa-forwprop.cc: ...here. * tree-ssa-ifcombine.c: Moved to... * tree-ssa-ifcombine.cc: ...here. * tree-ssa-live.c: Moved to... * tree-ssa-live.cc: ...here. * tree-ssa-loop-ch.c: Moved to... * tree-ssa-loop-ch.cc: ...here. * tree-ssa-loop-im.c: Moved to... * tree-ssa-loop-im.cc: ...here. * tree-ssa-loop-ivcanon.c: Moved to... * tree-ssa-loop-ivcanon.cc: ...here. * tree-ssa-loop-ivopts.c: Moved to... * tree-ssa-loop-ivopts.cc: ...here. * tree-ssa-loop-manip.c: Moved to... * tree-ssa-loop-manip.cc: ...here. * tree-ssa-loop-niter.c: Moved to... * tree-ssa-loop-niter.cc: ...here. * tree-ssa-loop-prefetch.c: Moved to... * tree-ssa-loop-prefetch.cc: ...here. * tree-ssa-loop-split.c: Moved to... * tree-ssa-loop-split.cc: ...here. * tree-ssa-loop-unswitch.c: Moved to... * tree-ssa-loop-unswitch.cc: ...here. * tree-ssa-loop.c: Moved to... * tree-ssa-loop.cc: ...here. * tree-ssa-math-opts.c: Moved to... * tree-ssa-math-opts.cc: ...here. * tree-ssa-operands.c: Moved to... * tree-ssa-operands.cc: ...here. * tree-ssa-phiopt.c: Moved to... * tree-ssa-phiopt.cc: ...here. * tree-ssa-phiprop.c: Moved to... * tree-ssa-phiprop.cc: ...here. * tree-ssa-pre.c: Moved to... * tree-ssa-pre.cc: ...here. * tree-ssa-propagate.c: Moved to... * tree-ssa-propagate.cc: ...here. * tree-ssa-reassoc.c: Moved to... * tree-ssa-reassoc.cc: ...here. * tree-ssa-sccvn.c: Moved to... * tree-ssa-sccvn.cc: ...here. * tree-ssa-scopedtables.c: Moved to... * tree-ssa-scopedtables.cc: ...here. * tree-ssa-sink.c: Moved to... * tree-ssa-sink.cc: ...here. * tree-ssa-strlen.c: Moved to... * tree-ssa-strlen.cc: ...here. * tree-ssa-structalias.c: Moved to... * tree-ssa-structalias.cc: ...here. * tree-ssa-tail-merge.c: Moved to... * tree-ssa-tail-merge.cc: ...here. * tree-ssa-ter.c: Moved to... * tree-ssa-ter.cc: ...here. * tree-ssa-threadbackward.c: Moved to... * tree-ssa-threadbackward.cc: ...here. * tree-ssa-threadedge.c: Moved to... * tree-ssa-threadedge.cc: ...here. * tree-ssa-threadupdate.c: Moved to... * tree-ssa-threadupdate.cc: ...here. * tree-ssa-uncprop.c: Moved to... * tree-ssa-uncprop.cc: ...here. * tree-ssa-uninit.c: Moved to... * tree-ssa-uninit.cc: ...here. * tree-ssa.c: Moved to... * tree-ssa.cc: ...here. * tree-ssanames.c: Moved to... * tree-ssanames.cc: ...here. * tree-stdarg.c: Moved to... * tree-stdarg.cc: ...here. * tree-streamer-in.c: Moved to... * tree-streamer-in.cc: ...here. * tree-streamer-out.c: Moved to... * tree-streamer-out.cc: ...here. * tree-streamer.c: Moved to... * tree-streamer.cc: ...here. * tree-switch-conversion.c: Moved to... * tree-switch-conversion.cc: ...here. * tree-tailcall.c: Moved to... * tree-tailcall.cc: ...here. * tree-vect-data-refs.c: Moved to... * tree-vect-data-refs.cc: ...here. * tree-vect-generic.c: Moved to... * tree-vect-generic.cc: ...here. * tree-vect-loop-manip.c: Moved to... * tree-vect-loop-manip.cc: ...here. * tree-vect-loop.c: Moved to... * tree-vect-loop.cc: ...here. * tree-vect-patterns.c: Moved to... * tree-vect-patterns.cc: ...here. * tree-vect-slp-patterns.c: Moved to... * tree-vect-slp-patterns.cc: ...here. * tree-vect-slp.c: Moved to... * tree-vect-slp.cc: ...here. * tree-vect-stmts.c: Moved to... * tree-vect-stmts.cc: ...here. * tree-vector-builder.c: Moved to... * tree-vector-builder.cc: ...here. * tree-vectorizer.c: Moved to... * tree-vectorizer.cc: ...here. * tree-vrp.c: Moved to... * tree-vrp.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * tsan.c: Moved to... * tsan.cc: ...here. * typed-splay-tree.c: Moved to... * typed-splay-tree.cc: ...here. * ubsan.c: Moved to... * ubsan.cc: ...here. * valtrack.c: Moved to... * valtrack.cc: ...here. * value-prof.c: Moved to... * value-prof.cc: ...here. * var-tracking.c: Moved to... * var-tracking.cc: ...here. * varasm.c: Moved to... * varasm.cc: ...here. * varpool.c: Moved to... * varpool.cc: ...here. * vec-perm-indices.c: Moved to... * vec-perm-indices.cc: ...here. * vec.c: Moved to... * vec.cc: ...here. * vmsdbgout.c: Moved to... * vmsdbgout.cc: ...here. * vr-values.c: Moved to... * vr-values.cc: ...here. * vtable-verify.c: Moved to... * vtable-verify.cc: ...here. * web.c: Moved to... * web.cc: ...here. * xcoffout.c: Moved to... * xcoffout.cc: ...here. gcc/c-family/ChangeLog: * c-ada-spec.c: Moved to... * c-ada-spec.cc: ...here. * c-attribs.c: Moved to... * c-attribs.cc: ...here. * c-common.c: Moved to... * c-common.cc: ...here. * c-cppbuiltin.c: Moved to... * c-cppbuiltin.cc: ...here. * c-dump.c: Moved to... * c-dump.cc: ...here. * c-format.c: Moved to... * c-format.cc: ...here. * c-gimplify.c: Moved to... * c-gimplify.cc: ...here. * c-indentation.c: Moved to... * c-indentation.cc: ...here. * c-lex.c: Moved to... * c-lex.cc: ...here. * c-omp.c: Moved to... * c-omp.cc: ...here. * c-opts.c: Moved to... * c-opts.cc: ...here. * c-pch.c: Moved to... * c-pch.cc: ...here. * c-ppoutput.c: Moved to... * c-ppoutput.cc: ...here. * c-pragma.c: Moved to... * c-pragma.cc: ...here. * c-pretty-print.c: Moved to... * c-pretty-print.cc: ...here. * c-semantics.c: Moved to... * c-semantics.cc: ...here. * c-ubsan.c: Moved to... * c-ubsan.cc: ...here. * c-warn.c: Moved to... * c-warn.cc: ...here. * cppspec.c: Moved to... * cppspec.cc: ...here. * stub-objc.c: Moved to... * stub-objc.cc: ...here. gcc/c/ChangeLog: * c-aux-info.c: Moved to... * c-aux-info.cc: ...here. * c-convert.c: Moved to... * c-convert.cc: ...here. * c-decl.c: Moved to... * c-decl.cc: ...here. * c-errors.c: Moved to... * c-errors.cc: ...here. * c-fold.c: Moved to... * c-fold.cc: ...here. * c-lang.c: Moved to... * c-lang.cc: ...here. * c-objc-common.c: Moved to... * c-objc-common.cc: ...here. * c-parser.c: Moved to... * c-parser.cc: ...here. * c-typeck.c: Moved to... * c-typeck.cc: ...here. * gccspec.c: Moved to... * gccspec.cc: ...here. * gimple-parser.c: Moved to... * gimple-parser.cc: ...here. gcc/cp/ChangeLog: * call.c: Moved to... * call.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constexpr.c: Moved to... * constexpr.cc: ...here. * cp-gimplify.c: Moved to... * cp-gimplify.cc: ...here. * cp-lang.c: Moved to... * cp-lang.cc: ...here. * cp-objcp-common.c: Moved to... * cp-objcp-common.cc: ...here. * cp-ubsan.c: Moved to... * cp-ubsan.cc: ...here. * cvt.c: Moved to... * cvt.cc: ...here. * cxx-pretty-print.c: Moved to... * cxx-pretty-print.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * decl2.c: Moved to... * decl2.cc: ...here. * dump.c: Moved to... * dump.cc: ...here. * error.c: Moved to... * error.cc: ...here. * except.c: Moved to... * except.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * friend.c: Moved to... * friend.cc: ...here. * g++spec.c: Moved to... * g++spec.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lambda.c: Moved to... * lambda.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * mangle.c: Moved to... * mangle.cc: ...here. * method.c: Moved to... * method.cc: ...here. * name-lookup.c: Moved to... * name-lookup.cc: ...here. * optimize.c: Moved to... * optimize.cc: ...here. * parser.c: Moved to... * parser.cc: ...here. * pt.c: Moved to... * pt.cc: ...here. * ptree.c: Moved to... * ptree.cc: ...here. * rtti.c: Moved to... * rtti.cc: ...here. * search.c: Moved to... * search.cc: ...here. * semantics.c: Moved to... * semantics.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * typeck.c: Moved to... * typeck.cc: ...here. * typeck2.c: Moved to... * typeck2.cc: ...here. * vtable-class-hierarchy.c: Moved to... * vtable-class-hierarchy.cc: ...here. gcc/fortran/ChangeLog: * arith.c: Moved to... * arith.cc: ...here. * array.c: Moved to... * array.cc: ...here. * bbt.c: Moved to... * bbt.cc: ...here. * check.c: Moved to... * check.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constructor.c: Moved to... * constructor.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * cpp.c: Moved to... * cpp.cc: ...here. * data.c: Moved to... * data.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * dependency.c: Moved to... * dependency.cc: ...here. * dump-parse-tree.c: Moved to... * dump-parse-tree.cc: ...here. * error.c: Moved to... * error.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * f95-lang.c: Moved to... * f95-lang.cc: ...here. * frontend-passes.c: Moved to... * frontend-passes.cc: ...here. * gfortranspec.c: Moved to... * gfortranspec.cc: ...here. * interface.c: Moved to... * interface.cc: ...here. * intrinsic.c: Moved to... * intrinsic.cc: ...here. * io.c: Moved to... * io.cc: ...here. * iresolve.c: Moved to... * iresolve.cc: ...here. * match.c: Moved to... * match.cc: ...here. * matchexp.c: Moved to... * matchexp.cc: ...here. * misc.c: Moved to... * misc.cc: ...here. * module.c: Moved to... * module.cc: ...here. * openmp.c: Moved to... * openmp.cc: ...here. * options.c: Moved to... * options.cc: ...here. * parse.c: Moved to... * parse.cc: ...here. * primary.c: Moved to... * primary.cc: ...here. * resolve.c: Moved to... * resolve.cc: ...here. * scanner.c: Moved to... * scanner.cc: ...here. * simplify.c: Moved to... * simplify.cc: ...here. * st.c: Moved to... * st.cc: ...here. * symbol.c: Moved to... * symbol.cc: ...here. * target-memory.c: Moved to... * target-memory.cc: ...here. * trans-array.c: Moved to... * trans-array.cc: ...here. * trans-common.c: Moved to... * trans-common.cc: ...here. * trans-const.c: Moved to... * trans-const.cc: ...here. * trans-decl.c: Moved to... * trans-decl.cc: ...here. * trans-expr.c: Moved to... * trans-expr.cc: ...here. * trans-intrinsic.c: Moved to... * trans-intrinsic.cc: ...here. * trans-io.c: Moved to... * trans-io.cc: ...here. * trans-openmp.c: Moved to... * trans-openmp.cc: ...here. * trans-stmt.c: Moved to... * trans-stmt.cc: ...here. * trans-types.c: Moved to... * trans-types.cc: ...here. * trans.c: Moved to... * trans.cc: ...here. gcc/go/ChangeLog: * go-backend.c: Moved to... * go-backend.cc: ...here. * go-lang.c: Moved to... * go-lang.cc: ...here. * gospec.c: Moved to... * gospec.cc: ...here. gcc/jit/ChangeLog: * dummy-frontend.c: Moved to... * dummy-frontend.cc: ...here. * jit-builtins.c: Moved to... * jit-builtins.cc: ...here. * jit-logging.c: Moved to... * jit-logging.cc: ...here. * jit-playback.c: Moved to... * jit-playback.cc: ...here. * jit-recording.c: Moved to... * jit-recording.cc: ...here. * jit-result.c: Moved to... * jit-result.cc: ...here. * jit-spec.c: Moved to... * jit-spec.cc: ...here. * jit-tempdir.c: Moved to... * jit-tempdir.cc: ...here. * jit-w32.c: Moved to... * jit-w32.cc: ...here. * libgccjit.c: Moved to... * libgccjit.cc: ...here. gcc/lto/ChangeLog: * common.c: Moved to... * common.cc: ...here. * lto-common.c: Moved to... * lto-common.cc: ...here. * lto-dump.c: Moved to... * lto-dump.cc: ...here. * lto-lang.c: Moved to... * lto-lang.cc: ...here. * lto-object.c: Moved to... * lto-object.cc: ...here. * lto-partition.c: Moved to... * lto-partition.cc: ...here. * lto-symtab.c: Moved to... * lto-symtab.cc: ...here. * lto.c: Moved to... * lto.cc: ...here. gcc/objc/ChangeLog: * objc-act.c: Moved to... * objc-act.cc: ...here. * objc-encoding.c: Moved to... * objc-encoding.cc: ...here. * objc-gnu-runtime-abi-01.c: Moved to... * objc-gnu-runtime-abi-01.cc: ...here. * objc-lang.c: Moved to... * objc-lang.cc: ...here. * objc-map.c: Moved to... * objc-map.cc: ...here. * objc-next-runtime-abi-01.c: Moved to... * objc-next-runtime-abi-01.cc: ...here. * objc-next-runtime-abi-02.c: Moved to... * objc-next-runtime-abi-02.cc: ...here. * objc-runtime-shared-support.c: Moved to... * objc-runtime-shared-support.cc: ...here. gcc/objcp/ChangeLog: * objcp-decl.c: Moved to... * objcp-decl.cc: ...here. * objcp-lang.c: Moved to... * objcp-lang.cc: ...here. libcpp/ChangeLog: * charset.c: Moved to... * charset.cc: ...here. * directives.c: Moved to... * directives.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * files.c: Moved to... * files.cc: ...here. * identifiers.c: Moved to... * identifiers.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * line-map.c: Moved to... * line-map.cc: ...here. * macro.c: Moved to... * macro.cc: ...here. * makeucnid.c: Moved to... * makeucnid.cc: ...here. * mkdeps.c: Moved to... * mkdeps.cc: ...here. * pch.c: Moved to... * pch.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * traditional.c: Moved to... * traditional.cc: ...here.
Diffstat (limited to 'gcc/expr.cc')
-rw-r--r--gcc/expr.cc13145
1 files changed, 13145 insertions, 0 deletions
diff --git a/gcc/expr.cc b/gcc/expr.cc
new file mode 100644
index 00000000000..9fb018766a6
--- /dev/null
+++ b/gcc/expr.cc
@@ -0,0 +1,13145 @@
+/* Convert tree expression to rtl instructions, for GNU compiler.
+ Copyright (C) 1988-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "predict.h"
+#include "memmodel.h"
+#include "tm_p.h"
+#include "ssa.h"
+#include "optabs.h"
+#include "expmed.h"
+#include "regs.h"
+#include "emit-rtl.h"
+#include "recog.h"
+#include "cgraph.h"
+#include "diagnostic.h"
+#include "alias.h"
+#include "fold-const.h"
+#include "stor-layout.h"
+#include "attribs.h"
+#include "varasm.h"
+#include "except.h"
+#include "insn-attr.h"
+#include "dojump.h"
+#include "explow.h"
+#include "calls.h"
+#include "stmt.h"
+/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
+#include "expr.h"
+#include "optabs-tree.h"
+#include "libfuncs.h"
+#include "reload.h"
+#include "langhooks.h"
+#include "common/common-target.h"
+#include "tree-dfa.h"
+#include "tree-ssa-live.h"
+#include "tree-outof-ssa.h"
+#include "tree-ssa-address.h"
+#include "builtins.h"
+#include "ccmp.h"
+#include "gimple-fold.h"
+#include "rtx-vector-builder.h"
+#include "tree-pretty-print.h"
+#include "flags.h"
+
+
+/* If this is nonzero, we do not bother generating VOLATILE
+ around volatile memory references, and we are willing to
+ output indirect addresses. If cse is to follow, we reject
+ indirect addresses so a useful potential cse is generated;
+ if it is used only once, instruction combination will produce
+ the same indirect address eventually. */
+int cse_not_expected;
+
+static bool block_move_libcall_safe_for_call_parm (void);
+static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
+ HOST_WIDE_INT, unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, bool);
+static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
+static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
+static rtx_insn *compress_float_constant (rtx, rtx);
+static rtx get_subtarget (rtx);
+static void store_constructor (tree, rtx, int, poly_int64, bool);
+static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
+ machine_mode, tree, alias_set_type, bool, bool);
+
+static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
+
+static int is_aligning_offset (const_tree, const_tree);
+static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
+static rtx do_store_flag (sepops, rtx, machine_mode);
+#ifdef PUSH_ROUNDING
+static void emit_single_push_insn (machine_mode, rtx, tree);
+#endif
+static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
+ profile_probability);
+static rtx const_vector_from_tree (tree);
+static tree tree_expr_size (const_tree);
+static HOST_WIDE_INT int_expr_size (tree);
+static void convert_mode_scalar (rtx, rtx, int);
+
+
+/* This is run to set up which modes can be used
+ directly in memory and to initialize the block move optab. It is run
+ at the beginning of compilation and when the target is reinitialized. */
+
+void
+init_expr_target (void)
+{
+ rtx pat;
+ int num_clobbers;
+ rtx mem, mem1;
+ rtx reg;
+
+ /* Try indexing by frame ptr and try by stack ptr.
+ It is known that on the Convex the stack ptr isn't a valid index.
+ With luck, one or the other is valid on any machine. */
+ mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
+ mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
+
+ /* A scratch register we can modify in-place below to avoid
+ useless RTL allocations. */
+ reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
+
+ rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
+ pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
+ PATTERN (insn) = pat;
+
+ for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
+ mode = (machine_mode) ((int) mode + 1))
+ {
+ int regno;
+
+ direct_load[(int) mode] = direct_store[(int) mode] = 0;
+ PUT_MODE (mem, mode);
+ PUT_MODE (mem1, mode);
+
+ /* See if there is some register that can be used in this mode and
+ directly loaded or stored from memory. */
+
+ if (mode != VOIDmode && mode != BLKmode)
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER
+ && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
+ regno++)
+ {
+ if (!targetm.hard_regno_mode_ok (regno, mode))
+ continue;
+
+ set_mode_and_regno (reg, mode, regno);
+
+ SET_SRC (pat) = mem;
+ SET_DEST (pat) = reg;
+ if (recog (pat, insn, &num_clobbers) >= 0)
+ direct_load[(int) mode] = 1;
+
+ SET_SRC (pat) = mem1;
+ SET_DEST (pat) = reg;
+ if (recog (pat, insn, &num_clobbers) >= 0)
+ direct_load[(int) mode] = 1;
+
+ SET_SRC (pat) = reg;
+ SET_DEST (pat) = mem;
+ if (recog (pat, insn, &num_clobbers) >= 0)
+ direct_store[(int) mode] = 1;
+
+ SET_SRC (pat) = reg;
+ SET_DEST (pat) = mem1;
+ if (recog (pat, insn, &num_clobbers) >= 0)
+ direct_store[(int) mode] = 1;
+ }
+ }
+
+ mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
+
+ opt_scalar_float_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
+ {
+ scalar_float_mode mode = mode_iter.require ();
+ scalar_float_mode srcmode;
+ FOR_EACH_MODE_UNTIL (srcmode, mode)
+ {
+ enum insn_code ic;
+
+ ic = can_extend_p (mode, srcmode, 0);
+ if (ic == CODE_FOR_nothing)
+ continue;
+
+ PUT_MODE (mem, srcmode);
+
+ if (insn_operand_matches (ic, 1, mem))
+ float_extend_from_mem[mode][srcmode] = true;
+ }
+ }
+}
+
+/* This is run at the start of compiling a function. */
+
+void
+init_expr (void)
+{
+ memset (&crtl->expr, 0, sizeof (crtl->expr));
+}
+
+/* Copy data from FROM to TO, where the machine modes are not the same.
+ Both modes may be integer, or both may be floating, or both may be
+ fixed-point.
+ UNSIGNEDP should be nonzero if FROM is an unsigned type.
+ This causes zero-extension instead of sign-extension. */
+
+void
+convert_move (rtx to, rtx from, int unsignedp)
+{
+ machine_mode to_mode = GET_MODE (to);
+ machine_mode from_mode = GET_MODE (from);
+
+ gcc_assert (to_mode != BLKmode);
+ gcc_assert (from_mode != BLKmode);
+
+ /* If the source and destination are already the same, then there's
+ nothing to do. */
+ if (to == from)
+ return;
+
+ /* If FROM is a SUBREG that indicates that we have already done at least
+ the required extension, strip it. We don't handle such SUBREGs as
+ TO here. */
+
+ scalar_int_mode to_int_mode;
+ if (GET_CODE (from) == SUBREG
+ && SUBREG_PROMOTED_VAR_P (from)
+ && is_a <scalar_int_mode> (to_mode, &to_int_mode)
+ && (GET_MODE_PRECISION (subreg_promoted_mode (from))
+ >= GET_MODE_PRECISION (to_int_mode))
+ && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
+ {
+ scalar_int_mode int_orig_mode;
+ scalar_int_mode int_inner_mode;
+ machine_mode orig_mode = GET_MODE (from);
+
+ from = gen_lowpart (to_int_mode, SUBREG_REG (from));
+ from_mode = to_int_mode;
+
+ /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
+ the original mode, but narrower than the inner mode. */
+ if (GET_CODE (from) == SUBREG
+ && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
+ && GET_MODE_PRECISION (to_int_mode)
+ > GET_MODE_PRECISION (int_orig_mode)
+ && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
+ &int_inner_mode)
+ && GET_MODE_PRECISION (int_inner_mode)
+ > GET_MODE_PRECISION (to_int_mode))
+ {
+ SUBREG_PROMOTED_VAR_P (from) = 1;
+ SUBREG_PROMOTED_SET (from, unsignedp);
+ }
+ }
+
+ gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
+
+ if (to_mode == from_mode
+ || (from_mode == VOIDmode && CONSTANT_P (from)))
+ {
+ emit_move_insn (to, from);
+ return;
+ }
+
+ if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
+ {
+ if (GET_MODE_UNIT_PRECISION (to_mode)
+ > GET_MODE_UNIT_PRECISION (from_mode))
+ {
+ optab op = unsignedp ? zext_optab : sext_optab;
+ insn_code icode = convert_optab_handler (op, to_mode, from_mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ emit_unop_insn (icode, to, from,
+ unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
+ return;
+ }
+ }
+
+ if (GET_MODE_UNIT_PRECISION (to_mode)
+ < GET_MODE_UNIT_PRECISION (from_mode))
+ {
+ insn_code icode = convert_optab_handler (trunc_optab,
+ to_mode, from_mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ emit_unop_insn (icode, to, from, TRUNCATE);
+ return;
+ }
+ }
+
+ gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
+ GET_MODE_BITSIZE (to_mode)));
+
+ if (VECTOR_MODE_P (to_mode))
+ from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
+ else
+ to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
+
+ emit_move_insn (to, from);
+ return;
+ }
+
+ if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
+ {
+ convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
+ convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
+ return;
+ }
+
+ convert_mode_scalar (to, from, unsignedp);
+}
+
+/* Like convert_move, but deals only with scalar modes. */
+
+static void
+convert_mode_scalar (rtx to, rtx from, int unsignedp)
+{
+ /* Both modes should be scalar types. */
+ scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
+ scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
+ bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
+ bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
+ enum insn_code code;
+ rtx libcall;
+
+ gcc_assert (to_real == from_real);
+
+ /* rtx code for making an equivalent value. */
+ enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
+ : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
+
+ if (to_real)
+ {
+ rtx value;
+ rtx_insn *insns;
+ convert_optab tab;
+
+ gcc_assert ((GET_MODE_PRECISION (from_mode)
+ != GET_MODE_PRECISION (to_mode))
+ || (DECIMAL_FLOAT_MODE_P (from_mode)
+ != DECIMAL_FLOAT_MODE_P (to_mode)));
+
+ if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
+ /* Conversion between decimal float and binary float, same size. */
+ tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
+ else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
+ tab = sext_optab;
+ else
+ tab = trunc_optab;
+
+ /* Try converting directly if the insn is supported. */
+
+ code = convert_optab_handler (tab, to_mode, from_mode);
+ if (code != CODE_FOR_nothing)
+ {
+ emit_unop_insn (code, to, from,
+ tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
+ return;
+ }
+
+ /* Otherwise use a libcall. */
+ libcall = convert_optab_libfunc (tab, to_mode, from_mode);
+
+ /* Is this conversion implemented yet? */
+ gcc_assert (libcall);
+
+ start_sequence ();
+ value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
+ from, from_mode);
+ insns = get_insns ();
+ end_sequence ();
+ emit_libcall_block (insns, to, value,
+ tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
+ from)
+ : gen_rtx_FLOAT_EXTEND (to_mode, from));
+ return;
+ }
+
+ /* Handle pointer conversion. */ /* SPEE 900220. */
+ /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
+ {
+ convert_optab ctab;
+
+ if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
+ ctab = trunc_optab;
+ else if (unsignedp)
+ ctab = zext_optab;
+ else
+ ctab = sext_optab;
+
+ if (convert_optab_handler (ctab, to_mode, from_mode)
+ != CODE_FOR_nothing)
+ {
+ emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
+ to, from, UNKNOWN);
+ return;
+ }
+ }
+
+ /* Targets are expected to provide conversion insns between PxImode and
+ xImode for all MODE_PARTIAL_INT modes they use, but no others. */
+ if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
+ {
+ scalar_int_mode full_mode
+ = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
+
+ gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
+ != CODE_FOR_nothing);
+
+ if (full_mode != from_mode)
+ from = convert_to_mode (full_mode, from, unsignedp);
+ emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
+ to, from, UNKNOWN);
+ return;
+ }
+ if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
+ {
+ rtx new_from;
+ scalar_int_mode full_mode
+ = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
+ convert_optab ctab = unsignedp ? zext_optab : sext_optab;
+ enum insn_code icode;
+
+ icode = convert_optab_handler (ctab, full_mode, from_mode);
+ gcc_assert (icode != CODE_FOR_nothing);
+
+ if (to_mode == full_mode)
+ {
+ emit_unop_insn (icode, to, from, UNKNOWN);
+ return;
+ }
+
+ new_from = gen_reg_rtx (full_mode);
+ emit_unop_insn (icode, new_from, from, UNKNOWN);
+
+ /* else proceed to integer conversions below. */
+ from_mode = full_mode;
+ from = new_from;
+ }
+
+ /* Make sure both are fixed-point modes or both are not. */
+ gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
+ ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
+ if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
+ {
+ /* If we widen from_mode to to_mode and they are in the same class,
+ we won't saturate the result.
+ Otherwise, always saturate the result to play safe. */
+ if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
+ && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
+ expand_fixed_convert (to, from, 0, 0);
+ else
+ expand_fixed_convert (to, from, 0, 1);
+ return;
+ }
+
+ /* Now both modes are integers. */
+
+ /* Handle expanding beyond a word. */
+ if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
+ && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
+ {
+ rtx_insn *insns;
+ rtx lowpart;
+ rtx fill_value;
+ rtx lowfrom;
+ int i;
+ scalar_mode lowpart_mode;
+ int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
+
+ /* Try converting directly if the insn is supported. */
+ if ((code = can_extend_p (to_mode, from_mode, unsignedp))
+ != CODE_FOR_nothing)
+ {
+ /* If FROM is a SUBREG, put it into a register. Do this
+ so that we always generate the same set of insns for
+ better cse'ing; if an intermediate assignment occurred,
+ we won't be doing the operation directly on the SUBREG. */
+ if (optimize > 0 && GET_CODE (from) == SUBREG)
+ from = force_reg (from_mode, from);
+ emit_unop_insn (code, to, from, equiv_code);
+ return;
+ }
+ /* Next, try converting via full word. */
+ else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
+ && ((code = can_extend_p (to_mode, word_mode, unsignedp))
+ != CODE_FOR_nothing))
+ {
+ rtx word_to = gen_reg_rtx (word_mode);
+ if (REG_P (to))
+ {
+ if (reg_overlap_mentioned_p (to, from))
+ from = force_reg (from_mode, from);
+ emit_clobber (to);
+ }
+ convert_move (word_to, from, unsignedp);
+ emit_unop_insn (code, to, word_to, equiv_code);
+ return;
+ }
+
+ /* No special multiword conversion insn; do it by hand. */
+ start_sequence ();
+
+ /* Since we will turn this into a no conflict block, we must ensure
+ the source does not overlap the target so force it into an isolated
+ register when maybe so. Likewise for any MEM input, since the
+ conversion sequence might require several references to it and we
+ must ensure we're getting the same value every time. */
+
+ if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
+ from = force_reg (from_mode, from);
+
+ /* Get a copy of FROM widened to a word, if necessary. */
+ if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
+ lowpart_mode = word_mode;
+ else
+ lowpart_mode = from_mode;
+
+ lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
+
+ lowpart = gen_lowpart (lowpart_mode, to);
+ emit_move_insn (lowpart, lowfrom);
+
+ /* Compute the value to put in each remaining word. */
+ if (unsignedp)
+ fill_value = const0_rtx;
+ else
+ fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
+ LT, lowfrom, const0_rtx,
+ lowpart_mode, 0, -1);
+
+ /* Fill the remaining words. */
+ for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
+ {
+ int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
+ rtx subword = operand_subword (to, index, 1, to_mode);
+
+ gcc_assert (subword);
+
+ if (fill_value != subword)
+ emit_move_insn (subword, fill_value);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ emit_insn (insns);
+ return;
+ }
+
+ /* Truncating multi-word to a word or less. */
+ if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
+ && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
+ {
+ if (!((MEM_P (from)
+ && ! MEM_VOLATILE_P (from)
+ && direct_load[(int) to_mode]
+ && ! mode_dependent_address_p (XEXP (from, 0),
+ MEM_ADDR_SPACE (from)))
+ || REG_P (from)
+ || GET_CODE (from) == SUBREG))
+ from = force_reg (from_mode, from);
+ convert_move (to, gen_lowpart (word_mode, from), 0);
+ return;
+ }
+
+ /* Now follow all the conversions between integers
+ no more than a word long. */
+
+ /* For truncation, usually we can just refer to FROM in a narrower mode. */
+ if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
+ && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
+ {
+ if (!((MEM_P (from)
+ && ! MEM_VOLATILE_P (from)
+ && direct_load[(int) to_mode]
+ && ! mode_dependent_address_p (XEXP (from, 0),
+ MEM_ADDR_SPACE (from)))
+ || REG_P (from)
+ || GET_CODE (from) == SUBREG))
+ from = force_reg (from_mode, from);
+ if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
+ && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
+ from = copy_to_reg (from);
+ emit_move_insn (to, gen_lowpart (to_mode, from));
+ return;
+ }
+
+ /* Handle extension. */
+ if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
+ {
+ /* Convert directly if that works. */
+ if ((code = can_extend_p (to_mode, from_mode, unsignedp))
+ != CODE_FOR_nothing)
+ {
+ emit_unop_insn (code, to, from, equiv_code);
+ return;
+ }
+ else
+ {
+ rtx tmp;
+ int shift_amount;
+
+ /* Search for a mode to convert via. */
+ opt_scalar_mode intermediate_iter;
+ FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
+ {
+ scalar_mode intermediate = intermediate_iter.require ();
+ if (((can_extend_p (to_mode, intermediate, unsignedp)
+ != CODE_FOR_nothing)
+ || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
+ && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
+ intermediate)))
+ && (can_extend_p (intermediate, from_mode, unsignedp)
+ != CODE_FOR_nothing))
+ {
+ convert_move (to, convert_to_mode (intermediate, from,
+ unsignedp), unsignedp);
+ return;
+ }
+ }
+
+ /* No suitable intermediate mode.
+ Generate what we need with shifts. */
+ shift_amount = (GET_MODE_PRECISION (to_mode)
+ - GET_MODE_PRECISION (from_mode));
+ from = gen_lowpart (to_mode, force_reg (from_mode, from));
+ tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
+ to, unsignedp);
+ tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
+ to, unsignedp);
+ if (tmp != to)
+ emit_move_insn (to, tmp);
+ return;
+ }
+ }
+
+ /* Support special truncate insns for certain modes. */
+ if (convert_optab_handler (trunc_optab, to_mode,
+ from_mode) != CODE_FOR_nothing)
+ {
+ emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
+ to, from, UNKNOWN);
+ return;
+ }
+
+ /* Handle truncation of volatile memrefs, and so on;
+ the things that couldn't be truncated directly,
+ and for which there was no special instruction.
+
+ ??? Code above formerly short-circuited this, for most integer
+ mode pairs, with a force_reg in from_mode followed by a recursive
+ call to this routine. Appears always to have been wrong. */
+ if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
+ {
+ rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
+ emit_move_insn (to, temp);
+ return;
+ }
+
+ /* Mode combination is not recognized. */
+ gcc_unreachable ();
+}
+
+/* Return an rtx for a value that would result
+ from converting X to mode MODE.
+ Both X and MODE may be floating, or both integer.
+ UNSIGNEDP is nonzero if X is an unsigned value.
+ This can be done by referring to a part of X in place
+ or by copying to a new temporary with conversion. */
+
+rtx
+convert_to_mode (machine_mode mode, rtx x, int unsignedp)
+{
+ return convert_modes (mode, VOIDmode, x, unsignedp);
+}
+
+/* Return an rtx for a value that would result
+ from converting X from mode OLDMODE to mode MODE.
+ Both modes may be floating, or both integer.
+ UNSIGNEDP is nonzero if X is an unsigned value.
+
+ This can be done by referring to a part of X in place
+ or by copying to a new temporary with conversion.
+
+ You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
+
+rtx
+convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
+{
+ rtx temp;
+ scalar_int_mode int_mode;
+
+ /* If FROM is a SUBREG that indicates that we have already done at least
+ the required extension, strip it. */
+
+ if (GET_CODE (x) == SUBREG
+ && SUBREG_PROMOTED_VAR_P (x)
+ && is_a <scalar_int_mode> (mode, &int_mode)
+ && (GET_MODE_PRECISION (subreg_promoted_mode (x))
+ >= GET_MODE_PRECISION (int_mode))
+ && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
+ {
+ scalar_int_mode int_orig_mode;
+ scalar_int_mode int_inner_mode;
+ machine_mode orig_mode = GET_MODE (x);
+ x = gen_lowpart (int_mode, SUBREG_REG (x));
+
+ /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
+ the original mode, but narrower than the inner mode. */
+ if (GET_CODE (x) == SUBREG
+ && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
+ && GET_MODE_PRECISION (int_mode)
+ > GET_MODE_PRECISION (int_orig_mode)
+ && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
+ &int_inner_mode)
+ && GET_MODE_PRECISION (int_inner_mode)
+ > GET_MODE_PRECISION (int_mode))
+ {
+ SUBREG_PROMOTED_VAR_P (x) = 1;
+ SUBREG_PROMOTED_SET (x, unsignedp);
+ }
+ }
+
+ if (GET_MODE (x) != VOIDmode)
+ oldmode = GET_MODE (x);
+
+ if (mode == oldmode)
+ return x;
+
+ if (CONST_SCALAR_INT_P (x)
+ && is_a <scalar_int_mode> (mode, &int_mode))
+ {
+ /* If the caller did not tell us the old mode, then there is not
+ much to do with respect to canonicalization. We have to
+ assume that all the bits are significant. */
+ if (!is_a <scalar_int_mode> (oldmode))
+ oldmode = MAX_MODE_INT;
+ wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
+ GET_MODE_PRECISION (int_mode),
+ unsignedp ? UNSIGNED : SIGNED);
+ return immed_wide_int_const (w, int_mode);
+ }
+
+ /* We can do this with a gen_lowpart if both desired and current modes
+ are integer, and this is either a constant integer, a register, or a
+ non-volatile MEM. */
+ scalar_int_mode int_oldmode;
+ if (is_int_mode (mode, &int_mode)
+ && is_int_mode (oldmode, &int_oldmode)
+ && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
+ && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
+ || CONST_POLY_INT_P (x)
+ || (REG_P (x)
+ && (!HARD_REGISTER_P (x)
+ || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
+ && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
+ return gen_lowpart (int_mode, x);
+
+ /* Converting from integer constant into mode is always equivalent to an
+ subreg operation. */
+ if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
+ {
+ gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
+ GET_MODE_BITSIZE (oldmode)));
+ return simplify_gen_subreg (mode, x, oldmode, 0);
+ }
+
+ temp = gen_reg_rtx (mode);
+ convert_move (temp, x, unsignedp);
+ return temp;
+}
+
+/* Return the largest alignment we can use for doing a move (or store)
+ of MAX_PIECES. ALIGN is the largest alignment we could use. */
+
+static unsigned int
+alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
+{
+ scalar_int_mode tmode
+ = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
+
+ if (align >= GET_MODE_ALIGNMENT (tmode))
+ align = GET_MODE_ALIGNMENT (tmode);
+ else
+ {
+ scalar_int_mode xmode = NARROWEST_INT_MODE;
+ opt_scalar_int_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
+ {
+ tmode = mode_iter.require ();
+ if (GET_MODE_SIZE (tmode) > max_pieces
+ || targetm.slow_unaligned_access (tmode, align))
+ break;
+ xmode = tmode;
+ }
+
+ align = MAX (align, GET_MODE_ALIGNMENT (xmode));
+ }
+
+ return align;
+}
+
+/* Return the widest QI vector, if QI_MODE is true, or integer mode
+ that is narrower than SIZE bytes. */
+
+static fixed_size_mode
+widest_fixed_size_mode_for_size (unsigned int size, bool qi_vector)
+{
+ fixed_size_mode result = NARROWEST_INT_MODE;
+
+ gcc_checking_assert (size > 1);
+
+ /* Use QI vector only if size is wider than a WORD. */
+ if (qi_vector && size > UNITS_PER_WORD)
+ {
+ machine_mode mode;
+ fixed_size_mode candidate;
+ FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
+ if (is_a<fixed_size_mode> (mode, &candidate)
+ && GET_MODE_INNER (candidate) == QImode)
+ {
+ if (GET_MODE_SIZE (candidate) >= size)
+ break;
+ if (optab_handler (vec_duplicate_optab, candidate)
+ != CODE_FOR_nothing)
+ result = candidate;
+ }
+
+ if (result != NARROWEST_INT_MODE)
+ return result;
+ }
+
+ opt_scalar_int_mode tmode;
+ FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
+ if (GET_MODE_SIZE (tmode.require ()) < size)
+ result = tmode.require ();
+
+ return result;
+}
+
+/* Determine whether an operation OP on LEN bytes with alignment ALIGN can
+ and should be performed piecewise. */
+
+static bool
+can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
+ enum by_pieces_operation op)
+{
+ return targetm.use_by_pieces_infrastructure_p (len, align, op,
+ optimize_insn_for_speed_p ());
+}
+
+/* Determine whether the LEN bytes can be moved by using several move
+ instructions. Return nonzero if a call to move_by_pieces should
+ succeed. */
+
+bool
+can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
+{
+ return can_do_by_pieces (len, align, MOVE_BY_PIECES);
+}
+
+/* Return number of insns required to perform operation OP by pieces
+ for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
+
+unsigned HOST_WIDE_INT
+by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
+ unsigned int max_size, by_pieces_operation op)
+{
+ unsigned HOST_WIDE_INT n_insns = 0;
+ fixed_size_mode mode;
+
+ if (targetm.overlap_op_by_pieces_p () && op != COMPARE_BY_PIECES)
+ {
+ /* NB: Round up L and ALIGN to the widest integer mode for
+ MAX_SIZE. */
+ mode = widest_fixed_size_mode_for_size (max_size,
+ op == SET_BY_PIECES);
+ if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
+ {
+ unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
+ if (up > l)
+ l = up;
+ align = GET_MODE_ALIGNMENT (mode);
+ }
+ }
+
+ align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
+
+ while (max_size > 1 && l > 0)
+ {
+ mode = widest_fixed_size_mode_for_size (max_size,
+ op == SET_BY_PIECES);
+ enum insn_code icode;
+
+ unsigned int modesize = GET_MODE_SIZE (mode);
+
+ icode = optab_handler (mov_optab, mode);
+ if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
+ {
+ unsigned HOST_WIDE_INT n_pieces = l / modesize;
+ l %= modesize;
+ switch (op)
+ {
+ default:
+ n_insns += n_pieces;
+ break;
+
+ case COMPARE_BY_PIECES:
+ int batch = targetm.compare_by_pieces_branch_ratio (mode);
+ int batch_ops = 4 * batch - 1;
+ unsigned HOST_WIDE_INT full = n_pieces / batch;
+ n_insns += full * batch_ops;
+ if (n_pieces % batch != 0)
+ n_insns++;
+ break;
+
+ }
+ }
+ max_size = modesize;
+ }
+
+ gcc_assert (!l);
+ return n_insns;
+}
+
+/* Used when performing piecewise block operations, holds information
+ about one of the memory objects involved. The member functions
+ can be used to generate code for loading from the object and
+ updating the address when iterating. */
+
+class pieces_addr
+{
+ /* The object being referenced, a MEM. Can be NULL_RTX to indicate
+ stack pushes. */
+ rtx m_obj;
+ /* The address of the object. Can differ from that seen in the
+ MEM rtx if we copied the address to a register. */
+ rtx m_addr;
+ /* Nonzero if the address on the object has an autoincrement already,
+ signifies whether that was an increment or decrement. */
+ signed char m_addr_inc;
+ /* Nonzero if we intend to use autoinc without the address already
+ having autoinc form. We will insert add insns around each memory
+ reference, expecting later passes to form autoinc addressing modes.
+ The only supported options are predecrement and postincrement. */
+ signed char m_explicit_inc;
+ /* True if we have either of the two possible cases of using
+ autoincrement. */
+ bool m_auto;
+ /* True if this is an address to be used for load operations rather
+ than stores. */
+ bool m_is_load;
+
+ /* Optionally, a function to obtain constants for any given offset into
+ the objects, and data associated with it. */
+ by_pieces_constfn m_constfn;
+ void *m_cfndata;
+public:
+ pieces_addr (rtx, bool, by_pieces_constfn, void *);
+ rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
+ void increment_address (HOST_WIDE_INT);
+ void maybe_predec (HOST_WIDE_INT);
+ void maybe_postinc (HOST_WIDE_INT);
+ void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
+ int get_addr_inc ()
+ {
+ return m_addr_inc;
+ }
+};
+
+/* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
+ true if the operation to be performed on this object is a load
+ rather than a store. For stores, OBJ can be NULL, in which case we
+ assume the operation is a stack push. For loads, the optional
+ CONSTFN and its associated CFNDATA can be used in place of the
+ memory load. */
+
+pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
+ void *cfndata)
+ : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
+{
+ m_addr_inc = 0;
+ m_auto = false;
+ if (obj)
+ {
+ rtx addr = XEXP (obj, 0);
+ rtx_code code = GET_CODE (addr);
+ m_addr = addr;
+ bool dec = code == PRE_DEC || code == POST_DEC;
+ bool inc = code == PRE_INC || code == POST_INC;
+ m_auto = inc || dec;
+ if (m_auto)
+ m_addr_inc = dec ? -1 : 1;
+
+ /* While we have always looked for these codes here, the code
+ implementing the memory operation has never handled them.
+ Support could be added later if necessary or beneficial. */
+ gcc_assert (code != PRE_INC && code != POST_DEC);
+ }
+ else
+ {
+ m_addr = NULL_RTX;
+ if (!is_load)
+ {
+ m_auto = true;
+ if (STACK_GROWS_DOWNWARD)
+ m_addr_inc = -1;
+ else
+ m_addr_inc = 1;
+ }
+ else
+ gcc_assert (constfn != NULL);
+ }
+ m_explicit_inc = 0;
+ if (constfn)
+ gcc_assert (is_load);
+}
+
+/* Decide whether to use autoinc for an address involved in a memory op.
+ MODE is the mode of the accesses, REVERSE is true if we've decided to
+ perform the operation starting from the end, and LEN is the length of
+ the operation. Don't override an earlier decision to set m_auto. */
+
+void
+pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
+ HOST_WIDE_INT len)
+{
+ if (m_auto || m_obj == NULL_RTX)
+ return;
+
+ bool use_predec = (m_is_load
+ ? USE_LOAD_PRE_DECREMENT (mode)
+ : USE_STORE_PRE_DECREMENT (mode));
+ bool use_postinc = (m_is_load
+ ? USE_LOAD_POST_INCREMENT (mode)
+ : USE_STORE_POST_INCREMENT (mode));
+ machine_mode addr_mode = get_address_mode (m_obj);
+
+ if (use_predec && reverse)
+ {
+ m_addr = copy_to_mode_reg (addr_mode,
+ plus_constant (addr_mode,
+ m_addr, len));
+ m_auto = true;
+ m_explicit_inc = -1;
+ }
+ else if (use_postinc && !reverse)
+ {
+ m_addr = copy_to_mode_reg (addr_mode, m_addr);
+ m_auto = true;
+ m_explicit_inc = 1;
+ }
+ else if (CONSTANT_P (m_addr))
+ m_addr = copy_to_mode_reg (addr_mode, m_addr);
+}
+
+/* Adjust the address to refer to the data at OFFSET in MODE. If we
+ are using autoincrement for this address, we don't add the offset,
+ but we still modify the MEM's properties. */
+
+rtx
+pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
+ by_pieces_prev *prev)
+{
+ if (m_constfn)
+ /* Pass the previous data to m_constfn. */
+ return m_constfn (m_cfndata, prev, offset, mode);
+ if (m_obj == NULL_RTX)
+ return NULL_RTX;
+ if (m_auto)
+ return adjust_automodify_address (m_obj, mode, m_addr, offset);
+ else
+ return adjust_address (m_obj, mode, offset);
+}
+
+/* Emit an add instruction to increment the address by SIZE. */
+
+void
+pieces_addr::increment_address (HOST_WIDE_INT size)
+{
+ rtx amount = gen_int_mode (size, GET_MODE (m_addr));
+ emit_insn (gen_add2_insn (m_addr, amount));
+}
+
+/* If we are supposed to decrement the address after each access, emit code
+ to do so now. Increment by SIZE (which has should have the correct sign
+ already). */
+
+void
+pieces_addr::maybe_predec (HOST_WIDE_INT size)
+{
+ if (m_explicit_inc >= 0)
+ return;
+ gcc_assert (HAVE_PRE_DECREMENT);
+ increment_address (size);
+}
+
+/* If we are supposed to decrement the address after each access, emit code
+ to do so now. Increment by SIZE. */
+
+void
+pieces_addr::maybe_postinc (HOST_WIDE_INT size)
+{
+ if (m_explicit_inc <= 0)
+ return;
+ gcc_assert (HAVE_POST_INCREMENT);
+ increment_address (size);
+}
+
+/* This structure is used by do_op_by_pieces to describe the operation
+ to be performed. */
+
+class op_by_pieces_d
+{
+ private:
+ fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
+ fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
+
+ protected:
+ pieces_addr m_to, m_from;
+ /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
+ use it to check the valid mode size. */
+ const unsigned HOST_WIDE_INT m_len;
+ HOST_WIDE_INT m_offset;
+ unsigned int m_align;
+ unsigned int m_max_size;
+ bool m_reverse;
+ /* True if this is a stack push. */
+ bool m_push;
+ /* True if targetm.overlap_op_by_pieces_p () returns true. */
+ bool m_overlap_op_by_pieces;
+ /* True if QI vector mode can be used. */
+ bool m_qi_vector_mode;
+
+ /* Virtual functions, overriden by derived classes for the specific
+ operation. */
+ virtual void generate (rtx, rtx, machine_mode) = 0;
+ virtual bool prepare_mode (machine_mode, unsigned int) = 0;
+ virtual void finish_mode (machine_mode)
+ {
+ }
+
+ public:
+ op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
+ void *, unsigned HOST_WIDE_INT, unsigned int, bool,
+ bool = false);
+ void run ();
+};
+
+/* The constructor for an op_by_pieces_d structure. We require two
+ objects named TO and FROM, which are identified as loads or stores
+ by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
+ and its associated FROM_CFN_DATA can be used to replace loads with
+ constant values. MAX_PIECES describes the maximum number of bytes
+ at a time which can be moved efficiently. LEN describes the length
+ of the operation. */
+
+op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
+ bool to_load, rtx from, bool from_load,
+ by_pieces_constfn from_cfn,
+ void *from_cfn_data,
+ unsigned HOST_WIDE_INT len,
+ unsigned int align, bool push,
+ bool qi_vector_mode)
+ : m_to (to, to_load, NULL, NULL),
+ m_from (from, from_load, from_cfn, from_cfn_data),
+ m_len (len), m_max_size (max_pieces + 1),
+ m_push (push), m_qi_vector_mode (qi_vector_mode)
+{
+ int toi = m_to.get_addr_inc ();
+ int fromi = m_from.get_addr_inc ();
+ if (toi >= 0 && fromi >= 0)
+ m_reverse = false;
+ else if (toi <= 0 && fromi <= 0)
+ m_reverse = true;
+ else
+ gcc_unreachable ();
+
+ m_offset = m_reverse ? len : 0;
+ align = MIN (to ? MEM_ALIGN (to) : align,
+ from ? MEM_ALIGN (from) : align);
+
+ /* If copying requires more than two move insns,
+ copy addresses to registers (to make displacements shorter)
+ and use post-increment if available. */
+ if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
+ {
+ /* Find the mode of the largest comparison. */
+ fixed_size_mode mode
+ = widest_fixed_size_mode_for_size (m_max_size,
+ m_qi_vector_mode);
+
+ m_from.decide_autoinc (mode, m_reverse, len);
+ m_to.decide_autoinc (mode, m_reverse, len);
+ }
+
+ align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
+ m_align = align;
+
+ m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
+}
+
+/* This function returns the largest usable integer mode for LEN bytes
+ whose size is no bigger than size of MODE. */
+
+fixed_size_mode
+op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
+{
+ unsigned int size;
+ do
+ {
+ size = GET_MODE_SIZE (mode);
+ if (len >= size && prepare_mode (mode, m_align))
+ break;
+ /* widest_fixed_size_mode_for_size checks SIZE > 1. */
+ mode = widest_fixed_size_mode_for_size (size, m_qi_vector_mode);
+ }
+ while (1);
+ return mode;
+}
+
+/* Return the smallest integer or QI vector mode that is not narrower
+ than SIZE bytes. */
+
+fixed_size_mode
+op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
+{
+ /* Use QI vector only for > size of WORD. */
+ if (m_qi_vector_mode && size > UNITS_PER_WORD)
+ {
+ machine_mode mode;
+ fixed_size_mode candidate;
+ FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
+ if (is_a<fixed_size_mode> (mode, &candidate)
+ && GET_MODE_INNER (candidate) == QImode)
+ {
+ /* Don't return a mode wider than M_LEN. */
+ if (GET_MODE_SIZE (candidate) > m_len)
+ break;
+
+ if (GET_MODE_SIZE (candidate) >= size
+ && (optab_handler (vec_duplicate_optab, candidate)
+ != CODE_FOR_nothing))
+ return candidate;
+ }
+ }
+
+ return smallest_int_mode_for_size (size * BITS_PER_UNIT);
+}
+
+/* This function contains the main loop used for expanding a block
+ operation. First move what we can in the largest integer mode,
+ then go to successively smaller modes. For every access, call
+ GENFUN with the two operands and the EXTRA_DATA. */
+
+void
+op_by_pieces_d::run ()
+{
+ if (m_len == 0)
+ return;
+
+ unsigned HOST_WIDE_INT length = m_len;
+
+ /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
+ fixed_size_mode mode
+ = widest_fixed_size_mode_for_size (m_max_size, m_qi_vector_mode);
+ mode = get_usable_mode (mode, length);
+
+ by_pieces_prev to_prev = { nullptr, mode };
+ by_pieces_prev from_prev = { nullptr, mode };
+
+ do
+ {
+ unsigned int size = GET_MODE_SIZE (mode);
+ rtx to1 = NULL_RTX, from1;
+
+ while (length >= size)
+ {
+ if (m_reverse)
+ m_offset -= size;
+
+ to1 = m_to.adjust (mode, m_offset, &to_prev);
+ to_prev.data = to1;
+ to_prev.mode = mode;
+ from1 = m_from.adjust (mode, m_offset, &from_prev);
+ from_prev.data = from1;
+ from_prev.mode = mode;
+
+ m_to.maybe_predec (-(HOST_WIDE_INT)size);
+ m_from.maybe_predec (-(HOST_WIDE_INT)size);
+
+ generate (to1, from1, mode);
+
+ m_to.maybe_postinc (size);
+ m_from.maybe_postinc (size);
+
+ if (!m_reverse)
+ m_offset += size;
+
+ length -= size;
+ }
+
+ finish_mode (mode);
+
+ if (length == 0)
+ return;
+
+ if (!m_push && m_overlap_op_by_pieces)
+ {
+ /* NB: Generate overlapping operations if it is not a stack
+ push since stack push must not overlap. Get the smallest
+ fixed size mode for M_LEN bytes. */
+ mode = smallest_fixed_size_mode_for_size (length);
+ mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
+ int gap = GET_MODE_SIZE (mode) - length;
+ if (gap > 0)
+ {
+ /* If size of MODE > M_LEN, generate the last operation
+ in MODE for the remaining bytes with ovelapping memory
+ from the previois operation. */
+ if (m_reverse)
+ m_offset += gap;
+ else
+ m_offset -= gap;
+ length += gap;
+ }
+ }
+ else
+ {
+ /* widest_fixed_size_mode_for_size checks SIZE > 1. */
+ mode = widest_fixed_size_mode_for_size (size,
+ m_qi_vector_mode);
+ mode = get_usable_mode (mode, length);
+ }
+ }
+ while (1);
+}
+
+/* Derived class from op_by_pieces_d, providing support for block move
+ operations. */
+
+#ifdef PUSH_ROUNDING
+#define PUSHG_P(to) ((to) == nullptr)
+#else
+#define PUSHG_P(to) false
+#endif
+
+class move_by_pieces_d : public op_by_pieces_d
+{
+ insn_gen_fn m_gen_fun;
+ void generate (rtx, rtx, machine_mode);
+ bool prepare_mode (machine_mode, unsigned int);
+
+ public:
+ move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
+ unsigned int align)
+ : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
+ NULL, len, align, PUSHG_P (to))
+ {
+ }
+ rtx finish_retmode (memop_ret);
+};
+
+/* Return true if MODE can be used for a set of copies, given an
+ alignment ALIGN. Prepare whatever data is necessary for later
+ calls to generate. */
+
+bool
+move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
+{
+ insn_code icode = optab_handler (mov_optab, mode);
+ m_gen_fun = GEN_FCN (icode);
+ return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
+}
+
+/* A callback used when iterating for a compare_by_pieces_operation.
+ OP0 and OP1 are the values that have been loaded and should be
+ compared in MODE. If OP0 is NULL, this means we should generate a
+ push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
+ gen function that should be used to generate the mode. */
+
+void
+move_by_pieces_d::generate (rtx op0, rtx op1,
+ machine_mode mode ATTRIBUTE_UNUSED)
+{
+#ifdef PUSH_ROUNDING
+ if (op0 == NULL_RTX)
+ {
+ emit_single_push_insn (mode, op1, NULL);
+ return;
+ }
+#endif
+ emit_insn (m_gen_fun (op0, op1));
+}
+
+/* Perform the final adjustment at the end of a string to obtain the
+ correct return value for the block operation.
+ Return value is based on RETMODE argument. */
+
+rtx
+move_by_pieces_d::finish_retmode (memop_ret retmode)
+{
+ gcc_assert (!m_reverse);
+ if (retmode == RETURN_END_MINUS_ONE)
+ {
+ m_to.maybe_postinc (-1);
+ --m_offset;
+ }
+ return m_to.adjust (QImode, m_offset);
+}
+
+/* Generate several move instructions to copy LEN bytes from block FROM to
+ block TO. (These are MEM rtx's with BLKmode).
+
+ If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
+ used to push FROM to the stack.
+
+ ALIGN is maximum stack alignment we can assume.
+
+ Return value is based on RETMODE argument. */
+
+rtx
+move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
+ unsigned int align, memop_ret retmode)
+{
+#ifndef PUSH_ROUNDING
+ if (to == NULL)
+ gcc_unreachable ();
+#endif
+
+ move_by_pieces_d data (to, from, len, align);
+
+ data.run ();
+
+ if (retmode != RETURN_BEGIN)
+ return data.finish_retmode (retmode);
+ else
+ return to;
+}
+
+/* Derived class from op_by_pieces_d, providing support for block move
+ operations. */
+
+class store_by_pieces_d : public op_by_pieces_d
+{
+ insn_gen_fn m_gen_fun;
+ void generate (rtx, rtx, machine_mode);
+ bool prepare_mode (machine_mode, unsigned int);
+
+ public:
+ store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
+ unsigned HOST_WIDE_INT len, unsigned int align,
+ bool qi_vector_mode)
+ : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
+ cfn_data, len, align, false, qi_vector_mode)
+ {
+ }
+ rtx finish_retmode (memop_ret);
+};
+
+/* Return true if MODE can be used for a set of stores, given an
+ alignment ALIGN. Prepare whatever data is necessary for later
+ calls to generate. */
+
+bool
+store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
+{
+ insn_code icode = optab_handler (mov_optab, mode);
+ m_gen_fun = GEN_FCN (icode);
+ return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
+}
+
+/* A callback used when iterating for a store_by_pieces_operation.
+ OP0 and OP1 are the values that have been loaded and should be
+ compared in MODE. If OP0 is NULL, this means we should generate a
+ push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
+ gen function that should be used to generate the mode. */
+
+void
+store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
+{
+ emit_insn (m_gen_fun (op0, op1));
+}
+
+/* Perform the final adjustment at the end of a string to obtain the
+ correct return value for the block operation.
+ Return value is based on RETMODE argument. */
+
+rtx
+store_by_pieces_d::finish_retmode (memop_ret retmode)
+{
+ gcc_assert (!m_reverse);
+ if (retmode == RETURN_END_MINUS_ONE)
+ {
+ m_to.maybe_postinc (-1);
+ --m_offset;
+ }
+ return m_to.adjust (QImode, m_offset);
+}
+
+/* Determine whether the LEN bytes generated by CONSTFUN can be
+ stored to memory using several move instructions. CONSTFUNDATA is
+ a pointer which will be passed as argument in every CONSTFUN call.
+ ALIGN is maximum alignment we can assume. MEMSETP is true if this is
+ a memset operation and false if it's a copy of a constant string.
+ Return nonzero if a call to store_by_pieces should succeed. */
+
+int
+can_store_by_pieces (unsigned HOST_WIDE_INT len,
+ by_pieces_constfn constfun,
+ void *constfundata, unsigned int align, bool memsetp)
+{
+ unsigned HOST_WIDE_INT l;
+ unsigned int max_size;
+ HOST_WIDE_INT offset = 0;
+ enum insn_code icode;
+ int reverse;
+ /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
+ rtx cst ATTRIBUTE_UNUSED;
+
+ if (len == 0)
+ return 1;
+
+ if (!targetm.use_by_pieces_infrastructure_p (len, align,
+ memsetp
+ ? SET_BY_PIECES
+ : STORE_BY_PIECES,
+ optimize_insn_for_speed_p ()))
+ return 0;
+
+ align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
+
+ /* We would first store what we can in the largest integer mode, then go to
+ successively smaller modes. */
+
+ for (reverse = 0;
+ reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
+ reverse++)
+ {
+ l = len;
+ max_size = STORE_MAX_PIECES + 1;
+ while (max_size > 1 && l > 0)
+ {
+ fixed_size_mode mode
+ = widest_fixed_size_mode_for_size (max_size, memsetp);
+
+ icode = optab_handler (mov_optab, mode);
+ if (icode != CODE_FOR_nothing
+ && align >= GET_MODE_ALIGNMENT (mode))
+ {
+ unsigned int size = GET_MODE_SIZE (mode);
+
+ while (l >= size)
+ {
+ if (reverse)
+ offset -= size;
+
+ cst = (*constfun) (constfundata, nullptr, offset, mode);
+ /* All CONST_VECTORs can be loaded for memset since
+ vec_duplicate_optab is a precondition to pick a
+ vector mode for the memset expander. */
+ if (!((memsetp && VECTOR_MODE_P (mode))
+ || targetm.legitimate_constant_p (mode, cst)))
+ return 0;
+
+ if (!reverse)
+ offset += size;
+
+ l -= size;
+ }
+ }
+
+ max_size = GET_MODE_SIZE (mode);
+ }
+
+ /* The code above should have handled everything. */
+ gcc_assert (!l);
+ }
+
+ return 1;
+}
+
+/* Generate several move instructions to store LEN bytes generated by
+ CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
+ pointer which will be passed as argument in every CONSTFUN call.
+ ALIGN is maximum alignment we can assume. MEMSETP is true if this is
+ a memset operation and false if it's a copy of a constant string.
+ Return value is based on RETMODE argument. */
+
+rtx
+store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
+ by_pieces_constfn constfun,
+ void *constfundata, unsigned int align, bool memsetp,
+ memop_ret retmode)
+{
+ if (len == 0)
+ {
+ gcc_assert (retmode != RETURN_END_MINUS_ONE);
+ return to;
+ }
+
+ gcc_assert (targetm.use_by_pieces_infrastructure_p
+ (len, align,
+ memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
+ optimize_insn_for_speed_p ()));
+
+ store_by_pieces_d data (to, constfun, constfundata, len, align,
+ memsetp);
+ data.run ();
+
+ if (retmode != RETURN_BEGIN)
+ return data.finish_retmode (retmode);
+ else
+ return to;
+}
+
+/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
+ rtx with BLKmode). ALIGN is maximum alignment we can assume. */
+
+static void
+clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
+{
+ if (len == 0)
+ return;
+
+ /* Use builtin_memset_read_str to support vector mode broadcast. */
+ char c = 0;
+ store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
+ true);
+ data.run ();
+}
+
+/* Context used by compare_by_pieces_genfn. It stores the fail label
+ to jump to in case of miscomparison, and for branch ratios greater than 1,
+ it stores an accumulator and the current and maximum counts before
+ emitting another branch. */
+
+class compare_by_pieces_d : public op_by_pieces_d
+{
+ rtx_code_label *m_fail_label;
+ rtx m_accumulator;
+ int m_count, m_batch;
+
+ void generate (rtx, rtx, machine_mode);
+ bool prepare_mode (machine_mode, unsigned int);
+ void finish_mode (machine_mode);
+ public:
+ compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
+ void *op1_cfn_data, HOST_WIDE_INT len, int align,
+ rtx_code_label *fail_label)
+ : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
+ op1_cfn_data, len, align, false)
+ {
+ m_fail_label = fail_label;
+ }
+};
+
+/* A callback used when iterating for a compare_by_pieces_operation.
+ OP0 and OP1 are the values that have been loaded and should be
+ compared in MODE. DATA holds a pointer to the compare_by_pieces_data
+ context structure. */
+
+void
+compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
+{
+ if (m_batch > 1)
+ {
+ rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
+ true, OPTAB_LIB_WIDEN);
+ if (m_count != 0)
+ temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
+ true, OPTAB_LIB_WIDEN);
+ m_accumulator = temp;
+
+ if (++m_count < m_batch)
+ return;
+
+ m_count = 0;
+ op0 = m_accumulator;
+ op1 = const0_rtx;
+ m_accumulator = NULL_RTX;
+ }
+ do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
+ m_fail_label, profile_probability::uninitialized ());
+}
+
+/* Return true if MODE can be used for a set of moves and comparisons,
+ given an alignment ALIGN. Prepare whatever data is necessary for
+ later calls to generate. */
+
+bool
+compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
+{
+ insn_code icode = optab_handler (mov_optab, mode);
+ if (icode == CODE_FOR_nothing
+ || align < GET_MODE_ALIGNMENT (mode)
+ || !can_compare_p (EQ, mode, ccp_jump))
+ return false;
+ m_batch = targetm.compare_by_pieces_branch_ratio (mode);
+ if (m_batch < 0)
+ return false;
+ m_accumulator = NULL_RTX;
+ m_count = 0;
+ return true;
+}
+
+/* Called after expanding a series of comparisons in MODE. If we have
+ accumulated results for which we haven't emitted a branch yet, do
+ so now. */
+
+void
+compare_by_pieces_d::finish_mode (machine_mode mode)
+{
+ if (m_accumulator != NULL_RTX)
+ do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
+ NULL_RTX, NULL, m_fail_label,
+ profile_probability::uninitialized ());
+}
+
+/* Generate several move instructions to compare LEN bytes from blocks
+ ARG0 and ARG1. (These are MEM rtx's with BLKmode).
+
+ If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
+ used to push FROM to the stack.
+
+ ALIGN is maximum stack alignment we can assume.
+
+ Optionally, the caller can pass a constfn and associated data in A1_CFN
+ and A1_CFN_DATA. describing that the second operand being compared is a
+ known constant and how to obtain its data. */
+
+static rtx
+compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
+ rtx target, unsigned int align,
+ by_pieces_constfn a1_cfn, void *a1_cfn_data)
+{
+ rtx_code_label *fail_label = gen_label_rtx ();
+ rtx_code_label *end_label = gen_label_rtx ();
+
+ if (target == NULL_RTX
+ || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
+ target = gen_reg_rtx (TYPE_MODE (integer_type_node));
+
+ compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
+ fail_label);
+
+ data.run ();
+
+ emit_move_insn (target, const0_rtx);
+ emit_jump (end_label);
+ emit_barrier ();
+ emit_label (fail_label);
+ emit_move_insn (target, const1_rtx);
+ emit_label (end_label);
+
+ return target;
+}
+
+/* Emit code to move a block Y to a block X. This may be done with
+ string-move instructions, with multiple scalar move instructions,
+ or with a library call.
+
+ Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
+ SIZE is an rtx that says how long they are.
+ ALIGN is the maximum alignment we can assume they have.
+ METHOD describes what kind of copy this is, and what mechanisms may be used.
+ MIN_SIZE is the minimal size of block to move
+ MAX_SIZE is the maximal size of block to move, if it cannot be represented
+ in unsigned HOST_WIDE_INT, than it is mask of all ones.
+
+ Return the address of the new block, if memcpy is called and returns it,
+ 0 otherwise. */
+
+rtx
+emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
+ unsigned int expected_align, HOST_WIDE_INT expected_size,
+ unsigned HOST_WIDE_INT min_size,
+ unsigned HOST_WIDE_INT max_size,
+ unsigned HOST_WIDE_INT probable_max_size,
+ bool bail_out_libcall, bool *is_move_done,
+ bool might_overlap)
+{
+ int may_use_call;
+ rtx retval = 0;
+ unsigned int align;
+
+ if (is_move_done)
+ *is_move_done = true;
+
+ gcc_assert (size);
+ if (CONST_INT_P (size) && INTVAL (size) == 0)
+ return 0;
+
+ switch (method)
+ {
+ case BLOCK_OP_NORMAL:
+ case BLOCK_OP_TAILCALL:
+ may_use_call = 1;
+ break;
+
+ case BLOCK_OP_CALL_PARM:
+ may_use_call = block_move_libcall_safe_for_call_parm ();
+
+ /* Make inhibit_defer_pop nonzero around the library call
+ to force it to pop the arguments right away. */
+ NO_DEFER_POP;
+ break;
+
+ case BLOCK_OP_NO_LIBCALL:
+ may_use_call = 0;
+ break;
+
+ case BLOCK_OP_NO_LIBCALL_RET:
+ may_use_call = -1;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ gcc_assert (MEM_P (x) && MEM_P (y));
+ align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
+ gcc_assert (align >= BITS_PER_UNIT);
+
+ /* Make sure we've got BLKmode addresses; store_one_arg can decide that
+ block copy is more efficient for other large modes, e.g. DCmode. */
+ x = adjust_address (x, BLKmode, 0);
+ y = adjust_address (y, BLKmode, 0);
+
+ /* If source and destination are the same, no need to copy anything. */
+ if (rtx_equal_p (x, y)
+ && !MEM_VOLATILE_P (x)
+ && !MEM_VOLATILE_P (y))
+ return 0;
+
+ /* Set MEM_SIZE as appropriate for this block copy. The main place this
+ can be incorrect is coming from __builtin_memcpy. */
+ poly_int64 const_size;
+ if (poly_int_rtx_p (size, &const_size))
+ {
+ x = shallow_copy_rtx (x);
+ y = shallow_copy_rtx (y);
+ set_mem_size (x, const_size);
+ set_mem_size (y, const_size);
+ }
+
+ bool pieces_ok = CONST_INT_P (size)
+ && can_move_by_pieces (INTVAL (size), align);
+ bool pattern_ok = false;
+
+ if (!pieces_ok || might_overlap)
+ {
+ pattern_ok
+ = emit_block_move_via_pattern (x, y, size, align,
+ expected_align, expected_size,
+ min_size, max_size, probable_max_size,
+ might_overlap);
+ if (!pattern_ok && might_overlap)
+ {
+ /* Do not try any of the other methods below as they are not safe
+ for overlapping moves. */
+ *is_move_done = false;
+ return retval;
+ }
+ }
+
+ if (pattern_ok)
+ ;
+ else if (pieces_ok)
+ move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
+ else if (may_use_call && !might_overlap
+ && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
+ && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
+ {
+ if (bail_out_libcall)
+ {
+ if (is_move_done)
+ *is_move_done = false;
+ return retval;
+ }
+
+ if (may_use_call < 0)
+ return pc_rtx;
+
+ retval = emit_block_copy_via_libcall (x, y, size,
+ method == BLOCK_OP_TAILCALL);
+ }
+ else if (might_overlap)
+ *is_move_done = false;
+ else
+ emit_block_move_via_loop (x, y, size, align);
+
+ if (method == BLOCK_OP_CALL_PARM)
+ OK_DEFER_POP;
+
+ return retval;
+}
+
+rtx
+emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
+{
+ unsigned HOST_WIDE_INT max, min = 0;
+ if (GET_CODE (size) == CONST_INT)
+ min = max = UINTVAL (size);
+ else
+ max = GET_MODE_MASK (GET_MODE (size));
+ return emit_block_move_hints (x, y, size, method, 0, -1,
+ min, max, max);
+}
+
+/* A subroutine of emit_block_move. Returns true if calling the
+ block move libcall will not clobber any parameters which may have
+ already been placed on the stack. */
+
+static bool
+block_move_libcall_safe_for_call_parm (void)
+{
+ tree fn;
+
+ /* If arguments are pushed on the stack, then they're safe. */
+ if (targetm.calls.push_argument (0))
+ return true;
+
+ /* If registers go on the stack anyway, any argument is sure to clobber
+ an outgoing argument. */
+#if defined (REG_PARM_STACK_SPACE)
+ fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
+ /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
+ depend on its argument. */
+ (void) fn;
+ if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
+ && REG_PARM_STACK_SPACE (fn) != 0)
+ return false;
+#endif
+
+ /* If any argument goes in memory, then it might clobber an outgoing
+ argument. */
+ {
+ CUMULATIVE_ARGS args_so_far_v;
+ cumulative_args_t args_so_far;
+ tree arg;
+
+ fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
+ INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
+ args_so_far = pack_cumulative_args (&args_so_far_v);
+
+ arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
+ for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
+ {
+ machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
+ function_arg_info arg_info (mode, /*named=*/true);
+ rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
+ if (!tmp || !REG_P (tmp))
+ return false;
+ if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
+ return false;
+ targetm.calls.function_arg_advance (args_so_far, arg_info);
+ }
+ }
+ return true;
+}
+
+/* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
+ return true if successful.
+
+ X is the destination of the copy or move.
+ Y is the source of the copy or move.
+ SIZE is the size of the block to be moved.
+
+ MIGHT_OVERLAP indicates this originated with expansion of a
+ builtin_memmove() and the source and destination blocks may
+ overlap.
+ */
+
+static bool
+emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
+ unsigned int expected_align,
+ HOST_WIDE_INT expected_size,
+ unsigned HOST_WIDE_INT min_size,
+ unsigned HOST_WIDE_INT max_size,
+ unsigned HOST_WIDE_INT probable_max_size,
+ bool might_overlap)
+{
+ if (expected_align < align)
+ expected_align = align;
+ if (expected_size != -1)
+ {
+ if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
+ expected_size = probable_max_size;
+ if ((unsigned HOST_WIDE_INT)expected_size < min_size)
+ expected_size = min_size;
+ }
+
+ /* Since this is a move insn, we don't care about volatility. */
+ temporary_volatile_ok v (true);
+
+ /* Try the most limited insn first, because there's no point
+ including more than one in the machine description unless
+ the more limited one has some advantage. */
+
+ opt_scalar_int_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
+ {
+ scalar_int_mode mode = mode_iter.require ();
+ enum insn_code code;
+ if (might_overlap)
+ code = direct_optab_handler (movmem_optab, mode);
+ else
+ code = direct_optab_handler (cpymem_optab, mode);
+
+ if (code != CODE_FOR_nothing
+ /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
+ here because if SIZE is less than the mode mask, as it is
+ returned by the macro, it will definitely be less than the
+ actual mode mask. Since SIZE is within the Pmode address
+ space, we limit MODE to Pmode. */
+ && ((CONST_INT_P (size)
+ && ((unsigned HOST_WIDE_INT) INTVAL (size)
+ <= (GET_MODE_MASK (mode) >> 1)))
+ || max_size <= (GET_MODE_MASK (mode) >> 1)
+ || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
+ {
+ class expand_operand ops[9];
+ unsigned int nops;
+
+ /* ??? When called via emit_block_move_for_call, it'd be
+ nice if there were some way to inform the backend, so
+ that it doesn't fail the expansion because it thinks
+ emitting the libcall would be more efficient. */
+ nops = insn_data[(int) code].n_generator_args;
+ gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
+
+ create_fixed_operand (&ops[0], x);
+ create_fixed_operand (&ops[1], y);
+ /* The check above guarantees that this size conversion is valid. */
+ create_convert_operand_to (&ops[2], size, mode, true);
+ create_integer_operand (&ops[3], align / BITS_PER_UNIT);
+ if (nops >= 6)
+ {
+ create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
+ create_integer_operand (&ops[5], expected_size);
+ }
+ if (nops >= 8)
+ {
+ create_integer_operand (&ops[6], min_size);
+ /* If we cannot represent the maximal size,
+ make parameter NULL. */
+ if ((HOST_WIDE_INT) max_size != -1)
+ create_integer_operand (&ops[7], max_size);
+ else
+ create_fixed_operand (&ops[7], NULL);
+ }
+ if (nops == 9)
+ {
+ /* If we cannot represent the maximal size,
+ make parameter NULL. */
+ if ((HOST_WIDE_INT) probable_max_size != -1)
+ create_integer_operand (&ops[8], probable_max_size);
+ else
+ create_fixed_operand (&ops[8], NULL);
+ }
+ if (maybe_expand_insn (code, nops, ops))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* A subroutine of emit_block_move. Copy the data via an explicit
+ loop. This is used only when libcalls are forbidden. */
+/* ??? It'd be nice to copy in hunks larger than QImode. */
+
+static void
+emit_block_move_via_loop (rtx x, rtx y, rtx size,
+ unsigned int align ATTRIBUTE_UNUSED)
+{
+ rtx_code_label *cmp_label, *top_label;
+ rtx iter, x_addr, y_addr, tmp;
+ machine_mode x_addr_mode = get_address_mode (x);
+ machine_mode y_addr_mode = get_address_mode (y);
+ machine_mode iter_mode;
+
+ iter_mode = GET_MODE (size);
+ if (iter_mode == VOIDmode)
+ iter_mode = word_mode;
+
+ top_label = gen_label_rtx ();
+ cmp_label = gen_label_rtx ();
+ iter = gen_reg_rtx (iter_mode);
+
+ emit_move_insn (iter, const0_rtx);
+
+ x_addr = force_operand (XEXP (x, 0), NULL_RTX);
+ y_addr = force_operand (XEXP (y, 0), NULL_RTX);
+ do_pending_stack_adjust ();
+
+ emit_jump (cmp_label);
+ emit_label (top_label);
+
+ tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
+ x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
+
+ if (x_addr_mode != y_addr_mode)
+ tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
+ y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
+
+ x = change_address (x, QImode, x_addr);
+ y = change_address (y, QImode, y_addr);
+
+ emit_move_insn (x, y);
+
+ tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != iter)
+ emit_move_insn (iter, tmp);
+
+ emit_label (cmp_label);
+
+ emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
+ true, top_label,
+ profile_probability::guessed_always ()
+ .apply_scale (9, 10));
+}
+
+/* Expand a call to memcpy or memmove or memcmp, and return the result.
+ TAILCALL is true if this is a tail call. */
+
+rtx
+emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
+ rtx size, bool tailcall)
+{
+ rtx dst_addr, src_addr;
+ tree call_expr, dst_tree, src_tree, size_tree;
+ machine_mode size_mode;
+
+ /* Since dst and src are passed to a libcall, mark the corresponding
+ tree EXPR as addressable. */
+ tree dst_expr = MEM_EXPR (dst);
+ tree src_expr = MEM_EXPR (src);
+ if (dst_expr)
+ mark_addressable (dst_expr);
+ if (src_expr)
+ mark_addressable (src_expr);
+
+ dst_addr = copy_addr_to_reg (XEXP (dst, 0));
+ dst_addr = convert_memory_address (ptr_mode, dst_addr);
+ dst_tree = make_tree (ptr_type_node, dst_addr);
+
+ src_addr = copy_addr_to_reg (XEXP (src, 0));
+ src_addr = convert_memory_address (ptr_mode, src_addr);
+ src_tree = make_tree (ptr_type_node, src_addr);
+
+ size_mode = TYPE_MODE (sizetype);
+ size = convert_to_mode (size_mode, size, 1);
+ size = copy_to_mode_reg (size_mode, size);
+ size_tree = make_tree (sizetype, size);
+
+ /* It is incorrect to use the libcall calling conventions for calls to
+ memcpy/memmove/memcmp because they can be provided by the user. */
+ tree fn = builtin_decl_implicit (fncode);
+ call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
+ CALL_EXPR_TAILCALL (call_expr) = tailcall;
+
+ return expand_call (call_expr, NULL_RTX, false);
+}
+
+/* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
+ ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
+ otherwise return null. */
+
+rtx
+expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
+ rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
+ HOST_WIDE_INT align)
+{
+ machine_mode insn_mode = insn_data[icode].operand[0].mode;
+
+ if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
+ target = NULL_RTX;
+
+ class expand_operand ops[5];
+ create_output_operand (&ops[0], target, insn_mode);
+ create_fixed_operand (&ops[1], arg1_rtx);
+ create_fixed_operand (&ops[2], arg2_rtx);
+ create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
+ TYPE_UNSIGNED (arg3_type));
+ create_integer_operand (&ops[4], align);
+ if (maybe_expand_insn (icode, 5, ops))
+ return ops[0].value;
+ return NULL_RTX;
+}
+
+/* Expand a block compare between X and Y with length LEN using the
+ cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
+ of the expression that was used to calculate the length. ALIGN
+ gives the known minimum common alignment. */
+
+static rtx
+emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
+ unsigned align)
+{
+ /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
+ implementing memcmp because it will stop if it encounters two
+ zero bytes. */
+ insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
+
+ if (icode == CODE_FOR_nothing)
+ return NULL_RTX;
+
+ return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
+}
+
+/* Emit code to compare a block Y to a block X. This may be done with
+ string-compare instructions, with multiple scalar instructions,
+ or with a library call.
+
+ Both X and Y must be MEM rtx's. LEN is an rtx that says how long
+ they are. LEN_TYPE is the type of the expression that was used to
+ calculate it.
+
+ If EQUALITY_ONLY is true, it means we don't have to return the tri-state
+ value of a normal memcmp call, instead we can just compare for equality.
+ If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
+ returning NULL_RTX.
+
+ Optionally, the caller can pass a constfn and associated data in Y_CFN
+ and Y_CFN_DATA. describing that the second operand being compared is a
+ known constant and how to obtain its data.
+ Return the result of the comparison, or NULL_RTX if we failed to
+ perform the operation. */
+
+rtx
+emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
+ bool equality_only, by_pieces_constfn y_cfn,
+ void *y_cfndata)
+{
+ rtx result = 0;
+
+ if (CONST_INT_P (len) && INTVAL (len) == 0)
+ return const0_rtx;
+
+ gcc_assert (MEM_P (x) && MEM_P (y));
+ unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
+ gcc_assert (align >= BITS_PER_UNIT);
+
+ x = adjust_address (x, BLKmode, 0);
+ y = adjust_address (y, BLKmode, 0);
+
+ if (equality_only
+ && CONST_INT_P (len)
+ && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
+ result = compare_by_pieces (x, y, INTVAL (len), target, align,
+ y_cfn, y_cfndata);
+ else
+ result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
+
+ return result;
+}
+
+/* Copy all or part of a value X into registers starting at REGNO.
+ The number of registers to be filled is NREGS. */
+
+void
+move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
+{
+ if (nregs == 0)
+ return;
+
+ if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
+ x = validize_mem (force_const_mem (mode, x));
+
+ /* See if the machine can do this with a load multiple insn. */
+ if (targetm.have_load_multiple ())
+ {
+ rtx_insn *last = get_last_insn ();
+ rtx first = gen_rtx_REG (word_mode, regno);
+ if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
+ GEN_INT (nregs)))
+ {
+ emit_insn (pat);
+ return;
+ }
+ else
+ delete_insns_since (last);
+ }
+
+ for (int i = 0; i < nregs; i++)
+ emit_move_insn (gen_rtx_REG (word_mode, regno + i),
+ operand_subword_force (x, i, mode));
+}
+
+/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
+ The number of registers to be filled is NREGS. */
+
+void
+move_block_from_reg (int regno, rtx x, int nregs)
+{
+ if (nregs == 0)
+ return;
+
+ /* See if the machine can do this with a store multiple insn. */
+ if (targetm.have_store_multiple ())
+ {
+ rtx_insn *last = get_last_insn ();
+ rtx first = gen_rtx_REG (word_mode, regno);
+ if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
+ GEN_INT (nregs)))
+ {
+ emit_insn (pat);
+ return;
+ }
+ else
+ delete_insns_since (last);
+ }
+
+ for (int i = 0; i < nregs; i++)
+ {
+ rtx tem = operand_subword (x, i, 1, BLKmode);
+
+ gcc_assert (tem);
+
+ emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
+ }
+}
+
+/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
+ ORIG, where ORIG is a non-consecutive group of registers represented by
+ a PARALLEL. The clone is identical to the original except in that the
+ original set of registers is replaced by a new set of pseudo registers.
+ The new set has the same modes as the original set. */
+
+rtx
+gen_group_rtx (rtx orig)
+{
+ int i, length;
+ rtx *tmps;
+
+ gcc_assert (GET_CODE (orig) == PARALLEL);
+
+ length = XVECLEN (orig, 0);
+ tmps = XALLOCAVEC (rtx, length);
+
+ /* Skip a NULL entry in first slot. */
+ i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
+
+ if (i)
+ tmps[0] = 0;
+
+ for (; i < length; i++)
+ {
+ machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
+ rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
+
+ tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
+ }
+
+ return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
+}
+
+/* A subroutine of emit_group_load. Arguments as for emit_group_load,
+ except that values are placed in TMPS[i], and must later be moved
+ into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
+
+static void
+emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
+ poly_int64 ssize)
+{
+ rtx src;
+ int start, i;
+ machine_mode m = GET_MODE (orig_src);
+
+ gcc_assert (GET_CODE (dst) == PARALLEL);
+
+ if (m != VOIDmode
+ && !SCALAR_INT_MODE_P (m)
+ && !MEM_P (orig_src)
+ && GET_CODE (orig_src) != CONCAT)
+ {
+ scalar_int_mode imode;
+ if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
+ {
+ src = gen_reg_rtx (imode);
+ emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
+ }
+ else
+ {
+ src = assign_stack_temp (GET_MODE (orig_src), ssize);
+ emit_move_insn (src, orig_src);
+ }
+ emit_group_load_1 (tmps, dst, src, type, ssize);
+ return;
+ }
+
+ /* Check for a NULL entry, used to indicate that the parameter goes
+ both on the stack and in registers. */
+ if (XEXP (XVECEXP (dst, 0, 0), 0))
+ start = 0;
+ else
+ start = 1;
+
+ /* Process the pieces. */
+ for (i = start; i < XVECLEN (dst, 0); i++)
+ {
+ machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
+ poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
+ poly_int64 bytelen = GET_MODE_SIZE (mode);
+ poly_int64 shift = 0;
+
+ /* Handle trailing fragments that run over the size of the struct.
+ It's the target's responsibility to make sure that the fragment
+ cannot be strictly smaller in some cases and strictly larger
+ in others. */
+ gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
+ if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
+ {
+ /* Arrange to shift the fragment to where it belongs.
+ extract_bit_field loads to the lsb of the reg. */
+ if (
+#ifdef BLOCK_REG_PADDING
+ BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
+ == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
+#else
+ BYTES_BIG_ENDIAN
+#endif
+ )
+ shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
+ bytelen = ssize - bytepos;
+ gcc_assert (maybe_gt (bytelen, 0));
+ }
+
+ /* If we won't be loading directly from memory, protect the real source
+ from strange tricks we might play; but make sure that the source can
+ be loaded directly into the destination. */
+ src = orig_src;
+ if (!MEM_P (orig_src)
+ && (!CONSTANT_P (orig_src)
+ || (GET_MODE (orig_src) != mode
+ && GET_MODE (orig_src) != VOIDmode)))
+ {
+ if (GET_MODE (orig_src) == VOIDmode)
+ src = gen_reg_rtx (mode);
+ else
+ src = gen_reg_rtx (GET_MODE (orig_src));
+
+ emit_move_insn (src, orig_src);
+ }
+
+ /* Optimize the access just a bit. */
+ if (MEM_P (src)
+ && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
+ || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
+ && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
+ && known_eq (bytelen, GET_MODE_SIZE (mode)))
+ {
+ tmps[i] = gen_reg_rtx (mode);
+ emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
+ }
+ else if (COMPLEX_MODE_P (mode)
+ && GET_MODE (src) == mode
+ && known_eq (bytelen, GET_MODE_SIZE (mode)))
+ /* Let emit_move_complex do the bulk of the work. */
+ tmps[i] = src;
+ else if (GET_CODE (src) == CONCAT)
+ {
+ poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
+ poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
+ unsigned int elt;
+ poly_int64 subpos;
+
+ if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
+ && known_le (subpos + bytelen, slen0))
+ {
+ /* The following assumes that the concatenated objects all
+ have the same size. In this case, a simple calculation
+ can be used to determine the object and the bit field
+ to be extracted. */
+ tmps[i] = XEXP (src, elt);
+ if (maybe_ne (subpos, 0)
+ || maybe_ne (subpos + bytelen, slen0)
+ || (!CONSTANT_P (tmps[i])
+ && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
+ tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
+ subpos * BITS_PER_UNIT,
+ 1, NULL_RTX, mode, mode, false,
+ NULL);
+ }
+ else
+ {
+ rtx mem;
+
+ gcc_assert (known_eq (bytepos, 0));
+ mem = assign_stack_temp (GET_MODE (src), slen);
+ emit_move_insn (mem, src);
+ tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
+ 0, 1, NULL_RTX, mode, mode, false,
+ NULL);
+ }
+ }
+ else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
+ && XVECLEN (dst, 0) > 1)
+ tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
+ else if (CONSTANT_P (src))
+ {
+ if (known_eq (bytelen, ssize))
+ tmps[i] = src;
+ else
+ {
+ rtx first, second;
+
+ /* TODO: const_wide_int can have sizes other than this... */
+ gcc_assert (known_eq (2 * bytelen, ssize));
+ split_double (src, &first, &second);
+ if (i)
+ tmps[i] = second;
+ else
+ tmps[i] = first;
+ }
+ }
+ else if (REG_P (src) && GET_MODE (src) == mode)
+ tmps[i] = src;
+ else
+ tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
+ bytepos * BITS_PER_UNIT, 1, NULL_RTX,
+ mode, mode, false, NULL);
+
+ if (maybe_ne (shift, 0))
+ tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
+ shift, tmps[i], 0);
+ }
+}
+
+/* Emit code to move a block SRC of type TYPE to a block DST,
+ where DST is non-consecutive registers represented by a PARALLEL.
+ SSIZE represents the total size of block ORIG_SRC in bytes, or -1
+ if not known. */
+
+void
+emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
+{
+ rtx *tmps;
+ int i;
+
+ tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
+ emit_group_load_1 (tmps, dst, src, type, ssize);
+
+ /* Copy the extracted pieces into the proper (probable) hard regs. */
+ for (i = 0; i < XVECLEN (dst, 0); i++)
+ {
+ rtx d = XEXP (XVECEXP (dst, 0, i), 0);
+ if (d == NULL)
+ continue;
+ emit_move_insn (d, tmps[i]);
+ }
+}
+
+/* Similar, but load SRC into new pseudos in a format that looks like
+ PARALLEL. This can later be fed to emit_group_move to get things
+ in the right place. */
+
+rtx
+emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
+{
+ rtvec vec;
+ int i;
+
+ vec = rtvec_alloc (XVECLEN (parallel, 0));
+ emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
+
+ /* Convert the vector to look just like the original PARALLEL, except
+ with the computed values. */
+ for (i = 0; i < XVECLEN (parallel, 0); i++)
+ {
+ rtx e = XVECEXP (parallel, 0, i);
+ rtx d = XEXP (e, 0);
+
+ if (d)
+ {
+ d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
+ e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
+ }
+ RTVEC_ELT (vec, i) = e;
+ }
+
+ return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
+}
+
+/* Emit code to move a block SRC to block DST, where SRC and DST are
+ non-consecutive groups of registers, each represented by a PARALLEL. */
+
+void
+emit_group_move (rtx dst, rtx src)
+{
+ int i;
+
+ gcc_assert (GET_CODE (src) == PARALLEL
+ && GET_CODE (dst) == PARALLEL
+ && XVECLEN (src, 0) == XVECLEN (dst, 0));
+
+ /* Skip first entry if NULL. */
+ for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
+ emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
+ XEXP (XVECEXP (src, 0, i), 0));
+}
+
+/* Move a group of registers represented by a PARALLEL into pseudos. */
+
+rtx
+emit_group_move_into_temps (rtx src)
+{
+ rtvec vec = rtvec_alloc (XVECLEN (src, 0));
+ int i;
+
+ for (i = 0; i < XVECLEN (src, 0); i++)
+ {
+ rtx e = XVECEXP (src, 0, i);
+ rtx d = XEXP (e, 0);
+
+ if (d)
+ e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
+ RTVEC_ELT (vec, i) = e;
+ }
+
+ return gen_rtx_PARALLEL (GET_MODE (src), vec);
+}
+
+/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
+ where SRC is non-consecutive registers represented by a PARALLEL.
+ SSIZE represents the total size of block ORIG_DST, or -1 if not
+ known. */
+
+void
+emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
+ poly_int64 ssize)
+{
+ rtx *tmps, dst;
+ int start, finish, i;
+ machine_mode m = GET_MODE (orig_dst);
+
+ gcc_assert (GET_CODE (src) == PARALLEL);
+
+ if (!SCALAR_INT_MODE_P (m)
+ && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
+ {
+ scalar_int_mode imode;
+ if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
+ {
+ dst = gen_reg_rtx (imode);
+ emit_group_store (dst, src, type, ssize);
+ dst = gen_lowpart (GET_MODE (orig_dst), dst);
+ }
+ else
+ {
+ dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
+ emit_group_store (dst, src, type, ssize);
+ }
+ emit_move_insn (orig_dst, dst);
+ return;
+ }
+
+ /* Check for a NULL entry, used to indicate that the parameter goes
+ both on the stack and in registers. */
+ if (XEXP (XVECEXP (src, 0, 0), 0))
+ start = 0;
+ else
+ start = 1;
+ finish = XVECLEN (src, 0);
+
+ tmps = XALLOCAVEC (rtx, finish);
+
+ /* Copy the (probable) hard regs into pseudos. */
+ for (i = start; i < finish; i++)
+ {
+ rtx reg = XEXP (XVECEXP (src, 0, i), 0);
+ if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
+ {
+ tmps[i] = gen_reg_rtx (GET_MODE (reg));
+ emit_move_insn (tmps[i], reg);
+ }
+ else
+ tmps[i] = reg;
+ }
+
+ /* If we won't be storing directly into memory, protect the real destination
+ from strange tricks we might play. */
+ dst = orig_dst;
+ if (GET_CODE (dst) == PARALLEL)
+ {
+ rtx temp;
+
+ /* We can get a PARALLEL dst if there is a conditional expression in
+ a return statement. In that case, the dst and src are the same,
+ so no action is necessary. */
+ if (rtx_equal_p (dst, src))
+ return;
+
+ /* It is unclear if we can ever reach here, but we may as well handle
+ it. Allocate a temporary, and split this into a store/load to/from
+ the temporary. */
+ temp = assign_stack_temp (GET_MODE (dst), ssize);
+ emit_group_store (temp, src, type, ssize);
+ emit_group_load (dst, temp, type, ssize);
+ return;
+ }
+ else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
+ {
+ machine_mode outer = GET_MODE (dst);
+ machine_mode inner;
+ poly_int64 bytepos;
+ bool done = false;
+ rtx temp;
+
+ if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
+ dst = gen_reg_rtx (outer);
+
+ /* Make life a bit easier for combine. */
+ /* If the first element of the vector is the low part
+ of the destination mode, use a paradoxical subreg to
+ initialize the destination. */
+ if (start < finish)
+ {
+ inner = GET_MODE (tmps[start]);
+ bytepos = subreg_lowpart_offset (inner, outer);
+ if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
+ bytepos))
+ {
+ temp = simplify_gen_subreg (outer, tmps[start],
+ inner, 0);
+ if (temp)
+ {
+ emit_move_insn (dst, temp);
+ done = true;
+ start++;
+ }
+ }
+ }
+
+ /* If the first element wasn't the low part, try the last. */
+ if (!done
+ && start < finish - 1)
+ {
+ inner = GET_MODE (tmps[finish - 1]);
+ bytepos = subreg_lowpart_offset (inner, outer);
+ if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
+ finish - 1), 1)),
+ bytepos))
+ {
+ temp = simplify_gen_subreg (outer, tmps[finish - 1],
+ inner, 0);
+ if (temp)
+ {
+ emit_move_insn (dst, temp);
+ done = true;
+ finish--;
+ }
+ }
+ }
+
+ /* Otherwise, simply initialize the result to zero. */
+ if (!done)
+ emit_move_insn (dst, CONST0_RTX (outer));
+ }
+
+ /* Process the pieces. */
+ for (i = start; i < finish; i++)
+ {
+ poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
+ machine_mode mode = GET_MODE (tmps[i]);
+ poly_int64 bytelen = GET_MODE_SIZE (mode);
+ poly_uint64 adj_bytelen;
+ rtx dest = dst;
+
+ /* Handle trailing fragments that run over the size of the struct.
+ It's the target's responsibility to make sure that the fragment
+ cannot be strictly smaller in some cases and strictly larger
+ in others. */
+ gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
+ if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
+ adj_bytelen = ssize - bytepos;
+ else
+ adj_bytelen = bytelen;
+
+ if (GET_CODE (dst) == CONCAT)
+ {
+ if (known_le (bytepos + adj_bytelen,
+ GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
+ dest = XEXP (dst, 0);
+ else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
+ {
+ bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
+ dest = XEXP (dst, 1);
+ }
+ else
+ {
+ machine_mode dest_mode = GET_MODE (dest);
+ machine_mode tmp_mode = GET_MODE (tmps[i]);
+
+ gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
+
+ if (GET_MODE_ALIGNMENT (dest_mode)
+ >= GET_MODE_ALIGNMENT (tmp_mode))
+ {
+ dest = assign_stack_temp (dest_mode,
+ GET_MODE_SIZE (dest_mode));
+ emit_move_insn (adjust_address (dest,
+ tmp_mode,
+ bytepos),
+ tmps[i]);
+ dst = dest;
+ }
+ else
+ {
+ dest = assign_stack_temp (tmp_mode,
+ GET_MODE_SIZE (tmp_mode));
+ emit_move_insn (dest, tmps[i]);
+ dst = adjust_address (dest, dest_mode, bytepos);
+ }
+ break;
+ }
+ }
+
+ /* Handle trailing fragments that run over the size of the struct. */
+ if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
+ {
+ /* store_bit_field always takes its value from the lsb.
+ Move the fragment to the lsb if it's not already there. */
+ if (
+#ifdef BLOCK_REG_PADDING
+ BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
+ == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
+#else
+ BYTES_BIG_ENDIAN
+#endif
+ )
+ {
+ poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
+ tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
+ shift, tmps[i], 0);
+ }
+
+ /* Make sure not to write past the end of the struct. */
+ store_bit_field (dest,
+ adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
+ bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
+ VOIDmode, tmps[i], false);
+ }
+
+ /* Optimize the access just a bit. */
+ else if (MEM_P (dest)
+ && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
+ || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
+ && multiple_p (bytepos * BITS_PER_UNIT,
+ GET_MODE_ALIGNMENT (mode))
+ && known_eq (bytelen, GET_MODE_SIZE (mode)))
+ emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
+
+ else
+ store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
+ 0, 0, mode, tmps[i], false);
+ }
+
+ /* Copy from the pseudo into the (probable) hard reg. */
+ if (orig_dst != dst)
+ emit_move_insn (orig_dst, dst);
+}
+
+/* Return a form of X that does not use a PARALLEL. TYPE is the type
+ of the value stored in X. */
+
+rtx
+maybe_emit_group_store (rtx x, tree type)
+{
+ machine_mode mode = TYPE_MODE (type);
+ gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
+ if (GET_CODE (x) == PARALLEL)
+ {
+ rtx result = gen_reg_rtx (mode);
+ emit_group_store (result, x, type, int_size_in_bytes (type));
+ return result;
+ }
+ return x;
+}
+
+/* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
+
+ This is used on targets that return BLKmode values in registers. */
+
+static void
+copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
+{
+ unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
+ rtx src = NULL, dst = NULL;
+ unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
+ unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
+ /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
+ fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
+ fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
+ fixed_size_mode copy_mode;
+
+ /* BLKmode registers created in the back-end shouldn't have survived. */
+ gcc_assert (mode != BLKmode);
+
+ /* If the structure doesn't take up a whole number of words, see whether
+ SRCREG is padded on the left or on the right. If it's on the left,
+ set PADDING_CORRECTION to the number of bits to skip.
+
+ In most ABIs, the structure will be returned at the least end of
+ the register, which translates to right padding on little-endian
+ targets and left padding on big-endian targets. The opposite
+ holds if the structure is returned at the most significant
+ end of the register. */
+ if (bytes % UNITS_PER_WORD != 0
+ && (targetm.calls.return_in_msb (type)
+ ? !BYTES_BIG_ENDIAN
+ : BYTES_BIG_ENDIAN))
+ padding_correction
+ = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
+
+ /* We can use a single move if we have an exact mode for the size. */
+ else if (MEM_P (target)
+ && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
+ || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
+ && bytes == GET_MODE_SIZE (mode))
+ {
+ emit_move_insn (adjust_address (target, mode, 0), srcreg);
+ return;
+ }
+
+ /* And if we additionally have the same mode for a register. */
+ else if (REG_P (target)
+ && GET_MODE (target) == mode
+ && bytes == GET_MODE_SIZE (mode))
+ {
+ emit_move_insn (target, srcreg);
+ return;
+ }
+
+ /* This code assumes srcreg is at least a full word. If it isn't, copy it
+ into a new pseudo which is a full word. */
+ if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ {
+ srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
+ mode = word_mode;
+ }
+
+ /* Copy the structure BITSIZE bits at a time. If the target lives in
+ memory, take care of not reading/writing past its end by selecting
+ a copy mode suited to BITSIZE. This should always be possible given
+ how it is computed.
+
+ If the target lives in register, make sure not to select a copy mode
+ larger than the mode of the register.
+
+ We could probably emit more efficient code for machines which do not use
+ strict alignment, but it doesn't seem worth the effort at the current
+ time. */
+
+ copy_mode = word_mode;
+ if (MEM_P (target))
+ {
+ opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
+ if (mem_mode.exists ())
+ copy_mode = mem_mode.require ();
+ }
+ else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
+ copy_mode = tmode;
+
+ for (bitpos = 0, xbitpos = padding_correction;
+ bitpos < bytes * BITS_PER_UNIT;
+ bitpos += bitsize, xbitpos += bitsize)
+ {
+ /* We need a new source operand each time xbitpos is on a
+ word boundary and when xbitpos == padding_correction
+ (the first time through). */
+ if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
+ src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
+
+ /* We need a new destination operand each time bitpos is on
+ a word boundary. */
+ if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
+ dst = target;
+ else if (bitpos % BITS_PER_WORD == 0)
+ dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
+
+ /* Use xbitpos for the source extraction (right justified) and
+ bitpos for the destination store (left justified). */
+ store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
+ extract_bit_field (src, bitsize,
+ xbitpos % BITS_PER_WORD, 1,
+ NULL_RTX, copy_mode, copy_mode,
+ false, NULL),
+ false);
+ }
+}
+
+/* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
+ register if it contains any data, otherwise return null.
+
+ This is used on targets that return BLKmode values in registers. */
+
+rtx
+copy_blkmode_to_reg (machine_mode mode_in, tree src)
+{
+ int i, n_regs;
+ unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
+ unsigned int bitsize;
+ rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
+ /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
+ fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
+ fixed_size_mode dst_mode;
+ scalar_int_mode min_mode;
+
+ gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
+
+ x = expand_normal (src);
+
+ bytes = arg_int_size_in_bytes (TREE_TYPE (src));
+ if (bytes == 0)
+ return NULL_RTX;
+
+ /* If the structure doesn't take up a whole number of words, see
+ whether the register value should be padded on the left or on
+ the right. Set PADDING_CORRECTION to the number of padding
+ bits needed on the left side.
+
+ In most ABIs, the structure will be returned at the least end of
+ the register, which translates to right padding on little-endian
+ targets and left padding on big-endian targets. The opposite
+ holds if the structure is returned at the most significant
+ end of the register. */
+ if (bytes % UNITS_PER_WORD != 0
+ && (targetm.calls.return_in_msb (TREE_TYPE (src))
+ ? !BYTES_BIG_ENDIAN
+ : BYTES_BIG_ENDIAN))
+ padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
+ * BITS_PER_UNIT));
+
+ n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ dst_words = XALLOCAVEC (rtx, n_regs);
+ bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
+ min_mode = smallest_int_mode_for_size (bitsize);
+
+ /* Copy the structure BITSIZE bits at a time. */
+ for (bitpos = 0, xbitpos = padding_correction;
+ bitpos < bytes * BITS_PER_UNIT;
+ bitpos += bitsize, xbitpos += bitsize)
+ {
+ /* We need a new destination pseudo each time xbitpos is
+ on a word boundary and when xbitpos == padding_correction
+ (the first time through). */
+ if (xbitpos % BITS_PER_WORD == 0
+ || xbitpos == padding_correction)
+ {
+ /* Generate an appropriate register. */
+ dst_word = gen_reg_rtx (word_mode);
+ dst_words[xbitpos / BITS_PER_WORD] = dst_word;
+
+ /* Clear the destination before we move anything into it. */
+ emit_move_insn (dst_word, CONST0_RTX (word_mode));
+ }
+
+ /* Find the largest integer mode that can be used to copy all or as
+ many bits as possible of the structure if the target supports larger
+ copies. There are too many corner cases here w.r.t to alignments on
+ the read/writes. So if there is any padding just use single byte
+ operations. */
+ opt_scalar_int_mode mode_iter;
+ if (padding_correction == 0 && !STRICT_ALIGNMENT)
+ {
+ FOR_EACH_MODE_FROM (mode_iter, min_mode)
+ {
+ unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
+ if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
+ && msize <= BITS_PER_WORD)
+ bitsize = msize;
+ else
+ break;
+ }
+ }
+
+ /* We need a new source operand each time bitpos is on a word
+ boundary. */
+ if (bitpos % BITS_PER_WORD == 0)
+ src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
+
+ /* Use bitpos for the source extraction (left justified) and
+ xbitpos for the destination store (right justified). */
+ store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
+ 0, 0, word_mode,
+ extract_bit_field (src_word, bitsize,
+ bitpos % BITS_PER_WORD, 1,
+ NULL_RTX, word_mode, word_mode,
+ false, NULL),
+ false);
+ }
+
+ if (mode == BLKmode)
+ {
+ /* Find the smallest integer mode large enough to hold the
+ entire structure. */
+ opt_scalar_int_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
+ if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
+ break;
+
+ /* A suitable mode should have been found. */
+ mode = mode_iter.require ();
+ }
+
+ if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
+ dst_mode = word_mode;
+ else
+ dst_mode = mode;
+ dst = gen_reg_rtx (dst_mode);
+
+ for (i = 0; i < n_regs; i++)
+ emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
+
+ if (mode != dst_mode)
+ dst = gen_lowpart (mode, dst);
+
+ return dst;
+}
+
+/* Add a USE expression for REG to the (possibly empty) list pointed
+ to by CALL_FUSAGE. REG must denote a hard register. */
+
+void
+use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
+{
+ gcc_assert (REG_P (reg));
+
+ if (!HARD_REGISTER_P (reg))
+ return;
+
+ *call_fusage
+ = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
+}
+
+/* Add a CLOBBER expression for REG to the (possibly empty) list pointed
+ to by CALL_FUSAGE. REG must denote a hard register. */
+
+void
+clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
+{
+ gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
+
+ *call_fusage
+ = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
+}
+
+/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
+ starting at REGNO. All of these registers must be hard registers. */
+
+void
+use_regs (rtx *call_fusage, int regno, int nregs)
+{
+ int i;
+
+ gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
+
+ for (i = 0; i < nregs; i++)
+ use_reg (call_fusage, regno_reg_rtx[regno + i]);
+}
+
+/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
+ PARALLEL REGS. This is for calls that pass values in multiple
+ non-contiguous locations. The Irix 6 ABI has examples of this. */
+
+void
+use_group_regs (rtx *call_fusage, rtx regs)
+{
+ int i;
+
+ for (i = 0; i < XVECLEN (regs, 0); i++)
+ {
+ rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
+
+ /* A NULL entry means the parameter goes both on the stack and in
+ registers. This can also be a MEM for targets that pass values
+ partially on the stack and partially in registers. */
+ if (reg != 0 && REG_P (reg))
+ use_reg (call_fusage, reg);
+ }
+}
+
+/* Return the defining gimple statement for SSA_NAME NAME if it is an
+ assigment and the code of the expresion on the RHS is CODE. Return
+ NULL otherwise. */
+
+static gimple *
+get_def_for_expr (tree name, enum tree_code code)
+{
+ gimple *def_stmt;
+
+ if (TREE_CODE (name) != SSA_NAME)
+ return NULL;
+
+ def_stmt = get_gimple_for_ssa_name (name);
+ if (!def_stmt
+ || gimple_assign_rhs_code (def_stmt) != code)
+ return NULL;
+
+ return def_stmt;
+}
+
+/* Return the defining gimple statement for SSA_NAME NAME if it is an
+ assigment and the class of the expresion on the RHS is CLASS. Return
+ NULL otherwise. */
+
+static gimple *
+get_def_for_expr_class (tree name, enum tree_code_class tclass)
+{
+ gimple *def_stmt;
+
+ if (TREE_CODE (name) != SSA_NAME)
+ return NULL;
+
+ def_stmt = get_gimple_for_ssa_name (name);
+ if (!def_stmt
+ || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
+ return NULL;
+
+ return def_stmt;
+}
+
+/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
+ its length in bytes. */
+
+rtx
+clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
+ unsigned int expected_align, HOST_WIDE_INT expected_size,
+ unsigned HOST_WIDE_INT min_size,
+ unsigned HOST_WIDE_INT max_size,
+ unsigned HOST_WIDE_INT probable_max_size,
+ unsigned ctz_size)
+{
+ machine_mode mode = GET_MODE (object);
+ unsigned int align;
+
+ gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
+
+ /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
+ just move a zero. Otherwise, do this a piece at a time. */
+ poly_int64 size_val;
+ if (mode != BLKmode
+ && poly_int_rtx_p (size, &size_val)
+ && known_eq (size_val, GET_MODE_SIZE (mode)))
+ {
+ rtx zero = CONST0_RTX (mode);
+ if (zero != NULL)
+ {
+ emit_move_insn (object, zero);
+ return NULL;
+ }
+
+ if (COMPLEX_MODE_P (mode))
+ {
+ zero = CONST0_RTX (GET_MODE_INNER (mode));
+ if (zero != NULL)
+ {
+ write_complex_part (object, zero, 0);
+ write_complex_part (object, zero, 1);
+ return NULL;
+ }
+ }
+ }
+
+ if (size == const0_rtx)
+ return NULL;
+
+ align = MEM_ALIGN (object);
+
+ if (CONST_INT_P (size)
+ && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
+ CLEAR_BY_PIECES,
+ optimize_insn_for_speed_p ()))
+ clear_by_pieces (object, INTVAL (size), align);
+ else if (set_storage_via_setmem (object, size, const0_rtx, align,
+ expected_align, expected_size,
+ min_size, max_size, probable_max_size))
+ ;
+ else if (try_store_by_multiple_pieces (object, size, ctz_size,
+ min_size, max_size,
+ NULL_RTX, 0, align))
+ ;
+ else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
+ return set_storage_via_libcall (object, size, const0_rtx,
+ method == BLOCK_OP_TAILCALL);
+ else
+ gcc_unreachable ();
+
+ return NULL;
+}
+
+rtx
+clear_storage (rtx object, rtx size, enum block_op_methods method)
+{
+ unsigned HOST_WIDE_INT max, min = 0;
+ if (GET_CODE (size) == CONST_INT)
+ min = max = UINTVAL (size);
+ else
+ max = GET_MODE_MASK (GET_MODE (size));
+ return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
+}
+
+
+/* A subroutine of clear_storage. Expand a call to memset.
+ Return the return value of memset, 0 otherwise. */
+
+rtx
+set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
+{
+ tree call_expr, fn, object_tree, size_tree, val_tree;
+ machine_mode size_mode;
+
+ object = copy_addr_to_reg (XEXP (object, 0));
+ object_tree = make_tree (ptr_type_node, object);
+
+ if (!CONST_INT_P (val))
+ val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
+ val_tree = make_tree (integer_type_node, val);
+
+ size_mode = TYPE_MODE (sizetype);
+ size = convert_to_mode (size_mode, size, 1);
+ size = copy_to_mode_reg (size_mode, size);
+ size_tree = make_tree (sizetype, size);
+
+ /* It is incorrect to use the libcall calling conventions for calls to
+ memset because it can be provided by the user. */
+ fn = builtin_decl_implicit (BUILT_IN_MEMSET);
+ call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
+ CALL_EXPR_TAILCALL (call_expr) = tailcall;
+
+ return expand_call (call_expr, NULL_RTX, false);
+}
+
+/* Expand a setmem pattern; return true if successful. */
+
+bool
+set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
+ unsigned int expected_align, HOST_WIDE_INT expected_size,
+ unsigned HOST_WIDE_INT min_size,
+ unsigned HOST_WIDE_INT max_size,
+ unsigned HOST_WIDE_INT probable_max_size)
+{
+ /* Try the most limited insn first, because there's no point
+ including more than one in the machine description unless
+ the more limited one has some advantage. */
+
+ if (expected_align < align)
+ expected_align = align;
+ if (expected_size != -1)
+ {
+ if ((unsigned HOST_WIDE_INT)expected_size > max_size)
+ expected_size = max_size;
+ if ((unsigned HOST_WIDE_INT)expected_size < min_size)
+ expected_size = min_size;
+ }
+
+ opt_scalar_int_mode mode_iter;
+ FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
+ {
+ scalar_int_mode mode = mode_iter.require ();
+ enum insn_code code = direct_optab_handler (setmem_optab, mode);
+
+ if (code != CODE_FOR_nothing
+ /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
+ here because if SIZE is less than the mode mask, as it is
+ returned by the macro, it will definitely be less than the
+ actual mode mask. Since SIZE is within the Pmode address
+ space, we limit MODE to Pmode. */
+ && ((CONST_INT_P (size)
+ && ((unsigned HOST_WIDE_INT) INTVAL (size)
+ <= (GET_MODE_MASK (mode) >> 1)))
+ || max_size <= (GET_MODE_MASK (mode) >> 1)
+ || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
+ {
+ class expand_operand ops[9];
+ unsigned int nops;
+
+ nops = insn_data[(int) code].n_generator_args;
+ gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
+
+ create_fixed_operand (&ops[0], object);
+ /* The check above guarantees that this size conversion is valid. */
+ create_convert_operand_to (&ops[1], size, mode, true);
+ create_convert_operand_from (&ops[2], val, byte_mode, true);
+ create_integer_operand (&ops[3], align / BITS_PER_UNIT);
+ if (nops >= 6)
+ {
+ create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
+ create_integer_operand (&ops[5], expected_size);
+ }
+ if (nops >= 8)
+ {
+ create_integer_operand (&ops[6], min_size);
+ /* If we cannot represent the maximal size,
+ make parameter NULL. */
+ if ((HOST_WIDE_INT) max_size != -1)
+ create_integer_operand (&ops[7], max_size);
+ else
+ create_fixed_operand (&ops[7], NULL);
+ }
+ if (nops == 9)
+ {
+ /* If we cannot represent the maximal size,
+ make parameter NULL. */
+ if ((HOST_WIDE_INT) probable_max_size != -1)
+ create_integer_operand (&ops[8], probable_max_size);
+ else
+ create_fixed_operand (&ops[8], NULL);
+ }
+ if (maybe_expand_insn (code, nops, ops))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+/* Write to one of the components of the complex value CPLX. Write VAL to
+ the real part if IMAG_P is false, and the imaginary part if its true. */
+
+void
+write_complex_part (rtx cplx, rtx val, bool imag_p)
+{
+ machine_mode cmode;
+ scalar_mode imode;
+ unsigned ibitsize;
+
+ if (GET_CODE (cplx) == CONCAT)
+ {
+ emit_move_insn (XEXP (cplx, imag_p), val);
+ return;
+ }
+
+ cmode = GET_MODE (cplx);
+ imode = GET_MODE_INNER (cmode);
+ ibitsize = GET_MODE_BITSIZE (imode);
+
+ /* For MEMs simplify_gen_subreg may generate an invalid new address
+ because, e.g., the original address is considered mode-dependent
+ by the target, which restricts simplify_subreg from invoking
+ adjust_address_nv. Instead of preparing fallback support for an
+ invalid address, we call adjust_address_nv directly. */
+ if (MEM_P (cplx))
+ {
+ emit_move_insn (adjust_address_nv (cplx, imode,
+ imag_p ? GET_MODE_SIZE (imode) : 0),
+ val);
+ return;
+ }
+
+ /* If the sub-object is at least word sized, then we know that subregging
+ will work. This special case is important, since store_bit_field
+ wants to operate on integer modes, and there's rarely an OImode to
+ correspond to TCmode. */
+ if (ibitsize >= BITS_PER_WORD
+ /* For hard regs we have exact predicates. Assume we can split
+ the original object if it spans an even number of hard regs.
+ This special case is important for SCmode on 64-bit platforms
+ where the natural size of floating-point regs is 32-bit. */
+ || (REG_P (cplx)
+ && REGNO (cplx) < FIRST_PSEUDO_REGISTER
+ && REG_NREGS (cplx) % 2 == 0))
+ {
+ rtx part = simplify_gen_subreg (imode, cplx, cmode,
+ imag_p ? GET_MODE_SIZE (imode) : 0);
+ if (part)
+ {
+ emit_move_insn (part, val);
+ return;
+ }
+ else
+ /* simplify_gen_subreg may fail for sub-word MEMs. */
+ gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
+ }
+
+ store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
+ false);
+}
+
+/* Extract one of the components of the complex value CPLX. Extract the
+ real part if IMAG_P is false, and the imaginary part if it's true. */
+
+rtx
+read_complex_part (rtx cplx, bool imag_p)
+{
+ machine_mode cmode;
+ scalar_mode imode;
+ unsigned ibitsize;
+
+ if (GET_CODE (cplx) == CONCAT)
+ return XEXP (cplx, imag_p);
+
+ cmode = GET_MODE (cplx);
+ imode = GET_MODE_INNER (cmode);
+ ibitsize = GET_MODE_BITSIZE (imode);
+
+ /* Special case reads from complex constants that got spilled to memory. */
+ if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
+ {
+ tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
+ if (decl && TREE_CODE (decl) == COMPLEX_CST)
+ {
+ tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
+ if (CONSTANT_CLASS_P (part))
+ return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
+ }
+ }
+
+ /* For MEMs simplify_gen_subreg may generate an invalid new address
+ because, e.g., the original address is considered mode-dependent
+ by the target, which restricts simplify_subreg from invoking
+ adjust_address_nv. Instead of preparing fallback support for an
+ invalid address, we call adjust_address_nv directly. */
+ if (MEM_P (cplx))
+ return adjust_address_nv (cplx, imode,
+ imag_p ? GET_MODE_SIZE (imode) : 0);
+
+ /* If the sub-object is at least word sized, then we know that subregging
+ will work. This special case is important, since extract_bit_field
+ wants to operate on integer modes, and there's rarely an OImode to
+ correspond to TCmode. */
+ if (ibitsize >= BITS_PER_WORD
+ /* For hard regs we have exact predicates. Assume we can split
+ the original object if it spans an even number of hard regs.
+ This special case is important for SCmode on 64-bit platforms
+ where the natural size of floating-point regs is 32-bit. */
+ || (REG_P (cplx)
+ && REGNO (cplx) < FIRST_PSEUDO_REGISTER
+ && REG_NREGS (cplx) % 2 == 0))
+ {
+ rtx ret = simplify_gen_subreg (imode, cplx, cmode,
+ imag_p ? GET_MODE_SIZE (imode) : 0);
+ if (ret)
+ return ret;
+ else
+ /* simplify_gen_subreg may fail for sub-word MEMs. */
+ gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
+ }
+
+ return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
+ true, NULL_RTX, imode, imode, false, NULL);
+}
+
+/* A subroutine of emit_move_insn_1. Yet another lowpart generator.
+ NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
+ represented in NEW_MODE. If FORCE is true, this will never happen, as
+ we'll force-create a SUBREG if needed. */
+
+static rtx
+emit_move_change_mode (machine_mode new_mode,
+ machine_mode old_mode, rtx x, bool force)
+{
+ rtx ret;
+
+ if (push_operand (x, GET_MODE (x)))
+ {
+ ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
+ MEM_COPY_ATTRIBUTES (ret, x);
+ }
+ else if (MEM_P (x))
+ {
+ /* We don't have to worry about changing the address since the
+ size in bytes is supposed to be the same. */
+ if (reload_in_progress)
+ {
+ /* Copy the MEM to change the mode and move any
+ substitutions from the old MEM to the new one. */
+ ret = adjust_address_nv (x, new_mode, 0);
+ copy_replacements (x, ret);
+ }
+ else
+ ret = adjust_address (x, new_mode, 0);
+ }
+ else
+ {
+ /* Note that we do want simplify_subreg's behavior of validating
+ that the new mode is ok for a hard register. If we were to use
+ simplify_gen_subreg, we would create the subreg, but would
+ probably run into the target not being able to implement it. */
+ /* Except, of course, when FORCE is true, when this is exactly what
+ we want. Which is needed for CCmodes on some targets. */
+ if (force)
+ ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
+ else
+ ret = simplify_subreg (new_mode, x, old_mode, 0);
+ }
+
+ return ret;
+}
+
+/* A subroutine of emit_move_insn_1. Generate a move from Y into X using
+ an integer mode of the same size as MODE. Returns the instruction
+ emitted, or NULL if such a move could not be generated. */
+
+static rtx_insn *
+emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
+{
+ scalar_int_mode imode;
+ enum insn_code code;
+
+ /* There must exist a mode of the exact size we require. */
+ if (!int_mode_for_mode (mode).exists (&imode))
+ return NULL;
+
+ /* The target must support moves in this mode. */
+ code = optab_handler (mov_optab, imode);
+ if (code == CODE_FOR_nothing)
+ return NULL;
+
+ x = emit_move_change_mode (imode, mode, x, force);
+ if (x == NULL_RTX)
+ return NULL;
+ y = emit_move_change_mode (imode, mode, y, force);
+ if (y == NULL_RTX)
+ return NULL;
+ return emit_insn (GEN_FCN (code) (x, y));
+}
+
+/* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
+ Return an equivalent MEM that does not use an auto-increment. */
+
+rtx
+emit_move_resolve_push (machine_mode mode, rtx x)
+{
+ enum rtx_code code = GET_CODE (XEXP (x, 0));
+ rtx temp;
+
+ poly_int64 adjust = GET_MODE_SIZE (mode);
+#ifdef PUSH_ROUNDING
+ adjust = PUSH_ROUNDING (adjust);
+#endif
+ if (code == PRE_DEC || code == POST_DEC)
+ adjust = -adjust;
+ else if (code == PRE_MODIFY || code == POST_MODIFY)
+ {
+ rtx expr = XEXP (XEXP (x, 0), 1);
+
+ gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
+ poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
+ if (GET_CODE (expr) == MINUS)
+ val = -val;
+ gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
+ adjust = val;
+ }
+
+ /* Do not use anti_adjust_stack, since we don't want to update
+ stack_pointer_delta. */
+ temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
+ gen_int_mode (adjust, Pmode), stack_pointer_rtx,
+ 0, OPTAB_LIB_WIDEN);
+ if (temp != stack_pointer_rtx)
+ emit_move_insn (stack_pointer_rtx, temp);
+
+ switch (code)
+ {
+ case PRE_INC:
+ case PRE_DEC:
+ case PRE_MODIFY:
+ temp = stack_pointer_rtx;
+ break;
+ case POST_INC:
+ case POST_DEC:
+ case POST_MODIFY:
+ temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ return replace_equiv_address (x, temp);
+}
+
+/* A subroutine of emit_move_complex. Generate a move from Y into X.
+ X is known to satisfy push_operand, and MODE is known to be complex.
+ Returns the last instruction emitted. */
+
+rtx_insn *
+emit_move_complex_push (machine_mode mode, rtx x, rtx y)
+{
+ scalar_mode submode = GET_MODE_INNER (mode);
+ bool imag_first;
+
+#ifdef PUSH_ROUNDING
+ poly_int64 submodesize = GET_MODE_SIZE (submode);
+
+ /* In case we output to the stack, but the size is smaller than the
+ machine can push exactly, we need to use move instructions. */
+ if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
+ {
+ x = emit_move_resolve_push (mode, x);
+ return emit_move_insn (x, y);
+ }
+#endif
+
+ /* Note that the real part always precedes the imag part in memory
+ regardless of machine's endianness. */
+ switch (GET_CODE (XEXP (x, 0)))
+ {
+ case PRE_DEC:
+ case POST_DEC:
+ imag_first = true;
+ break;
+ case PRE_INC:
+ case POST_INC:
+ imag_first = false;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
+ read_complex_part (y, imag_first));
+ return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
+ read_complex_part (y, !imag_first));
+}
+
+/* A subroutine of emit_move_complex. Perform the move from Y to X
+ via two moves of the parts. Returns the last instruction emitted. */
+
+rtx_insn *
+emit_move_complex_parts (rtx x, rtx y)
+{
+ /* Show the output dies here. This is necessary for SUBREGs
+ of pseudos since we cannot track their lifetimes correctly;
+ hard regs shouldn't appear here except as return values. */
+ if (!reload_completed && !reload_in_progress
+ && REG_P (x) && !reg_overlap_mentioned_p (x, y))
+ emit_clobber (x);
+
+ write_complex_part (x, read_complex_part (y, false), false);
+ write_complex_part (x, read_complex_part (y, true), true);
+
+ return get_last_insn ();
+}
+
+/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
+ MODE is known to be complex. Returns the last instruction emitted. */
+
+static rtx_insn *
+emit_move_complex (machine_mode mode, rtx x, rtx y)
+{
+ bool try_int;
+
+ /* Need to take special care for pushes, to maintain proper ordering
+ of the data, and possibly extra padding. */
+ if (push_operand (x, mode))
+ return emit_move_complex_push (mode, x, y);
+
+ /* See if we can coerce the target into moving both values at once, except
+ for floating point where we favor moving as parts if this is easy. */
+ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
+ && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
+ && !(REG_P (x)
+ && HARD_REGISTER_P (x)
+ && REG_NREGS (x) == 1)
+ && !(REG_P (y)
+ && HARD_REGISTER_P (y)
+ && REG_NREGS (y) == 1))
+ try_int = false;
+ /* Not possible if the values are inherently not adjacent. */
+ else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
+ try_int = false;
+ /* Is possible if both are registers (or subregs of registers). */
+ else if (register_operand (x, mode) && register_operand (y, mode))
+ try_int = true;
+ /* If one of the operands is a memory, and alignment constraints
+ are friendly enough, we may be able to do combined memory operations.
+ We do not attempt this if Y is a constant because that combination is
+ usually better with the by-parts thing below. */
+ else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
+ && (!STRICT_ALIGNMENT
+ || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
+ try_int = true;
+ else
+ try_int = false;
+
+ if (try_int)
+ {
+ rtx_insn *ret;
+
+ /* For memory to memory moves, optimal behavior can be had with the
+ existing block move logic. But use normal expansion if optimizing
+ for size. */
+ if (MEM_P (x) && MEM_P (y))
+ {
+ emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
+ (optimize_insn_for_speed_p()
+ ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
+ return get_last_insn ();
+ }
+
+ ret = emit_move_via_integer (mode, x, y, true);
+ if (ret)
+ return ret;
+ }
+
+ return emit_move_complex_parts (x, y);
+}
+
+/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
+ MODE is known to be MODE_CC. Returns the last instruction emitted. */
+
+static rtx_insn *
+emit_move_ccmode (machine_mode mode, rtx x, rtx y)
+{
+ rtx_insn *ret;
+
+ /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
+ if (mode != CCmode)
+ {
+ enum insn_code code = optab_handler (mov_optab, CCmode);
+ if (code != CODE_FOR_nothing)
+ {
+ x = emit_move_change_mode (CCmode, mode, x, true);
+ y = emit_move_change_mode (CCmode, mode, y, true);
+ return emit_insn (GEN_FCN (code) (x, y));
+ }
+ }
+
+ /* Otherwise, find the MODE_INT mode of the same width. */
+ ret = emit_move_via_integer (mode, x, y, false);
+ gcc_assert (ret != NULL);
+ return ret;
+}
+
+/* Return true if word I of OP lies entirely in the
+ undefined bits of a paradoxical subreg. */
+
+static bool
+undefined_operand_subword_p (const_rtx op, int i)
+{
+ if (GET_CODE (op) != SUBREG)
+ return false;
+ machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
+ poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
+ return (known_ge (offset, GET_MODE_SIZE (innermostmode))
+ || known_le (offset, -UNITS_PER_WORD));
+}
+
+/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
+ MODE is any multi-word or full-word mode that lacks a move_insn
+ pattern. Note that you will get better code if you define such
+ patterns, even if they must turn into multiple assembler instructions. */
+
+static rtx_insn *
+emit_move_multi_word (machine_mode mode, rtx x, rtx y)
+{
+ rtx_insn *last_insn = 0;
+ rtx_insn *seq;
+ rtx inner;
+ bool need_clobber;
+ int i, mode_size;
+
+ /* This function can only handle cases where the number of words is
+ known at compile time. */
+ mode_size = GET_MODE_SIZE (mode).to_constant ();
+ gcc_assert (mode_size >= UNITS_PER_WORD);
+
+ /* If X is a push on the stack, do the push now and replace
+ X with a reference to the stack pointer. */
+ if (push_operand (x, mode))
+ x = emit_move_resolve_push (mode, x);
+
+ /* If we are in reload, see if either operand is a MEM whose address
+ is scheduled for replacement. */
+ if (reload_in_progress && MEM_P (x)
+ && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
+ x = replace_equiv_address_nv (x, inner);
+ if (reload_in_progress && MEM_P (y)
+ && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
+ y = replace_equiv_address_nv (y, inner);
+
+ start_sequence ();
+
+ need_clobber = false;
+ for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
+ {
+ /* Do not generate code for a move if it would go entirely
+ to the non-existing bits of a paradoxical subreg. */
+ if (undefined_operand_subword_p (x, i))
+ continue;
+
+ rtx xpart = operand_subword (x, i, 1, mode);
+ rtx ypart;
+
+ /* Do not generate code for a move if it would come entirely
+ from the undefined bits of a paradoxical subreg. */
+ if (undefined_operand_subword_p (y, i))
+ continue;
+
+ ypart = operand_subword (y, i, 1, mode);
+
+ /* If we can't get a part of Y, put Y into memory if it is a
+ constant. Otherwise, force it into a register. Then we must
+ be able to get a part of Y. */
+ if (ypart == 0 && CONSTANT_P (y))
+ {
+ y = use_anchored_address (force_const_mem (mode, y));
+ ypart = operand_subword (y, i, 1, mode);
+ }
+ else if (ypart == 0)
+ ypart = operand_subword_force (y, i, mode);
+
+ gcc_assert (xpart && ypart);
+
+ need_clobber |= (GET_CODE (xpart) == SUBREG);
+
+ last_insn = emit_move_insn (xpart, ypart);
+ }
+
+ seq = get_insns ();
+ end_sequence ();
+
+ /* Show the output dies here. This is necessary for SUBREGs
+ of pseudos since we cannot track their lifetimes correctly;
+ hard regs shouldn't appear here except as return values.
+ We never want to emit such a clobber after reload. */
+ if (x != y
+ && ! (lra_in_progress || reload_in_progress || reload_completed)
+ && need_clobber != 0)
+ emit_clobber (x);
+
+ emit_insn (seq);
+
+ return last_insn;
+}
+
+/* Low level part of emit_move_insn.
+ Called just like emit_move_insn, but assumes X and Y
+ are basically valid. */
+
+rtx_insn *
+emit_move_insn_1 (rtx x, rtx y)
+{
+ machine_mode mode = GET_MODE (x);
+ enum insn_code code;
+
+ gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
+
+ code = optab_handler (mov_optab, mode);
+ if (code != CODE_FOR_nothing)
+ return emit_insn (GEN_FCN (code) (x, y));
+
+ /* Expand complex moves by moving real part and imag part. */
+ if (COMPLEX_MODE_P (mode))
+ return emit_move_complex (mode, x, y);
+
+ if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
+ || ALL_FIXED_POINT_MODE_P (mode))
+ {
+ rtx_insn *result = emit_move_via_integer (mode, x, y, true);
+
+ /* If we can't find an integer mode, use multi words. */
+ if (result)
+ return result;
+ else
+ return emit_move_multi_word (mode, x, y);
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_CC)
+ return emit_move_ccmode (mode, x, y);
+
+ /* Try using a move pattern for the corresponding integer mode. This is
+ only safe when simplify_subreg can convert MODE constants into integer
+ constants. At present, it can only do this reliably if the value
+ fits within a HOST_WIDE_INT. */
+ if (!CONSTANT_P (y)
+ || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
+ {
+ rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
+
+ if (ret)
+ {
+ if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
+ return ret;
+ }
+ }
+
+ return emit_move_multi_word (mode, x, y);
+}
+
+/* Generate code to copy Y into X.
+ Both Y and X must have the same mode, except that
+ Y can be a constant with VOIDmode.
+ This mode cannot be BLKmode; use emit_block_move for that.
+
+ Return the last instruction emitted. */
+
+rtx_insn *
+emit_move_insn (rtx x, rtx y)
+{
+ machine_mode mode = GET_MODE (x);
+ rtx y_cst = NULL_RTX;
+ rtx_insn *last_insn;
+ rtx set;
+
+ gcc_assert (mode != BLKmode
+ && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
+
+ /* If we have a copy that looks like one of the following patterns:
+ (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
+ (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
+ (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
+ (set (subreg:M1 (reg:M2 ...)) (constant C))
+ where mode M1 is equal in size to M2, try to detect whether the
+ mode change involves an implicit round trip through memory.
+ If so, see if we can avoid that by removing the subregs and
+ doing the move in mode M2 instead. */
+
+ rtx x_inner = NULL_RTX;
+ rtx y_inner = NULL_RTX;
+
+ auto candidate_subreg_p = [&](rtx subreg) {
+ return (REG_P (SUBREG_REG (subreg))
+ && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
+ GET_MODE_SIZE (GET_MODE (subreg)))
+ && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
+ != CODE_FOR_nothing);
+ };
+
+ auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
+ return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
+ && !push_operand (mem, GET_MODE (mem))
+ /* Not a candiate if innermode requires too much alignment. */
+ && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
+ || targetm.slow_unaligned_access (GET_MODE (mem),
+ MEM_ALIGN (mem))
+ || !targetm.slow_unaligned_access (innermode,
+ MEM_ALIGN (mem))));
+ };
+
+ if (SUBREG_P (x) && candidate_subreg_p (x))
+ x_inner = SUBREG_REG (x);
+
+ if (SUBREG_P (y) && candidate_subreg_p (y))
+ y_inner = SUBREG_REG (y);
+
+ if (x_inner != NULL_RTX
+ && y_inner != NULL_RTX
+ && GET_MODE (x_inner) == GET_MODE (y_inner)
+ && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
+ {
+ x = x_inner;
+ y = y_inner;
+ mode = GET_MODE (x_inner);
+ }
+ else if (x_inner != NULL_RTX
+ && MEM_P (y)
+ && candidate_mem_p (GET_MODE (x_inner), y))
+ {
+ x = x_inner;
+ y = adjust_address (y, GET_MODE (x_inner), 0);
+ mode = GET_MODE (x_inner);
+ }
+ else if (y_inner != NULL_RTX
+ && MEM_P (x)
+ && candidate_mem_p (GET_MODE (y_inner), x))
+ {
+ x = adjust_address (x, GET_MODE (y_inner), 0);
+ y = y_inner;
+ mode = GET_MODE (y_inner);
+ }
+ else if (x_inner != NULL_RTX
+ && CONSTANT_P (y)
+ && !targetm.can_change_mode_class (GET_MODE (x_inner),
+ mode, ALL_REGS)
+ && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
+ {
+ x = x_inner;
+ y = y_inner;
+ mode = GET_MODE (x_inner);
+ }
+
+ if (CONSTANT_P (y))
+ {
+ if (optimize
+ && SCALAR_FLOAT_MODE_P (GET_MODE (x))
+ && (last_insn = compress_float_constant (x, y)))
+ return last_insn;
+
+ y_cst = y;
+
+ if (!targetm.legitimate_constant_p (mode, y))
+ {
+ y = force_const_mem (mode, y);
+
+ /* If the target's cannot_force_const_mem prevented the spill,
+ assume that the target's move expanders will also take care
+ of the non-legitimate constant. */
+ if (!y)
+ y = y_cst;
+ else
+ y = use_anchored_address (y);
+ }
+ }
+
+ /* If X or Y are memory references, verify that their addresses are valid
+ for the machine. */
+ if (MEM_P (x)
+ && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
+ MEM_ADDR_SPACE (x))
+ && ! push_operand (x, GET_MODE (x))))
+ x = validize_mem (x);
+
+ if (MEM_P (y)
+ && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
+ MEM_ADDR_SPACE (y)))
+ y = validize_mem (y);
+
+ gcc_assert (mode != BLKmode);
+
+ last_insn = emit_move_insn_1 (x, y);
+
+ if (y_cst && REG_P (x)
+ && (set = single_set (last_insn)) != NULL_RTX
+ && SET_DEST (set) == x
+ && ! rtx_equal_p (y_cst, SET_SRC (set)))
+ set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
+
+ return last_insn;
+}
+
+/* Generate the body of an instruction to copy Y into X.
+ It may be a list of insns, if one insn isn't enough. */
+
+rtx_insn *
+gen_move_insn (rtx x, rtx y)
+{
+ rtx_insn *seq;
+
+ start_sequence ();
+ emit_move_insn_1 (x, y);
+ seq = get_insns ();
+ end_sequence ();
+ return seq;
+}
+
+/* If Y is representable exactly in a narrower mode, and the target can
+ perform the extension directly from constant or memory, then emit the
+ move as an extension. */
+
+static rtx_insn *
+compress_float_constant (rtx x, rtx y)
+{
+ machine_mode dstmode = GET_MODE (x);
+ machine_mode orig_srcmode = GET_MODE (y);
+ machine_mode srcmode;
+ const REAL_VALUE_TYPE *r;
+ int oldcost, newcost;
+ bool speed = optimize_insn_for_speed_p ();
+
+ r = CONST_DOUBLE_REAL_VALUE (y);
+
+ if (targetm.legitimate_constant_p (dstmode, y))
+ oldcost = set_src_cost (y, orig_srcmode, speed);
+ else
+ oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
+
+ FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
+ {
+ enum insn_code ic;
+ rtx trunc_y;
+ rtx_insn *last_insn;
+
+ /* Skip if the target can't extend this way. */
+ ic = can_extend_p (dstmode, srcmode, 0);
+ if (ic == CODE_FOR_nothing)
+ continue;
+
+ /* Skip if the narrowed value isn't exact. */
+ if (! exact_real_truncate (srcmode, r))
+ continue;
+
+ trunc_y = const_double_from_real_value (*r, srcmode);
+
+ if (targetm.legitimate_constant_p (srcmode, trunc_y))
+ {
+ /* Skip if the target needs extra instructions to perform
+ the extension. */
+ if (!insn_operand_matches (ic, 1, trunc_y))
+ continue;
+ /* This is valid, but may not be cheaper than the original. */
+ newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
+ dstmode, speed);
+ if (oldcost < newcost)
+ continue;
+ }
+ else if (float_extend_from_mem[dstmode][srcmode])
+ {
+ trunc_y = force_const_mem (srcmode, trunc_y);
+ /* This is valid, but may not be cheaper than the original. */
+ newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
+ dstmode, speed);
+ if (oldcost < newcost)
+ continue;
+ trunc_y = validize_mem (trunc_y);
+ }
+ else
+ continue;
+
+ /* For CSE's benefit, force the compressed constant pool entry
+ into a new pseudo. This constant may be used in different modes,
+ and if not, combine will put things back together for us. */
+ trunc_y = force_reg (srcmode, trunc_y);
+
+ /* If x is a hard register, perform the extension into a pseudo,
+ so that e.g. stack realignment code is aware of it. */
+ rtx target = x;
+ if (REG_P (x) && HARD_REGISTER_P (x))
+ target = gen_reg_rtx (dstmode);
+
+ emit_unop_insn (ic, target, trunc_y, UNKNOWN);
+ last_insn = get_last_insn ();
+
+ if (REG_P (target))
+ set_unique_reg_note (last_insn, REG_EQUAL, y);
+
+ if (target != x)
+ return emit_move_insn (x, target);
+ return last_insn;
+ }
+
+ return NULL;
+}
+
+/* Pushing data onto the stack. */
+
+/* Push a block of length SIZE (perhaps variable)
+ and return an rtx to address the beginning of the block.
+ The value may be virtual_outgoing_args_rtx.
+
+ EXTRA is the number of bytes of padding to push in addition to SIZE.
+ BELOW nonzero means this padding comes at low addresses;
+ otherwise, the padding comes at high addresses. */
+
+rtx
+push_block (rtx size, poly_int64 extra, int below)
+{
+ rtx temp;
+
+ size = convert_modes (Pmode, ptr_mode, size, 1);
+ if (CONSTANT_P (size))
+ anti_adjust_stack (plus_constant (Pmode, size, extra));
+ else if (REG_P (size) && known_eq (extra, 0))
+ anti_adjust_stack (size);
+ else
+ {
+ temp = copy_to_mode_reg (Pmode, size);
+ if (maybe_ne (extra, 0))
+ temp = expand_binop (Pmode, add_optab, temp,
+ gen_int_mode (extra, Pmode),
+ temp, 0, OPTAB_LIB_WIDEN);
+ anti_adjust_stack (temp);
+ }
+
+ if (STACK_GROWS_DOWNWARD)
+ {
+ temp = virtual_outgoing_args_rtx;
+ if (maybe_ne (extra, 0) && below)
+ temp = plus_constant (Pmode, temp, extra);
+ }
+ else
+ {
+ poly_int64 csize;
+ if (poly_int_rtx_p (size, &csize))
+ temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
+ -csize - (below ? 0 : extra));
+ else if (maybe_ne (extra, 0) && !below)
+ temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
+ negate_rtx (Pmode, plus_constant (Pmode, size,
+ extra)));
+ else
+ temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
+ negate_rtx (Pmode, size));
+ }
+
+ return memory_address (NARROWEST_INT_MODE, temp);
+}
+
+/* A utility routine that returns the base of an auto-inc memory, or NULL. */
+
+static rtx
+mem_autoinc_base (rtx mem)
+{
+ if (MEM_P (mem))
+ {
+ rtx addr = XEXP (mem, 0);
+ if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
+ return XEXP (addr, 0);
+ }
+ return NULL;
+}
+
+/* A utility routine used here, in reload, and in try_split. The insns
+ after PREV up to and including LAST are known to adjust the stack,
+ with a final value of END_ARGS_SIZE. Iterate backward from LAST
+ placing notes as appropriate. PREV may be NULL, indicating the
+ entire insn sequence prior to LAST should be scanned.
+
+ The set of allowed stack pointer modifications is small:
+ (1) One or more auto-inc style memory references (aka pushes),
+ (2) One or more addition/subtraction with the SP as destination,
+ (3) A single move insn with the SP as destination,
+ (4) A call_pop insn,
+ (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
+
+ Insns in the sequence that do not modify the SP are ignored,
+ except for noreturn calls.
+
+ The return value is the amount of adjustment that can be trivially
+ verified, via immediate operand or auto-inc. If the adjustment
+ cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
+
+poly_int64
+find_args_size_adjust (rtx_insn *insn)
+{
+ rtx dest, set, pat;
+ int i;
+
+ pat = PATTERN (insn);
+ set = NULL;
+
+ /* Look for a call_pop pattern. */
+ if (CALL_P (insn))
+ {
+ /* We have to allow non-call_pop patterns for the case
+ of emit_single_push_insn of a TLS address. */
+ if (GET_CODE (pat) != PARALLEL)
+ return 0;
+
+ /* All call_pop have a stack pointer adjust in the parallel.
+ The call itself is always first, and the stack adjust is
+ usually last, so search from the end. */
+ for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
+ {
+ set = XVECEXP (pat, 0, i);
+ if (GET_CODE (set) != SET)
+ continue;
+ dest = SET_DEST (set);
+ if (dest == stack_pointer_rtx)
+ break;
+ }
+ /* We'd better have found the stack pointer adjust. */
+ if (i == 0)
+ return 0;
+ /* Fall through to process the extracted SET and DEST
+ as if it was a standalone insn. */
+ }
+ else if (GET_CODE (pat) == SET)
+ set = pat;
+ else if ((set = single_set (insn)) != NULL)
+ ;
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ /* ??? Some older ports use a parallel with a stack adjust
+ and a store for a PUSH_ROUNDING pattern, rather than a
+ PRE/POST_MODIFY rtx. Don't force them to update yet... */
+ /* ??? See h8300 and m68k, pushqi1. */
+ for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
+ {
+ set = XVECEXP (pat, 0, i);
+ if (GET_CODE (set) != SET)
+ continue;
+ dest = SET_DEST (set);
+ if (dest == stack_pointer_rtx)
+ break;
+
+ /* We do not expect an auto-inc of the sp in the parallel. */
+ gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
+ gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
+ != stack_pointer_rtx);
+ }
+ if (i < 0)
+ return 0;
+ }
+ else
+ return 0;
+
+ dest = SET_DEST (set);
+
+ /* Look for direct modifications of the stack pointer. */
+ if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
+ {
+ /* Look for a trivial adjustment, otherwise assume nothing. */
+ /* Note that the SPU restore_stack_block pattern refers to
+ the stack pointer in V4SImode. Consider that non-trivial. */
+ poly_int64 offset;
+ if (SCALAR_INT_MODE_P (GET_MODE (dest))
+ && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
+ return offset;
+ /* ??? Reload can generate no-op moves, which will be cleaned
+ up later. Recognize it and continue searching. */
+ else if (rtx_equal_p (dest, SET_SRC (set)))
+ return 0;
+ else
+ return HOST_WIDE_INT_MIN;
+ }
+ else
+ {
+ rtx mem, addr;
+
+ /* Otherwise only think about autoinc patterns. */
+ if (mem_autoinc_base (dest) == stack_pointer_rtx)
+ {
+ mem = dest;
+ gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
+ != stack_pointer_rtx);
+ }
+ else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
+ mem = SET_SRC (set);
+ else
+ return 0;
+
+ addr = XEXP (mem, 0);
+ switch (GET_CODE (addr))
+ {
+ case PRE_INC:
+ case POST_INC:
+ return GET_MODE_SIZE (GET_MODE (mem));
+ case PRE_DEC:
+ case POST_DEC:
+ return -GET_MODE_SIZE (GET_MODE (mem));
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ addr = XEXP (addr, 1);
+ gcc_assert (GET_CODE (addr) == PLUS);
+ gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
+ return rtx_to_poly_int64 (XEXP (addr, 1));
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+poly_int64
+fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
+ poly_int64 end_args_size)
+{
+ poly_int64 args_size = end_args_size;
+ bool saw_unknown = false;
+ rtx_insn *insn;
+
+ for (insn = last; insn != prev; insn = PREV_INSN (insn))
+ {
+ if (!NONDEBUG_INSN_P (insn))
+ continue;
+
+ /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
+ a call argument containing a TLS address that itself requires
+ a call to __tls_get_addr. The handling of stack_pointer_delta
+ in emit_single_push_insn is supposed to ensure that any such
+ notes are already correct. */
+ rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
+ gcc_assert (!note || known_eq (args_size, get_args_size (note)));
+
+ poly_int64 this_delta = find_args_size_adjust (insn);
+ if (known_eq (this_delta, 0))
+ {
+ if (!CALL_P (insn)
+ || ACCUMULATE_OUTGOING_ARGS
+ || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
+ continue;
+ }
+
+ gcc_assert (!saw_unknown);
+ if (known_eq (this_delta, HOST_WIDE_INT_MIN))
+ saw_unknown = true;
+
+ if (!note)
+ add_args_size_note (insn, args_size);
+ if (STACK_GROWS_DOWNWARD)
+ this_delta = -poly_uint64 (this_delta);
+
+ if (saw_unknown)
+ args_size = HOST_WIDE_INT_MIN;
+ else
+ args_size -= this_delta;
+ }
+
+ return args_size;
+}
+
+#ifdef PUSH_ROUNDING
+/* Emit single push insn. */
+
+static void
+emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
+{
+ rtx dest_addr;
+ poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
+ rtx dest;
+ enum insn_code icode;
+
+ /* If there is push pattern, use it. Otherwise try old way of throwing
+ MEM representing push operation to move expander. */
+ icode = optab_handler (push_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ class expand_operand ops[1];
+
+ create_input_operand (&ops[0], x, mode);
+ if (maybe_expand_insn (icode, 1, ops))
+ return;
+ }
+ if (known_eq (GET_MODE_SIZE (mode), rounded_size))
+ dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
+ /* If we are to pad downward, adjust the stack pointer first and
+ then store X into the stack location using an offset. This is
+ because emit_move_insn does not know how to pad; it does not have
+ access to type. */
+ else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
+ {
+ emit_move_insn (stack_pointer_rtx,
+ expand_binop (Pmode,
+ STACK_GROWS_DOWNWARD ? sub_optab
+ : add_optab,
+ stack_pointer_rtx,
+ gen_int_mode (rounded_size, Pmode),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN));
+
+ poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
+ if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
+ /* We have already decremented the stack pointer, so get the
+ previous value. */
+ offset += rounded_size;
+
+ if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
+ /* We have already incremented the stack pointer, so get the
+ previous value. */
+ offset -= rounded_size;
+
+ dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
+ }
+ else
+ {
+ if (STACK_GROWS_DOWNWARD)
+ /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
+ dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
+ else
+ /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
+ dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
+
+ dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
+ }
+
+ dest = gen_rtx_MEM (mode, dest_addr);
+
+ if (type != 0)
+ {
+ set_mem_attributes (dest, type, 1);
+
+ if (cfun->tail_call_marked)
+ /* Function incoming arguments may overlap with sibling call
+ outgoing arguments and we cannot allow reordering of reads
+ from function arguments with stores to outgoing arguments
+ of sibling calls. */
+ set_mem_alias_set (dest, 0);
+ }
+ emit_move_insn (dest, x);
+}
+
+/* Emit and annotate a single push insn. */
+
+static void
+emit_single_push_insn (machine_mode mode, rtx x, tree type)
+{
+ poly_int64 delta, old_delta = stack_pointer_delta;
+ rtx_insn *prev = get_last_insn ();
+ rtx_insn *last;
+
+ emit_single_push_insn_1 (mode, x, type);
+
+ /* Adjust stack_pointer_delta to describe the situation after the push
+ we just performed. Note that we must do this after the push rather
+ than before the push in case calculating X needs pushes and pops of
+ its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
+ for such pushes and pops must not include the effect of the future
+ push of X. */
+ stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
+
+ last = get_last_insn ();
+
+ /* Notice the common case where we emitted exactly one insn. */
+ if (PREV_INSN (last) == prev)
+ {
+ add_args_size_note (last, stack_pointer_delta);
+ return;
+ }
+
+ delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
+ gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
+ || known_eq (delta, old_delta));
+}
+#endif
+
+/* If reading SIZE bytes from X will end up reading from
+ Y return the number of bytes that overlap. Return -1
+ if there is no overlap or -2 if we can't determine
+ (for example when X and Y have different base registers). */
+
+static int
+memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
+{
+ rtx tmp = plus_constant (Pmode, x, size);
+ rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
+
+ if (!CONST_INT_P (sub))
+ return -2;
+
+ HOST_WIDE_INT val = INTVAL (sub);
+
+ return IN_RANGE (val, 1, size) ? val : -1;
+}
+
+/* Generate code to push X onto the stack, assuming it has mode MODE and
+ type TYPE.
+ MODE is redundant except when X is a CONST_INT (since they don't
+ carry mode info).
+ SIZE is an rtx for the size of data to be copied (in bytes),
+ needed only if X is BLKmode.
+ Return true if successful. May return false if asked to push a
+ partial argument during a sibcall optimization (as specified by
+ SIBCALL_P) and the incoming and outgoing pointers cannot be shown
+ to not overlap.
+
+ ALIGN (in bits) is maximum alignment we can assume.
+
+ If PARTIAL and REG are both nonzero, then copy that many of the first
+ bytes of X into registers starting with REG, and push the rest of X.
+ The amount of space pushed is decreased by PARTIAL bytes.
+ REG must be a hard register in this case.
+ If REG is zero but PARTIAL is not, take any all others actions for an
+ argument partially in registers, but do not actually load any
+ registers.
+
+ EXTRA is the amount in bytes of extra space to leave next to this arg.
+ This is ignored if an argument block has already been allocated.
+
+ On a machine that lacks real push insns, ARGS_ADDR is the address of
+ the bottom of the argument block for this call. We use indexing off there
+ to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
+ argument block has not been preallocated.
+
+ ARGS_SO_FAR is the size of args previously pushed for this call.
+
+ REG_PARM_STACK_SPACE is nonzero if functions require stack space
+ for arguments passed in registers. If nonzero, it will be the number
+ of bytes required. */
+
+bool
+emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
+ unsigned int align, int partial, rtx reg, poly_int64 extra,
+ rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
+ rtx alignment_pad, bool sibcall_p)
+{
+ rtx xinner;
+ pad_direction stack_direction
+ = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
+
+ /* Decide where to pad the argument: PAD_DOWNWARD for below,
+ PAD_UPWARD for above, or PAD_NONE for don't pad it.
+ Default is below for small data on big-endian machines; else above. */
+ pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
+
+ /* Invert direction if stack is post-decrement.
+ FIXME: why? */
+ if (STACK_PUSH_CODE == POST_DEC)
+ if (where_pad != PAD_NONE)
+ where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
+
+ xinner = x;
+
+ int nregs = partial / UNITS_PER_WORD;
+ rtx *tmp_regs = NULL;
+ int overlapping = 0;
+
+ if (mode == BLKmode
+ || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
+ {
+ /* Copy a block into the stack, entirely or partially. */
+
+ rtx temp;
+ int used;
+ int offset;
+ int skip;
+
+ offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
+ used = partial - offset;
+
+ if (mode != BLKmode)
+ {
+ /* A value is to be stored in an insufficiently aligned
+ stack slot; copy via a suitably aligned slot if
+ necessary. */
+ size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
+ if (!MEM_P (xinner))
+ {
+ temp = assign_temp (type, 1, 1);
+ emit_move_insn (temp, xinner);
+ xinner = temp;
+ }
+ }
+
+ gcc_assert (size);
+
+ /* USED is now the # of bytes we need not copy to the stack
+ because registers will take care of them. */
+
+ if (partial != 0)
+ xinner = adjust_address (xinner, BLKmode, used);
+
+ /* If the partial register-part of the arg counts in its stack size,
+ skip the part of stack space corresponding to the registers.
+ Otherwise, start copying to the beginning of the stack space,
+ by setting SKIP to 0. */
+ skip = (reg_parm_stack_space == 0) ? 0 : used;
+
+#ifdef PUSH_ROUNDING
+ /* NB: Let the backend known the number of bytes to push and
+ decide if push insns should be generated. */
+ unsigned int push_size;
+ if (CONST_INT_P (size))
+ push_size = INTVAL (size);
+ else
+ push_size = 0;
+
+ /* Do it with several push insns if that doesn't take lots of insns
+ and if there is no difficulty with push insns that skip bytes
+ on the stack for alignment purposes. */
+ if (args_addr == 0
+ && targetm.calls.push_argument (push_size)
+ && CONST_INT_P (size)
+ && skip == 0
+ && MEM_ALIGN (xinner) >= align
+ && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
+ /* Here we avoid the case of a structure whose weak alignment
+ forces many pushes of a small amount of data,
+ and such small pushes do rounding that causes trouble. */
+ && ((!targetm.slow_unaligned_access (word_mode, align))
+ || align >= BIGGEST_ALIGNMENT
+ || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
+ align / BITS_PER_UNIT))
+ && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
+ {
+ /* Push padding now if padding above and stack grows down,
+ or if padding below and stack grows up.
+ But if space already allocated, this has already been done. */
+ if (maybe_ne (extra, 0)
+ && args_addr == 0
+ && where_pad != PAD_NONE
+ && where_pad != stack_direction)
+ anti_adjust_stack (gen_int_mode (extra, Pmode));
+
+ move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
+ RETURN_BEGIN);
+ }
+ else
+#endif /* PUSH_ROUNDING */
+ {
+ rtx target;
+
+ /* Otherwise make space on the stack and copy the data
+ to the address of that space. */
+
+ /* Deduct words put into registers from the size we must copy. */
+ if (partial != 0)
+ {
+ if (CONST_INT_P (size))
+ size = GEN_INT (INTVAL (size) - used);
+ else
+ size = expand_binop (GET_MODE (size), sub_optab, size,
+ gen_int_mode (used, GET_MODE (size)),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ }
+
+ /* Get the address of the stack space.
+ In this case, we do not deal with EXTRA separately.
+ A single stack adjust will do. */
+ poly_int64 const_args_so_far;
+ if (! args_addr)
+ {
+ temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
+ extra = 0;
+ }
+ else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
+ temp = memory_address (BLKmode,
+ plus_constant (Pmode, args_addr,
+ skip + const_args_so_far));
+ else
+ temp = memory_address (BLKmode,
+ plus_constant (Pmode,
+ gen_rtx_PLUS (Pmode,
+ args_addr,
+ args_so_far),
+ skip));
+
+ if (!ACCUMULATE_OUTGOING_ARGS)
+ {
+ /* If the source is referenced relative to the stack pointer,
+ copy it to another register to stabilize it. We do not need
+ to do this if we know that we won't be changing sp. */
+
+ if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
+ || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
+ temp = copy_to_reg (temp);
+ }
+
+ target = gen_rtx_MEM (BLKmode, temp);
+
+ /* We do *not* set_mem_attributes here, because incoming arguments
+ may overlap with sibling call outgoing arguments and we cannot
+ allow reordering of reads from function arguments with stores
+ to outgoing arguments of sibling calls. We do, however, want
+ to record the alignment of the stack slot. */
+ /* ALIGN may well be better aligned than TYPE, e.g. due to
+ PARM_BOUNDARY. Assume the caller isn't lying. */
+ set_mem_align (target, align);
+
+ /* If part should go in registers and pushing to that part would
+ overwrite some of the values that need to go into regs, load the
+ overlapping values into temporary pseudos to be moved into the hard
+ regs at the end after the stack pushing has completed.
+ We cannot load them directly into the hard regs here because
+ they can be clobbered by the block move expansions.
+ See PR 65358. */
+
+ if (partial > 0 && reg != 0 && mode == BLKmode
+ && GET_CODE (reg) != PARALLEL)
+ {
+ overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
+ if (overlapping > 0)
+ {
+ gcc_assert (overlapping % UNITS_PER_WORD == 0);
+ overlapping /= UNITS_PER_WORD;
+
+ tmp_regs = XALLOCAVEC (rtx, overlapping);
+
+ for (int i = 0; i < overlapping; i++)
+ tmp_regs[i] = gen_reg_rtx (word_mode);
+
+ for (int i = 0; i < overlapping; i++)
+ emit_move_insn (tmp_regs[i],
+ operand_subword_force (target, i, mode));
+ }
+ else if (overlapping == -1)
+ overlapping = 0;
+ /* Could not determine whether there is overlap.
+ Fail the sibcall. */
+ else
+ {
+ overlapping = 0;
+ if (sibcall_p)
+ return false;
+ }
+ }
+ emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
+ }
+ }
+ else if (partial > 0)
+ {
+ /* Scalar partly in registers. This case is only supported
+ for fixed-wdth modes. */
+ int num_words = GET_MODE_SIZE (mode).to_constant ();
+ num_words /= UNITS_PER_WORD;
+ int i;
+ int not_stack;
+ /* # bytes of start of argument
+ that we must make space for but need not store. */
+ int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
+ int args_offset = INTVAL (args_so_far);
+ int skip;
+
+ /* Push padding now if padding above and stack grows down,
+ or if padding below and stack grows up.
+ But if space already allocated, this has already been done. */
+ if (maybe_ne (extra, 0)
+ && args_addr == 0
+ && where_pad != PAD_NONE
+ && where_pad != stack_direction)
+ anti_adjust_stack (gen_int_mode (extra, Pmode));
+
+ /* If we make space by pushing it, we might as well push
+ the real data. Otherwise, we can leave OFFSET nonzero
+ and leave the space uninitialized. */
+ if (args_addr == 0)
+ offset = 0;
+
+ /* Now NOT_STACK gets the number of words that we don't need to
+ allocate on the stack. Convert OFFSET to words too. */
+ not_stack = (partial - offset) / UNITS_PER_WORD;
+ offset /= UNITS_PER_WORD;
+
+ /* If the partial register-part of the arg counts in its stack size,
+ skip the part of stack space corresponding to the registers.
+ Otherwise, start copying to the beginning of the stack space,
+ by setting SKIP to 0. */
+ skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
+
+ if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
+ x = validize_mem (force_const_mem (mode, x));
+
+ /* If X is a hard register in a non-integer mode, copy it into a pseudo;
+ SUBREGs of such registers are not allowed. */
+ if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
+ && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
+ x = copy_to_reg (x);
+
+ /* Loop over all the words allocated on the stack for this arg. */
+ /* We can do it by words, because any scalar bigger than a word
+ has a size a multiple of a word. */
+ for (i = num_words - 1; i >= not_stack; i--)
+ if (i >= not_stack + offset)
+ if (!emit_push_insn (operand_subword_force (x, i, mode),
+ word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
+ 0, args_addr,
+ GEN_INT (args_offset + ((i - not_stack + skip)
+ * UNITS_PER_WORD)),
+ reg_parm_stack_space, alignment_pad, sibcall_p))
+ return false;
+ }
+ else
+ {
+ rtx addr;
+ rtx dest;
+
+ /* Push padding now if padding above and stack grows down,
+ or if padding below and stack grows up.
+ But if space already allocated, this has already been done. */
+ if (maybe_ne (extra, 0)
+ && args_addr == 0
+ && where_pad != PAD_NONE
+ && where_pad != stack_direction)
+ anti_adjust_stack (gen_int_mode (extra, Pmode));
+
+#ifdef PUSH_ROUNDING
+ if (args_addr == 0 && targetm.calls.push_argument (0))
+ emit_single_push_insn (mode, x, type);
+ else
+#endif
+ {
+ addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
+ dest = gen_rtx_MEM (mode, memory_address (mode, addr));
+
+ /* We do *not* set_mem_attributes here, because incoming arguments
+ may overlap with sibling call outgoing arguments and we cannot
+ allow reordering of reads from function arguments with stores
+ to outgoing arguments of sibling calls. We do, however, want
+ to record the alignment of the stack slot. */
+ /* ALIGN may well be better aligned than TYPE, e.g. due to
+ PARM_BOUNDARY. Assume the caller isn't lying. */
+ set_mem_align (dest, align);
+
+ emit_move_insn (dest, x);
+ }
+ }
+
+ /* Move the partial arguments into the registers and any overlapping
+ values that we moved into the pseudos in tmp_regs. */
+ if (partial > 0 && reg != 0)
+ {
+ /* Handle calls that pass values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ if (GET_CODE (reg) == PARALLEL)
+ emit_group_load (reg, x, type, -1);
+ else
+ {
+ gcc_assert (partial % UNITS_PER_WORD == 0);
+ move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
+
+ for (int i = 0; i < overlapping; i++)
+ emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
+ + nregs - overlapping + i),
+ tmp_regs[i]);
+
+ }
+ }
+
+ if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
+ anti_adjust_stack (gen_int_mode (extra, Pmode));
+
+ if (alignment_pad && args_addr == 0)
+ anti_adjust_stack (alignment_pad);
+
+ return true;
+}
+
+/* Return X if X can be used as a subtarget in a sequence of arithmetic
+ operations. */
+
+static rtx
+get_subtarget (rtx x)
+{
+ return (optimize
+ || x == 0
+ /* Only registers can be subtargets. */
+ || !REG_P (x)
+ /* Don't use hard regs to avoid extending their life. */
+ || REGNO (x) < FIRST_PSEUDO_REGISTER
+ ? 0 : x);
+}
+
+/* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
+ FIELD is a bitfield. Returns true if the optimization was successful,
+ and there's nothing else to do. */
+
+static bool
+optimize_bitfield_assignment_op (poly_uint64 pbitsize,
+ poly_uint64 pbitpos,
+ poly_uint64 pbitregion_start,
+ poly_uint64 pbitregion_end,
+ machine_mode mode1, rtx str_rtx,
+ tree to, tree src, bool reverse)
+{
+ /* str_mode is not guaranteed to be a scalar type. */
+ machine_mode str_mode = GET_MODE (str_rtx);
+ unsigned int str_bitsize;
+ tree op0, op1;
+ rtx value, result;
+ optab binop;
+ gimple *srcstmt;
+ enum tree_code code;
+
+ unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
+ if (mode1 != VOIDmode
+ || !pbitsize.is_constant (&bitsize)
+ || !pbitpos.is_constant (&bitpos)
+ || !pbitregion_start.is_constant (&bitregion_start)
+ || !pbitregion_end.is_constant (&bitregion_end)
+ || bitsize >= BITS_PER_WORD
+ || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
+ || str_bitsize > BITS_PER_WORD
+ || TREE_SIDE_EFFECTS (to)
+ || TREE_THIS_VOLATILE (to))
+ return false;
+
+ STRIP_NOPS (src);
+ if (TREE_CODE (src) != SSA_NAME)
+ return false;
+ if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
+ return false;
+
+ srcstmt = get_gimple_for_ssa_name (src);
+ if (!srcstmt
+ || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
+ return false;
+
+ code = gimple_assign_rhs_code (srcstmt);
+
+ op0 = gimple_assign_rhs1 (srcstmt);
+
+ /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
+ to find its initialization. Hopefully the initialization will
+ be from a bitfield load. */
+ if (TREE_CODE (op0) == SSA_NAME)
+ {
+ gimple *op0stmt = get_gimple_for_ssa_name (op0);
+
+ /* We want to eventually have OP0 be the same as TO, which
+ should be a bitfield. */
+ if (!op0stmt
+ || !is_gimple_assign (op0stmt)
+ || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
+ return false;
+ op0 = gimple_assign_rhs1 (op0stmt);
+ }
+
+ op1 = gimple_assign_rhs2 (srcstmt);
+
+ if (!operand_equal_p (to, op0, 0))
+ return false;
+
+ if (MEM_P (str_rtx))
+ {
+ unsigned HOST_WIDE_INT offset1;
+
+ if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
+ str_bitsize = BITS_PER_WORD;
+
+ scalar_int_mode best_mode;
+ if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
+ MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
+ return false;
+ str_mode = best_mode;
+ str_bitsize = GET_MODE_BITSIZE (best_mode);
+
+ offset1 = bitpos;
+ bitpos %= str_bitsize;
+ offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
+ str_rtx = adjust_address (str_rtx, str_mode, offset1);
+ }
+ else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
+ return false;
+
+ /* If the bit field covers the whole REG/MEM, store_field
+ will likely generate better code. */
+ if (bitsize >= str_bitsize)
+ return false;
+
+ /* We can't handle fields split across multiple entities. */
+ if (bitpos + bitsize > str_bitsize)
+ return false;
+
+ if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ bitpos = str_bitsize - bitpos - bitsize;
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* For now, just optimize the case of the topmost bitfield
+ where we don't need to do any masking and also
+ 1 bit bitfields where xor can be used.
+ We might win by one instruction for the other bitfields
+ too if insv/extv instructions aren't used, so that
+ can be added later. */
+ if ((reverse || bitpos + bitsize != str_bitsize)
+ && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
+ break;
+
+ value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
+ value = convert_modes (str_mode,
+ TYPE_MODE (TREE_TYPE (op1)), value,
+ TYPE_UNSIGNED (TREE_TYPE (op1)));
+
+ /* We may be accessing data outside the field, which means
+ we can alias adjacent data. */
+ if (MEM_P (str_rtx))
+ {
+ str_rtx = shallow_copy_rtx (str_rtx);
+ set_mem_alias_set (str_rtx, 0);
+ set_mem_expr (str_rtx, 0);
+ }
+
+ if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
+ {
+ value = expand_and (str_mode, value, const1_rtx, NULL);
+ binop = xor_optab;
+ }
+ else
+ binop = code == PLUS_EXPR ? add_optab : sub_optab;
+
+ value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
+ if (reverse)
+ value = flip_storage_order (str_mode, value);
+ result = expand_binop (str_mode, binop, str_rtx,
+ value, str_rtx, 1, OPTAB_WIDEN);
+ if (result != str_rtx)
+ emit_move_insn (str_rtx, result);
+ return true;
+
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ if (TREE_CODE (op1) != INTEGER_CST)
+ break;
+ value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
+ value = convert_modes (str_mode,
+ TYPE_MODE (TREE_TYPE (op1)), value,
+ TYPE_UNSIGNED (TREE_TYPE (op1)));
+
+ /* We may be accessing data outside the field, which means
+ we can alias adjacent data. */
+ if (MEM_P (str_rtx))
+ {
+ str_rtx = shallow_copy_rtx (str_rtx);
+ set_mem_alias_set (str_rtx, 0);
+ set_mem_expr (str_rtx, 0);
+ }
+
+ binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
+ if (bitpos + bitsize != str_bitsize)
+ {
+ rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
+ str_mode);
+ value = expand_and (str_mode, value, mask, NULL_RTX);
+ }
+ value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
+ if (reverse)
+ value = flip_storage_order (str_mode, value);
+ result = expand_binop (str_mode, binop, str_rtx,
+ value, str_rtx, 1, OPTAB_WIDEN);
+ if (result != str_rtx)
+ emit_move_insn (str_rtx, result);
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* In the C++ memory model, consecutive bit fields in a structure are
+ considered one memory location.
+
+ Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
+ returns the bit range of consecutive bits in which this COMPONENT_REF
+ belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
+ and *OFFSET may be adjusted in the process.
+
+ If the access does not need to be restricted, 0 is returned in both
+ *BITSTART and *BITEND. */
+
+void
+get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
+ poly_int64_pod *bitpos, tree *offset)
+{
+ poly_int64 bitoffset;
+ tree field, repr;
+
+ gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
+
+ field = TREE_OPERAND (exp, 1);
+ repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
+ /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
+ need to limit the range we can access. */
+ if (!repr)
+ {
+ *bitstart = *bitend = 0;
+ return;
+ }
+
+ /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
+ part of a larger bit field, then the representative does not serve any
+ useful purpose. This can occur in Ada. */
+ if (handled_component_p (TREE_OPERAND (exp, 0)))
+ {
+ machine_mode rmode;
+ poly_int64 rbitsize, rbitpos;
+ tree roffset;
+ int unsignedp, reversep, volatilep = 0;
+ get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
+ &roffset, &rmode, &unsignedp, &reversep,
+ &volatilep);
+ if (!multiple_p (rbitpos, BITS_PER_UNIT))
+ {
+ *bitstart = *bitend = 0;
+ return;
+ }
+ }
+
+ /* Compute the adjustment to bitpos from the offset of the field
+ relative to the representative. DECL_FIELD_OFFSET of field and
+ repr are the same by construction if they are not constants,
+ see finish_bitfield_layout. */
+ poly_uint64 field_offset, repr_offset;
+ if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
+ && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
+ bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
+ else
+ bitoffset = 0;
+ bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
+ - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
+
+ /* If the adjustment is larger than bitpos, we would have a negative bit
+ position for the lower bound and this may wreak havoc later. Adjust
+ offset and bitpos to make the lower bound non-negative in that case. */
+ if (maybe_gt (bitoffset, *bitpos))
+ {
+ poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
+ poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
+
+ *bitpos += adjust_bits;
+ if (*offset == NULL_TREE)
+ *offset = size_int (-adjust_bytes);
+ else
+ *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
+ *bitstart = 0;
+ }
+ else
+ *bitstart = *bitpos - bitoffset;
+
+ *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
+}
+
+/* Returns true if BASE is a DECL that does not reside in memory and
+ has non-BLKmode. DECL_RTL must not be a MEM; if
+ DECL_RTL was not set yet, return false. */
+
+bool
+non_mem_decl_p (tree base)
+{
+ if (!DECL_P (base)
+ || TREE_ADDRESSABLE (base)
+ || DECL_MODE (base) == BLKmode)
+ return false;
+
+ if (!DECL_RTL_SET_P (base))
+ return false;
+
+ return (!MEM_P (DECL_RTL (base)));
+}
+
+/* Returns true if REF refers to an object that does not
+ reside in memory and has non-BLKmode. */
+
+bool
+mem_ref_refers_to_non_mem_p (tree ref)
+{
+ tree base;
+
+ if (TREE_CODE (ref) == MEM_REF
+ || TREE_CODE (ref) == TARGET_MEM_REF)
+ {
+ tree addr = TREE_OPERAND (ref, 0);
+
+ if (TREE_CODE (addr) != ADDR_EXPR)
+ return false;
+
+ base = TREE_OPERAND (addr, 0);
+ }
+ else
+ base = ref;
+
+ return non_mem_decl_p (base);
+}
+
+/* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
+ is true, try generating a nontemporal store. */
+
+void
+expand_assignment (tree to, tree from, bool nontemporal)
+{
+ rtx to_rtx = 0;
+ rtx result;
+ machine_mode mode;
+ unsigned int align;
+ enum insn_code icode;
+
+ /* Don't crash if the lhs of the assignment was erroneous. */
+ if (TREE_CODE (to) == ERROR_MARK)
+ {
+ expand_normal (from);
+ return;
+ }
+
+ /* Optimize away no-op moves without side-effects. */
+ if (operand_equal_p (to, from, 0))
+ return;
+
+ /* Handle misaligned stores. */
+ mode = TYPE_MODE (TREE_TYPE (to));
+ if ((TREE_CODE (to) == MEM_REF
+ || TREE_CODE (to) == TARGET_MEM_REF
+ || DECL_P (to))
+ && mode != BLKmode
+ && !mem_ref_refers_to_non_mem_p (to)
+ && ((align = get_object_alignment (to))
+ < GET_MODE_ALIGNMENT (mode))
+ && (((icode = optab_handler (movmisalign_optab, mode))
+ != CODE_FOR_nothing)
+ || targetm.slow_unaligned_access (mode, align)))
+ {
+ rtx reg, mem;
+
+ reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
+ /* Handle PARALLEL. */
+ reg = maybe_emit_group_store (reg, TREE_TYPE (from));
+ reg = force_not_mem (reg);
+ mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
+ reg = flip_storage_order (mode, reg);
+
+ if (icode != CODE_FOR_nothing)
+ {
+ class expand_operand ops[2];
+
+ create_fixed_operand (&ops[0], mem);
+ create_input_operand (&ops[1], reg, mode);
+ /* The movmisalign<mode> pattern cannot fail, else the assignment
+ would silently be omitted. */
+ expand_insn (icode, 2, ops);
+ }
+ else
+ store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
+ false);
+ return;
+ }
+
+ /* Assignment of a structure component needs special treatment
+ if the structure component's rtx is not simply a MEM.
+ Assignment of an array element at a constant index, and assignment of
+ an array element in an unaligned packed structure field, has the same
+ problem. Same for (partially) storing into a non-memory object. */
+ if (handled_component_p (to)
+ || (TREE_CODE (to) == MEM_REF
+ && (REF_REVERSE_STORAGE_ORDER (to)
+ || mem_ref_refers_to_non_mem_p (to)))
+ || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
+ {
+ machine_mode mode1;
+ poly_int64 bitsize, bitpos;
+ poly_uint64 bitregion_start = 0;
+ poly_uint64 bitregion_end = 0;
+ tree offset;
+ int unsignedp, reversep, volatilep = 0;
+ tree tem;
+
+ push_temp_slots ();
+ tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
+ &unsignedp, &reversep, &volatilep);
+
+ /* Make sure bitpos is not negative, it can wreak havoc later. */
+ if (maybe_lt (bitpos, 0))
+ {
+ gcc_assert (offset == NULL_TREE);
+ offset = size_int (bits_to_bytes_round_down (bitpos));
+ bitpos = num_trailing_bits (bitpos);
+ }
+
+ if (TREE_CODE (to) == COMPONENT_REF
+ && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
+ get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
+ /* The C++ memory model naturally applies to byte-aligned fields.
+ However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
+ BITSIZE are not byte-aligned, there is no need to limit the range
+ we can access. This can occur with packed structures in Ada. */
+ else if (maybe_gt (bitsize, 0)
+ && multiple_p (bitsize, BITS_PER_UNIT)
+ && multiple_p (bitpos, BITS_PER_UNIT))
+ {
+ bitregion_start = bitpos;
+ bitregion_end = bitpos + bitsize - 1;
+ }
+
+ to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ /* If the field has a mode, we want to access it in the
+ field's mode, not the computed mode.
+ If a MEM has VOIDmode (external with incomplete type),
+ use BLKmode for it instead. */
+ if (MEM_P (to_rtx))
+ {
+ if (mode1 != VOIDmode)
+ to_rtx = adjust_address (to_rtx, mode1, 0);
+ else if (GET_MODE (to_rtx) == VOIDmode)
+ to_rtx = adjust_address (to_rtx, BLKmode, 0);
+ }
+
+ if (offset != 0)
+ {
+ machine_mode address_mode;
+ rtx offset_rtx;
+
+ if (!MEM_P (to_rtx))
+ {
+ /* We can get constant negative offsets into arrays with broken
+ user code. Translate this to a trap instead of ICEing. */
+ gcc_assert (TREE_CODE (offset) == INTEGER_CST);
+ expand_builtin_trap ();
+ to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
+ }
+
+ offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
+ address_mode = get_address_mode (to_rtx);
+ if (GET_MODE (offset_rtx) != address_mode)
+ {
+ /* We cannot be sure that the RTL in offset_rtx is valid outside
+ of a memory address context, so force it into a register
+ before attempting to convert it to the desired mode. */
+ offset_rtx = force_operand (offset_rtx, NULL_RTX);
+ offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
+ }
+
+ /* If we have an expression in OFFSET_RTX and a non-zero
+ byte offset in BITPOS, adding the byte offset before the
+ OFFSET_RTX results in better intermediate code, which makes
+ later rtl optimization passes perform better.
+
+ We prefer intermediate code like this:
+
+ r124:DI=r123:DI+0x18
+ [r124:DI]=r121:DI
+
+ ... instead of ...
+
+ r124:DI=r123:DI+0x10
+ [r124:DI+0x8]=r121:DI
+
+ This is only done for aligned data values, as these can
+ be expected to result in single move instructions. */
+ poly_int64 bytepos;
+ if (mode1 != VOIDmode
+ && maybe_ne (bitpos, 0)
+ && maybe_gt (bitsize, 0)
+ && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
+ && multiple_p (bitpos, bitsize)
+ && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
+ && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
+ {
+ to_rtx = adjust_address (to_rtx, mode1, bytepos);
+ bitregion_start = 0;
+ if (known_ge (bitregion_end, poly_uint64 (bitpos)))
+ bitregion_end -= bitpos;
+ bitpos = 0;
+ }
+
+ to_rtx = offset_address (to_rtx, offset_rtx,
+ highest_pow2_factor_for_target (to,
+ offset));
+ }
+
+ /* No action is needed if the target is not a memory and the field
+ lies completely outside that target. This can occur if the source
+ code contains an out-of-bounds access to a small array. */
+ if (!MEM_P (to_rtx)
+ && GET_MODE (to_rtx) != BLKmode
+ && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
+ {
+ expand_normal (from);
+ result = NULL;
+ }
+ /* Handle expand_expr of a complex value returning a CONCAT. */
+ else if (GET_CODE (to_rtx) == CONCAT)
+ {
+ machine_mode to_mode = GET_MODE (to_rtx);
+ gcc_checking_assert (COMPLEX_MODE_P (to_mode));
+ poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
+ unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
+ if (TYPE_MODE (TREE_TYPE (from)) == to_mode
+ && known_eq (bitpos, 0)
+ && known_eq (bitsize, mode_bitsize))
+ result = store_expr (from, to_rtx, false, nontemporal, reversep);
+ else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
+ && known_eq (bitsize, inner_bitsize)
+ && (known_eq (bitpos, 0)
+ || known_eq (bitpos, inner_bitsize)))
+ result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
+ false, nontemporal, reversep);
+ else if (known_le (bitpos + bitsize, inner_bitsize))
+ result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ else if (known_ge (bitpos, inner_bitsize))
+ result = store_field (XEXP (to_rtx, 1), bitsize,
+ bitpos - inner_bitsize,
+ bitregion_start, bitregion_end,
+ mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
+ {
+ result = expand_normal (from);
+ if (GET_CODE (result) == CONCAT)
+ {
+ to_mode = GET_MODE_INNER (to_mode);
+ machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
+ rtx from_real
+ = simplify_gen_subreg (to_mode, XEXP (result, 0),
+ from_mode, 0);
+ rtx from_imag
+ = simplify_gen_subreg (to_mode, XEXP (result, 1),
+ from_mode, 0);
+ if (!from_real || !from_imag)
+ goto concat_store_slow;
+ emit_move_insn (XEXP (to_rtx, 0), from_real);
+ emit_move_insn (XEXP (to_rtx, 1), from_imag);
+ }
+ else
+ {
+ machine_mode from_mode
+ = GET_MODE (result) == VOIDmode
+ ? TYPE_MODE (TREE_TYPE (from))
+ : GET_MODE (result);
+ rtx from_rtx;
+ if (MEM_P (result))
+ from_rtx = change_address (result, to_mode, NULL_RTX);
+ else
+ from_rtx
+ = simplify_gen_subreg (to_mode, result, from_mode, 0);
+ if (from_rtx)
+ {
+ emit_move_insn (XEXP (to_rtx, 0),
+ read_complex_part (from_rtx, false));
+ emit_move_insn (XEXP (to_rtx, 1),
+ read_complex_part (from_rtx, true));
+ }
+ else
+ {
+ to_mode = GET_MODE_INNER (to_mode);
+ rtx from_real
+ = simplify_gen_subreg (to_mode, result, from_mode, 0);
+ rtx from_imag
+ = simplify_gen_subreg (to_mode, result, from_mode,
+ GET_MODE_SIZE (to_mode));
+ if (!from_real || !from_imag)
+ goto concat_store_slow;
+ emit_move_insn (XEXP (to_rtx, 0), from_real);
+ emit_move_insn (XEXP (to_rtx, 1), from_imag);
+ }
+ }
+ }
+ else
+ {
+ concat_store_slow:;
+ rtx temp = assign_stack_temp (GET_MODE (to_rtx),
+ GET_MODE_SIZE (GET_MODE (to_rtx)));
+ write_complex_part (temp, XEXP (to_rtx, 0), false);
+ write_complex_part (temp, XEXP (to_rtx, 1), true);
+ result = store_field (temp, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
+ emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
+ }
+ }
+ /* For calls to functions returning variable length structures, if TO_RTX
+ is not a MEM, go through a MEM because we must not create temporaries
+ of the VLA type. */
+ else if (!MEM_P (to_rtx)
+ && TREE_CODE (from) == CALL_EXPR
+ && COMPLETE_TYPE_P (TREE_TYPE (from))
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
+ {
+ rtx temp = assign_stack_temp (GET_MODE (to_rtx),
+ GET_MODE_SIZE (GET_MODE (to_rtx)));
+ result = store_field (temp, bitsize, bitpos, bitregion_start,
+ bitregion_end, mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ emit_move_insn (to_rtx, temp);
+ }
+ else
+ {
+ if (MEM_P (to_rtx))
+ {
+ /* If the field is at offset zero, we could have been given the
+ DECL_RTX of the parent struct. Don't munge it. */
+ to_rtx = shallow_copy_rtx (to_rtx);
+ set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
+ if (volatilep)
+ MEM_VOLATILE_P (to_rtx) = 1;
+ }
+
+ gcc_checking_assert (known_ge (bitpos, 0));
+ if (optimize_bitfield_assignment_op (bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode1, to_rtx, to, from,
+ reversep))
+ result = NULL;
+ else if (SUBREG_P (to_rtx)
+ && SUBREG_PROMOTED_VAR_P (to_rtx))
+ {
+ /* If to_rtx is a promoted subreg, we need to zero or sign
+ extend the value afterwards. */
+ if (TREE_CODE (to) == MEM_REF
+ && TYPE_MODE (TREE_TYPE (from)) != BLKmode
+ && !REF_REVERSE_STORAGE_ORDER (to)
+ && known_eq (bitpos, 0)
+ && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
+ result = store_expr (from, to_rtx, 0, nontemporal, false);
+ else
+ {
+ rtx to_rtx1
+ = lowpart_subreg (subreg_unpromoted_mode (to_rtx),
+ SUBREG_REG (to_rtx),
+ subreg_promoted_mode (to_rtx));
+ result = store_field (to_rtx1, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ convert_move (SUBREG_REG (to_rtx), to_rtx1,
+ SUBREG_PROMOTED_SIGN (to_rtx));
+ }
+ }
+ else
+ result = store_field (to_rtx, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode1, from, get_alias_set (to),
+ nontemporal, reversep);
+ }
+
+ if (result)
+ preserve_temp_slots (result);
+ pop_temp_slots ();
+ return;
+ }
+
+ /* If the rhs is a function call and its value is not an aggregate,
+ call the function before we start to compute the lhs.
+ This is needed for correct code for cases such as
+ val = setjmp (buf) on machines where reference to val
+ requires loading up part of an address in a separate insn.
+
+ Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
+ since it might be a promoted variable where the zero- or sign- extension
+ needs to be done. Handling this in the normal way is safe because no
+ computation is done before the call. The same is true for SSA names. */
+ if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
+ && COMPLETE_TYPE_P (TREE_TYPE (from))
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
+ && ! (((VAR_P (to)
+ || TREE_CODE (to) == PARM_DECL
+ || TREE_CODE (to) == RESULT_DECL)
+ && REG_P (DECL_RTL (to)))
+ || TREE_CODE (to) == SSA_NAME))
+ {
+ rtx value;
+
+ push_temp_slots ();
+ value = expand_normal (from);
+
+ if (to_rtx == 0)
+ to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ /* Handle calls that return values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ if (GET_CODE (to_rtx) == PARALLEL)
+ {
+ if (GET_CODE (value) == PARALLEL)
+ emit_group_move (to_rtx, value);
+ else
+ emit_group_load (to_rtx, value, TREE_TYPE (from),
+ int_size_in_bytes (TREE_TYPE (from)));
+ }
+ else if (GET_CODE (value) == PARALLEL)
+ emit_group_store (to_rtx, value, TREE_TYPE (from),
+ int_size_in_bytes (TREE_TYPE (from)));
+ else if (GET_MODE (to_rtx) == BLKmode)
+ {
+ /* Handle calls that return BLKmode values in registers. */
+ if (REG_P (value))
+ copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
+ else
+ emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
+ }
+ else
+ {
+ if (POINTER_TYPE_P (TREE_TYPE (to)))
+ value = convert_memory_address_addr_space
+ (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
+ TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
+
+ emit_move_insn (to_rtx, value);
+ }
+
+ preserve_temp_slots (to_rtx);
+ pop_temp_slots ();
+ return;
+ }
+
+ /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
+ to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ /* Don't move directly into a return register. */
+ if (TREE_CODE (to) == RESULT_DECL
+ && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
+ {
+ rtx temp;
+
+ push_temp_slots ();
+
+ /* If the source is itself a return value, it still is in a pseudo at
+ this point so we can move it back to the return register directly. */
+ if (REG_P (to_rtx)
+ && TYPE_MODE (TREE_TYPE (from)) == BLKmode
+ && TREE_CODE (from) != CALL_EXPR)
+ temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
+ else
+ temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
+
+ /* Handle calls that return values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ if (GET_CODE (to_rtx) == PARALLEL)
+ {
+ if (GET_CODE (temp) == PARALLEL)
+ emit_group_move (to_rtx, temp);
+ else
+ emit_group_load (to_rtx, temp, TREE_TYPE (from),
+ int_size_in_bytes (TREE_TYPE (from)));
+ }
+ else if (temp)
+ emit_move_insn (to_rtx, temp);
+
+ preserve_temp_slots (to_rtx);
+ pop_temp_slots ();
+ return;
+ }
+
+ /* In case we are returning the contents of an object which overlaps
+ the place the value is being stored, use a safe function when copying
+ a value through a pointer into a structure value return block. */
+ if (TREE_CODE (to) == RESULT_DECL
+ && TREE_CODE (from) == INDIRECT_REF
+ && ADDR_SPACE_GENERIC_P
+ (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
+ && refs_may_alias_p (to, from)
+ && cfun->returns_struct
+ && !cfun->returns_pcc_struct)
+ {
+ rtx from_rtx, size;
+
+ push_temp_slots ();
+ size = expr_size (from);
+ from_rtx = expand_normal (from);
+
+ emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
+
+ preserve_temp_slots (to_rtx);
+ pop_temp_slots ();
+ return;
+ }
+
+ /* Compute FROM and store the value in the rtx we got. */
+
+ push_temp_slots ();
+ result = store_expr (from, to_rtx, 0, nontemporal, false);
+ preserve_temp_slots (result);
+ pop_temp_slots ();
+ return;
+}
+
+/* Emits nontemporal store insn that moves FROM to TO. Returns true if this
+ succeeded, false otherwise. */
+
+bool
+emit_storent_insn (rtx to, rtx from)
+{
+ class expand_operand ops[2];
+ machine_mode mode = GET_MODE (to);
+ enum insn_code code = optab_handler (storent_optab, mode);
+
+ if (code == CODE_FOR_nothing)
+ return false;
+
+ create_fixed_operand (&ops[0], to);
+ create_input_operand (&ops[1], from, mode);
+ return maybe_expand_insn (code, 2, ops);
+}
+
+/* Helper function for store_expr storing of STRING_CST. */
+
+static rtx
+string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
+ fixed_size_mode mode)
+{
+ tree str = (tree) data;
+
+ gcc_assert (offset >= 0);
+ if (offset >= TREE_STRING_LENGTH (str))
+ return const0_rtx;
+
+ if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
+ > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
+ {
+ char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
+ size_t l = TREE_STRING_LENGTH (str) - offset;
+ memcpy (p, TREE_STRING_POINTER (str) + offset, l);
+ memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
+ return c_readstr (p, as_a <scalar_int_mode> (mode), false);
+ }
+
+ /* The by-pieces infrastructure does not try to pick a vector mode
+ for storing STRING_CST. */
+ return c_readstr (TREE_STRING_POINTER (str) + offset,
+ as_a <scalar_int_mode> (mode), false);
+}
+
+/* Generate code for computing expression EXP,
+ and storing the value into TARGET.
+
+ If the mode is BLKmode then we may return TARGET itself.
+ It turns out that in BLKmode it doesn't cause a problem.
+ because C has no operators that could combine two different
+ assignments into the same BLKmode object with different values
+ with no sequence point. Will other languages need this to
+ be more thorough?
+
+ If CALL_PARAM_P is nonzero, this is a store into a call param on the
+ stack, and block moves may need to be treated specially.
+
+ If NONTEMPORAL is true, try using a nontemporal store instruction.
+
+ If REVERSE is true, the store is to be done in reverse order. */
+
+rtx
+store_expr (tree exp, rtx target, int call_param_p,
+ bool nontemporal, bool reverse)
+{
+ rtx temp;
+ rtx alt_rtl = NULL_RTX;
+ location_t loc = curr_insn_location ();
+ bool shortened_string_cst = false;
+
+ if (VOID_TYPE_P (TREE_TYPE (exp)))
+ {
+ /* C++ can generate ?: expressions with a throw expression in one
+ branch and an rvalue in the other. Here, we resolve attempts to
+ store the throw expression's nonexistent result. */
+ gcc_assert (!call_param_p);
+ expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ return NULL_RTX;
+ }
+ if (TREE_CODE (exp) == COMPOUND_EXPR)
+ {
+ /* Perform first part of compound expression, then assign from second
+ part. */
+ expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
+ call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
+ return store_expr (TREE_OPERAND (exp, 1), target,
+ call_param_p, nontemporal, reverse);
+ }
+ else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
+ {
+ /* For conditional expression, get safe form of the target. Then
+ test the condition, doing the appropriate assignment on either
+ side. This avoids the creation of unnecessary temporaries.
+ For non-BLKmode, it is more efficient not to do this. */
+
+ rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
+
+ do_pending_stack_adjust ();
+ NO_DEFER_POP;
+ jumpifnot (TREE_OPERAND (exp, 0), lab1,
+ profile_probability::uninitialized ());
+ store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
+ nontemporal, reverse);
+ emit_jump_insn (targetm.gen_jump (lab2));
+ emit_barrier ();
+ emit_label (lab1);
+ store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
+ nontemporal, reverse);
+ emit_label (lab2);
+ OK_DEFER_POP;
+
+ return NULL_RTX;
+ }
+ else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
+ /* If this is a scalar in a register that is stored in a wider mode
+ than the declared mode, compute the result into its declared mode
+ and then convert to the wider mode. Our value is the computed
+ expression. */
+ {
+ rtx inner_target = 0;
+ scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
+ scalar_int_mode inner_mode = subreg_promoted_mode (target);
+
+ /* We can do the conversion inside EXP, which will often result
+ in some optimizations. Do the conversion in two steps: first
+ change the signedness, if needed, then the extend. But don't
+ do this if the type of EXP is a subtype of something else
+ since then the conversion might involve more than just
+ converting modes. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
+ && TREE_TYPE (TREE_TYPE (exp)) == 0
+ && GET_MODE_PRECISION (outer_mode)
+ == TYPE_PRECISION (TREE_TYPE (exp)))
+ {
+ if (!SUBREG_CHECK_PROMOTED_SIGN (target,
+ TYPE_UNSIGNED (TREE_TYPE (exp))))
+ {
+ /* Some types, e.g. Fortran's logical*4, won't have a signed
+ version, so use the mode instead. */
+ tree ntype
+ = (signed_or_unsigned_type_for
+ (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
+ if (ntype == NULL)
+ ntype = lang_hooks.types.type_for_mode
+ (TYPE_MODE (TREE_TYPE (exp)),
+ SUBREG_PROMOTED_SIGN (target));
+
+ exp = fold_convert_loc (loc, ntype, exp);
+ }
+
+ exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
+ (inner_mode, SUBREG_PROMOTED_SIGN (target)),
+ exp);
+
+ inner_target = SUBREG_REG (target);
+ }
+
+ temp = expand_expr (exp, inner_target, VOIDmode,
+ call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
+
+
+ /* If TEMP is a VOIDmode constant, use convert_modes to make
+ sure that we properly convert it. */
+ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
+ {
+ temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
+ temp, SUBREG_PROMOTED_SIGN (target));
+ temp = convert_modes (inner_mode, outer_mode, temp,
+ SUBREG_PROMOTED_SIGN (target));
+ }
+
+ convert_move (SUBREG_REG (target), temp,
+ SUBREG_PROMOTED_SIGN (target));
+
+ return NULL_RTX;
+ }
+ else if ((TREE_CODE (exp) == STRING_CST
+ || (TREE_CODE (exp) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
+ == STRING_CST
+ && integer_zerop (TREE_OPERAND (exp, 1))))
+ && !nontemporal && !call_param_p
+ && MEM_P (target))
+ {
+ /* Optimize initialization of an array with a STRING_CST. */
+ HOST_WIDE_INT exp_len, str_copy_len;
+ rtx dest_mem;
+ tree str = TREE_CODE (exp) == STRING_CST
+ ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+
+ exp_len = int_expr_size (exp);
+ if (exp_len <= 0)
+ goto normal_expr;
+
+ if (TREE_STRING_LENGTH (str) <= 0)
+ goto normal_expr;
+
+ if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
+ MEM_ALIGN (target), false))
+ {
+ store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
+ MEM_ALIGN (target), false, RETURN_BEGIN);
+ return NULL_RTX;
+ }
+
+ str_copy_len = TREE_STRING_LENGTH (str);
+ if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
+ {
+ str_copy_len += STORE_MAX_PIECES - 1;
+ str_copy_len &= ~(STORE_MAX_PIECES - 1);
+ }
+ if (str_copy_len >= exp_len)
+ goto normal_expr;
+
+ if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
+ (void *) str, MEM_ALIGN (target), false))
+ goto normal_expr;
+
+ dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
+ (void *) str, MEM_ALIGN (target), false,
+ RETURN_END);
+ clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
+ exp_len - str_copy_len),
+ GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
+ return NULL_RTX;
+ }
+ else
+ {
+ rtx tmp_target;
+
+ normal_expr:
+ /* If we want to use a nontemporal or a reverse order store, force the
+ value into a register first. */
+ tmp_target = nontemporal || reverse ? NULL_RTX : target;
+ tree rexp = exp;
+ if (TREE_CODE (exp) == STRING_CST
+ && tmp_target == target
+ && GET_MODE (target) == BLKmode
+ && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
+ {
+ rtx size = expr_size (exp);
+ if (CONST_INT_P (size)
+ && size != const0_rtx
+ && (UINTVAL (size)
+ > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
+ {
+ /* If the STRING_CST has much larger array type than
+ TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
+ it into the rodata section as the code later on will use
+ memset zero for the remainder anyway. See PR95052. */
+ tmp_target = NULL_RTX;
+ rexp = copy_node (exp);
+ tree index
+ = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
+ TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
+ index);
+ shortened_string_cst = true;
+ }
+ }
+ temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
+ (call_param_p
+ ? EXPAND_STACK_PARM : EXPAND_NORMAL),
+ &alt_rtl, false);
+ if (shortened_string_cst)
+ {
+ gcc_assert (MEM_P (temp));
+ temp = change_address (temp, BLKmode, NULL_RTX);
+ }
+ }
+
+ /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
+ the same as that of TARGET, adjust the constant. This is needed, for
+ example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
+ only a word-sized value. */
+ if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
+ && TREE_CODE (exp) != ERROR_MARK
+ && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
+ {
+ gcc_assert (!shortened_string_cst);
+ if (GET_MODE_CLASS (GET_MODE (target))
+ != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
+ && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
+ GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
+ {
+ rtx t = simplify_gen_subreg (GET_MODE (target), temp,
+ TYPE_MODE (TREE_TYPE (exp)), 0);
+ if (t)
+ temp = t;
+ }
+ if (GET_MODE (temp) == VOIDmode)
+ temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
+ temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
+ }
+
+ /* If value was not generated in the target, store it there.
+ Convert the value to TARGET's type first if necessary and emit the
+ pending incrementations that have been queued when expanding EXP.
+ Note that we cannot emit the whole queue blindly because this will
+ effectively disable the POST_INC optimization later.
+
+ If TEMP and TARGET compare equal according to rtx_equal_p, but
+ one or both of them are volatile memory refs, we have to distinguish
+ two cases:
+ - expand_expr has used TARGET. In this case, we must not generate
+ another copy. This can be detected by TARGET being equal according
+ to == .
+ - expand_expr has not used TARGET - that means that the source just
+ happens to have the same RTX form. Since temp will have been created
+ by expand_expr, it will compare unequal according to == .
+ We must generate a copy in this case, to reach the correct number
+ of volatile memory references. */
+
+ if ((! rtx_equal_p (temp, target)
+ || (temp != target && (side_effects_p (temp)
+ || side_effects_p (target))))
+ && TREE_CODE (exp) != ERROR_MARK
+ /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
+ but TARGET is not valid memory reference, TEMP will differ
+ from TARGET although it is really the same location. */
+ && !(alt_rtl
+ && rtx_equal_p (alt_rtl, target)
+ && !side_effects_p (alt_rtl)
+ && !side_effects_p (target))
+ /* If there's nothing to copy, don't bother. Don't call
+ expr_size unless necessary, because some front-ends (C++)
+ expr_size-hook must not be given objects that are not
+ supposed to be bit-copied or bit-initialized. */
+ && expr_size (exp) != const0_rtx)
+ {
+ if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
+ {
+ gcc_assert (!shortened_string_cst);
+ if (GET_MODE (target) == BLKmode)
+ {
+ /* Handle calls that return BLKmode values in registers. */
+ if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
+ copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
+ else
+ store_bit_field (target,
+ rtx_to_poly_int64 (expr_size (exp))
+ * BITS_PER_UNIT,
+ 0, 0, 0, GET_MODE (temp), temp, reverse);
+ }
+ else
+ convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
+ }
+
+ else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
+ {
+ /* Handle copying a string constant into an array. The string
+ constant may be shorter than the array. So copy just the string's
+ actual length, and clear the rest. First get the size of the data
+ type of the string, which is actually the size of the target. */
+ rtx size = expr_size (exp);
+
+ if (CONST_INT_P (size)
+ && INTVAL (size) < TREE_STRING_LENGTH (exp))
+ emit_block_move (target, temp, size,
+ (call_param_p
+ ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+ else
+ {
+ machine_mode pointer_mode
+ = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
+ machine_mode address_mode = get_address_mode (target);
+
+ /* Compute the size of the data to copy from the string. */
+ tree copy_size
+ = size_binop_loc (loc, MIN_EXPR,
+ make_tree (sizetype, size),
+ size_int (TREE_STRING_LENGTH (exp)));
+ rtx copy_size_rtx
+ = expand_expr (copy_size, NULL_RTX, VOIDmode,
+ (call_param_p
+ ? EXPAND_STACK_PARM : EXPAND_NORMAL));
+ rtx_code_label *label = 0;
+
+ /* Copy that much. */
+ copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
+ TYPE_UNSIGNED (sizetype));
+ emit_block_move (target, temp, copy_size_rtx,
+ (call_param_p
+ ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+
+ /* Figure out how much is left in TARGET that we have to clear.
+ Do all calculations in pointer_mode. */
+ poly_int64 const_copy_size;
+ if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
+ {
+ size = plus_constant (address_mode, size, -const_copy_size);
+ target = adjust_address (target, BLKmode, const_copy_size);
+ }
+ else
+ {
+ size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
+ copy_size_rtx, NULL_RTX, 0,
+ OPTAB_LIB_WIDEN);
+
+ if (GET_MODE (copy_size_rtx) != address_mode)
+ copy_size_rtx = convert_to_mode (address_mode,
+ copy_size_rtx,
+ TYPE_UNSIGNED (sizetype));
+
+ target = offset_address (target, copy_size_rtx,
+ highest_pow2_factor (copy_size));
+ label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
+ GET_MODE (size), 0, label);
+ }
+
+ if (size != const0_rtx)
+ clear_storage (target, size, BLOCK_OP_NORMAL);
+
+ if (label)
+ emit_label (label);
+ }
+ }
+ else if (shortened_string_cst)
+ gcc_unreachable ();
+ /* Handle calls that return values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ else if (GET_CODE (target) == PARALLEL)
+ {
+ if (GET_CODE (temp) == PARALLEL)
+ emit_group_move (target, temp);
+ else
+ emit_group_load (target, temp, TREE_TYPE (exp),
+ int_size_in_bytes (TREE_TYPE (exp)));
+ }
+ else if (GET_CODE (temp) == PARALLEL)
+ emit_group_store (target, temp, TREE_TYPE (exp),
+ int_size_in_bytes (TREE_TYPE (exp)));
+ else if (GET_MODE (temp) == BLKmode)
+ emit_block_move (target, temp, expr_size (exp),
+ (call_param_p
+ ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+ /* If we emit a nontemporal store, there is nothing else to do. */
+ else if (nontemporal && emit_storent_insn (target, temp))
+ ;
+ else
+ {
+ if (reverse)
+ temp = flip_storage_order (GET_MODE (target), temp);
+ temp = force_operand (temp, target);
+ if (temp != target)
+ emit_move_insn (target, temp);
+ }
+ }
+ else
+ gcc_assert (!shortened_string_cst);
+
+ return NULL_RTX;
+}
+
+/* Return true if field F of structure TYPE is a flexible array. */
+
+static bool
+flexible_array_member_p (const_tree f, const_tree type)
+{
+ const_tree tf;
+
+ tf = TREE_TYPE (f);
+ return (DECL_CHAIN (f) == NULL
+ && TREE_CODE (tf) == ARRAY_TYPE
+ && TYPE_DOMAIN (tf)
+ && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
+ && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
+ && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
+ && int_size_in_bytes (type) >= 0);
+}
+
+/* If FOR_CTOR_P, return the number of top-level elements that a constructor
+ must have in order for it to completely initialize a value of type TYPE.
+ Return -1 if the number isn't known.
+
+ If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
+
+static HOST_WIDE_INT
+count_type_elements (const_tree type, bool for_ctor_p)
+{
+ switch (TREE_CODE (type))
+ {
+ case ARRAY_TYPE:
+ {
+ tree nelts;
+
+ nelts = array_type_nelts (type);
+ if (nelts && tree_fits_uhwi_p (nelts))
+ {
+ unsigned HOST_WIDE_INT n;
+
+ n = tree_to_uhwi (nelts) + 1;
+ if (n == 0 || for_ctor_p)
+ return n;
+ else
+ return n * count_type_elements (TREE_TYPE (type), false);
+ }
+ return for_ctor_p ? -1 : 1;
+ }
+
+ case RECORD_TYPE:
+ {
+ unsigned HOST_WIDE_INT n;
+ tree f;
+
+ n = 0;
+ for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
+ if (TREE_CODE (f) == FIELD_DECL)
+ {
+ if (!for_ctor_p)
+ n += count_type_elements (TREE_TYPE (f), false);
+ else if (!flexible_array_member_p (f, type))
+ /* Don't count flexible arrays, which are not supposed
+ to be initialized. */
+ n += 1;
+ }
+
+ return n;
+ }
+
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree f;
+ HOST_WIDE_INT n, m;
+
+ gcc_assert (!for_ctor_p);
+ /* Estimate the number of scalars in each field and pick the
+ maximum. Other estimates would do instead; the idea is simply
+ to make sure that the estimate is not sensitive to the ordering
+ of the fields. */
+ n = 1;
+ for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
+ if (TREE_CODE (f) == FIELD_DECL)
+ {
+ m = count_type_elements (TREE_TYPE (f), false);
+ /* If the field doesn't span the whole union, add an extra
+ scalar for the rest. */
+ if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
+ TYPE_SIZE (type)) != 1)
+ m++;
+ if (n < m)
+ n = m;
+ }
+ return n;
+ }
+
+ case COMPLEX_TYPE:
+ return 2;
+
+ case VECTOR_TYPE:
+ {
+ unsigned HOST_WIDE_INT nelts;
+ if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
+ return nelts;
+ else
+ return -1;
+ }
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ case POINTER_TYPE:
+ case OFFSET_TYPE:
+ case REFERENCE_TYPE:
+ case NULLPTR_TYPE:
+ return 1;
+
+ case ERROR_MARK:
+ return 0;
+
+ case VOID_TYPE:
+ case OPAQUE_TYPE:
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ case LANG_TYPE:
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Helper for categorize_ctor_elements. Identical interface. */
+
+static bool
+categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
+ HOST_WIDE_INT *p_unique_nz_elts,
+ HOST_WIDE_INT *p_init_elts, bool *p_complete)
+{
+ unsigned HOST_WIDE_INT idx;
+ HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
+ tree value, purpose, elt_type;
+
+ /* Whether CTOR is a valid constant initializer, in accordance with what
+ initializer_constant_valid_p does. If inferred from the constructor
+ elements, true until proven otherwise. */
+ bool const_from_elts_p = constructor_static_from_elts_p (ctor);
+ bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
+
+ nz_elts = 0;
+ unique_nz_elts = 0;
+ init_elts = 0;
+ num_fields = 0;
+ elt_type = NULL_TREE;
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
+ {
+ HOST_WIDE_INT mult = 1;
+
+ if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
+ {
+ tree lo_index = TREE_OPERAND (purpose, 0);
+ tree hi_index = TREE_OPERAND (purpose, 1);
+
+ if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
+ mult = (tree_to_uhwi (hi_index)
+ - tree_to_uhwi (lo_index) + 1);
+ }
+ num_fields += mult;
+ elt_type = TREE_TYPE (value);
+
+ switch (TREE_CODE (value))
+ {
+ case CONSTRUCTOR:
+ {
+ HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
+
+ bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
+ &ic, p_complete);
+
+ nz_elts += mult * nz;
+ unique_nz_elts += unz;
+ init_elts += mult * ic;
+
+ if (const_from_elts_p && const_p)
+ const_p = const_elt_p;
+ }
+ break;
+
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ if (!initializer_zerop (value))
+ {
+ nz_elts += mult;
+ unique_nz_elts++;
+ }
+ init_elts += mult;
+ break;
+
+ case STRING_CST:
+ nz_elts += mult * TREE_STRING_LENGTH (value);
+ unique_nz_elts += TREE_STRING_LENGTH (value);
+ init_elts += mult * TREE_STRING_LENGTH (value);
+ break;
+
+ case COMPLEX_CST:
+ if (!initializer_zerop (TREE_REALPART (value)))
+ {
+ nz_elts += mult;
+ unique_nz_elts++;
+ }
+ if (!initializer_zerop (TREE_IMAGPART (value)))
+ {
+ nz_elts += mult;
+ unique_nz_elts++;
+ }
+ init_elts += 2 * mult;
+ break;
+
+ case VECTOR_CST:
+ {
+ /* We can only construct constant-length vectors using
+ CONSTRUCTOR. */
+ unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
+ for (unsigned int i = 0; i < nunits; ++i)
+ {
+ tree v = VECTOR_CST_ELT (value, i);
+ if (!initializer_zerop (v))
+ {
+ nz_elts += mult;
+ unique_nz_elts++;
+ }
+ init_elts += mult;
+ }
+ }
+ break;
+
+ default:
+ {
+ HOST_WIDE_INT tc = count_type_elements (elt_type, false);
+ nz_elts += mult * tc;
+ unique_nz_elts += tc;
+ init_elts += mult * tc;
+
+ if (const_from_elts_p && const_p)
+ const_p
+ = initializer_constant_valid_p (value,
+ elt_type,
+ TYPE_REVERSE_STORAGE_ORDER
+ (TREE_TYPE (ctor)))
+ != NULL_TREE;
+ }
+ break;
+ }
+ }
+
+ if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
+ num_fields, elt_type))
+ *p_complete = false;
+
+ *p_nz_elts += nz_elts;
+ *p_unique_nz_elts += unique_nz_elts;
+ *p_init_elts += init_elts;
+
+ return const_p;
+}
+
+/* Examine CTOR to discover:
+ * how many scalar fields are set to nonzero values,
+ and place it in *P_NZ_ELTS;
+ * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
+ high - low + 1 (this can be useful for callers to determine ctors
+ that could be cheaply initialized with - perhaps nested - loops
+ compared to copied from huge read-only data),
+ and place it in *P_UNIQUE_NZ_ELTS;
+ * how many scalar fields in total are in CTOR,
+ and place it in *P_ELT_COUNT.
+ * whether the constructor is complete -- in the sense that every
+ meaningful byte is explicitly given a value --
+ and place it in *P_COMPLETE.
+
+ Return whether or not CTOR is a valid static constant initializer, the same
+ as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
+
+bool
+categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
+ HOST_WIDE_INT *p_unique_nz_elts,
+ HOST_WIDE_INT *p_init_elts, bool *p_complete)
+{
+ *p_nz_elts = 0;
+ *p_unique_nz_elts = 0;
+ *p_init_elts = 0;
+ *p_complete = true;
+
+ return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
+ p_init_elts, p_complete);
+}
+
+/* TYPE is initialized by a constructor with NUM_ELTS elements, the last
+ of which had type LAST_TYPE. Each element was itself a complete
+ initializer, in the sense that every meaningful byte was explicitly
+ given a value. Return true if the same is true for the constructor
+ as a whole. */
+
+bool
+complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
+ const_tree last_type)
+{
+ if (TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ {
+ if (num_elts == 0)
+ return false;
+
+ gcc_assert (num_elts == 1 && last_type);
+
+ /* ??? We could look at each element of the union, and find the
+ largest element. Which would avoid comparing the size of the
+ initialized element against any tail padding in the union.
+ Doesn't seem worth the effort... */
+ return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
+ }
+
+ return count_type_elements (type, true) == num_elts;
+}
+
+/* Return 1 if EXP contains mostly (3/4) zeros. */
+
+static int
+mostly_zeros_p (const_tree exp)
+{
+ if (TREE_CODE (exp) == CONSTRUCTOR)
+ {
+ HOST_WIDE_INT nz_elts, unz_elts, init_elts;
+ bool complete_p;
+
+ categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
+ &complete_p);
+ return !complete_p || nz_elts < init_elts / 4;
+ }
+
+ return initializer_zerop (exp);
+}
+
+/* Return 1 if EXP contains all zeros. */
+
+static int
+all_zeros_p (const_tree exp)
+{
+ if (TREE_CODE (exp) == CONSTRUCTOR)
+ {
+ HOST_WIDE_INT nz_elts, unz_elts, init_elts;
+ bool complete_p;
+
+ categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
+ &complete_p);
+ return nz_elts == 0;
+ }
+
+ return initializer_zerop (exp);
+}
+
+/* Helper function for store_constructor.
+ TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
+ CLEARED is as for store_constructor.
+ ALIAS_SET is the alias set to use for any stores.
+ If REVERSE is true, the store is to be done in reverse order.
+
+ This provides a recursive shortcut back to store_constructor when it isn't
+ necessary to go through store_field. This is so that we can pass through
+ the cleared field to let store_constructor know that we may not have to
+ clear a substructure if the outer structure has already been cleared. */
+
+static void
+store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
+ poly_uint64 bitregion_start,
+ poly_uint64 bitregion_end,
+ machine_mode mode,
+ tree exp, int cleared,
+ alias_set_type alias_set, bool reverse)
+{
+ poly_int64 bytepos;
+ poly_uint64 bytesize;
+ if (TREE_CODE (exp) == CONSTRUCTOR
+ /* We can only call store_constructor recursively if the size and
+ bit position are on a byte boundary. */
+ && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
+ && maybe_ne (bitsize, 0U)
+ && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
+ /* If we have a nonzero bitpos for a register target, then we just
+ let store_field do the bitfield handling. This is unlikely to
+ generate unnecessary clear instructions anyways. */
+ && (known_eq (bitpos, 0) || MEM_P (target)))
+ {
+ if (MEM_P (target))
+ {
+ machine_mode target_mode = GET_MODE (target);
+ if (target_mode != BLKmode
+ && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
+ target_mode = BLKmode;
+ target = adjust_address (target, target_mode, bytepos);
+ }
+
+
+ /* Update the alias set, if required. */
+ if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
+ && MEM_ALIAS_SET (target) != 0)
+ {
+ target = copy_rtx (target);
+ set_mem_alias_set (target, alias_set);
+ }
+
+ store_constructor (exp, target, cleared, bytesize, reverse);
+ }
+ else
+ store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
+ exp, alias_set, false, reverse);
+}
+
+
+/* Returns the number of FIELD_DECLs in TYPE. */
+
+static int
+fields_length (const_tree type)
+{
+ tree t = TYPE_FIELDS (type);
+ int count = 0;
+
+ for (; t; t = DECL_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ ++count;
+
+ return count;
+}
+
+
+/* Store the value of constructor EXP into the rtx TARGET.
+ TARGET is either a REG or a MEM; we know it cannot conflict, since
+ safe_from_p has been called.
+ CLEARED is true if TARGET is known to have been zero'd.
+ SIZE is the number of bytes of TARGET we are allowed to modify: this
+ may not be the same as the size of EXP if we are assigning to a field
+ which has been packed to exclude padding bits.
+ If REVERSE is true, the store is to be done in reverse order. */
+
+static void
+store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
+ bool reverse)
+{
+ tree type = TREE_TYPE (exp);
+ HOST_WIDE_INT exp_size = int_size_in_bytes (type);
+ poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
+
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ unsigned HOST_WIDE_INT idx;
+ tree field, value;
+
+ /* The storage order is specified for every aggregate type. */
+ reverse = TYPE_REVERSE_STORAGE_ORDER (type);
+
+ /* If size is zero or the target is already cleared, do nothing. */
+ if (known_eq (size, 0) || cleared)
+ cleared = 1;
+ /* We either clear the aggregate or indicate the value is dead. */
+ else if ((TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && ! CONSTRUCTOR_ELTS (exp))
+ /* If the constructor is empty, clear the union. */
+ {
+ clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
+ cleared = 1;
+ }
+
+ /* If we are building a static constructor into a register,
+ set the initial value as zero so we can fold the value into
+ a constant. But if more than one register is involved,
+ this probably loses. */
+ else if (REG_P (target) && TREE_STATIC (exp)
+ && known_le (GET_MODE_SIZE (GET_MODE (target)),
+ REGMODE_NATURAL_SIZE (GET_MODE (target))))
+ {
+ emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
+ cleared = 1;
+ }
+
+ /* If the constructor has fewer fields than the structure or
+ if we are initializing the structure to mostly zeros, clear
+ the whole structure first. Don't do this if TARGET is a
+ register whose mode size isn't equal to SIZE since
+ clear_storage can't handle this case. */
+ else if (known_size_p (size)
+ && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
+ || mostly_zeros_p (exp))
+ && (!REG_P (target)
+ || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
+ {
+ clear_storage (target, gen_int_mode (size, Pmode),
+ BLOCK_OP_NORMAL);
+ cleared = 1;
+ }
+
+ if (REG_P (target) && !cleared)
+ emit_clobber (target);
+
+ /* Store each element of the constructor into the
+ corresponding field of TARGET. */
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
+ {
+ machine_mode mode;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos = 0;
+ tree offset;
+ rtx to_rtx = target;
+
+ /* Just ignore missing fields. We cleared the whole
+ structure, above, if any fields are missing. */
+ if (field == 0)
+ continue;
+
+ if (cleared && initializer_zerop (value))
+ continue;
+
+ if (tree_fits_uhwi_p (DECL_SIZE (field)))
+ bitsize = tree_to_uhwi (DECL_SIZE (field));
+ else
+ gcc_unreachable ();
+
+ mode = DECL_MODE (field);
+ if (DECL_BIT_FIELD (field))
+ mode = VOIDmode;
+
+ offset = DECL_FIELD_OFFSET (field);
+ if (tree_fits_shwi_p (offset)
+ && tree_fits_shwi_p (bit_position (field)))
+ {
+ bitpos = int_bit_position (field);
+ offset = NULL_TREE;
+ }
+ else
+ gcc_unreachable ();
+
+ /* If this initializes a field that is smaller than a
+ word, at the start of a word, try to widen it to a full
+ word. This special case allows us to output C++ member
+ function initializations in a form that the optimizers
+ can understand. */
+ if (WORD_REGISTER_OPERATIONS
+ && REG_P (target)
+ && bitsize < BITS_PER_WORD
+ && bitpos % BITS_PER_WORD == 0
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && TREE_CODE (value) == INTEGER_CST
+ && exp_size >= 0
+ && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
+ {
+ type = TREE_TYPE (value);
+
+ if (TYPE_PRECISION (type) < BITS_PER_WORD)
+ {
+ type = lang_hooks.types.type_for_mode
+ (word_mode, TYPE_UNSIGNED (type));
+ value = fold_convert (type, value);
+ /* Make sure the bits beyond the original bitsize are zero
+ so that we can correctly avoid extra zeroing stores in
+ later constructor elements. */
+ tree bitsize_mask
+ = wide_int_to_tree (type, wi::mask (bitsize, false,
+ BITS_PER_WORD));
+ value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
+ }
+
+ if (BYTES_BIG_ENDIAN)
+ value
+ = fold_build2 (LSHIFT_EXPR, type, value,
+ build_int_cst (type,
+ BITS_PER_WORD - bitsize));
+ bitsize = BITS_PER_WORD;
+ mode = word_mode;
+ }
+
+ if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
+ && DECL_NONADDRESSABLE_P (field))
+ {
+ to_rtx = copy_rtx (to_rtx);
+ MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
+ }
+
+ store_constructor_field (to_rtx, bitsize, bitpos,
+ 0, bitregion_end, mode,
+ value, cleared,
+ get_alias_set (TREE_TYPE (field)),
+ reverse);
+ }
+ break;
+ }
+ case ARRAY_TYPE:
+ {
+ tree value, index;
+ unsigned HOST_WIDE_INT i;
+ int need_to_clear;
+ tree domain;
+ tree elttype = TREE_TYPE (type);
+ int const_bounds_p;
+ HOST_WIDE_INT minelt = 0;
+ HOST_WIDE_INT maxelt = 0;
+
+ /* The storage order is specified for every aggregate type. */
+ reverse = TYPE_REVERSE_STORAGE_ORDER (type);
+
+ domain = TYPE_DOMAIN (type);
+ const_bounds_p = (TYPE_MIN_VALUE (domain)
+ && TYPE_MAX_VALUE (domain)
+ && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
+ && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
+
+ /* If we have constant bounds for the range of the type, get them. */
+ if (const_bounds_p)
+ {
+ minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
+ maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
+ }
+
+ /* If the constructor has fewer elements than the array, clear
+ the whole array first. Similarly if this is static
+ constructor of a non-BLKmode object. */
+ if (cleared)
+ need_to_clear = 0;
+ else if (REG_P (target) && TREE_STATIC (exp))
+ need_to_clear = 1;
+ else
+ {
+ unsigned HOST_WIDE_INT idx;
+ HOST_WIDE_INT count = 0, zero_count = 0;
+ need_to_clear = ! const_bounds_p;
+
+ /* This loop is a more accurate version of the loop in
+ mostly_zeros_p (it handles RANGE_EXPR in an index). It
+ is also needed to check for missing elements. */
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
+ {
+ HOST_WIDE_INT this_node_count;
+
+ if (need_to_clear)
+ break;
+
+ if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
+ {
+ tree lo_index = TREE_OPERAND (index, 0);
+ tree hi_index = TREE_OPERAND (index, 1);
+
+ if (! tree_fits_uhwi_p (lo_index)
+ || ! tree_fits_uhwi_p (hi_index))
+ {
+ need_to_clear = 1;
+ break;
+ }
+
+ this_node_count = (tree_to_uhwi (hi_index)
+ - tree_to_uhwi (lo_index) + 1);
+ }
+ else
+ this_node_count = 1;
+
+ count += this_node_count;
+ if (mostly_zeros_p (value))
+ zero_count += this_node_count;
+ }
+
+ /* Clear the entire array first if there are any missing
+ elements, or if the incidence of zero elements is >=
+ 75%. */
+ if (! need_to_clear
+ && (count < maxelt - minelt + 1
+ || 4 * zero_count >= 3 * count))
+ need_to_clear = 1;
+ }
+
+ if (need_to_clear && maybe_gt (size, 0))
+ {
+ if (REG_P (target))
+ emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
+ else
+ clear_storage (target, gen_int_mode (size, Pmode),
+ BLOCK_OP_NORMAL);
+ cleared = 1;
+ }
+
+ if (!cleared && REG_P (target))
+ /* Inform later passes that the old value is dead. */
+ emit_clobber (target);
+
+ /* Store each element of the constructor into the
+ corresponding element of TARGET, determined by counting the
+ elements. */
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
+ {
+ machine_mode mode;
+ poly_int64 bitsize;
+ HOST_WIDE_INT bitpos;
+ rtx xtarget = target;
+
+ if (cleared && initializer_zerop (value))
+ continue;
+
+ mode = TYPE_MODE (elttype);
+ if (mode != BLKmode)
+ bitsize = GET_MODE_BITSIZE (mode);
+ else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
+ bitsize = -1;
+
+ if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
+ {
+ tree lo_index = TREE_OPERAND (index, 0);
+ tree hi_index = TREE_OPERAND (index, 1);
+ rtx index_r, pos_rtx;
+ HOST_WIDE_INT lo, hi, count;
+ tree position;
+
+ /* If the range is constant and "small", unroll the loop. */
+ if (const_bounds_p
+ && tree_fits_shwi_p (lo_index)
+ && tree_fits_shwi_p (hi_index)
+ && (lo = tree_to_shwi (lo_index),
+ hi = tree_to_shwi (hi_index),
+ count = hi - lo + 1,
+ (!MEM_P (target)
+ || count <= 2
+ || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
+ && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
+ <= 40 * 8)))))
+ {
+ lo -= minelt; hi -= minelt;
+ for (; lo <= hi; lo++)
+ {
+ bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
+
+ if (MEM_P (target)
+ && !MEM_KEEP_ALIAS_SET_P (target)
+ && TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_NONALIASED_COMPONENT (type))
+ {
+ target = copy_rtx (target);
+ MEM_KEEP_ALIAS_SET_P (target) = 1;
+ }
+
+ store_constructor_field
+ (target, bitsize, bitpos, 0, bitregion_end,
+ mode, value, cleared,
+ get_alias_set (elttype), reverse);
+ }
+ }
+ else
+ {
+ rtx_code_label *loop_start = gen_label_rtx ();
+ rtx_code_label *loop_end = gen_label_rtx ();
+ tree exit_cond;
+
+ expand_normal (hi_index);
+
+ index = build_decl (EXPR_LOCATION (exp),
+ VAR_DECL, NULL_TREE, domain);
+ index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
+ SET_DECL_RTL (index, index_r);
+ store_expr (lo_index, index_r, 0, false, reverse);
+
+ /* Build the head of the loop. */
+ do_pending_stack_adjust ();
+ emit_label (loop_start);
+
+ /* Assign value to element index. */
+ position =
+ fold_convert (ssizetype,
+ fold_build2 (MINUS_EXPR,
+ TREE_TYPE (index),
+ index,
+ TYPE_MIN_VALUE (domain)));
+
+ position =
+ size_binop (MULT_EXPR, position,
+ fold_convert (ssizetype,
+ TYPE_SIZE_UNIT (elttype)));
+
+ pos_rtx = expand_normal (position);
+ xtarget = offset_address (target, pos_rtx,
+ highest_pow2_factor (position));
+ xtarget = adjust_address (xtarget, mode, 0);
+ if (TREE_CODE (value) == CONSTRUCTOR)
+ store_constructor (value, xtarget, cleared,
+ exact_div (bitsize, BITS_PER_UNIT),
+ reverse);
+ else
+ store_expr (value, xtarget, 0, false, reverse);
+
+ /* Generate a conditional jump to exit the loop. */
+ exit_cond = build2 (LT_EXPR, integer_type_node,
+ index, hi_index);
+ jumpif (exit_cond, loop_end,
+ profile_probability::uninitialized ());
+
+ /* Update the loop counter, and jump to the head of
+ the loop. */
+ expand_assignment (index,
+ build2 (PLUS_EXPR, TREE_TYPE (index),
+ index, integer_one_node),
+ false);
+
+ emit_jump (loop_start);
+
+ /* Build the end of the loop. */
+ emit_label (loop_end);
+ }
+ }
+ else if ((index != 0 && ! tree_fits_shwi_p (index))
+ || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
+ {
+ tree position;
+
+ if (index == 0)
+ index = ssize_int (1);
+
+ if (minelt)
+ index = fold_convert (ssizetype,
+ fold_build2 (MINUS_EXPR,
+ TREE_TYPE (index),
+ index,
+ TYPE_MIN_VALUE (domain)));
+
+ position =
+ size_binop (MULT_EXPR, index,
+ fold_convert (ssizetype,
+ TYPE_SIZE_UNIT (elttype)));
+ xtarget = offset_address (target,
+ expand_normal (position),
+ highest_pow2_factor (position));
+ xtarget = adjust_address (xtarget, mode, 0);
+ store_expr (value, xtarget, 0, false, reverse);
+ }
+ else
+ {
+ if (index != 0)
+ bitpos = ((tree_to_shwi (index) - minelt)
+ * tree_to_uhwi (TYPE_SIZE (elttype)));
+ else
+ bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
+
+ if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
+ && TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_NONALIASED_COMPONENT (type))
+ {
+ target = copy_rtx (target);
+ MEM_KEEP_ALIAS_SET_P (target) = 1;
+ }
+ store_constructor_field (target, bitsize, bitpos, 0,
+ bitregion_end, mode, value,
+ cleared, get_alias_set (elttype),
+ reverse);
+ }
+ }
+ break;
+ }
+
+ case VECTOR_TYPE:
+ {
+ unsigned HOST_WIDE_INT idx;
+ constructor_elt *ce;
+ int i;
+ int need_to_clear;
+ insn_code icode = CODE_FOR_nothing;
+ tree elt;
+ tree elttype = TREE_TYPE (type);
+ int elt_size = vector_element_bits (type);
+ machine_mode eltmode = TYPE_MODE (elttype);
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ rtvec vector = NULL;
+ poly_uint64 n_elts;
+ unsigned HOST_WIDE_INT const_n_elts;
+ alias_set_type alias;
+ bool vec_vec_init_p = false;
+ machine_mode mode = GET_MODE (target);
+
+ gcc_assert (eltmode != BLKmode);
+
+ /* Try using vec_duplicate_optab for uniform vectors. */
+ if (!TREE_SIDE_EFFECTS (exp)
+ && VECTOR_MODE_P (mode)
+ && eltmode == GET_MODE_INNER (mode)
+ && ((icode = optab_handler (vec_duplicate_optab, mode))
+ != CODE_FOR_nothing)
+ && (elt = uniform_vector_p (exp))
+ && !VECTOR_TYPE_P (TREE_TYPE (elt)))
+ {
+ class expand_operand ops[2];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], expand_normal (elt), eltmode);
+ expand_insn (icode, 2, ops);
+ if (!rtx_equal_p (target, ops[0].value))
+ emit_move_insn (target, ops[0].value);
+ break;
+ }
+
+ n_elts = TYPE_VECTOR_SUBPARTS (type);
+ if (REG_P (target)
+ && VECTOR_MODE_P (mode)
+ && n_elts.is_constant (&const_n_elts))
+ {
+ machine_mode emode = eltmode;
+ bool vector_typed_elts_p = false;
+
+ if (CONSTRUCTOR_NELTS (exp)
+ && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
+ == VECTOR_TYPE))
+ {
+ tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
+ gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
+ * TYPE_VECTOR_SUBPARTS (etype),
+ n_elts));
+ emode = TYPE_MODE (etype);
+ vector_typed_elts_p = true;
+ }
+ icode = convert_optab_handler (vec_init_optab, mode, emode);
+ if (icode != CODE_FOR_nothing)
+ {
+ unsigned int n = const_n_elts;
+
+ if (vector_typed_elts_p)
+ {
+ n = CONSTRUCTOR_NELTS (exp);
+ vec_vec_init_p = true;
+ }
+ vector = rtvec_alloc (n);
+ for (unsigned int k = 0; k < n; k++)
+ RTVEC_ELT (vector, k) = CONST0_RTX (emode);
+ }
+ }
+
+ /* Compute the size of the elements in the CTOR. It differs
+ from the size of the vector type elements only when the
+ CTOR elements are vectors themselves. */
+ tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
+ ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
+ : elttype);
+ if (VECTOR_TYPE_P (val_type))
+ bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
+ else
+ bitsize = elt_size;
+
+ /* If the constructor has fewer elements than the vector,
+ clear the whole array first. Similarly if this is static
+ constructor of a non-BLKmode object. */
+ if (cleared)
+ need_to_clear = 0;
+ else if (REG_P (target) && TREE_STATIC (exp))
+ need_to_clear = 1;
+ else
+ {
+ unsigned HOST_WIDE_INT count = 0, zero_count = 0;
+ tree value;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
+ {
+ int n_elts_here = bitsize / elt_size;
+ count += n_elts_here;
+ if (mostly_zeros_p (value))
+ zero_count += n_elts_here;
+ }
+
+ /* Clear the entire vector first if there are any missing elements,
+ or if the incidence of zero elements is >= 75%. */
+ need_to_clear = (maybe_lt (count, n_elts)
+ || 4 * zero_count >= 3 * count);
+ }
+
+ if (need_to_clear && maybe_gt (size, 0) && !vector)
+ {
+ if (REG_P (target))
+ emit_move_insn (target, CONST0_RTX (mode));
+ else
+ clear_storage (target, gen_int_mode (size, Pmode),
+ BLOCK_OP_NORMAL);
+ cleared = 1;
+ }
+
+ /* Inform later passes that the old value is dead. */
+ if (!cleared && !vector && REG_P (target))
+ emit_move_insn (target, CONST0_RTX (mode));
+
+ if (MEM_P (target))
+ alias = MEM_ALIAS_SET (target);
+ else
+ alias = get_alias_set (elttype);
+
+ /* Store each element of the constructor into the corresponding
+ element of TARGET, determined by counting the elements. */
+ for (idx = 0, i = 0;
+ vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
+ idx++, i += bitsize / elt_size)
+ {
+ HOST_WIDE_INT eltpos;
+ tree value = ce->value;
+
+ if (cleared && initializer_zerop (value))
+ continue;
+
+ if (ce->index)
+ eltpos = tree_to_uhwi (ce->index);
+ else
+ eltpos = i;
+
+ if (vector)
+ {
+ if (vec_vec_init_p)
+ {
+ gcc_assert (ce->index == NULL_TREE);
+ gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
+ eltpos = idx;
+ }
+ else
+ gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
+ RTVEC_ELT (vector, eltpos) = expand_normal (value);
+ }
+ else
+ {
+ machine_mode value_mode
+ = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
+ ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
+ bitpos = eltpos * elt_size;
+ store_constructor_field (target, bitsize, bitpos, 0,
+ bitregion_end, value_mode,
+ value, cleared, alias, reverse);
+ }
+ }
+
+ if (vector)
+ emit_insn (GEN_FCN (icode) (target,
+ gen_rtx_PARALLEL (mode, vector)));
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Store the value of EXP (an expression tree)
+ into a subfield of TARGET which has mode MODE and occupies
+ BITSIZE bits, starting BITPOS bits from the start of TARGET.
+ If MODE is VOIDmode, it means that we are storing into a bit-field.
+
+ BITREGION_START is bitpos of the first bitfield in this region.
+ BITREGION_END is the bitpos of the ending bitfield in this region.
+ These two fields are 0, if the C++ memory model does not apply,
+ or we are not interested in keeping track of bitfield regions.
+
+ Always return const0_rtx unless we have something particular to
+ return.
+
+ ALIAS_SET is the alias set for the destination. This value will
+ (in general) be different from that for TARGET, since TARGET is a
+ reference to the containing structure.
+
+ If NONTEMPORAL is true, try generating a nontemporal store.
+
+ If REVERSE is true, the store is to be done in reverse order. */
+
+static rtx
+store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
+ poly_uint64 bitregion_start, poly_uint64 bitregion_end,
+ machine_mode mode, tree exp,
+ alias_set_type alias_set, bool nontemporal, bool reverse)
+{
+ if (TREE_CODE (exp) == ERROR_MARK)
+ return const0_rtx;
+
+ /* If we have nothing to store, do nothing unless the expression has
+ side-effects. Don't do that for zero sized addressable lhs of
+ calls. */
+ if (known_eq (bitsize, 0)
+ && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
+ || TREE_CODE (exp) != CALL_EXPR))
+ return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ if (GET_CODE (target) == CONCAT)
+ {
+ /* We're storing into a struct containing a single __complex. */
+
+ gcc_assert (known_eq (bitpos, 0));
+ return store_expr (exp, target, 0, nontemporal, reverse);
+ }
+
+ /* If the structure is in a register or if the component
+ is a bit field, we cannot use addressing to access it.
+ Use bit-field techniques or SUBREG to store in it. */
+
+ poly_int64 decl_bitsize;
+ if (mode == VOIDmode
+ || (mode != BLKmode && ! direct_store[(int) mode]
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+ || REG_P (target)
+ || GET_CODE (target) == SUBREG
+ /* If the field isn't aligned enough to store as an ordinary memref,
+ store it as a bit field. */
+ || (mode != BLKmode
+ && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
+ || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
+ && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
+ || !multiple_p (bitpos, BITS_PER_UNIT)))
+ || (known_size_p (bitsize)
+ && mode != BLKmode
+ && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
+ /* If the RHS and field are a constant size and the size of the
+ RHS isn't the same size as the bitfield, we must use bitfield
+ operations. */
+ || (known_size_p (bitsize)
+ && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
+ && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
+ bitsize)
+ /* Except for initialization of full bytes from a CONSTRUCTOR, which
+ we will handle specially below. */
+ && !(TREE_CODE (exp) == CONSTRUCTOR
+ && multiple_p (bitsize, BITS_PER_UNIT))
+ /* And except for bitwise copying of TREE_ADDRESSABLE types,
+ where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
+ includes some extra padding. store_expr / expand_expr will in
+ that case call get_inner_reference that will have the bitsize
+ we check here and thus the block move will not clobber the
+ padding that shouldn't be clobbered. In the future we could
+ replace the TREE_ADDRESSABLE check with a check that
+ get_base_address needs to live in memory. */
+ && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
+ || TREE_CODE (exp) != COMPONENT_REF
+ || !multiple_p (bitsize, BITS_PER_UNIT)
+ || !multiple_p (bitpos, BITS_PER_UNIT)
+ || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
+ &decl_bitsize)
+ || maybe_ne (decl_bitsize, bitsize))
+ /* A call with an addressable return type and return-slot
+ optimization must not need bitfield operations but we must
+ pass down the original target. */
+ && (TREE_CODE (exp) != CALL_EXPR
+ || !TREE_ADDRESSABLE (TREE_TYPE (exp))
+ || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
+ /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
+ decl we must use bitfield operations. */
+ || (known_size_p (bitsize)
+ && TREE_CODE (exp) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
+ && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
+ && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
+ && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
+ {
+ rtx temp;
+ gimple *nop_def;
+
+ /* If EXP is a NOP_EXPR of precision less than its mode, then that
+ implies a mask operation. If the precision is the same size as
+ the field we're storing into, that mask is redundant. This is
+ particularly common with bit field assignments generated by the
+ C front end. */
+ nop_def = get_def_for_expr (exp, NOP_EXPR);
+ if (nop_def)
+ {
+ tree type = TREE_TYPE (exp);
+ if (INTEGRAL_TYPE_P (type)
+ && maybe_ne (TYPE_PRECISION (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type)))
+ && known_eq (bitsize, TYPE_PRECISION (type)))
+ {
+ tree op = gimple_assign_rhs1 (nop_def);
+ type = TREE_TYPE (op);
+ if (INTEGRAL_TYPE_P (type)
+ && known_ge (TYPE_PRECISION (type), bitsize))
+ exp = op;
+ }
+ }
+
+ temp = expand_normal (exp);
+
+ /* We don't support variable-sized BLKmode bitfields, since our
+ handling of BLKmode is bound up with the ability to break
+ things into words. */
+ gcc_assert (mode != BLKmode || bitsize.is_constant ());
+
+ /* Handle calls that return values in multiple non-contiguous locations.
+ The Irix 6 ABI has examples of this. */
+ if (GET_CODE (temp) == PARALLEL)
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
+ machine_mode temp_mode = GET_MODE (temp);
+ if (temp_mode == BLKmode || temp_mode == VOIDmode)
+ temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
+ rtx temp_target = gen_reg_rtx (temp_mode);
+ emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
+ temp = temp_target;
+ }
+
+ /* Handle calls that return BLKmode values in registers. */
+ else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
+ {
+ rtx temp_target = gen_reg_rtx (GET_MODE (temp));
+ copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
+ temp = temp_target;
+ }
+
+ /* If the value has aggregate type and an integral mode then, if BITSIZE
+ is narrower than this mode and this is for big-endian data, we first
+ need to put the value into the low-order bits for store_bit_field,
+ except when MODE is BLKmode and BITSIZE larger than the word size
+ (see the handling of fields larger than a word in store_bit_field).
+ Moreover, the field may be not aligned on a byte boundary; in this
+ case, if it has reverse storage order, it needs to be accessed as a
+ scalar field with reverse storage order and we must first put the
+ value into target order. */
+ scalar_int_mode temp_mode;
+ if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
+ && is_int_mode (GET_MODE (temp), &temp_mode))
+ {
+ HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
+
+ reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
+
+ if (reverse)
+ temp = flip_storage_order (temp_mode, temp);
+
+ gcc_checking_assert (known_le (bitsize, size));
+ if (maybe_lt (bitsize, size)
+ && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
+ /* Use of to_constant for BLKmode was checked above. */
+ && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
+ temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
+ size - bitsize, NULL_RTX, 1);
+ }
+
+ /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
+ if (mode != VOIDmode && mode != BLKmode
+ && mode != TYPE_MODE (TREE_TYPE (exp)))
+ temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
+
+ /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
+ and BITPOS must be aligned on a byte boundary. If so, we simply do
+ a block copy. Likewise for a BLKmode-like TARGET. */
+ if (GET_MODE (temp) == BLKmode
+ && (GET_MODE (target) == BLKmode
+ || (MEM_P (target)
+ && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
+ && multiple_p (bitpos, BITS_PER_UNIT)
+ && multiple_p (bitsize, BITS_PER_UNIT))))
+ {
+ gcc_assert (MEM_P (target) && MEM_P (temp));
+ poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
+ poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
+
+ target = adjust_address (target, VOIDmode, bytepos);
+ emit_block_move (target, temp,
+ gen_int_mode (bytesize, Pmode),
+ BLOCK_OP_NORMAL);
+
+ return const0_rtx;
+ }
+
+ /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
+ word size, we need to load the value (see again store_bit_field). */
+ if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
+ {
+ temp_mode = smallest_int_mode_for_size (bitsize);
+ temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
+ temp_mode, false, NULL);
+ }
+
+ /* Store the value in the bitfield. */
+ gcc_checking_assert (known_ge (bitpos, 0));
+ store_bit_field (target, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ mode, temp, reverse);
+
+ return const0_rtx;
+ }
+ else
+ {
+ /* Now build a reference to just the desired component. */
+ rtx to_rtx = adjust_address (target, mode,
+ exact_div (bitpos, BITS_PER_UNIT));
+
+ if (to_rtx == target)
+ to_rtx = copy_rtx (to_rtx);
+
+ if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
+ set_mem_alias_set (to_rtx, alias_set);
+
+ /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
+ into a target smaller than its type; handle that case now. */
+ if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
+ {
+ poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
+ store_constructor (exp, to_rtx, 0, bytesize, reverse);
+ return to_rtx;
+ }
+
+ return store_expr (exp, to_rtx, 0, nontemporal, reverse);
+ }
+}
+
+/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
+ an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
+ codes and find the ultimate containing object, which we return.
+
+ We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
+ bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
+ storage order of the field.
+ If the position of the field is variable, we store a tree
+ giving the variable offset (in units) in *POFFSET.
+ This offset is in addition to the bit position.
+ If the position is not variable, we store 0 in *POFFSET.
+
+ If any of the extraction expressions is volatile,
+ we store 1 in *PVOLATILEP. Otherwise we don't change that.
+
+ If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
+ Otherwise, it is a mode that can be used to access the field.
+
+ If the field describes a variable-sized object, *PMODE is set to
+ BLKmode and *PBITSIZE is set to -1. An access cannot be made in
+ this case, but the address of the object can be found. */
+
+tree
+get_inner_reference (tree exp, poly_int64_pod *pbitsize,
+ poly_int64_pod *pbitpos, tree *poffset,
+ machine_mode *pmode, int *punsignedp,
+ int *preversep, int *pvolatilep)
+{
+ tree size_tree = 0;
+ machine_mode mode = VOIDmode;
+ bool blkmode_bitfield = false;
+ tree offset = size_zero_node;
+ poly_offset_int bit_offset = 0;
+
+ /* First get the mode, signedness, storage order and size. We do this from
+ just the outermost expression. */
+ *pbitsize = -1;
+ if (TREE_CODE (exp) == COMPONENT_REF)
+ {
+ tree field = TREE_OPERAND (exp, 1);
+ size_tree = DECL_SIZE (field);
+ if (flag_strict_volatile_bitfields > 0
+ && TREE_THIS_VOLATILE (exp)
+ && DECL_BIT_FIELD_TYPE (field)
+ && DECL_MODE (field) != BLKmode)
+ /* Volatile bitfields should be accessed in the mode of the
+ field's type, not the mode computed based on the bit
+ size. */
+ mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
+ else if (!DECL_BIT_FIELD (field))
+ {
+ mode = DECL_MODE (field);
+ /* For vector fields re-check the target flags, as DECL_MODE
+ could have been set with different target flags than
+ the current function has. */
+ if (mode == BLKmode
+ && VECTOR_TYPE_P (TREE_TYPE (field))
+ && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
+ mode = TYPE_MODE (TREE_TYPE (field));
+ }
+ else if (DECL_MODE (field) == BLKmode)
+ blkmode_bitfield = true;
+
+ *punsignedp = DECL_UNSIGNED (field);
+ }
+ else if (TREE_CODE (exp) == BIT_FIELD_REF)
+ {
+ size_tree = TREE_OPERAND (exp, 1);
+ *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
+ || TYPE_UNSIGNED (TREE_TYPE (exp)));
+
+ /* For vector element types with the correct size of access or for
+ vector typed accesses use the mode of the access type. */
+ if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
+ && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
+ && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
+ || VECTOR_TYPE_P (TREE_TYPE (exp)))
+ mode = TYPE_MODE (TREE_TYPE (exp));
+ }
+ else
+ {
+ mode = TYPE_MODE (TREE_TYPE (exp));
+ *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
+
+ if (mode == BLKmode)
+ size_tree = TYPE_SIZE (TREE_TYPE (exp));
+ else
+ *pbitsize = GET_MODE_BITSIZE (mode);
+ }
+
+ if (size_tree != 0)
+ {
+ if (! tree_fits_uhwi_p (size_tree))
+ mode = BLKmode, *pbitsize = -1;
+ else
+ *pbitsize = tree_to_uhwi (size_tree);
+ }
+
+ *preversep = reverse_storage_order_for_component_p (exp);
+
+ /* Compute cumulative bit-offset for nested component-refs and array-refs,
+ and find the ultimate containing object. */
+ while (1)
+ {
+ switch (TREE_CODE (exp))
+ {
+ case BIT_FIELD_REF:
+ bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
+ break;
+
+ case COMPONENT_REF:
+ {
+ tree field = TREE_OPERAND (exp, 1);
+ tree this_offset = component_ref_field_offset (exp);
+
+ /* If this field hasn't been filled in yet, don't go past it.
+ This should only happen when folding expressions made during
+ type construction. */
+ if (this_offset == 0)
+ break;
+
+ offset = size_binop (PLUS_EXPR, offset, this_offset);
+ bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
+
+ /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
+ }
+ break;
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ {
+ tree index = TREE_OPERAND (exp, 1);
+ tree low_bound = array_ref_low_bound (exp);
+ tree unit_size = array_ref_element_size (exp);
+
+ /* We assume all arrays have sizes that are a multiple of a byte.
+ First subtract the lower bound, if any, in the type of the
+ index, then convert to sizetype and multiply by the size of
+ the array element. */
+ if (! integer_zerop (low_bound))
+ index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
+ index, low_bound);
+
+ offset = size_binop (PLUS_EXPR, offset,
+ size_binop (MULT_EXPR,
+ fold_convert (sizetype, index),
+ unit_size));
+ }
+ break;
+
+ case REALPART_EXPR:
+ break;
+
+ case IMAGPART_EXPR:
+ bit_offset += *pbitsize;
+ break;
+
+ case VIEW_CONVERT_EXPR:
+ break;
+
+ case MEM_REF:
+ /* Hand back the decl for MEM[&decl, off]. */
+ if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
+ {
+ tree off = TREE_OPERAND (exp, 1);
+ if (!integer_zerop (off))
+ {
+ poly_offset_int boff = mem_ref_offset (exp);
+ boff <<= LOG2_BITS_PER_UNIT;
+ bit_offset += boff;
+ }
+ exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+ }
+ goto done;
+
+ default:
+ goto done;
+ }
+
+ /* If any reference in the chain is volatile, the effect is volatile. */
+ if (TREE_THIS_VOLATILE (exp))
+ *pvolatilep = 1;
+
+ exp = TREE_OPERAND (exp, 0);
+ }
+ done:
+
+ /* If OFFSET is constant, see if we can return the whole thing as a
+ constant bit position. Make sure to handle overflow during
+ this conversion. */
+ if (poly_int_tree_p (offset))
+ {
+ poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
+ TYPE_PRECISION (sizetype));
+ tem <<= LOG2_BITS_PER_UNIT;
+ tem += bit_offset;
+ if (tem.to_shwi (pbitpos))
+ *poffset = offset = NULL_TREE;
+ }
+
+ /* Otherwise, split it up. */
+ if (offset)
+ {
+ /* Avoid returning a negative bitpos as this may wreak havoc later. */
+ if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
+ {
+ *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
+ poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
+ offset = size_binop (PLUS_EXPR, offset,
+ build_int_cst (sizetype, bytes.force_shwi ()));
+ }
+
+ *poffset = offset;
+ }
+
+ /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
+ if (mode == VOIDmode
+ && blkmode_bitfield
+ && multiple_p (*pbitpos, BITS_PER_UNIT)
+ && multiple_p (*pbitsize, BITS_PER_UNIT))
+ *pmode = BLKmode;
+ else
+ *pmode = mode;
+
+ return exp;
+}
+
+/* Alignment in bits the TARGET of an assignment may be assumed to have. */
+
+static unsigned HOST_WIDE_INT
+target_align (const_tree target)
+{
+ /* We might have a chain of nested references with intermediate misaligning
+ bitfields components, so need to recurse to find out. */
+
+ unsigned HOST_WIDE_INT this_align, outer_align;
+
+ switch (TREE_CODE (target))
+ {
+ case BIT_FIELD_REF:
+ return 1;
+
+ case COMPONENT_REF:
+ this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
+ outer_align = target_align (TREE_OPERAND (target, 0));
+ return MIN (this_align, outer_align);
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ this_align = TYPE_ALIGN (TREE_TYPE (target));
+ outer_align = target_align (TREE_OPERAND (target, 0));
+ return MIN (this_align, outer_align);
+
+ CASE_CONVERT:
+ case NON_LVALUE_EXPR:
+ case VIEW_CONVERT_EXPR:
+ this_align = TYPE_ALIGN (TREE_TYPE (target));
+ outer_align = target_align (TREE_OPERAND (target, 0));
+ return MAX (this_align, outer_align);
+
+ default:
+ return TYPE_ALIGN (TREE_TYPE (target));
+ }
+}
+
+
+/* Given an rtx VALUE that may contain additions and multiplications, return
+ an equivalent value that just refers to a register, memory, or constant.
+ This is done by generating instructions to perform the arithmetic and
+ returning a pseudo-register containing the value.
+
+ The returned value may be a REG, SUBREG, MEM or constant. */
+
+rtx
+force_operand (rtx value, rtx target)
+{
+ rtx op1, op2;
+ /* Use subtarget as the target for operand 0 of a binary operation. */
+ rtx subtarget = get_subtarget (target);
+ enum rtx_code code = GET_CODE (value);
+
+ /* Check for subreg applied to an expression produced by loop optimizer. */
+ if (code == SUBREG
+ && !REG_P (SUBREG_REG (value))
+ && !MEM_P (SUBREG_REG (value)))
+ {
+ value
+ = simplify_gen_subreg (GET_MODE (value),
+ force_reg (GET_MODE (SUBREG_REG (value)),
+ force_operand (SUBREG_REG (value),
+ NULL_RTX)),
+ GET_MODE (SUBREG_REG (value)),
+ SUBREG_BYTE (value));
+ code = GET_CODE (value);
+ }
+
+ /* Check for a PIC address load. */
+ if ((code == PLUS || code == MINUS)
+ && XEXP (value, 0) == pic_offset_table_rtx
+ && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
+ || GET_CODE (XEXP (value, 1)) == LABEL_REF
+ || GET_CODE (XEXP (value, 1)) == CONST))
+ {
+ if (!subtarget)
+ subtarget = gen_reg_rtx (GET_MODE (value));
+ emit_move_insn (subtarget, value);
+ return subtarget;
+ }
+
+ if (ARITHMETIC_P (value))
+ {
+ op2 = XEXP (value, 1);
+ if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
+ subtarget = 0;
+ if (code == MINUS && CONST_INT_P (op2))
+ {
+ code = PLUS;
+ op2 = negate_rtx (GET_MODE (value), op2);
+ }
+
+ /* Check for an addition with OP2 a constant integer and our first
+ operand a PLUS of a virtual register and something else. In that
+ case, we want to emit the sum of the virtual register and the
+ constant first and then add the other value. This allows virtual
+ register instantiation to simply modify the constant rather than
+ creating another one around this addition. */
+ if (code == PLUS && CONST_INT_P (op2)
+ && GET_CODE (XEXP (value, 0)) == PLUS
+ && REG_P (XEXP (XEXP (value, 0), 0))
+ && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
+ && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
+ {
+ rtx temp = expand_simple_binop (GET_MODE (value), code,
+ XEXP (XEXP (value, 0), 0), op2,
+ subtarget, 0, OPTAB_LIB_WIDEN);
+ return expand_simple_binop (GET_MODE (value), code, temp,
+ force_operand (XEXP (XEXP (value,
+ 0), 1), 0),
+ target, 0, OPTAB_LIB_WIDEN);
+ }
+
+ op1 = force_operand (XEXP (value, 0), subtarget);
+ op2 = force_operand (op2, NULL_RTX);
+ switch (code)
+ {
+ case MULT:
+ return expand_mult (GET_MODE (value), op1, op2, target, 1);
+ case DIV:
+ if (!INTEGRAL_MODE_P (GET_MODE (value)))
+ return expand_simple_binop (GET_MODE (value), code, op1, op2,
+ target, 1, OPTAB_LIB_WIDEN);
+ else
+ return expand_divmod (0,
+ FLOAT_MODE_P (GET_MODE (value))
+ ? RDIV_EXPR : TRUNC_DIV_EXPR,
+ GET_MODE (value), op1, op2, target, 0);
+ case MOD:
+ return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
+ target, 0);
+ case UDIV:
+ return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
+ target, 1);
+ case UMOD:
+ return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
+ target, 1);
+ case ASHIFTRT:
+ return expand_simple_binop (GET_MODE (value), code, op1, op2,
+ target, 0, OPTAB_LIB_WIDEN);
+ default:
+ return expand_simple_binop (GET_MODE (value), code, op1, op2,
+ target, 1, OPTAB_LIB_WIDEN);
+ }
+ }
+ if (UNARY_P (value))
+ {
+ if (!target)
+ target = gen_reg_rtx (GET_MODE (value));
+ op1 = force_operand (XEXP (value, 0), NULL_RTX);
+ switch (code)
+ {
+ case ZERO_EXTEND:
+ case SIGN_EXTEND:
+ case TRUNCATE:
+ case FLOAT_EXTEND:
+ case FLOAT_TRUNCATE:
+ convert_move (target, op1, code == ZERO_EXTEND);
+ return target;
+
+ case FIX:
+ case UNSIGNED_FIX:
+ expand_fix (target, op1, code == UNSIGNED_FIX);
+ return target;
+
+ case FLOAT:
+ case UNSIGNED_FLOAT:
+ expand_float (target, op1, code == UNSIGNED_FLOAT);
+ return target;
+
+ default:
+ return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
+ }
+ }
+
+#ifdef INSN_SCHEDULING
+ /* On machines that have insn scheduling, we want all memory reference to be
+ explicit, so we need to deal with such paradoxical SUBREGs. */
+ if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
+ value
+ = simplify_gen_subreg (GET_MODE (value),
+ force_reg (GET_MODE (SUBREG_REG (value)),
+ force_operand (SUBREG_REG (value),
+ NULL_RTX)),
+ GET_MODE (SUBREG_REG (value)),
+ SUBREG_BYTE (value));
+#endif
+
+ return value;
+}
+
+/* Subroutine of expand_expr: return nonzero iff there is no way that
+ EXP can reference X, which is being modified. TOP_P is nonzero if this
+ call is going to be used to determine whether we need a temporary
+ for EXP, as opposed to a recursive call to this function.
+
+ It is always safe for this routine to return zero since it merely
+ searches for optimization opportunities. */
+
+int
+safe_from_p (const_rtx x, tree exp, int top_p)
+{
+ rtx exp_rtl = 0;
+ int i, nops;
+
+ if (x == 0
+ /* If EXP has varying size, we MUST use a target since we currently
+ have no way of allocating temporaries of variable size
+ (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
+ So we assume here that something at a higher level has prevented a
+ clash. This is somewhat bogus, but the best we can do. Only
+ do this when X is BLKmode and when we are at the top level. */
+ || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
+ && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
+ || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
+ || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
+ != INTEGER_CST)
+ && GET_MODE (x) == BLKmode)
+ /* If X is in the outgoing argument area, it is always safe. */
+ || (MEM_P (x)
+ && (XEXP (x, 0) == virtual_outgoing_args_rtx
+ || (GET_CODE (XEXP (x, 0)) == PLUS
+ && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
+ return 1;
+
+ /* If this is a subreg of a hard register, declare it unsafe, otherwise,
+ find the underlying pseudo. */
+ if (GET_CODE (x) == SUBREG)
+ {
+ x = SUBREG_REG (x);
+ if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+ return 0;
+ }
+
+ /* Now look at our tree code and possibly recurse. */
+ switch (TREE_CODE_CLASS (TREE_CODE (exp)))
+ {
+ case tcc_declaration:
+ exp_rtl = DECL_RTL_IF_SET (exp);
+ break;
+
+ case tcc_constant:
+ return 1;
+
+ case tcc_exceptional:
+ if (TREE_CODE (exp) == TREE_LIST)
+ {
+ while (1)
+ {
+ if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
+ return 0;
+ exp = TREE_CHAIN (exp);
+ if (!exp)
+ return 1;
+ if (TREE_CODE (exp) != TREE_LIST)
+ return safe_from_p (x, exp, 0);
+ }
+ }
+ else if (TREE_CODE (exp) == CONSTRUCTOR)
+ {
+ constructor_elt *ce;
+ unsigned HOST_WIDE_INT idx;
+
+ FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
+ if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
+ || !safe_from_p (x, ce->value, 0))
+ return 0;
+ return 1;
+ }
+ else if (TREE_CODE (exp) == ERROR_MARK)
+ return 1; /* An already-visited SAVE_EXPR? */
+ else
+ return 0;
+
+ case tcc_statement:
+ /* The only case we look at here is the DECL_INITIAL inside a
+ DECL_EXPR. */
+ return (TREE_CODE (exp) != DECL_EXPR
+ || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
+ || !DECL_INITIAL (DECL_EXPR_DECL (exp))
+ || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
+
+ case tcc_binary:
+ case tcc_comparison:
+ if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
+ return 0;
+ /* Fall through. */
+
+ case tcc_unary:
+ return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
+
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_vl_exp:
+ /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
+ the expression. If it is set, we conflict iff we are that rtx or
+ both are in memory. Otherwise, we check all operands of the
+ expression recursively. */
+
+ switch (TREE_CODE (exp))
+ {
+ case ADDR_EXPR:
+ /* If the operand is static or we are static, we can't conflict.
+ Likewise if we don't conflict with the operand at all. */
+ if (staticp (TREE_OPERAND (exp, 0))
+ || TREE_STATIC (exp)
+ || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
+ return 1;
+
+ /* Otherwise, the only way this can conflict is if we are taking
+ the address of a DECL a that address if part of X, which is
+ very rare. */
+ exp = TREE_OPERAND (exp, 0);
+ if (DECL_P (exp))
+ {
+ if (!DECL_RTL_SET_P (exp)
+ || !MEM_P (DECL_RTL (exp)))
+ return 0;
+ else
+ exp_rtl = XEXP (DECL_RTL (exp), 0);
+ }
+ break;
+
+ case MEM_REF:
+ if (MEM_P (x)
+ && alias_sets_conflict_p (MEM_ALIAS_SET (x),
+ get_alias_set (exp)))
+ return 0;
+ break;
+
+ case CALL_EXPR:
+ /* Assume that the call will clobber all hard registers and
+ all of memory. */
+ if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+ || MEM_P (x))
+ return 0;
+ break;
+
+ case WITH_CLEANUP_EXPR:
+ case CLEANUP_POINT_EXPR:
+ /* Lowered by gimplify.c. */
+ gcc_unreachable ();
+
+ case SAVE_EXPR:
+ return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
+
+ default:
+ break;
+ }
+
+ /* If we have an rtx, we do not need to scan our operands. */
+ if (exp_rtl)
+ break;
+
+ nops = TREE_OPERAND_LENGTH (exp);
+ for (i = 0; i < nops; i++)
+ if (TREE_OPERAND (exp, i) != 0
+ && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
+ return 0;
+
+ break;
+
+ case tcc_type:
+ /* Should never get a type here. */
+ gcc_unreachable ();
+ }
+
+ /* If we have an rtl, find any enclosed object. Then see if we conflict
+ with it. */
+ if (exp_rtl)
+ {
+ if (GET_CODE (exp_rtl) == SUBREG)
+ {
+ exp_rtl = SUBREG_REG (exp_rtl);
+ if (REG_P (exp_rtl)
+ && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
+ return 0;
+ }
+
+ /* If the rtl is X, then it is not safe. Otherwise, it is unless both
+ are memory and they conflict. */
+ return ! (rtx_equal_p (x, exp_rtl)
+ || (MEM_P (x) && MEM_P (exp_rtl)
+ && true_dependence (exp_rtl, VOIDmode, x)));
+ }
+
+ /* If we reach here, it is safe. */
+ return 1;
+}
+
+
+/* Return the highest power of two that EXP is known to be a multiple of.
+ This is used in updating alignment of MEMs in array references. */
+
+unsigned HOST_WIDE_INT
+highest_pow2_factor (const_tree exp)
+{
+ unsigned HOST_WIDE_INT ret;
+ int trailing_zeros = tree_ctz (exp);
+ if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
+ return BIGGEST_ALIGNMENT;
+ ret = HOST_WIDE_INT_1U << trailing_zeros;
+ if (ret > BIGGEST_ALIGNMENT)
+ return BIGGEST_ALIGNMENT;
+ return ret;
+}
+
+/* Similar, except that the alignment requirements of TARGET are
+ taken into account. Assume it is at least as aligned as its
+ type, unless it is a COMPONENT_REF in which case the layout of
+ the structure gives the alignment. */
+
+static unsigned HOST_WIDE_INT
+highest_pow2_factor_for_target (const_tree target, const_tree exp)
+{
+ unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
+ unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
+
+ return MAX (factor, talign);
+}
+
+/* Convert the tree comparison code TCODE to the rtl one where the
+ signedness is UNSIGNEDP. */
+
+static enum rtx_code
+convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
+{
+ enum rtx_code code;
+ switch (tcode)
+ {
+ case EQ_EXPR:
+ code = EQ;
+ break;
+ case NE_EXPR:
+ code = NE;
+ break;
+ case LT_EXPR:
+ code = unsignedp ? LTU : LT;
+ break;
+ case LE_EXPR:
+ code = unsignedp ? LEU : LE;
+ break;
+ case GT_EXPR:
+ code = unsignedp ? GTU : GT;
+ break;
+ case GE_EXPR:
+ code = unsignedp ? GEU : GE;
+ break;
+ case UNORDERED_EXPR:
+ code = UNORDERED;
+ break;
+ case ORDERED_EXPR:
+ code = ORDERED;
+ break;
+ case UNLT_EXPR:
+ code = UNLT;
+ break;
+ case UNLE_EXPR:
+ code = UNLE;
+ break;
+ case UNGT_EXPR:
+ code = UNGT;
+ break;
+ case UNGE_EXPR:
+ code = UNGE;
+ break;
+ case UNEQ_EXPR:
+ code = UNEQ;
+ break;
+ case LTGT_EXPR:
+ code = LTGT;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return code;
+}
+
+/* Subroutine of expand_expr. Expand the two operands of a binary
+ expression EXP0 and EXP1 placing the results in OP0 and OP1.
+ The value may be stored in TARGET if TARGET is nonzero. The
+ MODIFIER argument is as documented by expand_expr. */
+
+void
+expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
+ enum expand_modifier modifier)
+{
+ if (! safe_from_p (target, exp1, 1))
+ target = 0;
+ if (operand_equal_p (exp0, exp1, 0))
+ {
+ *op0 = expand_expr (exp0, target, VOIDmode, modifier);
+ *op1 = copy_rtx (*op0);
+ }
+ else
+ {
+ *op0 = expand_expr (exp0, target, VOIDmode, modifier);
+ *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
+ }
+}
+
+
+/* Return a MEM that contains constant EXP. DEFER is as for
+ output_constant_def and MODIFIER is as for expand_expr. */
+
+static rtx
+expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
+{
+ rtx mem;
+
+ mem = output_constant_def (exp, defer);
+ if (modifier != EXPAND_INITIALIZER)
+ mem = use_anchored_address (mem);
+ return mem;
+}
+
+/* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
+ The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
+
+static rtx
+expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
+ enum expand_modifier modifier, addr_space_t as)
+{
+ rtx result, subtarget;
+ tree inner, offset;
+ poly_int64 bitsize, bitpos;
+ int unsignedp, reversep, volatilep = 0;
+ machine_mode mode1;
+
+ /* If we are taking the address of a constant and are at the top level,
+ we have to use output_constant_def since we can't call force_const_mem
+ at top level. */
+ /* ??? This should be considered a front-end bug. We should not be
+ generating ADDR_EXPR of something that isn't an LVALUE. The only
+ exception here is STRING_CST. */
+ if (CONSTANT_CLASS_P (exp))
+ {
+ result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
+ if (modifier < EXPAND_SUM)
+ result = force_operand (result, target);
+ return result;
+ }
+
+ /* Everything must be something allowed by is_gimple_addressable. */
+ switch (TREE_CODE (exp))
+ {
+ case INDIRECT_REF:
+ /* This case will happen via recursion for &a->b. */
+ return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
+
+ case MEM_REF:
+ {
+ tree tem = TREE_OPERAND (exp, 0);
+ if (!integer_zerop (TREE_OPERAND (exp, 1)))
+ tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
+ return expand_expr (tem, target, tmode, modifier);
+ }
+
+ case TARGET_MEM_REF:
+ return addr_for_mem_ref (exp, as, true);
+
+ case CONST_DECL:
+ /* Expand the initializer like constants above. */
+ result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
+ 0, modifier), 0);
+ if (modifier < EXPAND_SUM)
+ result = force_operand (result, target);
+ return result;
+
+ case REALPART_EXPR:
+ /* The real part of the complex number is always first, therefore
+ the address is the same as the address of the parent object. */
+ offset = 0;
+ bitpos = 0;
+ inner = TREE_OPERAND (exp, 0);
+ break;
+
+ case IMAGPART_EXPR:
+ /* The imaginary part of the complex number is always second.
+ The expression is therefore always offset by the size of the
+ scalar type. */
+ offset = 0;
+ bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
+ inner = TREE_OPERAND (exp, 0);
+ break;
+
+ case COMPOUND_LITERAL_EXPR:
+ /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
+ initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
+ with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
+ array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
+ the initializers aren't gimplified. */
+ if (COMPOUND_LITERAL_EXPR_DECL (exp)
+ && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
+ return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
+ target, tmode, modifier, as);
+ /* FALLTHRU */
+ default:
+ /* If the object is a DECL, then expand it for its rtl. Don't bypass
+ expand_expr, as that can have various side effects; LABEL_DECLs for
+ example, may not have their DECL_RTL set yet. Expand the rtl of
+ CONSTRUCTORs too, which should yield a memory reference for the
+ constructor's contents. Assume language specific tree nodes can
+ be expanded in some interesting way. */
+ gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
+ if (DECL_P (exp)
+ || TREE_CODE (exp) == CONSTRUCTOR
+ || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
+ {
+ result = expand_expr (exp, target, tmode,
+ modifier == EXPAND_INITIALIZER
+ ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
+
+ /* If the DECL isn't in memory, then the DECL wasn't properly
+ marked TREE_ADDRESSABLE, which will be either a front-end
+ or a tree optimizer bug. */
+
+ gcc_assert (MEM_P (result));
+ result = XEXP (result, 0);
+
+ /* ??? Is this needed anymore? */
+ if (DECL_P (exp))
+ TREE_USED (exp) = 1;
+
+ if (modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_SUM)
+ result = force_operand (result, target);
+ return result;
+ }
+
+ /* Pass FALSE as the last argument to get_inner_reference although
+ we are expanding to RTL. The rationale is that we know how to
+ handle "aligning nodes" here: we can just bypass them because
+ they won't change the final object whose address will be returned
+ (they actually exist only for that purpose). */
+ inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
+ &unsignedp, &reversep, &volatilep);
+ break;
+ }
+
+ /* We must have made progress. */
+ gcc_assert (inner != exp);
+
+ subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
+ /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
+ inner alignment, force the inner to be sufficiently aligned. */
+ if (CONSTANT_CLASS_P (inner)
+ && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
+ {
+ inner = copy_node (inner);
+ TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
+ SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
+ TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
+ }
+ result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
+
+ if (offset)
+ {
+ rtx tmp;
+
+ if (modifier != EXPAND_NORMAL)
+ result = force_operand (result, NULL);
+ tmp = expand_expr (offset, NULL_RTX, tmode,
+ modifier == EXPAND_INITIALIZER
+ ? EXPAND_INITIALIZER : EXPAND_NORMAL);
+
+ /* expand_expr is allowed to return an object in a mode other
+ than TMODE. If it did, we need to convert. */
+ if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
+ tmp = convert_modes (tmode, GET_MODE (tmp),
+ tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
+ result = convert_memory_address_addr_space (tmode, result, as);
+ tmp = convert_memory_address_addr_space (tmode, tmp, as);
+
+ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+ result = simplify_gen_binary (PLUS, tmode, result, tmp);
+ else
+ {
+ subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
+ result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
+ 1, OPTAB_LIB_WIDEN);
+ }
+ }
+
+ if (maybe_ne (bitpos, 0))
+ {
+ /* Someone beforehand should have rejected taking the address
+ of an object that isn't byte-aligned. */
+ poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
+ result = convert_memory_address_addr_space (tmode, result, as);
+ result = plus_constant (tmode, result, bytepos);
+ if (modifier < EXPAND_SUM)
+ result = force_operand (result, target);
+ }
+
+ return result;
+}
+
+/* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
+ The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
+
+static rtx
+expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
+ enum expand_modifier modifier)
+{
+ addr_space_t as = ADDR_SPACE_GENERIC;
+ scalar_int_mode address_mode = Pmode;
+ scalar_int_mode pointer_mode = ptr_mode;
+ machine_mode rmode;
+ rtx result;
+
+ /* Target mode of VOIDmode says "whatever's natural". */
+ if (tmode == VOIDmode)
+ tmode = TYPE_MODE (TREE_TYPE (exp));
+
+ if (POINTER_TYPE_P (TREE_TYPE (exp)))
+ {
+ as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
+ address_mode = targetm.addr_space.address_mode (as);
+ pointer_mode = targetm.addr_space.pointer_mode (as);
+ }
+
+ /* We can get called with some Weird Things if the user does silliness
+ like "(short) &a". In that case, convert_memory_address won't do
+ the right thing, so ignore the given target mode. */
+ scalar_int_mode new_tmode = (tmode == pointer_mode
+ ? pointer_mode
+ : address_mode);
+
+ result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
+ new_tmode, modifier, as);
+
+ /* Despite expand_expr claims concerning ignoring TMODE when not
+ strictly convenient, stuff breaks if we don't honor it. Note
+ that combined with the above, we only do this for pointer modes. */
+ rmode = GET_MODE (result);
+ if (rmode == VOIDmode)
+ rmode = new_tmode;
+ if (rmode != new_tmode)
+ result = convert_memory_address_addr_space (new_tmode, result, as);
+
+ return result;
+}
+
+/* Generate code for computing CONSTRUCTOR EXP.
+ An rtx for the computed value is returned. If AVOID_TEMP_MEM
+ is TRUE, instead of creating a temporary variable in memory
+ NULL is returned and the caller needs to handle it differently. */
+
+static rtx
+expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
+ bool avoid_temp_mem)
+{
+ tree type = TREE_TYPE (exp);
+ machine_mode mode = TYPE_MODE (type);
+
+ /* Try to avoid creating a temporary at all. This is possible
+ if all of the initializer is zero.
+ FIXME: try to handle all [0..255] initializers we can handle
+ with memset. */
+ if (TREE_STATIC (exp)
+ && !TREE_ADDRESSABLE (exp)
+ && target != 0 && mode == BLKmode
+ && all_zeros_p (exp))
+ {
+ clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
+ return target;
+ }
+
+ /* All elts simple constants => refer to a constant in memory. But
+ if this is a non-BLKmode mode, let it store a field at a time
+ since that should make a CONST_INT, CONST_WIDE_INT or
+ CONST_DOUBLE when we fold. Likewise, if we have a target we can
+ use, it is best to store directly into the target unless the type
+ is large enough that memcpy will be used. If we are making an
+ initializer and all operands are constant, put it in memory as
+ well.
+
+ FIXME: Avoid trying to fill vector constructors piece-meal.
+ Output them with output_constant_def below unless we're sure
+ they're zeros. This should go away when vector initializers
+ are treated like VECTOR_CST instead of arrays. */
+ if ((TREE_STATIC (exp)
+ && ((mode == BLKmode
+ && ! (target != 0 && safe_from_p (target, exp, 1)))
+ || TREE_ADDRESSABLE (exp)
+ || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
+ && (! can_move_by_pieces
+ (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
+ TYPE_ALIGN (type)))
+ && ! mostly_zeros_p (exp))))
+ || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
+ && TREE_CONSTANT (exp)))
+ {
+ rtx constructor;
+
+ if (avoid_temp_mem)
+ return NULL_RTX;
+
+ constructor = expand_expr_constant (exp, 1, modifier);
+
+ if (modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_SUM)
+ constructor = validize_mem (constructor);
+
+ return constructor;
+ }
+
+ /* If the CTOR is available in static storage and not mostly
+ zeros and we can move it by pieces prefer to do so since
+ that's usually more efficient than performing a series of
+ stores from immediates. */
+ if (avoid_temp_mem
+ && TREE_STATIC (exp)
+ && TREE_CONSTANT (exp)
+ && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
+ && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
+ TYPE_ALIGN (type))
+ && ! mostly_zeros_p (exp))
+ return NULL_RTX;
+
+ /* Handle calls that pass values in multiple non-contiguous
+ locations. The Irix 6 ABI has examples of this. */
+ if (target == 0 || ! safe_from_p (target, exp, 1)
+ || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
+ /* Also make a temporary if the store is to volatile memory, to
+ avoid individual accesses to aggregate members. */
+ || (GET_CODE (target) == MEM
+ && MEM_VOLATILE_P (target)
+ && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
+ {
+ if (avoid_temp_mem)
+ return NULL_RTX;
+
+ target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
+ }
+
+ store_constructor (exp, target, 0, int_expr_size (exp), false);
+ return target;
+}
+
+
+/* expand_expr: generate code for computing expression EXP.
+ An rtx for the computed value is returned. The value is never null.
+ In the case of a void EXP, const0_rtx is returned.
+
+ The value may be stored in TARGET if TARGET is nonzero.
+ TARGET is just a suggestion; callers must assume that
+ the rtx returned may not be the same as TARGET.
+
+ If TARGET is CONST0_RTX, it means that the value will be ignored.
+
+ If TMODE is not VOIDmode, it suggests generating the
+ result in mode TMODE. But this is done only when convenient.
+ Otherwise, TMODE is ignored and the value generated in its natural mode.
+ TMODE is just a suggestion; callers must assume that
+ the rtx returned may not have mode TMODE.
+
+ Note that TARGET may have neither TMODE nor MODE. In that case, it
+ probably will not be used.
+
+ If MODIFIER is EXPAND_SUM then when EXP is an addition
+ we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
+ or a nest of (PLUS ...) and (MINUS ...) where the terms are
+ products as above, or REG or MEM, or constant.
+ Ordinarily in such cases we would output mul or add instructions
+ and then return a pseudo reg containing the sum.
+
+ EXPAND_INITIALIZER is much like EXPAND_SUM except that
+ it also marks a label as absolutely required (it can't be dead).
+ It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
+ This is used for outputting expressions used in initializers.
+
+ EXPAND_CONST_ADDRESS says that it is okay to return a MEM
+ with a constant address even if that address is not normally legitimate.
+ EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
+
+ EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
+ a call parameter. Such targets require special care as we haven't yet
+ marked TARGET so that it's safe from being trashed by libcalls. We
+ don't want to use TARGET for anything but the final result;
+ Intermediate values must go elsewhere. Additionally, calls to
+ emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
+
+ If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
+ address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
+ DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
+ COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
+ recursively.
+ If the result can be stored at TARGET, and ALT_RTL is non-NULL,
+ then *ALT_RTL is set to TARGET (before legitimziation).
+
+ If INNER_REFERENCE_P is true, we are expanding an inner reference.
+ In this case, we don't adjust a returned MEM rtx that wouldn't be
+ sufficiently aligned for its mode; instead, it's up to the caller
+ to deal with it afterwards. This is used to make sure that unaligned
+ base objects for which out-of-bounds accesses are supported, for
+ example record types with trailing arrays, aren't realigned behind
+ the back of the caller.
+ The normal operating mode is to pass FALSE for this parameter. */
+
+rtx
+expand_expr_real (tree exp, rtx target, machine_mode tmode,
+ enum expand_modifier modifier, rtx *alt_rtl,
+ bool inner_reference_p)
+{
+ rtx ret;
+
+ /* Handle ERROR_MARK before anybody tries to access its type. */
+ if (TREE_CODE (exp) == ERROR_MARK
+ || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
+ {
+ ret = CONST0_RTX (tmode);
+ return ret ? ret : const0_rtx;
+ }
+
+ ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
+ inner_reference_p);
+ return ret;
+}
+
+/* Try to expand the conditional expression which is represented by
+ TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
+ return the rtl reg which represents the result. Otherwise return
+ NULL_RTX. */
+
+static rtx
+expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
+ tree treeop1 ATTRIBUTE_UNUSED,
+ tree treeop2 ATTRIBUTE_UNUSED)
+{
+ rtx insn;
+ rtx op00, op01, op1, op2;
+ enum rtx_code comparison_code;
+ machine_mode comparison_mode;
+ gimple *srcstmt;
+ rtx temp;
+ tree type = TREE_TYPE (treeop1);
+ int unsignedp = TYPE_UNSIGNED (type);
+ machine_mode mode = TYPE_MODE (type);
+ machine_mode orig_mode = mode;
+ static bool expanding_cond_expr_using_cmove = false;
+
+ /* Conditional move expansion can end up TERing two operands which,
+ when recursively hitting conditional expressions can result in
+ exponential behavior if the cmove expansion ultimatively fails.
+ It's hardly profitable to TER a cmove into a cmove so avoid doing
+ that by failing early if we end up recursing. */
+ if (expanding_cond_expr_using_cmove)
+ return NULL_RTX;
+
+ /* If we cannot do a conditional move on the mode, try doing it
+ with the promoted mode. */
+ if (!can_conditionally_move_p (mode))
+ {
+ mode = promote_mode (type, mode, &unsignedp);
+ if (!can_conditionally_move_p (mode))
+ return NULL_RTX;
+ temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
+ }
+ else
+ temp = assign_temp (type, 0, 1);
+
+ expanding_cond_expr_using_cmove = true;
+ start_sequence ();
+ expand_operands (treeop1, treeop2,
+ temp, &op1, &op2, EXPAND_NORMAL);
+
+ if (TREE_CODE (treeop0) == SSA_NAME
+ && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
+ {
+ type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
+ enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
+ op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
+ op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
+ comparison_mode = TYPE_MODE (type);
+ unsignedp = TYPE_UNSIGNED (type);
+ comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
+ }
+ else if (COMPARISON_CLASS_P (treeop0))
+ {
+ type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
+ enum tree_code cmpcode = TREE_CODE (treeop0);
+ op00 = expand_normal (TREE_OPERAND (treeop0, 0));
+ op01 = expand_normal (TREE_OPERAND (treeop0, 1));
+ unsignedp = TYPE_UNSIGNED (type);
+ comparison_mode = TYPE_MODE (type);
+ comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
+ }
+ else
+ {
+ op00 = expand_normal (treeop0);
+ op01 = const0_rtx;
+ comparison_code = NE;
+ comparison_mode = GET_MODE (op00);
+ if (comparison_mode == VOIDmode)
+ comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
+ }
+ expanding_cond_expr_using_cmove = false;
+
+ if (GET_MODE (op1) != mode)
+ op1 = gen_lowpart (mode, op1);
+
+ if (GET_MODE (op2) != mode)
+ op2 = gen_lowpart (mode, op2);
+
+ /* Try to emit the conditional move. */
+ insn = emit_conditional_move (temp, comparison_code,
+ op00, op01, comparison_mode,
+ op1, op2, mode,
+ unsignedp);
+
+ /* If we could do the conditional move, emit the sequence,
+ and return. */
+ if (insn)
+ {
+ rtx_insn *seq = get_insns ();
+ end_sequence ();
+ emit_insn (seq);
+ return convert_modes (orig_mode, mode, temp, 0);
+ }
+
+ /* Otherwise discard the sequence and fall back to code with
+ branches. */
+ end_sequence ();
+ return NULL_RTX;
+}
+
+/* A helper function for expand_expr_real_2 to be used with a
+ misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
+ is nonzero, with alignment ALIGN in bits.
+ Store the value at TARGET if possible (if TARGET is nonzero).
+ Regardless of TARGET, we return the rtx for where the value is placed.
+ If the result can be stored at TARGET, and ALT_RTL is non-NULL,
+ then *ALT_RTL is set to TARGET (before legitimziation). */
+
+static rtx
+expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
+ unsigned int align, rtx target, rtx *alt_rtl)
+{
+ enum insn_code icode;
+
+ if ((icode = optab_handler (movmisalign_optab, mode))
+ != CODE_FOR_nothing)
+ {
+ class expand_operand ops[2];
+
+ /* We've already validated the memory, and we're creating a
+ new pseudo destination. The predicates really can't fail,
+ nor can the generator. */
+ create_output_operand (&ops[0], NULL_RTX, mode);
+ create_fixed_operand (&ops[1], temp);
+ expand_insn (icode, 2, ops);
+ temp = ops[0].value;
+ }
+ else if (targetm.slow_unaligned_access (mode, align))
+ temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
+ 0, unsignedp, target,
+ mode, mode, false, alt_rtl);
+ return temp;
+}
+
+/* Helper function of expand_expr_2, expand a division or modulo.
+ op0 and op1 should be already expanded treeop0 and treeop1, using
+ expand_operands. */
+
+static rtx
+expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
+ tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
+{
+ bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
+ || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
+ if (SCALAR_INT_MODE_P (mode)
+ && optimize >= 2
+ && get_range_pos_neg (treeop0) == 1
+ && get_range_pos_neg (treeop1) == 1)
+ {
+ /* If both arguments are known to be positive when interpreted
+ as signed, we can expand it as both signed and unsigned
+ division or modulo. Choose the cheaper sequence in that case. */
+ bool speed_p = optimize_insn_for_speed_p ();
+ do_pending_stack_adjust ();
+ start_sequence ();
+ rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
+ rtx_insn *uns_insns = get_insns ();
+ end_sequence ();
+ start_sequence ();
+ rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
+ rtx_insn *sgn_insns = get_insns ();
+ end_sequence ();
+ unsigned uns_cost = seq_cost (uns_insns, speed_p);
+ unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
+
+ /* If costs are the same then use as tie breaker the other other
+ factor. */
+ if (uns_cost == sgn_cost)
+ {
+ uns_cost = seq_cost (uns_insns, !speed_p);
+ sgn_cost = seq_cost (sgn_insns, !speed_p);
+ }
+
+ if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
+ {
+ emit_insn (uns_insns);
+ return uns_ret;
+ }
+ emit_insn (sgn_insns);
+ return sgn_ret;
+ }
+ return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
+}
+
+rtx
+expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
+ enum expand_modifier modifier)
+{
+ rtx op0, op1, op2, temp;
+ rtx_code_label *lab;
+ tree type;
+ int unsignedp;
+ machine_mode mode;
+ scalar_int_mode int_mode;
+ enum tree_code code = ops->code;
+ optab this_optab;
+ rtx subtarget, original_target;
+ int ignore;
+ bool reduce_bit_field;
+ location_t loc = ops->location;
+ tree treeop0, treeop1, treeop2;
+#define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
+ ? reduce_to_bit_field_precision ((expr), \
+ target, \
+ type) \
+ : (expr))
+
+ type = ops->type;
+ mode = TYPE_MODE (type);
+ unsignedp = TYPE_UNSIGNED (type);
+
+ treeop0 = ops->op0;
+ treeop1 = ops->op1;
+ treeop2 = ops->op2;
+
+ /* We should be called only on simple (binary or unary) expressions,
+ exactly those that are valid in gimple expressions that aren't
+ GIMPLE_SINGLE_RHS (or invalid). */
+ gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
+ || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
+ || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
+
+ ignore = (target == const0_rtx
+ || ((CONVERT_EXPR_CODE_P (code)
+ || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
+ && TREE_CODE (type) == VOID_TYPE));
+
+ /* We should be called only if we need the result. */
+ gcc_assert (!ignore);
+
+ /* An operation in what may be a bit-field type needs the
+ result to be reduced to the precision of the bit-field type,
+ which is narrower than that of the type's mode. */
+ reduce_bit_field = (INTEGRAL_TYPE_P (type)
+ && !type_has_mode_precision_p (type));
+
+ if (reduce_bit_field
+ && (modifier == EXPAND_STACK_PARM
+ || (target && GET_MODE (target) != mode)))
+ target = 0;
+
+ /* Use subtarget as the target for operand 0 of a binary operation. */
+ subtarget = get_subtarget (target);
+ original_target = target;
+
+ switch (code)
+ {
+ case NON_LVALUE_EXPR:
+ case PAREN_EXPR:
+ CASE_CONVERT:
+ if (treeop0 == error_mark_node)
+ return const0_rtx;
+
+ if (TREE_CODE (type) == UNION_TYPE)
+ {
+ tree valtype = TREE_TYPE (treeop0);
+
+ /* If both input and output are BLKmode, this conversion isn't doing
+ anything except possibly changing memory attribute. */
+ if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
+ {
+ rtx result = expand_expr (treeop0, target, tmode,
+ modifier);
+
+ result = copy_rtx (result);
+ set_mem_attributes (result, type, 0);
+ return result;
+ }
+
+ if (target == 0)
+ {
+ if (TYPE_MODE (type) != BLKmode)
+ target = gen_reg_rtx (TYPE_MODE (type));
+ else
+ target = assign_temp (type, 1, 1);
+ }
+
+ if (MEM_P (target))
+ /* Store data into beginning of memory target. */
+ store_expr (treeop0,
+ adjust_address (target, TYPE_MODE (valtype), 0),
+ modifier == EXPAND_STACK_PARM,
+ false, TYPE_REVERSE_STORAGE_ORDER (type));
+
+ else
+ {
+ gcc_assert (REG_P (target)
+ && !TYPE_REVERSE_STORAGE_ORDER (type));
+
+ /* Store this field into a union of the proper type. */
+ poly_uint64 op0_size
+ = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
+ poly_uint64 union_size = GET_MODE_BITSIZE (mode);
+ store_field (target,
+ /* The conversion must be constructed so that
+ we know at compile time how many bits
+ to preserve. */
+ ordered_min (op0_size, union_size),
+ 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
+ false, false);
+ }
+
+ /* Return the entire union. */
+ return target;
+ }
+
+ if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
+ {
+ op0 = expand_expr (treeop0, target, VOIDmode,
+ modifier);
+
+ /* If the signedness of the conversion differs and OP0 is
+ a promoted SUBREG, clear that indication since we now
+ have to do the proper extension. */
+ if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
+ && GET_CODE (op0) == SUBREG)
+ SUBREG_PROMOTED_VAR_P (op0) = 0;
+
+ return REDUCE_BIT_FIELD (op0);
+ }
+
+ op0 = expand_expr (treeop0, NULL_RTX, mode,
+ modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
+ if (GET_MODE (op0) == mode)
+ ;
+
+ /* If OP0 is a constant, just convert it into the proper mode. */
+ else if (CONSTANT_P (op0))
+ {
+ tree inner_type = TREE_TYPE (treeop0);
+ machine_mode inner_mode = GET_MODE (op0);
+
+ if (inner_mode == VOIDmode)
+ inner_mode = TYPE_MODE (inner_type);
+
+ if (modifier == EXPAND_INITIALIZER)
+ op0 = lowpart_subreg (mode, op0, inner_mode);
+ else
+ op0= convert_modes (mode, inner_mode, op0,
+ TYPE_UNSIGNED (inner_type));
+ }
+
+ else if (modifier == EXPAND_INITIALIZER)
+ op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
+ ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
+
+ else if (target == 0)
+ op0 = convert_to_mode (mode, op0,
+ TYPE_UNSIGNED (TREE_TYPE
+ (treeop0)));
+ else
+ {
+ convert_move (target, op0,
+ TYPE_UNSIGNED (TREE_TYPE (treeop0)));
+ op0 = target;
+ }
+
+ return REDUCE_BIT_FIELD (op0);
+
+ case ADDR_SPACE_CONVERT_EXPR:
+ {
+ tree treeop0_type = TREE_TYPE (treeop0);
+
+ gcc_assert (POINTER_TYPE_P (type));
+ gcc_assert (POINTER_TYPE_P (treeop0_type));
+
+ addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
+ addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
+
+ /* Conversions between pointers to the same address space should
+ have been implemented via CONVERT_EXPR / NOP_EXPR. */
+ gcc_assert (as_to != as_from);
+
+ op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
+
+ /* Ask target code to handle conversion between pointers
+ to overlapping address spaces. */
+ if (targetm.addr_space.subset_p (as_to, as_from)
+ || targetm.addr_space.subset_p (as_from, as_to))
+ {
+ op0 = targetm.addr_space.convert (op0, treeop0_type, type);
+ }
+ else
+ {
+ /* For disjoint address spaces, converting anything but a null
+ pointer invokes undefined behavior. We truncate or extend the
+ value as if we'd converted via integers, which handles 0 as
+ required, and all others as the programmer likely expects. */
+#ifndef POINTERS_EXTEND_UNSIGNED
+ const int POINTERS_EXTEND_UNSIGNED = 1;
+#endif
+ op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
+ op0, POINTERS_EXTEND_UNSIGNED);
+ }
+ gcc_assert (op0);
+ return op0;
+ }
+
+ case POINTER_PLUS_EXPR:
+ /* Even though the sizetype mode and the pointer's mode can be different
+ expand is able to handle this correctly and get the correct result out
+ of the PLUS_EXPR code. */
+ /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
+ if sizetype precision is smaller than pointer precision. */
+ if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
+ treeop1 = fold_convert_loc (loc, type,
+ fold_convert_loc (loc, ssizetype,
+ treeop1));
+ /* If sizetype precision is larger than pointer precision, truncate the
+ offset to have matching modes. */
+ else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
+ treeop1 = fold_convert_loc (loc, type, treeop1);
+ /* FALLTHRU */
+
+ case PLUS_EXPR:
+ /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
+ something else, make sure we add the register to the constant and
+ then to the other thing. This case can occur during strength
+ reduction and doing it this way will produce better code if the
+ frame pointer or argument pointer is eliminated.
+
+ fold-const.c will ensure that the constant is always in the inner
+ PLUS_EXPR, so the only case we need to do anything about is if
+ sp, ap, or fp is our second argument, in which case we must swap
+ the innermost first argument and our second argument. */
+
+ if (TREE_CODE (treeop0) == PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
+ && VAR_P (treeop1)
+ && (DECL_RTL (treeop1) == frame_pointer_rtx
+ || DECL_RTL (treeop1) == stack_pointer_rtx
+ || DECL_RTL (treeop1) == arg_pointer_rtx))
+ {
+ gcc_unreachable ();
+ }
+
+ /* If the result is to be ptr_mode and we are adding an integer to
+ something, we might be forming a constant. So try to use
+ plus_constant. If it produces a sum and we can't accept it,
+ use force_operand. This allows P = &ARR[const] to generate
+ efficient code on machines where a SYMBOL_REF is not a valid
+ address.
+
+ If this is an EXPAND_SUM call, always return the sum. */
+ if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
+ || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
+ {
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ if (TREE_CODE (treeop0) == INTEGER_CST
+ && HWI_COMPUTABLE_MODE_P (mode)
+ && TREE_CONSTANT (treeop1))
+ {
+ rtx constant_part;
+ HOST_WIDE_INT wc;
+ machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
+
+ op1 = expand_expr (treeop1, subtarget, VOIDmode,
+ EXPAND_SUM);
+ /* Use wi::shwi to ensure that the constant is
+ truncated according to the mode of OP1, then sign extended
+ to a HOST_WIDE_INT. Using the constant directly can result
+ in non-canonical RTL in a 64x32 cross compile. */
+ wc = TREE_INT_CST_LOW (treeop0);
+ constant_part =
+ immed_wide_int_const (wi::shwi (wc, wmode), wmode);
+ op1 = plus_constant (mode, op1, INTVAL (constant_part));
+ if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+ op1 = force_operand (op1, target);
+ return REDUCE_BIT_FIELD (op1);
+ }
+
+ else if (TREE_CODE (treeop1) == INTEGER_CST
+ && HWI_COMPUTABLE_MODE_P (mode)
+ && TREE_CONSTANT (treeop0))
+ {
+ rtx constant_part;
+ HOST_WIDE_INT wc;
+ machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
+
+ op0 = expand_expr (treeop0, subtarget, VOIDmode,
+ (modifier == EXPAND_INITIALIZER
+ ? EXPAND_INITIALIZER : EXPAND_SUM));
+ if (! CONSTANT_P (op0))
+ {
+ op1 = expand_expr (treeop1, NULL_RTX,
+ VOIDmode, modifier);
+ /* Return a PLUS if modifier says it's OK. */
+ if (modifier == EXPAND_SUM
+ || modifier == EXPAND_INITIALIZER)
+ return simplify_gen_binary (PLUS, mode, op0, op1);
+ goto binop2;
+ }
+ /* Use wi::shwi to ensure that the constant is
+ truncated according to the mode of OP1, then sign extended
+ to a HOST_WIDE_INT. Using the constant directly can result
+ in non-canonical RTL in a 64x32 cross compile. */
+ wc = TREE_INT_CST_LOW (treeop1);
+ constant_part
+ = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
+ op0 = plus_constant (mode, op0, INTVAL (constant_part));
+ if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
+ op0 = force_operand (op0, target);
+ return REDUCE_BIT_FIELD (op0);
+ }
+ }
+
+ /* Use TER to expand pointer addition of a negated value
+ as pointer subtraction. */
+ if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
+ || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
+ && TREE_CODE (treeop1) == SSA_NAME
+ && TYPE_MODE (TREE_TYPE (treeop0))
+ == TYPE_MODE (TREE_TYPE (treeop1)))
+ {
+ gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
+ if (def)
+ {
+ treeop1 = gimple_assign_rhs1 (def);
+ code = MINUS_EXPR;
+ goto do_minus;
+ }
+ }
+
+ /* No sense saving up arithmetic to be done
+ if it's all in the wrong mode to form part of an address.
+ And force_operand won't know whether to sign-extend or
+ zero-extend. */
+ if (modifier != EXPAND_INITIALIZER
+ && (modifier != EXPAND_SUM || mode != ptr_mode))
+ {
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, modifier);
+ if (op0 == const0_rtx)
+ return op1;
+ if (op1 == const0_rtx)
+ return op0;
+ goto binop2;
+ }
+
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, modifier);
+ return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
+
+ case MINUS_EXPR:
+ case POINTER_DIFF_EXPR:
+ do_minus:
+ /* For initializers, we are allowed to return a MINUS of two
+ symbolic constants. Here we handle all cases when both operands
+ are constant. */
+ /* Handle difference of two symbolic constants,
+ for the sake of an initializer. */
+ if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+ && really_constant_p (treeop0)
+ && really_constant_p (treeop1))
+ {
+ expand_operands (treeop0, treeop1,
+ NULL_RTX, &op0, &op1, modifier);
+ return simplify_gen_binary (MINUS, mode, op0, op1);
+ }
+
+ /* No sense saving up arithmetic to be done
+ if it's all in the wrong mode to form part of an address.
+ And force_operand won't know whether to sign-extend or
+ zero-extend. */
+ if (modifier != EXPAND_INITIALIZER
+ && (modifier != EXPAND_SUM || mode != ptr_mode))
+ goto binop;
+
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, modifier);
+
+ /* Convert A - const to A + (-const). */
+ if (CONST_INT_P (op1))
+ {
+ op1 = negate_rtx (mode, op1);
+ return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
+ }
+
+ goto binop2;
+
+ case WIDEN_MULT_PLUS_EXPR:
+ case WIDEN_MULT_MINUS_EXPR:
+ expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ op2 = expand_normal (treeop2);
+ target = expand_widen_pattern_expr (ops, op0, op1, op2,
+ target, unsignedp);
+ return target;
+
+ case WIDEN_PLUS_EXPR:
+ case WIDEN_MINUS_EXPR:
+ case WIDEN_MULT_EXPR:
+ /* If first operand is constant, swap them.
+ Thus the following special case checks need only
+ check the second operand. */
+ if (TREE_CODE (treeop0) == INTEGER_CST)
+ std::swap (treeop0, treeop1);
+
+ /* First, check if we have a multiplication of one signed and one
+ unsigned operand. */
+ if (TREE_CODE (treeop1) != INTEGER_CST
+ && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
+ != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
+ {
+ machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
+ this_optab = usmul_widen_optab;
+ if (find_widening_optab_handler (this_optab, mode, innermode)
+ != CODE_FOR_nothing)
+ {
+ if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
+ expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
+ EXPAND_NORMAL);
+ else
+ expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
+ EXPAND_NORMAL);
+ /* op0 and op1 might still be constant, despite the above
+ != INTEGER_CST check. Handle it. */
+ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
+ {
+ op0 = convert_modes (mode, innermode, op0, true);
+ op1 = convert_modes (mode, innermode, op1, false);
+ return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
+ target, unsignedp));
+ }
+ goto binop3;
+ }
+ }
+ /* Check for a multiplication with matching signedness. */
+ else if ((TREE_CODE (treeop1) == INTEGER_CST
+ && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
+ || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
+ == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
+ {
+ tree op0type = TREE_TYPE (treeop0);
+ machine_mode innermode = TYPE_MODE (op0type);
+ bool zextend_p = TYPE_UNSIGNED (op0type);
+ optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
+ this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
+
+ if (TREE_CODE (treeop0) != INTEGER_CST)
+ {
+ if (find_widening_optab_handler (this_optab, mode, innermode)
+ != CODE_FOR_nothing)
+ {
+ expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
+ EXPAND_NORMAL);
+ /* op0 and op1 might still be constant, despite the above
+ != INTEGER_CST check. Handle it. */
+ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
+ {
+ widen_mult_const:
+ op0 = convert_modes (mode, innermode, op0, zextend_p);
+ op1
+ = convert_modes (mode, innermode, op1,
+ TYPE_UNSIGNED (TREE_TYPE (treeop1)));
+ return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
+ target,
+ unsignedp));
+ }
+ temp = expand_widening_mult (mode, op0, op1, target,
+ unsignedp, this_optab);
+ return REDUCE_BIT_FIELD (temp);
+ }
+ if (find_widening_optab_handler (other_optab, mode, innermode)
+ != CODE_FOR_nothing
+ && innermode == word_mode)
+ {
+ rtx htem, hipart;
+ op0 = expand_normal (treeop0);
+ op1 = expand_normal (treeop1);
+ /* op0 and op1 might be constants, despite the above
+ != INTEGER_CST check. Handle it. */
+ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
+ goto widen_mult_const;
+ temp = expand_binop (mode, other_optab, op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ hipart = gen_highpart (word_mode, temp);
+ htem = expand_mult_highpart_adjust (word_mode, hipart,
+ op0, op1, hipart,
+ zextend_p);
+ if (htem != hipart)
+ emit_move_insn (hipart, htem);
+ return REDUCE_BIT_FIELD (temp);
+ }
+ }
+ }
+ treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
+ treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
+ expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
+ return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
+
+ case MULT_EXPR:
+ /* If this is a fixed-point operation, then we cannot use the code
+ below because "expand_mult" doesn't support sat/no-sat fixed-point
+ multiplications. */
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ goto binop;
+
+ /* If first operand is constant, swap them.
+ Thus the following special case checks need only
+ check the second operand. */
+ if (TREE_CODE (treeop0) == INTEGER_CST)
+ std::swap (treeop0, treeop1);
+
+ /* Attempt to return something suitable for generating an
+ indexed address, for machines that support that. */
+
+ if (modifier == EXPAND_SUM && mode == ptr_mode
+ && tree_fits_shwi_p (treeop1))
+ {
+ tree exp1 = treeop1;
+
+ op0 = expand_expr (treeop0, subtarget, VOIDmode,
+ EXPAND_SUM);
+
+ if (!REG_P (op0))
+ op0 = force_operand (op0, NULL_RTX);
+ if (!REG_P (op0))
+ op0 = copy_to_mode_reg (mode, op0);
+
+ op1 = gen_int_mode (tree_to_shwi (exp1),
+ TYPE_MODE (TREE_TYPE (exp1)));
+ return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
+ }
+
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+
+ if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
+ {
+ gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
+ gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
+ if (def_stmt0
+ && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
+ def_stmt0 = NULL;
+ if (def_stmt1
+ && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
+ def_stmt1 = NULL;
+
+ if (def_stmt0 || def_stmt1)
+ {
+ /* X / Y * Y can be expanded as X - X % Y too.
+ Choose the cheaper sequence of those two. */
+ if (def_stmt0)
+ treeop0 = gimple_assign_rhs1 (def_stmt0);
+ else
+ {
+ treeop1 = treeop0;
+ treeop0 = gimple_assign_rhs1 (def_stmt1);
+ }
+ expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
+ EXPAND_NORMAL);
+ bool speed_p = optimize_insn_for_speed_p ();
+ do_pending_stack_adjust ();
+ start_sequence ();
+ rtx divmul_ret
+ = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
+ op0, op1, NULL_RTX, unsignedp);
+ divmul_ret = expand_mult (mode, divmul_ret, op1, target,
+ unsignedp);
+ rtx_insn *divmul_insns = get_insns ();
+ end_sequence ();
+ start_sequence ();
+ rtx modsub_ret
+ = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
+ op0, op1, NULL_RTX, unsignedp);
+ this_optab = optab_for_tree_code (MINUS_EXPR, type,
+ optab_default);
+ modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
+ target, unsignedp, OPTAB_LIB_WIDEN);
+ rtx_insn *modsub_insns = get_insns ();
+ end_sequence ();
+ unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
+ unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
+ /* If costs are the same then use as tie breaker the other other
+ factor. */
+ if (divmul_cost == modsub_cost)
+ {
+ divmul_cost = seq_cost (divmul_insns, !speed_p);
+ modsub_cost = seq_cost (modsub_insns, !speed_p);
+ }
+
+ if (divmul_cost <= modsub_cost)
+ {
+ emit_insn (divmul_insns);
+ return REDUCE_BIT_FIELD (divmul_ret);
+ }
+ emit_insn (modsub_insns);
+ return REDUCE_BIT_FIELD (modsub_ret);
+ }
+ }
+
+ expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
+ return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
+
+ case TRUNC_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case CEIL_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+
+ case TRUNC_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ /* If this is a fixed-point operation, then we cannot use the code
+ below because "expand_divmod" doesn't support sat/no-sat fixed-point
+ divisions. */
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ goto binop;
+
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ /* Possible optimization: compute the dividend with EXPAND_SUM
+ then if the divisor is constant can optimize the case
+ where some terms of the dividend have coeffs divisible by it. */
+ expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
+ return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
+ target, unsignedp);
+
+ case RDIV_EXPR:
+ goto binop;
+
+ case MULT_HIGHPART_EXPR:
+ expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
+ temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
+ gcc_assert (temp);
+ return temp;
+
+ case FIXED_CONVERT_EXPR:
+ op0 = expand_normal (treeop0);
+ if (target == 0 || modifier == EXPAND_STACK_PARM)
+ target = gen_reg_rtx (mode);
+
+ if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
+ && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
+ || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
+ expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
+ else
+ expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
+ return target;
+
+ case FIX_TRUNC_EXPR:
+ op0 = expand_normal (treeop0);
+ if (target == 0 || modifier == EXPAND_STACK_PARM)
+ target = gen_reg_rtx (mode);
+ expand_fix (target, op0, unsignedp);
+ return target;
+
+ case FLOAT_EXPR:
+ op0 = expand_normal (treeop0);
+ if (target == 0 || modifier == EXPAND_STACK_PARM)
+ target = gen_reg_rtx (mode);
+ /* expand_float can't figure out what to do if FROM has VOIDmode.
+ So give it the correct mode. With -O, cse will optimize this. */
+ if (GET_MODE (op0) == VOIDmode)
+ op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
+ op0);
+ expand_float (target, op0,
+ TYPE_UNSIGNED (TREE_TYPE (treeop0)));
+ return target;
+
+ case NEGATE_EXPR:
+ op0 = expand_expr (treeop0, subtarget,
+ VOIDmode, EXPAND_NORMAL);
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ temp = expand_unop (mode,
+ optab_for_tree_code (NEGATE_EXPR, type,
+ optab_default),
+ op0, target, 0);
+ gcc_assert (temp);
+ return REDUCE_BIT_FIELD (temp);
+
+ case ABS_EXPR:
+ case ABSU_EXPR:
+ op0 = expand_expr (treeop0, subtarget,
+ VOIDmode, EXPAND_NORMAL);
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+
+ /* ABS_EXPR is not valid for complex arguments. */
+ gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
+
+ /* Unsigned abs is simply the operand. Testing here means we don't
+ risk generating incorrect code below. */
+ if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
+ return op0;
+
+ return expand_abs (mode, op0, target, unsignedp,
+ safe_from_p (target, treeop0, 1));
+
+ case MAX_EXPR:
+ case MIN_EXPR:
+ target = original_target;
+ if (target == 0
+ || modifier == EXPAND_STACK_PARM
+ || (MEM_P (target) && MEM_VOLATILE_P (target))
+ || GET_MODE (target) != mode
+ || (REG_P (target)
+ && REGNO (target) < FIRST_PSEUDO_REGISTER))
+ target = gen_reg_rtx (mode);
+ expand_operands (treeop0, treeop1,
+ target, &op0, &op1, EXPAND_NORMAL);
+
+ /* First try to do it with a special MIN or MAX instruction.
+ If that does not win, use a conditional jump to select the proper
+ value. */
+ this_optab = optab_for_tree_code (code, type, optab_default);
+ temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
+ OPTAB_WIDEN);
+ if (temp != 0)
+ return temp;
+
+ if (VECTOR_TYPE_P (type))
+ gcc_unreachable ();
+
+ /* At this point, a MEM target is no longer useful; we will get better
+ code without it. */
+
+ if (! REG_P (target))
+ target = gen_reg_rtx (mode);
+
+ /* If op1 was placed in target, swap op0 and op1. */
+ if (target != op0 && target == op1)
+ std::swap (op0, op1);
+
+ /* We generate better code and avoid problems with op1 mentioning
+ target by forcing op1 into a pseudo if it isn't a constant. */
+ if (! CONSTANT_P (op1))
+ op1 = force_reg (mode, op1);
+
+ {
+ enum rtx_code comparison_code;
+ rtx cmpop1 = op1;
+
+ if (code == MAX_EXPR)
+ comparison_code = unsignedp ? GEU : GE;
+ else
+ comparison_code = unsignedp ? LEU : LE;
+
+ /* Canonicalize to comparisons against 0. */
+ if (op1 == const1_rtx)
+ {
+ /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
+ or (a != 0 ? a : 1) for unsigned.
+ For MIN we are safe converting (a <= 1 ? a : 1)
+ into (a <= 0 ? a : 1) */
+ cmpop1 = const0_rtx;
+ if (code == MAX_EXPR)
+ comparison_code = unsignedp ? NE : GT;
+ }
+ if (op1 == constm1_rtx && !unsignedp)
+ {
+ /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
+ and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
+ cmpop1 = const0_rtx;
+ if (code == MIN_EXPR)
+ comparison_code = LT;
+ }
+
+ /* Use a conditional move if possible. */
+ if (can_conditionally_move_p (mode))
+ {
+ rtx insn;
+
+ start_sequence ();
+
+ /* Try to emit the conditional move. */
+ insn = emit_conditional_move (target, comparison_code,
+ op0, cmpop1, mode,
+ op0, op1, mode,
+ unsignedp);
+
+ /* If we could do the conditional move, emit the sequence,
+ and return. */
+ if (insn)
+ {
+ rtx_insn *seq = get_insns ();
+ end_sequence ();
+ emit_insn (seq);
+ return target;
+ }
+
+ /* Otherwise discard the sequence and fall back to code with
+ branches. */
+ end_sequence ();
+ }
+
+ if (target != op0)
+ emit_move_insn (target, op0);
+
+ lab = gen_label_rtx ();
+ do_compare_rtx_and_jump (target, cmpop1, comparison_code,
+ unsignedp, mode, NULL_RTX, NULL, lab,
+ profile_probability::uninitialized ());
+ }
+ emit_move_insn (target, op1);
+ emit_label (lab);
+ return target;
+
+ case BIT_NOT_EXPR:
+ op0 = expand_expr (treeop0, subtarget,
+ VOIDmode, EXPAND_NORMAL);
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ /* In case we have to reduce the result to bitfield precision
+ for unsigned bitfield expand this as XOR with a proper constant
+ instead. */
+ if (reduce_bit_field && TYPE_UNSIGNED (type))
+ {
+ int_mode = SCALAR_INT_TYPE_MODE (type);
+ wide_int mask = wi::mask (TYPE_PRECISION (type),
+ false, GET_MODE_PRECISION (int_mode));
+
+ temp = expand_binop (int_mode, xor_optab, op0,
+ immed_wide_int_const (mask, int_mode),
+ target, 1, OPTAB_LIB_WIDEN);
+ }
+ else
+ temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
+ gcc_assert (temp);
+ return temp;
+
+ /* ??? Can optimize bitwise operations with one arg constant.
+ Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
+ and (a bitwise1 b) bitwise2 b (etc)
+ but that is probably not worth while. */
+
+ case BIT_AND_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ goto binop;
+
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
+ || type_has_mode_precision_p (type));
+ /* fall through */
+
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ {
+ /* If this is a fixed-point operation, then we cannot use the code
+ below because "expand_shift" doesn't support sat/no-sat fixed-point
+ shifts. */
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ goto binop;
+
+ if (! safe_from_p (subtarget, treeop1, 1))
+ subtarget = 0;
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ op0 = expand_expr (treeop0, subtarget,
+ VOIDmode, EXPAND_NORMAL);
+
+ /* Left shift optimization when shifting across word_size boundary.
+
+ If mode == GET_MODE_WIDER_MODE (word_mode), then normally
+ there isn't native instruction to support this wide mode
+ left shift. Given below scenario:
+
+ Type A = (Type) B << C
+
+ |< T >|
+ | dest_high | dest_low |
+
+ | word_size |
+
+ If the shift amount C caused we shift B to across the word
+ size boundary, i.e part of B shifted into high half of
+ destination register, and part of B remains in the low
+ half, then GCC will use the following left shift expand
+ logic:
+
+ 1. Initialize dest_low to B.
+ 2. Initialize every bit of dest_high to the sign bit of B.
+ 3. Logic left shift dest_low by C bit to finalize dest_low.
+ The value of dest_low before this shift is kept in a temp D.
+ 4. Logic left shift dest_high by C.
+ 5. Logic right shift D by (word_size - C).
+ 6. Or the result of 4 and 5 to finalize dest_high.
+
+ While, by checking gimple statements, if operand B is
+ coming from signed extension, then we can simplify above
+ expand logic into:
+
+ 1. dest_high = src_low >> (word_size - C).
+ 2. dest_low = src_low << C.
+
+ We can use one arithmetic right shift to finish all the
+ purpose of steps 2, 4, 5, 6, thus we reduce the steps
+ needed from 6 into 2.
+
+ The case is similar for zero extension, except that we
+ initialize dest_high to zero rather than copies of the sign
+ bit from B. Furthermore, we need to use a logical right shift
+ in this case.
+
+ The choice of sign-extension versus zero-extension is
+ determined entirely by whether or not B is signed and is
+ independent of the current setting of unsignedp. */
+
+ temp = NULL_RTX;
+ if (code == LSHIFT_EXPR
+ && target
+ && REG_P (target)
+ && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
+ && mode == int_mode
+ && TREE_CONSTANT (treeop1)
+ && TREE_CODE (treeop0) == SSA_NAME)
+ {
+ gimple *def = SSA_NAME_DEF_STMT (treeop0);
+ if (is_gimple_assign (def)
+ && gimple_assign_rhs_code (def) == NOP_EXPR)
+ {
+ scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
+ (TREE_TYPE (gimple_assign_rhs1 (def)));
+
+ if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
+ && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
+ && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
+ >= GET_MODE_BITSIZE (word_mode)))
+ {
+ rtx_insn *seq, *seq_old;
+ poly_uint64 high_off = subreg_highpart_offset (word_mode,
+ int_mode);
+ bool extend_unsigned
+ = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
+ rtx low = lowpart_subreg (word_mode, op0, int_mode);
+ rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
+ rtx dest_high = simplify_gen_subreg (word_mode, target,
+ int_mode, high_off);
+ HOST_WIDE_INT ramount = (BITS_PER_WORD
+ - TREE_INT_CST_LOW (treeop1));
+ tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
+
+ start_sequence ();
+ /* dest_high = src_low >> (word_size - C). */
+ temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
+ rshift, dest_high,
+ extend_unsigned);
+ if (temp != dest_high)
+ emit_move_insn (dest_high, temp);
+
+ /* dest_low = src_low << C. */
+ temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
+ treeop1, dest_low, unsignedp);
+ if (temp != dest_low)
+ emit_move_insn (dest_low, temp);
+
+ seq = get_insns ();
+ end_sequence ();
+ temp = target ;
+
+ if (have_insn_for (ASHIFT, int_mode))
+ {
+ bool speed_p = optimize_insn_for_speed_p ();
+ start_sequence ();
+ rtx ret_old = expand_variable_shift (code, int_mode,
+ op0, treeop1,
+ target,
+ unsignedp);
+
+ seq_old = get_insns ();
+ end_sequence ();
+ if (seq_cost (seq, speed_p)
+ >= seq_cost (seq_old, speed_p))
+ {
+ seq = seq_old;
+ temp = ret_old;
+ }
+ }
+ emit_insn (seq);
+ }
+ }
+ }
+
+ if (temp == NULL_RTX)
+ temp = expand_variable_shift (code, mode, op0, treeop1, target,
+ unsignedp);
+ if (code == LSHIFT_EXPR)
+ temp = REDUCE_BIT_FIELD (temp);
+ return temp;
+ }
+
+ /* Could determine the answer when only additive constants differ. Also,
+ the addition of one can be handled by changing the condition. */
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNLT_EXPR:
+ case UNLE_EXPR:
+ case UNGT_EXPR:
+ case UNGE_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ {
+ temp = do_store_flag (ops,
+ modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
+ tmode != VOIDmode ? tmode : mode);
+ if (temp)
+ return temp;
+
+ /* Use a compare and a jump for BLKmode comparisons, or for function
+ type comparisons is have_canonicalize_funcptr_for_compare. */
+
+ if ((target == 0
+ || modifier == EXPAND_STACK_PARM
+ || ! safe_from_p (target, treeop0, 1)
+ || ! safe_from_p (target, treeop1, 1)
+ /* Make sure we don't have a hard reg (such as function's return
+ value) live across basic blocks, if not optimizing. */
+ || (!optimize && REG_P (target)
+ && REGNO (target) < FIRST_PSEUDO_REGISTER)))
+ target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
+
+ emit_move_insn (target, const0_rtx);
+
+ rtx_code_label *lab1 = gen_label_rtx ();
+ jumpifnot_1 (code, treeop0, treeop1, lab1,
+ profile_probability::uninitialized ());
+
+ if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
+ emit_move_insn (target, constm1_rtx);
+ else
+ emit_move_insn (target, const1_rtx);
+
+ emit_label (lab1);
+ return target;
+ }
+ case COMPLEX_EXPR:
+ /* Get the rtx code of the operands. */
+ op0 = expand_normal (treeop0);
+ op1 = expand_normal (treeop1);
+
+ if (!target)
+ target = gen_reg_rtx (TYPE_MODE (type));
+ else
+ /* If target overlaps with op1, then either we need to force
+ op1 into a pseudo (if target also overlaps with op0),
+ or write the complex parts in reverse order. */
+ switch (GET_CODE (target))
+ {
+ case CONCAT:
+ if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
+ {
+ if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
+ {
+ complex_expr_force_op1:
+ temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
+ emit_move_insn (temp, op1);
+ op1 = temp;
+ break;
+ }
+ complex_expr_swap_order:
+ /* Move the imaginary (op1) and real (op0) parts to their
+ location. */
+ write_complex_part (target, op1, true);
+ write_complex_part (target, op0, false);
+
+ return target;
+ }
+ break;
+ case MEM:
+ temp = adjust_address_nv (target,
+ GET_MODE_INNER (GET_MODE (target)), 0);
+ if (reg_overlap_mentioned_p (temp, op1))
+ {
+ scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
+ temp = adjust_address_nv (target, imode,
+ GET_MODE_SIZE (imode));
+ if (reg_overlap_mentioned_p (temp, op0))
+ goto complex_expr_force_op1;
+ goto complex_expr_swap_order;
+ }
+ break;
+ default:
+ if (reg_overlap_mentioned_p (target, op1))
+ {
+ if (reg_overlap_mentioned_p (target, op0))
+ goto complex_expr_force_op1;
+ goto complex_expr_swap_order;
+ }
+ break;
+ }
+
+ /* Move the real (op0) and imaginary (op1) parts to their location. */
+ write_complex_part (target, op0, false);
+ write_complex_part (target, op1, true);
+
+ return target;
+
+ case WIDEN_SUM_EXPR:
+ {
+ tree oprnd0 = treeop0;
+ tree oprnd1 = treeop1;
+
+ expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
+ target, unsignedp);
+ return target;
+ }
+
+ case VEC_UNPACK_HI_EXPR:
+ case VEC_UNPACK_LO_EXPR:
+ case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
+ case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
+ {
+ op0 = expand_normal (treeop0);
+ temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
+ target, unsignedp);
+ gcc_assert (temp);
+ return temp;
+ }
+
+ case VEC_UNPACK_FLOAT_HI_EXPR:
+ case VEC_UNPACK_FLOAT_LO_EXPR:
+ {
+ op0 = expand_normal (treeop0);
+ /* The signedness is determined from input operand. */
+ temp = expand_widen_pattern_expr
+ (ops, op0, NULL_RTX, NULL_RTX,
+ target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
+
+ gcc_assert (temp);
+ return temp;
+ }
+
+ case VEC_WIDEN_PLUS_HI_EXPR:
+ case VEC_WIDEN_PLUS_LO_EXPR:
+ case VEC_WIDEN_MINUS_HI_EXPR:
+ case VEC_WIDEN_MINUS_LO_EXPR:
+ case VEC_WIDEN_MULT_HI_EXPR:
+ case VEC_WIDEN_MULT_LO_EXPR:
+ case VEC_WIDEN_MULT_EVEN_EXPR:
+ case VEC_WIDEN_MULT_ODD_EXPR:
+ case VEC_WIDEN_LSHIFT_HI_EXPR:
+ case VEC_WIDEN_LSHIFT_LO_EXPR:
+ expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
+ target, unsignedp);
+ gcc_assert (target);
+ return target;
+
+ case VEC_PACK_SAT_EXPR:
+ case VEC_PACK_FIX_TRUNC_EXPR:
+ mode = TYPE_MODE (TREE_TYPE (treeop0));
+ subtarget = NULL_RTX;
+ goto binop;
+
+ case VEC_PACK_TRUNC_EXPR:
+ if (VECTOR_BOOLEAN_TYPE_P (type)
+ && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
+ && mode == TYPE_MODE (TREE_TYPE (treeop0))
+ && SCALAR_INT_MODE_P (mode))
+ {
+ class expand_operand eops[4];
+ machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, EXPAND_NORMAL);
+ this_optab = vec_pack_sbool_trunc_optab;
+ enum insn_code icode = optab_handler (this_optab, imode);
+ create_output_operand (&eops[0], target, mode);
+ create_convert_operand_from (&eops[1], op0, imode, false);
+ create_convert_operand_from (&eops[2], op1, imode, false);
+ temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
+ create_input_operand (&eops[3], temp, imode);
+ expand_insn (icode, 4, eops);
+ return eops[0].value;
+ }
+ mode = TYPE_MODE (TREE_TYPE (treeop0));
+ subtarget = NULL_RTX;
+ goto binop;
+
+ case VEC_PACK_FLOAT_EXPR:
+ mode = TYPE_MODE (TREE_TYPE (treeop0));
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, EXPAND_NORMAL);
+ this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
+ optab_default);
+ target = expand_binop (mode, this_optab, op0, op1, target,
+ TYPE_UNSIGNED (TREE_TYPE (treeop0)),
+ OPTAB_LIB_WIDEN);
+ gcc_assert (target);
+ return target;
+
+ case VEC_PERM_EXPR:
+ {
+ expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
+ vec_perm_builder sel;
+ if (TREE_CODE (treeop2) == VECTOR_CST
+ && tree_to_vec_perm_builder (&sel, treeop2))
+ {
+ machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
+ temp = expand_vec_perm_const (mode, op0, op1, sel,
+ sel_mode, target);
+ }
+ else
+ {
+ op2 = expand_normal (treeop2);
+ temp = expand_vec_perm_var (mode, op0, op1, op2, target);
+ }
+ gcc_assert (temp);
+ return temp;
+ }
+
+ case DOT_PROD_EXPR:
+ {
+ tree oprnd0 = treeop0;
+ tree oprnd1 = treeop1;
+ tree oprnd2 = treeop2;
+
+ expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ op2 = expand_normal (oprnd2);
+ target = expand_widen_pattern_expr (ops, op0, op1, op2,
+ target, unsignedp);
+ return target;
+ }
+
+ case SAD_EXPR:
+ {
+ tree oprnd0 = treeop0;
+ tree oprnd1 = treeop1;
+ tree oprnd2 = treeop2;
+
+ expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ op2 = expand_normal (oprnd2);
+ target = expand_widen_pattern_expr (ops, op0, op1, op2,
+ target, unsignedp);
+ return target;
+ }
+
+ case REALIGN_LOAD_EXPR:
+ {
+ tree oprnd0 = treeop0;
+ tree oprnd1 = treeop1;
+ tree oprnd2 = treeop2;
+
+ this_optab = optab_for_tree_code (code, type, optab_default);
+ expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
+ op2 = expand_normal (oprnd2);
+ temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
+ target, unsignedp);
+ gcc_assert (temp);
+ return temp;
+ }
+
+ case COND_EXPR:
+ {
+ /* A COND_EXPR with its type being VOID_TYPE represents a
+ conditional jump and is handled in
+ expand_gimple_cond_expr. */
+ gcc_assert (!VOID_TYPE_P (type));
+
+ /* Note that COND_EXPRs whose type is a structure or union
+ are required to be constructed to contain assignments of
+ a temporary variable, so that we can evaluate them here
+ for side effect only. If type is void, we must do likewise. */
+
+ gcc_assert (!TREE_ADDRESSABLE (type)
+ && !ignore
+ && TREE_TYPE (treeop1) != void_type_node
+ && TREE_TYPE (treeop2) != void_type_node);
+
+ temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
+ if (temp)
+ return temp;
+
+ /* If we are not to produce a result, we have no target. Otherwise,
+ if a target was specified use it; it will not be used as an
+ intermediate target unless it is safe. If no target, use a
+ temporary. */
+
+ if (modifier != EXPAND_STACK_PARM
+ && original_target
+ && safe_from_p (original_target, treeop0, 1)
+ && GET_MODE (original_target) == mode
+ && !MEM_P (original_target))
+ temp = original_target;
+ else
+ temp = assign_temp (type, 0, 1);
+
+ do_pending_stack_adjust ();
+ NO_DEFER_POP;
+ rtx_code_label *lab0 = gen_label_rtx ();
+ rtx_code_label *lab1 = gen_label_rtx ();
+ jumpifnot (treeop0, lab0,
+ profile_probability::uninitialized ());
+ store_expr (treeop1, temp,
+ modifier == EXPAND_STACK_PARM,
+ false, false);
+
+ emit_jump_insn (targetm.gen_jump (lab1));
+ emit_barrier ();
+ emit_label (lab0);
+ store_expr (treeop2, temp,
+ modifier == EXPAND_STACK_PARM,
+ false, false);
+
+ emit_label (lab1);
+ OK_DEFER_POP;
+ return temp;
+ }
+
+ case VEC_DUPLICATE_EXPR:
+ op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
+ target = expand_vector_broadcast (mode, op0);
+ gcc_assert (target);
+ return target;
+
+ case VEC_SERIES_EXPR:
+ expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
+ return expand_vec_series_expr (mode, op0, op1, target);
+
+ case BIT_INSERT_EXPR:
+ {
+ unsigned bitpos = tree_to_uhwi (treeop2);
+ unsigned bitsize;
+ if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
+ bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
+ else
+ bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
+ op0 = expand_normal (treeop0);
+ op1 = expand_normal (treeop1);
+ rtx dst = gen_reg_rtx (mode);
+ emit_move_insn (dst, op0);
+ store_bit_field (dst, bitsize, bitpos, 0, 0,
+ TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
+ return dst;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Here to do an ordinary binary operator. */
+ binop:
+ expand_operands (treeop0, treeop1,
+ subtarget, &op0, &op1, EXPAND_NORMAL);
+ binop2:
+ this_optab = optab_for_tree_code (code, type, optab_default);
+ binop3:
+ if (modifier == EXPAND_STACK_PARM)
+ target = 0;
+ temp = expand_binop (mode, this_optab, op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ gcc_assert (temp);
+ /* Bitwise operations do not need bitfield reduction as we expect their
+ operands being properly truncated. */
+ if (code == BIT_XOR_EXPR
+ || code == BIT_AND_EXPR
+ || code == BIT_IOR_EXPR)
+ return temp;
+ return REDUCE_BIT_FIELD (temp);
+}
+#undef REDUCE_BIT_FIELD
+
+
+/* Return TRUE if expression STMT is suitable for replacement.
+ Never consider memory loads as replaceable, because those don't ever lead
+ into constant expressions. */
+
+static bool
+stmt_is_replaceable_p (gimple *stmt)
+{
+ if (ssa_is_replaceable_p (stmt))
+ {
+ /* Don't move around loads. */
+ if (!gimple_assign_single_p (stmt)
+ || is_gimple_val (gimple_assign_rhs1 (stmt)))
+ return true;
+ }
+ return false;
+}
+
+rtx
+expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
+ enum expand_modifier modifier, rtx *alt_rtl,
+ bool inner_reference_p)
+{
+ rtx op0, op1, temp, decl_rtl;
+ tree type;
+ int unsignedp;
+ machine_mode mode, dmode;
+ enum tree_code code = TREE_CODE (exp);
+ rtx subtarget, original_target;
+ int ignore;
+ bool reduce_bit_field;
+ location_t loc = EXPR_LOCATION (exp);
+ struct separate_ops ops;
+ tree treeop0, treeop1, treeop2;
+ tree ssa_name = NULL_TREE;
+ gimple *g;
+
+ type = TREE_TYPE (exp);
+ mode = TYPE_MODE (type);
+ unsignedp = TYPE_UNSIGNED (type);
+
+ treeop0 = treeop1 = treeop2 = NULL_TREE;
+ if (!VL_EXP_CLASS_P (exp))
+ switch (TREE_CODE_LENGTH (code))
+ {
+ default:
+ case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
+ case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
+ case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
+ case 0: break;
+ }
+ ops.code = code;
+ ops.type = type;
+ ops.op0 = treeop0;
+ ops.op1 = treeop1;
+ ops.op2 = treeop2;
+ ops.location = loc;
+
+ ignore = (target == const0_rtx
+ || ((CONVERT_EXPR_CODE_P (code)
+ || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
+ && TREE_CODE (type) == VOID_TYPE));
+
+ /* An operation in what may be a bit-field type needs the
+ result to be reduced to the precision of the bit-field type,
+ which is narrower than that of the type's mode. */
+ reduce_bit_field = (!ignore
+ && INTEGRAL_TYPE_P (type)
+ && !type_has_mode_precision_p (type));
+
+ /* If we are going to ignore this result, we need only do something
+ if there is a side-effect somewhere in the expression. If there
+ is, short-circuit the most common cases here. Note that we must
+ not call expand_expr with anything but const0_rtx in case this
+ is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
+
+ if (ignore)
+ {
+ if (! TREE_SIDE_EFFECTS (exp))
+ return const0_rtx;
+
+ /* Ensure we reference a volatile object even if value is ignored, but
+ don't do this if all we are doing is taking its address. */
+ if (TREE_THIS_VOLATILE (exp)
+ && TREE_CODE (exp) != FUNCTION_DECL
+ && mode != VOIDmode && mode != BLKmode
+ && modifier != EXPAND_CONST_ADDRESS)
+ {
+ temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
+ if (MEM_P (temp))
+ copy_to_reg (temp);
+ return const0_rtx;
+ }
+
+ if (TREE_CODE_CLASS (code) == tcc_unary
+ || code == BIT_FIELD_REF
+ || code == COMPONENT_REF
+ || code == INDIRECT_REF)
+ return expand_expr (treeop0, const0_rtx, VOIDmode,
+ modifier);
+
+ else if (TREE_CODE_CLASS (code) == tcc_binary
+ || TREE_CODE_CLASS (code) == tcc_comparison
+ || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ {
+ expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
+ expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
+ return const0_rtx;
+ }
+
+ target = 0;
+ }
+
+ if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
+ target = 0;
+
+ /* Use subtarget as the target for operand 0 of a binary operation. */
+ subtarget = get_subtarget (target);
+ original_target = target;
+
+ switch (code)
+ {
+ case LABEL_DECL:
+ {
+ tree function = decl_function_context (exp);
+
+ temp = label_rtx (exp);
+ temp = gen_rtx_LABEL_REF (Pmode, temp);
+
+ if (function != current_function_decl
+ && function != 0)
+ LABEL_REF_NONLOCAL_P (temp) = 1;
+
+ temp = gen_rtx_MEM (FUNCTION_MODE, temp);
+ return temp;
+ }
+
+ case SSA_NAME:
+ /* ??? ivopts calls expander, without any preparation from
+ out-of-ssa. So fake instructions as if this was an access to the
+ base variable. This unnecessarily allocates a pseudo, see how we can
+ reuse it, if partition base vars have it set already. */
+ if (!currently_expanding_to_rtl)
+ {
+ tree var = SSA_NAME_VAR (exp);
+ if (var && DECL_RTL_SET_P (var))
+ return DECL_RTL (var);
+ return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
+ LAST_VIRTUAL_REGISTER + 1);
+ }
+
+ g = get_gimple_for_ssa_name (exp);
+ /* For EXPAND_INITIALIZER try harder to get something simpler. */
+ if (g == NULL
+ && modifier == EXPAND_INITIALIZER
+ && !SSA_NAME_IS_DEFAULT_DEF (exp)
+ && (optimize || !SSA_NAME_VAR (exp)
+ || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
+ && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
+ g = SSA_NAME_DEF_STMT (exp);
+ if (g)
+ {
+ rtx r;
+ location_t saved_loc = curr_insn_location ();
+ loc = gimple_location (g);
+ if (loc != UNKNOWN_LOCATION)
+ set_curr_insn_location (loc);
+ ops.code = gimple_assign_rhs_code (g);
+ switch (get_gimple_rhs_class (ops.code))
+ {
+ case GIMPLE_TERNARY_RHS:
+ ops.op2 = gimple_assign_rhs3 (g);
+ /* Fallthru */
+ case GIMPLE_BINARY_RHS:
+ ops.op1 = gimple_assign_rhs2 (g);
+
+ /* Try to expand conditonal compare. */
+ if (targetm.gen_ccmp_first)
+ {
+ gcc_checking_assert (targetm.gen_ccmp_next != NULL);
+ r = expand_ccmp_expr (g, mode);
+ if (r)
+ break;
+ }
+ /* Fallthru */
+ case GIMPLE_UNARY_RHS:
+ ops.op0 = gimple_assign_rhs1 (g);
+ ops.type = TREE_TYPE (gimple_assign_lhs (g));
+ ops.location = loc;
+ r = expand_expr_real_2 (&ops, target, tmode, modifier);
+ break;
+ case GIMPLE_SINGLE_RHS:
+ {
+ r = expand_expr_real (gimple_assign_rhs1 (g), target,
+ tmode, modifier, alt_rtl,
+ inner_reference_p);
+ break;
+ }
+ default:
+ gcc_unreachable ();
+ }
+ set_curr_insn_location (saved_loc);
+ if (REG_P (r) && !REG_EXPR (r))
+ set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
+ return r;
+ }
+
+ ssa_name = exp;
+ decl_rtl = get_rtx_for_ssa_name (ssa_name);
+ exp = SSA_NAME_VAR (ssa_name);
+ goto expand_decl_rtl;
+
+ case VAR_DECL:
+ /* Allow accel compiler to handle variables that require special
+ treatment, e.g. if they have been modified in some way earlier in
+ compilation by the adjust_private_decl OpenACC hook. */
+ if (flag_openacc && targetm.goacc.expand_var_decl)
+ {
+ temp = targetm.goacc.expand_var_decl (exp);
+ if (temp)
+ return temp;
+ }
+ /* ... fall through ... */
+
+ case PARM_DECL:
+ /* If a static var's type was incomplete when the decl was written,
+ but the type is complete now, lay out the decl now. */
+ if (DECL_SIZE (exp) == 0
+ && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
+ && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
+ layout_decl (exp, 0);
+
+ /* fall through */
+
+ case FUNCTION_DECL:
+ case RESULT_DECL:
+ decl_rtl = DECL_RTL (exp);
+ expand_decl_rtl:
+ gcc_assert (decl_rtl);
+
+ /* DECL_MODE might change when TYPE_MODE depends on attribute target
+ settings for VECTOR_TYPE_P that might switch for the function. */
+ if (currently_expanding_to_rtl
+ && code == VAR_DECL && MEM_P (decl_rtl)
+ && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
+ decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
+ else
+ decl_rtl = copy_rtx (decl_rtl);
+
+ /* Record writes to register variables. */
+ if (modifier == EXPAND_WRITE
+ && REG_P (decl_rtl)
+ && HARD_REGISTER_P (decl_rtl))
+ add_to_hard_reg_set (&crtl->asm_clobbers,
+ GET_MODE (decl_rtl), REGNO (decl_rtl));
+
+ /* Ensure variable marked as used even if it doesn't go through
+ a parser. If it hasn't be used yet, write out an external
+ definition. */
+ if (exp)
+ TREE_USED (exp) = 1;
+
+ /* Show we haven't gotten RTL for this yet. */
+ temp = 0;
+
+ /* Variables inherited from containing functions should have
+ been lowered by this point. */
+ if (exp)
+ {
+ tree context = decl_function_context (exp);
+ gcc_assert (SCOPE_FILE_SCOPE_P (context)
+ || context == current_function_decl
+ || TREE_STATIC (exp)
+ || DECL_EXTERNAL (exp)
+ /* ??? C++ creates functions that are not
+ TREE_STATIC. */
+ || TREE_CODE (exp) == FUNCTION_DECL);
+ }
+
+ /* This is the case of an array whose size is to be determined
+ from its initializer, while the initializer is still being parsed.
+ ??? We aren't parsing while expanding anymore. */
+
+ if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
+ temp = validize_mem (decl_rtl);
+
+ /* If DECL_RTL is memory, we are in the normal case and the
+ address is not valid, get the address into a register. */
+
+ else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
+ {
+ if (alt_rtl)
+ *alt_rtl = decl_rtl;
+ decl_rtl = use_anchored_address (decl_rtl);
+ if (modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_SUM
+ && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
+ : GET_MODE (decl_rtl),
+ XEXP (decl_rtl, 0),
+ MEM_ADDR_SPACE (decl_rtl)))
+ temp = replace_equiv_address (decl_rtl,
+ copy_rtx (XEXP (decl_rtl, 0)));
+ }
+
+ /* If we got something, return it. But first, set the alignment
+ if the address is a register. */
+ if (temp != 0)
+ {
+ if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
+ mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
+ }
+ else if (MEM_P (decl_rtl))
+ temp = decl_rtl;
+
+ if (temp != 0)
+ {
+ if (MEM_P (temp)
+ && modifier != EXPAND_WRITE
+ && modifier != EXPAND_MEMORY
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_SUM
+ && !inner_reference_p
+ && mode != BLKmode
+ && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
+ temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
+ MEM_ALIGN (temp), NULL_RTX, NULL);
+
+ return temp;
+ }
+
+ if (exp)
+ dmode = DECL_MODE (exp);
+ else
+ dmode = TYPE_MODE (TREE_TYPE (ssa_name));
+
+ /* If the mode of DECL_RTL does not match that of the decl,
+ there are two cases: we are dealing with a BLKmode value
+ that is returned in a register, or we are dealing with
+ a promoted value. In the latter case, return a SUBREG
+ of the wanted mode, but mark it so that we know that it
+ was already extended. */
+ if (REG_P (decl_rtl)
+ && dmode != BLKmode
+ && GET_MODE (decl_rtl) != dmode)
+ {
+ machine_mode pmode;
+
+ /* Get the signedness to be used for this variable. Ensure we get
+ the same mode we got when the variable was declared. */
+ if (code != SSA_NAME)
+ pmode = promote_decl_mode (exp, &unsignedp);
+ else if ((g = SSA_NAME_DEF_STMT (ssa_name))
+ && gimple_code (g) == GIMPLE_CALL
+ && !gimple_call_internal_p (g))
+ pmode = promote_function_mode (type, mode, &unsignedp,
+ gimple_call_fntype (g),
+ 2);
+ else
+ pmode = promote_ssa_mode (ssa_name, &unsignedp);
+ gcc_assert (GET_MODE (decl_rtl) == pmode);
+
+ temp = gen_lowpart_SUBREG (mode, decl_rtl);
+ SUBREG_PROMOTED_VAR_P (temp) = 1;
+ SUBREG_PROMOTED_SET (temp, unsignedp);
+ return temp;
+ }
+
+ return decl_rtl;
+
+ case INTEGER_CST:
+ {
+ /* Given that TYPE_PRECISION (type) is not always equal to
+ GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
+ the former to the latter according to the signedness of the
+ type. */
+ scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
+ temp = immed_wide_int_const
+ (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
+ return temp;
+ }
+
+ case VECTOR_CST:
+ {
+ tree tmp = NULL_TREE;
+ if (VECTOR_MODE_P (mode))
+ return const_vector_from_tree (exp);
+ scalar_int_mode int_mode;
+ if (is_int_mode (mode, &int_mode))
+ {
+ tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
+ if (type_for_mode)
+ tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
+ type_for_mode, exp);
+ }
+ if (!tmp)
+ {
+ vec<constructor_elt, va_gc> *v;
+ /* Constructors need to be fixed-length. FIXME. */
+ unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
+ vec_alloc (v, nunits);
+ for (unsigned int i = 0; i < nunits; ++i)
+ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
+ tmp = build_constructor (type, v);
+ }
+ return expand_expr (tmp, ignore ? const0_rtx : target,
+ tmode, modifier);
+ }
+
+ case CONST_DECL:
+ if (modifier == EXPAND_WRITE)
+ {
+ /* Writing into CONST_DECL is always invalid, but handle it
+ gracefully. */
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
+ scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
+ op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
+ EXPAND_NORMAL, as);
+ op0 = memory_address_addr_space (mode, op0, as);
+ temp = gen_rtx_MEM (mode, op0);
+ set_mem_addr_space (temp, as);
+ return temp;
+ }
+ return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
+
+ case REAL_CST:
+ /* If optimized, generate immediate CONST_DOUBLE
+ which will be turned into memory by reload if necessary.
+
+ We used to force a register so that loop.c could see it. But
+ this does not allow gen_* patterns to perform optimizations with
+ the constants. It also produces two insns in cases like "x = 1.0;".
+ On most machines, floating-point constants are not permitted in
+ many insns, so we'd end up copying it to a register in any case.
+
+ Now, we do the copying in expand_binop, if appropriate. */
+ return const_double_from_real_value (TREE_REAL_CST (exp),
+ TYPE_MODE (TREE_TYPE (exp)));
+
+ case FIXED_CST:
+ return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
+ TYPE_MODE (TREE_TYPE (exp)));
+
+ case COMPLEX_CST:
+ /* Handle evaluating a complex constant in a CONCAT target. */
+ if (original_target && GET_CODE (original_target) == CONCAT)
+ {
+ rtx rtarg, itarg;
+
+ mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
+ rtarg = XEXP (original_target, 0);
+ itarg = XEXP (original_target, 1);
+
+ /* Move the real and imaginary parts separately. */
+ op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
+ op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
+
+ if (op0 != rtarg)
+ emit_move_insn (rtarg, op0);
+ if (op1 != itarg)
+ emit_move_insn (itarg, op1);
+
+ return original_target;
+ }
+
+ /* fall through */
+
+ case STRING_CST:
+ temp = expand_expr_constant (exp, 1, modifier);
+
+ /* temp contains a constant address.
+ On RISC machines where a constant address isn't valid,
+ make some insns to get that address into a register. */
+ if (modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_SUM
+ && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
+ MEM_ADDR_SPACE (temp)))
+ return replace_equiv_address (temp,
+ copy_rtx (XEXP (temp, 0)));
+ return temp;
+
+ case POLY_INT_CST:
+ return immed_wide_int_const (poly_int_cst_value (exp), mode);
+
+ case SAVE_EXPR:
+ {
+ tree val = treeop0;
+ rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
+ inner_reference_p);
+
+ if (!SAVE_EXPR_RESOLVED_P (exp))
+ {
+ /* We can indeed still hit this case, typically via builtin
+ expanders calling save_expr immediately before expanding
+ something. Assume this means that we only have to deal
+ with non-BLKmode values. */
+ gcc_assert (GET_MODE (ret) != BLKmode);
+
+ val = build_decl (curr_insn_location (),
+ VAR_DECL, NULL, TREE_TYPE (exp));
+ DECL_ARTIFICIAL (val) = 1;
+ DECL_IGNORED_P (val) = 1;
+ treeop0 = val;
+ TREE_OPERAND (exp, 0) = treeop0;
+ SAVE_EXPR_RESOLVED_P (exp) = 1;
+
+ if (!CONSTANT_P (ret))
+ ret = copy_to_reg (ret);
+ SET_DECL_RTL (val, ret);
+ }
+
+ return ret;
+ }
+
+
+ case CONSTRUCTOR:
+ /* If we don't need the result, just ensure we evaluate any
+ subexpressions. */
+ if (ignore)
+ {
+ unsigned HOST_WIDE_INT idx;
+ tree value;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
+ expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ return const0_rtx;
+ }
+
+ return expand_constructor (exp, target, modifier, false);
+
+ case TARGET_MEM_REF:
+ {
+ addr_space_t as
+ = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
+ unsigned int align;
+
+ op0 = addr_for_mem_ref (exp, as, true);
+ op0 = memory_address_addr_space (mode, op0, as);
+ temp = gen_rtx_MEM (mode, op0);
+ set_mem_attributes (temp, exp, 0);
+ set_mem_addr_space (temp, as);
+ align = get_object_alignment (exp);
+ if (modifier != EXPAND_WRITE
+ && modifier != EXPAND_MEMORY
+ && mode != BLKmode
+ && align < GET_MODE_ALIGNMENT (mode))
+ temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
+ align, NULL_RTX, NULL);
+ return temp;
+ }
+
+ case MEM_REF:
+ {
+ const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
+ addr_space_t as
+ = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
+ machine_mode address_mode;
+ tree base = TREE_OPERAND (exp, 0);
+ gimple *def_stmt;
+ unsigned align;
+ /* Handle expansion of non-aliased memory with non-BLKmode. That
+ might end up in a register. */
+ if (mem_ref_refers_to_non_mem_p (exp))
+ {
+ poly_int64 offset = mem_ref_offset (exp).force_shwi ();
+ base = TREE_OPERAND (base, 0);
+ poly_uint64 type_size;
+ if (known_eq (offset, 0)
+ && !reverse
+ && poly_int_tree_p (TYPE_SIZE (type), &type_size)
+ && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
+ return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
+ target, tmode, modifier);
+ if (TYPE_MODE (type) == BLKmode)
+ {
+ temp = assign_stack_temp (DECL_MODE (base),
+ GET_MODE_SIZE (DECL_MODE (base)));
+ store_expr (base, temp, 0, false, false);
+ temp = adjust_address (temp, BLKmode, offset);
+ set_mem_size (temp, int_size_in_bytes (type));
+ return temp;
+ }
+ exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
+ bitsize_int (offset * BITS_PER_UNIT));
+ REF_REVERSE_STORAGE_ORDER (exp) = reverse;
+ return expand_expr (exp, target, tmode, modifier);
+ }
+ address_mode = targetm.addr_space.address_mode (as);
+ if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
+ {
+ tree mask = gimple_assign_rhs2 (def_stmt);
+ base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
+ gimple_assign_rhs1 (def_stmt), mask);
+ TREE_OPERAND (exp, 0) = base;
+ }
+ align = get_object_alignment (exp);
+ op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
+ op0 = memory_address_addr_space (mode, op0, as);
+ if (!integer_zerop (TREE_OPERAND (exp, 1)))
+ {
+ rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
+ op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
+ op0 = memory_address_addr_space (mode, op0, as);
+ }
+ temp = gen_rtx_MEM (mode, op0);
+ set_mem_attributes (temp, exp, 0);
+ set_mem_addr_space (temp, as);
+ if (TREE_THIS_VOLATILE (exp))
+ MEM_VOLATILE_P (temp) = 1;
+ if (modifier != EXPAND_WRITE
+ && modifier != EXPAND_MEMORY
+ && !inner_reference_p
+ && mode != BLKmode
+ && align < GET_MODE_ALIGNMENT (mode))
+ temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
+ modifier == EXPAND_STACK_PARM
+ ? NULL_RTX : target, alt_rtl);
+ if (reverse
+ && modifier != EXPAND_MEMORY
+ && modifier != EXPAND_WRITE)
+ temp = flip_storage_order (mode, temp);
+ return temp;
+ }
+
+ case ARRAY_REF:
+
+ {
+ tree array = treeop0;
+ tree index = treeop1;
+ tree init;
+
+ /* Fold an expression like: "foo"[2].
+ This is not done in fold so it won't happen inside &.
+ Don't fold if this is for wide characters since it's too
+ difficult to do correctly and this is a very rare case. */
+
+ if (modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_MEMORY)
+ {
+ tree t = fold_read_from_constant_string (exp);
+
+ if (t)
+ return expand_expr (t, target, tmode, modifier);
+ }
+
+ /* If this is a constant index into a constant array,
+ just get the value from the array. Handle both the cases when
+ we have an explicit constructor and when our operand is a variable
+ that was declared const. */
+
+ if (modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_MEMORY
+ && TREE_CODE (array) == CONSTRUCTOR
+ && ! TREE_SIDE_EFFECTS (array)
+ && TREE_CODE (index) == INTEGER_CST)
+ {
+ unsigned HOST_WIDE_INT ix;
+ tree field, value;
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
+ field, value)
+ if (tree_int_cst_equal (field, index))
+ {
+ if (!TREE_SIDE_EFFECTS (value))
+ return expand_expr (fold (value), target, tmode, modifier);
+ break;
+ }
+ }
+
+ else if (optimize >= 1
+ && modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_MEMORY
+ && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
+ && TREE_CODE (index) == INTEGER_CST
+ && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
+ && (init = ctor_for_folding (array)) != error_mark_node)
+ {
+ if (init == NULL_TREE)
+ {
+ tree value = build_zero_cst (type);
+ if (TREE_CODE (value) == CONSTRUCTOR)
+ {
+ /* If VALUE is a CONSTRUCTOR, this optimization is only
+ useful if this doesn't store the CONSTRUCTOR into
+ memory. If it does, it is more efficient to just
+ load the data from the array directly. */
+ rtx ret = expand_constructor (value, target,
+ modifier, true);
+ if (ret == NULL_RTX)
+ value = NULL_TREE;
+ }
+
+ if (value)
+ return expand_expr (value, target, tmode, modifier);
+ }
+ else if (TREE_CODE (init) == CONSTRUCTOR)
+ {
+ unsigned HOST_WIDE_INT ix;
+ tree field, value;
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
+ field, value)
+ if (tree_int_cst_equal (field, index))
+ {
+ if (TREE_SIDE_EFFECTS (value))
+ break;
+
+ if (TREE_CODE (value) == CONSTRUCTOR)
+ {
+ /* If VALUE is a CONSTRUCTOR, this
+ optimization is only useful if
+ this doesn't store the CONSTRUCTOR
+ into memory. If it does, it is more
+ efficient to just load the data from
+ the array directly. */
+ rtx ret = expand_constructor (value, target,
+ modifier, true);
+ if (ret == NULL_RTX)
+ break;
+ }
+
+ return
+ expand_expr (fold (value), target, tmode, modifier);
+ }
+ }
+ else if (TREE_CODE (init) == STRING_CST)
+ {
+ tree low_bound = array_ref_low_bound (exp);
+ tree index1 = fold_convert_loc (loc, sizetype, treeop1);
+
+ /* Optimize the special case of a zero lower bound.
+
+ We convert the lower bound to sizetype to avoid problems
+ with constant folding. E.g. suppose the lower bound is
+ 1 and its mode is QI. Without the conversion
+ (ARRAY + (INDEX - (unsigned char)1))
+ becomes
+ (ARRAY + (-(unsigned char)1) + INDEX)
+ which becomes
+ (ARRAY + 255 + INDEX). Oops! */
+ if (!integer_zerop (low_bound))
+ index1 = size_diffop_loc (loc, index1,
+ fold_convert_loc (loc, sizetype,
+ low_bound));
+
+ if (tree_fits_uhwi_p (index1)
+ && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
+ {
+ tree char_type = TREE_TYPE (TREE_TYPE (init));
+ scalar_int_mode char_mode;
+
+ if (is_int_mode (TYPE_MODE (char_type), &char_mode)
+ && GET_MODE_SIZE (char_mode) == 1)
+ return gen_int_mode (TREE_STRING_POINTER (init)
+ [TREE_INT_CST_LOW (index1)],
+ char_mode);
+ }
+ }
+ }
+ }
+ goto normal_inner_ref;
+
+ case COMPONENT_REF:
+ gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
+ /* Fall through. */
+ case BIT_FIELD_REF:
+ case ARRAY_RANGE_REF:
+ normal_inner_ref:
+ {
+ machine_mode mode1, mode2;
+ poly_int64 bitsize, bitpos, bytepos;
+ tree offset;
+ int reversep, volatilep = 0, must_force_mem;
+ tree tem
+ = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
+ &unsignedp, &reversep, &volatilep);
+ rtx orig_op0, memloc;
+ bool clear_mem_expr = false;
+
+ /* If we got back the original object, something is wrong. Perhaps
+ we are evaluating an expression too early. In any event, don't
+ infinitely recurse. */
+ gcc_assert (tem != exp);
+
+ /* If TEM's type is a union of variable size, pass TARGET to the inner
+ computation, since it will need a temporary and TARGET is known
+ to have to do. This occurs in unchecked conversion in Ada. */
+ orig_op0 = op0
+ = expand_expr_real (tem,
+ (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
+ && COMPLETE_TYPE_P (TREE_TYPE (tem))
+ && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
+ != INTEGER_CST)
+ && modifier != EXPAND_STACK_PARM
+ ? target : NULL_RTX),
+ VOIDmode,
+ modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
+ NULL, true);
+
+ /* If the field has a mode, we want to access it in the
+ field's mode, not the computed mode.
+ If a MEM has VOIDmode (external with incomplete type),
+ use BLKmode for it instead. */
+ if (MEM_P (op0))
+ {
+ if (mode1 != VOIDmode)
+ op0 = adjust_address (op0, mode1, 0);
+ else if (GET_MODE (op0) == VOIDmode)
+ op0 = adjust_address (op0, BLKmode, 0);
+ }
+
+ mode2
+ = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
+
+ /* Make sure bitpos is not negative, it can wreak havoc later. */
+ if (maybe_lt (bitpos, 0))
+ {
+ gcc_checking_assert (offset == NULL_TREE);
+ offset = size_int (bits_to_bytes_round_down (bitpos));
+ bitpos = num_trailing_bits (bitpos);
+ }
+
+ /* If we have either an offset, a BLKmode result, or a reference
+ outside the underlying object, we must force it to memory.
+ Such a case can occur in Ada if we have unchecked conversion
+ of an expression from a scalar type to an aggregate type or
+ for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
+ passed a partially uninitialized object or a view-conversion
+ to a larger size. */
+ must_force_mem = (offset
+ || mode1 == BLKmode
+ || (mode == BLKmode
+ && !int_mode_for_size (bitsize, 1).exists ())
+ || maybe_gt (bitpos + bitsize,
+ GET_MODE_BITSIZE (mode2)));
+
+ /* Handle CONCAT first. */
+ if (GET_CODE (op0) == CONCAT && !must_force_mem)
+ {
+ if (known_eq (bitpos, 0)
+ && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
+ && COMPLEX_MODE_P (mode1)
+ && COMPLEX_MODE_P (GET_MODE (op0))
+ && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
+ == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
+ {
+ if (reversep)
+ op0 = flip_storage_order (GET_MODE (op0), op0);
+ if (mode1 != GET_MODE (op0))
+ {
+ rtx parts[2];
+ for (int i = 0; i < 2; i++)
+ {
+ rtx op = read_complex_part (op0, i != 0);
+ if (GET_CODE (op) == SUBREG)
+ op = force_reg (GET_MODE (op), op);
+ temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
+ if (temp)
+ op = temp;
+ else
+ {
+ if (!REG_P (op) && !MEM_P (op))
+ op = force_reg (GET_MODE (op), op);
+ op = gen_lowpart (GET_MODE_INNER (mode1), op);
+ }
+ parts[i] = op;
+ }
+ op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
+ }
+ return op0;
+ }
+ if (known_eq (bitpos, 0)
+ && known_eq (bitsize,
+ GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
+ && maybe_ne (bitsize, 0))
+ {
+ op0 = XEXP (op0, 0);
+ mode2 = GET_MODE (op0);
+ }
+ else if (known_eq (bitpos,
+ GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
+ && known_eq (bitsize,
+ GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
+ && maybe_ne (bitpos, 0)
+ && maybe_ne (bitsize, 0))
+ {
+ op0 = XEXP (op0, 1);
+ bitpos = 0;
+ mode2 = GET_MODE (op0);
+ }
+ else
+ /* Otherwise force into memory. */
+ must_force_mem = 1;
+ }
+
+ /* If this is a constant, put it in a register if it is a legitimate
+ constant and we don't need a memory reference. */
+ if (CONSTANT_P (op0)
+ && mode2 != BLKmode
+ && targetm.legitimate_constant_p (mode2, op0)
+ && !must_force_mem)
+ op0 = force_reg (mode2, op0);
+
+ /* Otherwise, if this is a constant, try to force it to the constant
+ pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
+ is a legitimate constant. */
+ else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
+ op0 = validize_mem (memloc);
+
+ /* Otherwise, if this is a constant or the object is not in memory
+ and need be, put it there. */
+ else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
+ {
+ memloc = assign_temp (TREE_TYPE (tem), 1, 1);
+ emit_move_insn (memloc, op0);
+ op0 = memloc;
+ clear_mem_expr = true;
+ }
+
+ if (offset)
+ {
+ machine_mode address_mode;
+ rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
+ EXPAND_SUM);
+
+ gcc_assert (MEM_P (op0));
+
+ address_mode = get_address_mode (op0);
+ if (GET_MODE (offset_rtx) != address_mode)
+ {
+ /* We cannot be sure that the RTL in offset_rtx is valid outside
+ of a memory address context, so force it into a register
+ before attempting to convert it to the desired mode. */
+ offset_rtx = force_operand (offset_rtx, NULL_RTX);
+ offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
+ }
+
+ /* See the comment in expand_assignment for the rationale. */
+ if (mode1 != VOIDmode
+ && maybe_ne (bitpos, 0)
+ && maybe_gt (bitsize, 0)
+ && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
+ && multiple_p (bitpos, bitsize)
+ && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
+ && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
+ {
+ op0 = adjust_address (op0, mode1, bytepos);
+ bitpos = 0;
+ }
+
+ op0 = offset_address (op0, offset_rtx,
+ highest_pow2_factor (offset));
+ }
+
+ /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
+ record its alignment as BIGGEST_ALIGNMENT. */
+ if (MEM_P (op0)
+ && known_eq (bitpos, 0)
+ && offset != 0
+ && is_aligning_offset (offset, tem))
+ set_mem_align (op0, BIGGEST_ALIGNMENT);
+
+ /* Don't forget about volatility even if this is a bitfield. */
+ if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
+ {
+ if (op0 == orig_op0)
+ op0 = copy_rtx (op0);
+
+ MEM_VOLATILE_P (op0) = 1;
+ }
+
+ if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
+ {
+ if (op0 == orig_op0)
+ op0 = copy_rtx (op0);
+
+ set_mem_align (op0, BITS_PER_UNIT);
+ }
+
+ /* In cases where an aligned union has an unaligned object
+ as a field, we might be extracting a BLKmode value from
+ an integer-mode (e.g., SImode) object. Handle this case
+ by doing the extract into an object as wide as the field
+ (which we know to be the width of a basic mode), then
+ storing into memory, and changing the mode to BLKmode. */
+ if (mode1 == VOIDmode
+ || REG_P (op0) || GET_CODE (op0) == SUBREG
+ || (mode1 != BLKmode && ! direct_load[(int) mode1]
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
+ && modifier != EXPAND_CONST_ADDRESS
+ && modifier != EXPAND_INITIALIZER
+ && modifier != EXPAND_MEMORY)
+ /* If the bitfield is volatile and the bitsize
+ is narrower than the access size of the bitfield,
+ we need to extract bitfields from the access. */
+ || (volatilep && TREE_CODE (exp) == COMPONENT_REF
+ && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
+ && mode1 != BLKmode
+ && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
+ /* If the field isn't aligned enough to fetch as a memref,
+ fetch it as a bit field. */
+ || (mode1 != BLKmode
+ && (((MEM_P (op0)
+ ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
+ || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
+ : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
+ || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
+ && modifier != EXPAND_MEMORY
+ && ((modifier == EXPAND_CONST_ADDRESS
+ || modifier == EXPAND_INITIALIZER)
+ ? STRICT_ALIGNMENT
+ : targetm.slow_unaligned_access (mode1,
+ MEM_ALIGN (op0))))
+ || !multiple_p (bitpos, BITS_PER_UNIT)))
+ /* If the type and the field are a constant size and the
+ size of the type isn't the same size as the bitfield,
+ we must use bitfield operations. */
+ || (known_size_p (bitsize)
+ && TYPE_SIZE (TREE_TYPE (exp))
+ && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
+ && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
+ bitsize)))
+ {
+ machine_mode ext_mode = mode;
+
+ if (ext_mode == BLKmode
+ && ! (target != 0 && MEM_P (op0)
+ && MEM_P (target)
+ && multiple_p (bitpos, BITS_PER_UNIT)))
+ ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
+
+ if (ext_mode == BLKmode)
+ {
+ if (target == 0)
+ target = assign_temp (type, 1, 1);
+
+ /* ??? Unlike the similar test a few lines below, this one is
+ very likely obsolete. */
+ if (known_eq (bitsize, 0))
+ return target;
+
+ /* In this case, BITPOS must start at a byte boundary and
+ TARGET, if specified, must be a MEM. */
+ gcc_assert (MEM_P (op0)
+ && (!target || MEM_P (target)));
+
+ bytepos = exact_div (bitpos, BITS_PER_UNIT);
+ poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
+ emit_block_move (target,
+ adjust_address (op0, VOIDmode, bytepos),
+ gen_int_mode (bytesize, Pmode),
+ (modifier == EXPAND_STACK_PARM
+ ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
+
+ return target;
+ }
+
+ /* If we have nothing to extract, the result will be 0 for targets
+ with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
+ return 0 for the sake of consistency, as reading a zero-sized
+ bitfield is valid in Ada and the value is fully specified. */
+ if (known_eq (bitsize, 0))
+ return const0_rtx;
+
+ op0 = validize_mem (op0);
+
+ if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
+ mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+ /* If the result has aggregate type and the extraction is done in
+ an integral mode, then the field may be not aligned on a byte
+ boundary; in this case, if it has reverse storage order, it
+ needs to be extracted as a scalar field with reverse storage
+ order and put back into memory order afterwards. */
+ if (AGGREGATE_TYPE_P (type)
+ && GET_MODE_CLASS (ext_mode) == MODE_INT)
+ reversep = TYPE_REVERSE_STORAGE_ORDER (type);
+
+ gcc_checking_assert (known_ge (bitpos, 0));
+ op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
+ (modifier == EXPAND_STACK_PARM
+ ? NULL_RTX : target),
+ ext_mode, ext_mode, reversep, alt_rtl);
+
+ /* If the result has aggregate type and the mode of OP0 is an
+ integral mode then, if BITSIZE is narrower than this mode
+ and this is for big-endian data, we must put the field
+ into the high-order bits. And we must also put it back
+ into memory order if it has been previously reversed. */
+ scalar_int_mode op0_mode;
+ if (AGGREGATE_TYPE_P (type)
+ && is_int_mode (GET_MODE (op0), &op0_mode))
+ {
+ HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
+
+ gcc_checking_assert (known_le (bitsize, size));
+ if (maybe_lt (bitsize, size)
+ && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
+ op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
+ size - bitsize, op0, 1);
+
+ if (reversep)
+ op0 = flip_storage_order (op0_mode, op0);
+ }
+
+ /* If the result type is BLKmode, store the data into a temporary
+ of the appropriate type, but with the mode corresponding to the
+ mode for the data we have (op0's mode). */
+ if (mode == BLKmode)
+ {
+ rtx new_rtx
+ = assign_stack_temp_for_type (ext_mode,
+ GET_MODE_BITSIZE (ext_mode),
+ type);
+ emit_move_insn (new_rtx, op0);
+ op0 = copy_rtx (new_rtx);
+ PUT_MODE (op0, BLKmode);
+ }
+
+ return op0;
+ }
+
+ /* If the result is BLKmode, use that to access the object
+ now as well. */
+ if (mode == BLKmode)
+ mode1 = BLKmode;
+
+ /* Get a reference to just this component. */
+ bytepos = bits_to_bytes_round_down (bitpos);
+ if (modifier == EXPAND_CONST_ADDRESS
+ || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
+ op0 = adjust_address_nv (op0, mode1, bytepos);
+ else
+ op0 = adjust_address (op0, mode1, bytepos);
+
+ if (op0 == orig_op0)
+ op0 = copy_rtx (op0);
+
+ /* Don't set memory attributes if the base expression is
+ SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
+ we should just honor its original memory attributes. */
+ if (!(TREE_CODE (tem) == SSA_NAME
+ && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
+ set_mem_attributes (op0, exp, 0);
+
+ if (REG_P (XEXP (op0, 0)))
+ mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+ /* If op0 is a temporary because the original expressions was forced
+ to memory, clear MEM_EXPR so that the original expression cannot
+ be marked as addressable through MEM_EXPR of the temporary. */
+ if (clear_mem_expr)
+ set_mem_expr (op0, NULL_TREE);
+
+ MEM_VOLATILE_P (op0) |= volatilep;
+
+ if (reversep
+ && modifier != EXPAND_MEMORY
+ && modifier != EXPAND_WRITE)
+ op0 = flip_storage_order (mode1, op0);
+
+ if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
+ || modifier == EXPAND_CONST_ADDRESS
+ || modifier == EXPAND_INITIALIZER)
+ return op0;
+
+ if (target == 0)
+ target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
+
+ convert_move (target, op0, unsignedp);
+ return target;
+ }
+
+ case OBJ_TYPE_REF:
+ return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
+
+ case CALL_EXPR:
+ /* All valid uses of __builtin_va_arg_pack () are removed during
+ inlining. */
+ if (CALL_EXPR_VA_ARG_PACK (exp))
+ error ("invalid use of %<__builtin_va_arg_pack ()%>");
+ {
+ tree fndecl = get_callee_fndecl (exp), attr;
+
+ if (fndecl
+ /* Don't diagnose the error attribute in thunks, those are
+ artificially created. */
+ && !CALL_FROM_THUNK_P (exp)
+ && (attr = lookup_attribute ("error",
+ DECL_ATTRIBUTES (fndecl))) != NULL)
+ {
+ const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
+ error ("call to %qs declared with attribute error: %s",
+ identifier_to_locale (ident),
+ TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+ }
+ if (fndecl
+ /* Don't diagnose the warning attribute in thunks, those are
+ artificially created. */
+ && !CALL_FROM_THUNK_P (exp)
+ && (attr = lookup_attribute ("warning",
+ DECL_ATTRIBUTES (fndecl))) != NULL)
+ {
+ const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
+ warning_at (EXPR_LOCATION (exp),
+ OPT_Wattribute_warning,
+ "call to %qs declared with attribute warning: %s",
+ identifier_to_locale (ident),
+ TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+ }
+
+ /* Check for a built-in function. */
+ if (fndecl && fndecl_built_in_p (fndecl))
+ {
+ gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
+ return expand_builtin (exp, target, subtarget, tmode, ignore);
+ }
+ }
+ return expand_call (exp, target, ignore);
+
+ case VIEW_CONVERT_EXPR:
+ op0 = NULL_RTX;
+
+ /* If we are converting to BLKmode, try to avoid an intermediate
+ temporary by fetching an inner memory reference. */
+ if (mode == BLKmode
+ && poly_int_tree_p (TYPE_SIZE (type))
+ && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
+ && handled_component_p (treeop0))
+ {
+ machine_mode mode1;
+ poly_int64 bitsize, bitpos, bytepos;
+ tree offset;
+ int reversep, volatilep = 0;
+ tree tem
+ = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
+ &unsignedp, &reversep, &volatilep);
+
+ /* ??? We should work harder and deal with non-zero offsets. */
+ if (!offset
+ && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
+ && !reversep
+ && known_size_p (bitsize)
+ && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
+ {
+ /* See the normal_inner_ref case for the rationale. */
+ rtx orig_op0
+ = expand_expr_real (tem,
+ (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
+ && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
+ != INTEGER_CST)
+ && modifier != EXPAND_STACK_PARM
+ ? target : NULL_RTX),
+ VOIDmode,
+ modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
+ NULL, true);
+
+ if (MEM_P (orig_op0))
+ {
+ op0 = orig_op0;
+
+ /* Get a reference to just this component. */
+ if (modifier == EXPAND_CONST_ADDRESS
+ || modifier == EXPAND_SUM
+ || modifier == EXPAND_INITIALIZER)
+ op0 = adjust_address_nv (op0, mode, bytepos);
+ else
+ op0 = adjust_address (op0, mode, bytepos);
+
+ if (op0 == orig_op0)
+ op0 = copy_rtx (op0);
+
+ set_mem_attributes (op0, treeop0, 0);
+ if (REG_P (XEXP (op0, 0)))
+ mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
+
+ MEM_VOLATILE_P (op0) |= volatilep;
+ }
+ }
+ }
+
+ if (!op0)
+ op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
+ NULL, inner_reference_p);
+
+ /* If the input and output modes are both the same, we are done. */
+ if (mode == GET_MODE (op0))
+ ;
+ /* If neither mode is BLKmode, and both modes are the same size
+ then we can use gen_lowpart. */
+ else if (mode != BLKmode
+ && GET_MODE (op0) != BLKmode
+ && known_eq (GET_MODE_PRECISION (mode),
+ GET_MODE_PRECISION (GET_MODE (op0)))
+ && !COMPLEX_MODE_P (GET_MODE (op0)))
+ {
+ if (GET_CODE (op0) == SUBREG)
+ op0 = force_reg (GET_MODE (op0), op0);
+ temp = gen_lowpart_common (mode, op0);
+ if (temp)
+ op0 = temp;
+ else
+ {
+ if (!REG_P (op0) && !MEM_P (op0))
+ op0 = force_reg (GET_MODE (op0), op0);
+ op0 = gen_lowpart (mode, op0);
+ }
+ }
+ /* If both types are integral, convert from one mode to the other. */
+ else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
+ op0 = convert_modes (mode, GET_MODE (op0), op0,
+ TYPE_UNSIGNED (TREE_TYPE (treeop0)));
+ /* If the output type is a bit-field type, do an extraction. */
+ else if (reduce_bit_field)
+ return extract_bit_field (op0, TYPE_PRECISION (type), 0,
+ TYPE_UNSIGNED (type), NULL_RTX,
+ mode, mode, false, NULL);
+ /* As a last resort, spill op0 to memory, and reload it in a
+ different mode. */
+ else if (!MEM_P (op0))
+ {
+ /* If the operand is not a MEM, force it into memory. Since we
+ are going to be changing the mode of the MEM, don't call
+ force_const_mem for constants because we don't allow pool
+ constants to change mode. */
+ tree inner_type = TREE_TYPE (treeop0);
+
+ gcc_assert (!TREE_ADDRESSABLE (exp));
+
+ if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
+ target
+ = assign_stack_temp_for_type
+ (TYPE_MODE (inner_type),
+ GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
+
+ emit_move_insn (target, op0);
+ op0 = target;
+ }
+
+ /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
+ output type is such that the operand is known to be aligned, indicate
+ that it is. Otherwise, we need only be concerned about alignment for
+ non-BLKmode results. */
+ if (MEM_P (op0))
+ {
+ enum insn_code icode;
+
+ if (modifier != EXPAND_WRITE
+ && modifier != EXPAND_MEMORY
+ && !inner_reference_p
+ && mode != BLKmode
+ && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
+ {
+ /* If the target does have special handling for unaligned
+ loads of mode then use them. */
+ if ((icode = optab_handler (movmisalign_optab, mode))
+ != CODE_FOR_nothing)
+ {
+ rtx reg;
+
+ op0 = adjust_address (op0, mode, 0);
+ /* We've already validated the memory, and we're creating a
+ new pseudo destination. The predicates really can't
+ fail. */
+ reg = gen_reg_rtx (mode);
+
+ /* Nor can the insn generator. */
+ rtx_insn *insn = GEN_FCN (icode) (reg, op0);
+ emit_insn (insn);
+ return reg;
+ }
+ else if (STRICT_ALIGNMENT)
+ {
+ poly_uint64 mode_size = GET_MODE_SIZE (mode);
+ poly_uint64 temp_size = mode_size;
+ if (GET_MODE (op0) != BLKmode)
+ temp_size = upper_bound (temp_size,
+ GET_MODE_SIZE (GET_MODE (op0)));
+ rtx new_rtx
+ = assign_stack_temp_for_type (mode, temp_size, type);
+ rtx new_with_op0_mode
+ = adjust_address (new_rtx, GET_MODE (op0), 0);
+
+ gcc_assert (!TREE_ADDRESSABLE (exp));
+
+ if (GET_MODE (op0) == BLKmode)
+ {
+ rtx size_rtx = gen_int_mode (mode_size, Pmode);
+ emit_block_move (new_with_op0_mode, op0, size_rtx,
+ (modifier == EXPAND_STACK_PARM
+ ? BLOCK_OP_CALL_PARM
+ : BLOCK_OP_NORMAL));
+ }
+ else
+ emit_move_insn (new_with_op0_mode, op0);
+
+ op0 = new_rtx;
+ }
+ }
+
+ op0 = adjust_address (op0, mode, 0);
+ }
+
+ return op0;
+
+ case MODIFY_EXPR:
+ {
+ tree lhs = treeop0;
+ tree rhs = treeop1;
+ gcc_assert (ignore);
+
+ /* Check for |= or &= of a bitfield of size one into another bitfield
+ of size 1. In this case, (unless we need the result of the
+ assignment) we can do this more efficiently with a
+ test followed by an assignment, if necessary.
+
+ ??? At this point, we can't get a BIT_FIELD_REF here. But if
+ things change so we do, this code should be enhanced to
+ support it. */
+ if (TREE_CODE (lhs) == COMPONENT_REF
+ && (TREE_CODE (rhs) == BIT_IOR_EXPR
+ || TREE_CODE (rhs) == BIT_AND_EXPR)
+ && TREE_OPERAND (rhs, 0) == lhs
+ && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
+ && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
+ && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
+ {
+ rtx_code_label *label = gen_label_rtx ();
+ int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
+ profile_probability prob = profile_probability::uninitialized ();
+ if (value)
+ jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
+ else
+ jumpif (TREE_OPERAND (rhs, 1), label, prob);
+ expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
+ false);
+ do_pending_stack_adjust ();
+ emit_label (label);
+ return const0_rtx;
+ }
+
+ expand_assignment (lhs, rhs, false);
+ return const0_rtx;
+ }
+
+ case ADDR_EXPR:
+ return expand_expr_addr_expr (exp, target, tmode, modifier);
+
+ case REALPART_EXPR:
+ op0 = expand_normal (treeop0);
+ return read_complex_part (op0, false);
+
+ case IMAGPART_EXPR:
+ op0 = expand_normal (treeop0);
+ return read_complex_part (op0, true);
+
+ case RETURN_EXPR:
+ case LABEL_EXPR:
+ case GOTO_EXPR:
+ case SWITCH_EXPR:
+ case ASM_EXPR:
+ /* Expanded in cfgexpand.c. */
+ gcc_unreachable ();
+
+ case TRY_CATCH_EXPR:
+ case CATCH_EXPR:
+ case EH_FILTER_EXPR:
+ case TRY_FINALLY_EXPR:
+ case EH_ELSE_EXPR:
+ /* Lowered by tree-eh.c. */
+ gcc_unreachable ();
+
+ case WITH_CLEANUP_EXPR:
+ case CLEANUP_POINT_EXPR:
+ case TARGET_EXPR:
+ case CASE_LABEL_EXPR:
+ case VA_ARG_EXPR:
+ case BIND_EXPR:
+ case INIT_EXPR:
+ case CONJ_EXPR:
+ case COMPOUND_EXPR:
+ case PREINCREMENT_EXPR:
+ case PREDECREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ case LOOP_EXPR:
+ case EXIT_EXPR:
+ case COMPOUND_LITERAL_EXPR:
+ /* Lowered by gimplify.c. */
+ gcc_unreachable ();
+
+ case FDESC_EXPR:
+ /* Function descriptors are not valid except for as
+ initialization constants, and should not be expanded. */
+ gcc_unreachable ();
+
+ case WITH_SIZE_EXPR:
+ /* WITH_SIZE_EXPR expands to its first argument. The caller should
+ have pulled out the size to use in whatever context it needed. */
+ return expand_expr_real (treeop0, original_target, tmode,
+ modifier, alt_rtl, inner_reference_p);
+
+ default:
+ return expand_expr_real_2 (&ops, target, tmode, modifier);
+ }
+}
+
+/* Subroutine of above: reduce EXP to the precision of TYPE (in the
+ signedness of TYPE), possibly returning the result in TARGET.
+ TYPE is known to be a partial integer type. */
+static rtx
+reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
+{
+ scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
+ HOST_WIDE_INT prec = TYPE_PRECISION (type);
+ gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
+ && (!target || GET_MODE (target) == mode));
+
+ /* For constant values, reduce using wide_int_to_tree. */
+ if (poly_int_rtx_p (exp))
+ {
+ auto value = wi::to_poly_wide (exp, mode);
+ tree t = wide_int_to_tree (type, value);
+ return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
+ }
+ else if (TYPE_UNSIGNED (type))
+ {
+ rtx mask = immed_wide_int_const
+ (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
+ return expand_and (mode, exp, mask, target);
+ }
+ else
+ {
+ int count = GET_MODE_PRECISION (mode) - prec;
+ exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
+ return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
+ }
+}
+
+/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
+ when applied to the address of EXP produces an address known to be
+ aligned more than BIGGEST_ALIGNMENT. */
+
+static int
+is_aligning_offset (const_tree offset, const_tree exp)
+{
+ /* Strip off any conversions. */
+ while (CONVERT_EXPR_P (offset))
+ offset = TREE_OPERAND (offset, 0);
+
+ /* We must now have a BIT_AND_EXPR with a constant that is one less than
+ power of 2 and which is larger than BIGGEST_ALIGNMENT. */
+ if (TREE_CODE (offset) != BIT_AND_EXPR
+ || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
+ || compare_tree_int (TREE_OPERAND (offset, 1),
+ BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
+ || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
+ return 0;
+
+ /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
+ It must be NEGATE_EXPR. Then strip any more conversions. */
+ offset = TREE_OPERAND (offset, 0);
+ while (CONVERT_EXPR_P (offset))
+ offset = TREE_OPERAND (offset, 0);
+
+ if (TREE_CODE (offset) != NEGATE_EXPR)
+ return 0;
+
+ offset = TREE_OPERAND (offset, 0);
+ while (CONVERT_EXPR_P (offset))
+ offset = TREE_OPERAND (offset, 0);
+
+ /* This must now be the address of EXP. */
+ return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
+}
+
+/* Return a STRING_CST corresponding to ARG's constant initializer either
+ if it's a string constant, or, when VALREP is set, any other constant,
+ or null otherwise.
+ On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
+ within the byte string that ARG is references. If nonnull set *MEM_SIZE
+ to the size of the byte string. If nonnull, set *DECL to the constant
+ declaration ARG refers to. */
+
+static tree
+constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
+ bool valrep = false)
+{
+ tree dummy = NULL_TREE;
+ if (!mem_size)
+ mem_size = &dummy;
+
+ /* Store the type of the original expression before conversions
+ via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
+ removed. */
+ tree argtype = TREE_TYPE (arg);
+
+ tree array;
+ STRIP_NOPS (arg);
+
+ /* Non-constant index into the character array in an ARRAY_REF
+ expression or null. */
+ tree varidx = NULL_TREE;
+
+ poly_int64 base_off = 0;
+
+ if (TREE_CODE (arg) == ADDR_EXPR)
+ {
+ arg = TREE_OPERAND (arg, 0);
+ tree ref = arg;
+ if (TREE_CODE (arg) == ARRAY_REF)
+ {
+ tree idx = TREE_OPERAND (arg, 1);
+ if (TREE_CODE (idx) != INTEGER_CST)
+ {
+ /* From a pointer (but not array) argument extract the variable
+ index to prevent get_addr_base_and_unit_offset() from failing
+ due to it. Use it later to compute the non-constant offset
+ into the string and return it to the caller. */
+ varidx = idx;
+ ref = TREE_OPERAND (arg, 0);
+
+ if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
+ return NULL_TREE;
+
+ if (!integer_zerop (array_ref_low_bound (arg)))
+ return NULL_TREE;
+
+ if (!integer_onep (array_ref_element_size (arg)))
+ return NULL_TREE;
+ }
+ }
+ array = get_addr_base_and_unit_offset (ref, &base_off);
+ if (!array
+ || (TREE_CODE (array) != VAR_DECL
+ && TREE_CODE (array) != CONST_DECL
+ && TREE_CODE (array) != STRING_CST))
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
+ {
+ tree arg0 = TREE_OPERAND (arg, 0);
+ tree arg1 = TREE_OPERAND (arg, 1);
+
+ tree offset;
+ tree str = string_constant (arg0, &offset, mem_size, decl);
+ if (!str)
+ {
+ str = string_constant (arg1, &offset, mem_size, decl);
+ arg1 = arg0;
+ }
+
+ if (str)
+ {
+ /* Avoid pointers to arrays (see bug 86622). */
+ if (POINTER_TYPE_P (TREE_TYPE (arg))
+ && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
+ && !(decl && !*decl)
+ && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
+ && tree_fits_uhwi_p (*mem_size)
+ && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
+ return NULL_TREE;
+
+ tree type = TREE_TYPE (offset);
+ arg1 = fold_convert (type, arg1);
+ *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
+ return str;
+ }
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == SSA_NAME)
+ {
+ gimple *stmt = SSA_NAME_DEF_STMT (arg);
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree_code code = gimple_assign_rhs_code (stmt);
+ if (code == ADDR_EXPR)
+ return string_constant (rhs1, ptr_offset, mem_size, decl);
+ else if (code != POINTER_PLUS_EXPR)
+ return NULL_TREE;
+
+ tree offset;
+ if (tree str = string_constant (rhs1, &offset, mem_size, decl))
+ {
+ /* Avoid pointers to arrays (see bug 86622). */
+ if (POINTER_TYPE_P (TREE_TYPE (rhs1))
+ && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
+ && !(decl && !*decl)
+ && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
+ && tree_fits_uhwi_p (*mem_size)
+ && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
+ return NULL_TREE;
+
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+ tree type = TREE_TYPE (offset);
+ rhs2 = fold_convert (type, rhs2);
+ *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
+ return str;
+ }
+ return NULL_TREE;
+ }
+ else if (DECL_P (arg))
+ array = arg;
+ else
+ return NULL_TREE;
+
+ tree offset = wide_int_to_tree (sizetype, base_off);
+ if (varidx)
+ {
+ if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
+ return NULL_TREE;
+
+ gcc_assert (TREE_CODE (arg) == ARRAY_REF);
+ tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
+ if (TREE_CODE (chartype) != INTEGER_TYPE)
+ return NULL;
+
+ offset = fold_convert (sizetype, varidx);
+ }
+
+ if (TREE_CODE (array) == STRING_CST)
+ {
+ *ptr_offset = fold_convert (sizetype, offset);
+ *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
+ if (decl)
+ *decl = NULL_TREE;
+ gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
+ >= TREE_STRING_LENGTH (array));
+ return array;
+ }
+
+ tree init = ctor_for_folding (array);
+ if (!init || init == error_mark_node)
+ return NULL_TREE;
+
+ if (valrep)
+ {
+ HOST_WIDE_INT cstoff;
+ if (!base_off.is_constant (&cstoff))
+ return NULL_TREE;
+
+ /* Check that the host and target are sane. */
+ if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
+ return NULL_TREE;
+
+ HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
+ if (typesz <= 0 || (int) typesz != typesz)
+ return NULL_TREE;
+
+ HOST_WIDE_INT size = typesz;
+ if (VAR_P (array)
+ && DECL_SIZE_UNIT (array)
+ && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
+ {
+ size = tree_to_shwi (DECL_SIZE_UNIT (array));
+ gcc_checking_assert (size >= typesz);
+ }
+
+ /* If value representation was requested convert the initializer
+ for the whole array or object into a string of bytes forming
+ its value representation and return it. */
+ unsigned char *bytes = XNEWVEC (unsigned char, size);
+ int r = native_encode_initializer (init, bytes, size);
+ if (r < typesz)
+ {
+ XDELETEVEC (bytes);
+ return NULL_TREE;
+ }
+
+ if (r < size)
+ memset (bytes + r, '\0', size - r);
+
+ const char *p = reinterpret_cast<const char *>(bytes);
+ init = build_string_literal (size, p, char_type_node);
+ init = TREE_OPERAND (init, 0);
+ init = TREE_OPERAND (init, 0);
+ XDELETE (bytes);
+
+ *mem_size = size_int (TREE_STRING_LENGTH (init));
+ *ptr_offset = wide_int_to_tree (ssizetype, base_off);
+
+ if (decl)
+ *decl = array;
+
+ return init;
+ }
+
+ if (TREE_CODE (init) == CONSTRUCTOR)
+ {
+ /* Convert the 64-bit constant offset to a wider type to avoid
+ overflow and use it to obtain the initializer for the subobject
+ it points into. */
+ offset_int wioff;
+ if (!base_off.is_constant (&wioff))
+ return NULL_TREE;
+
+ wioff *= BITS_PER_UNIT;
+ if (!wi::fits_uhwi_p (wioff))
+ return NULL_TREE;
+
+ base_off = wioff.to_uhwi ();
+ unsigned HOST_WIDE_INT fieldoff = 0;
+ init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
+ &fieldoff);
+ if (!init || init == error_mark_node)
+ return NULL_TREE;
+
+ HOST_WIDE_INT cstoff;
+ if (!base_off.is_constant (&cstoff))
+ return NULL_TREE;
+
+ cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
+ tree off = build_int_cst (sizetype, cstoff);
+ if (varidx)
+ offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
+ else
+ offset = off;
+ }
+
+ *ptr_offset = offset;
+
+ tree inittype = TREE_TYPE (init);
+
+ if (TREE_CODE (init) == INTEGER_CST
+ && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
+ || TYPE_MAIN_VARIANT (inittype) == char_type_node))
+ {
+ /* Check that the host and target are sane. */
+ if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
+ return NULL_TREE;
+
+ /* For a reference to (address of) a single constant character,
+ store the native representation of the character in CHARBUF.
+ If the reference is to an element of an array or a member
+ of a struct, only consider narrow characters until ctors
+ for wide character arrays are transformed to STRING_CSTs
+ like those for narrow arrays. */
+ unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
+ int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
+ if (len > 0)
+ {
+ /* Construct a string literal with elements of INITTYPE and
+ the representation above. Then strip
+ the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
+ init = build_string_literal (len, (char *)charbuf, inittype);
+ init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
+ }
+ }
+
+ tree initsize = TYPE_SIZE_UNIT (inittype);
+
+ if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
+ {
+ /* Fold an empty/zero constructor for an implicitly initialized
+ object or subobject into the empty string. */
+
+ /* Determine the character type from that of the original
+ expression. */
+ tree chartype = argtype;
+ if (POINTER_TYPE_P (chartype))
+ chartype = TREE_TYPE (chartype);
+ while (TREE_CODE (chartype) == ARRAY_TYPE)
+ chartype = TREE_TYPE (chartype);
+
+ if (INTEGRAL_TYPE_P (chartype)
+ && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
+ {
+ /* Convert a char array to an empty STRING_CST having an array
+ of the expected type and size. */
+ if (!initsize)
+ initsize = integer_zero_node;
+
+ unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
+ if (size > (unsigned HOST_WIDE_INT) INT_MAX)
+ return NULL_TREE;
+
+ init = build_string_literal (size, NULL, chartype, size);
+ init = TREE_OPERAND (init, 0);
+ init = TREE_OPERAND (init, 0);
+
+ *ptr_offset = integer_zero_node;
+ }
+ }
+
+ if (decl)
+ *decl = array;
+
+ if (TREE_CODE (init) != STRING_CST)
+ return NULL_TREE;
+
+ *mem_size = initsize;
+
+ gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
+
+ return init;
+}
+
+/* Return STRING_CST if an ARG corresponds to a string constant or zero
+ if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
+ non-constant) offset in bytes within the string that ARG is accessing.
+ If MEM_SIZE is non-zero the storage size of the memory is returned.
+ If DECL is non-zero the constant declaration is returned if available. */
+
+tree
+string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
+{
+ return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
+}
+
+/* Similar to string_constant, return a STRING_CST corresponding
+ to the value representation of the first argument if it's
+ a constant. */
+
+tree
+byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
+{
+ return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
+}
+
+/* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
+ is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
+ for C2 > 0 to x & C3 == C2
+ for C2 < 0 to x & C3 == (C2 & C3). */
+enum tree_code
+maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
+{
+ gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
+ tree treeop0 = gimple_assign_rhs1 (stmt);
+ tree treeop1 = gimple_assign_rhs2 (stmt);
+ tree type = TREE_TYPE (*arg0);
+ scalar_int_mode mode;
+ if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
+ return code;
+ if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
+ || TYPE_PRECISION (type) <= 1
+ || TYPE_UNSIGNED (type)
+ /* Signed x % c == 0 should have been optimized into unsigned modulo
+ earlier. */
+ || integer_zerop (*arg1)
+ /* If c is known to be non-negative, modulo will be expanded as unsigned
+ modulo. */
+ || get_range_pos_neg (treeop0) == 1)
+ return code;
+
+ /* x % c == d where d < 0 && d <= -c should be always false. */
+ if (tree_int_cst_sgn (*arg1) == -1
+ && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
+ return code;
+
+ int prec = TYPE_PRECISION (type);
+ wide_int w = wi::to_wide (treeop1) - 1;
+ w |= wi::shifted_mask (0, prec - 1, true, prec);
+ tree c3 = wide_int_to_tree (type, w);
+ tree c4 = *arg1;
+ if (tree_int_cst_sgn (*arg1) == -1)
+ c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
+
+ rtx op0 = expand_normal (treeop0);
+ treeop0 = make_tree (TREE_TYPE (treeop0), op0);
+
+ bool speed_p = optimize_insn_for_speed_p ();
+
+ do_pending_stack_adjust ();
+
+ location_t loc = gimple_location (stmt);
+ struct separate_ops ops;
+ ops.code = TRUNC_MOD_EXPR;
+ ops.location = loc;
+ ops.type = TREE_TYPE (treeop0);
+ ops.op0 = treeop0;
+ ops.op1 = treeop1;
+ ops.op2 = NULL_TREE;
+ start_sequence ();
+ rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
+ EXPAND_NORMAL);
+ rtx_insn *moinsns = get_insns ();
+ end_sequence ();
+
+ unsigned mocost = seq_cost (moinsns, speed_p);
+ mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
+ mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
+
+ ops.code = BIT_AND_EXPR;
+ ops.location = loc;
+ ops.type = TREE_TYPE (treeop0);
+ ops.op0 = treeop0;
+ ops.op1 = c3;
+ ops.op2 = NULL_TREE;
+ start_sequence ();
+ rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
+ EXPAND_NORMAL);
+ rtx_insn *muinsns = get_insns ();
+ end_sequence ();
+
+ unsigned mucost = seq_cost (muinsns, speed_p);
+ mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
+ mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
+
+ if (mocost <= mucost)
+ {
+ emit_insn (moinsns);
+ *arg0 = make_tree (TREE_TYPE (*arg0), mor);
+ return code;
+ }
+
+ emit_insn (muinsns);
+ *arg0 = make_tree (TREE_TYPE (*arg0), mur);
+ *arg1 = c4;
+ return code;
+}
+
+/* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
+ If C1 is odd to:
+ (X - C2) * C3 <= C4 (or >), where
+ C3 is modular multiplicative inverse of C1 and 1<<prec and
+ C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
+ if C2 > ((1<<prec) - 1) % C1).
+ If C1 is even, S = ctz (C1) and C2 is 0, use
+ ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
+ inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
+
+ For signed (X % C1) == 0 if C1 is odd to (all operations in it
+ unsigned):
+ (X * C3) + C4 <= 2 * C4, where
+ C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
+ C4 is ((1<<(prec - 1) - 1) / C1).
+ If C1 is even, S = ctz(C1), use
+ ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
+ where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
+ and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
+
+ See the Hacker's Delight book, section 10-17. */
+enum tree_code
+maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
+{
+ gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
+ gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
+
+ if (optimize < 2)
+ return code;
+
+ gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
+ if (stmt == NULL)
+ return code;
+
+ tree treeop0 = gimple_assign_rhs1 (stmt);
+ tree treeop1 = gimple_assign_rhs2 (stmt);
+ if (TREE_CODE (treeop0) != SSA_NAME
+ || TREE_CODE (treeop1) != INTEGER_CST
+ /* Don't optimize the undefined behavior case x % 0;
+ x % 1 should have been optimized into zero, punt if
+ it makes it here for whatever reason;
+ x % -c should have been optimized into x % c. */
+ || compare_tree_int (treeop1, 2) <= 0
+ /* Likewise x % c == d where d >= c should be always false. */
+ || tree_int_cst_le (treeop1, *arg1))
+ return code;
+
+ /* Unsigned x % pow2 is handled right already, for signed
+ modulo handle it in maybe_optimize_pow2p_mod_cmp. */
+ if (integer_pow2p (treeop1))
+ return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
+
+ tree type = TREE_TYPE (*arg0);
+ scalar_int_mode mode;
+ if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
+ return code;
+ if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
+ || TYPE_PRECISION (type) <= 1)
+ return code;
+
+ signop sgn = UNSIGNED;
+ /* If both operands are known to have the sign bit clear, handle
+ even the signed modulo case as unsigned. treeop1 is always
+ positive >= 2, checked above. */
+ if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
+ sgn = SIGNED;
+
+ if (!TYPE_UNSIGNED (type))
+ {
+ if (tree_int_cst_sgn (*arg1) == -1)
+ return code;
+ type = unsigned_type_for (type);
+ if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
+ return code;
+ }
+
+ int prec = TYPE_PRECISION (type);
+ wide_int w = wi::to_wide (treeop1);
+ int shift = wi::ctz (w);
+ /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
+ C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
+ If C1 is odd, we can handle all cases by subtracting
+ C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
+ e.g. by testing for overflow on the subtraction, punt on that for now
+ though. */
+ if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
+ {
+ if (sgn == SIGNED)
+ return code;
+ wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
+ if (wi::gtu_p (wi::to_wide (*arg1), x))
+ return code;
+ }
+
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
+ {
+ gimple *use_stmt = USE_STMT (use_p);
+ /* Punt if treeop0 is used in the same bb in a division
+ or another modulo with the same divisor. We should expect
+ the division and modulo combined together. */
+ if (use_stmt == stmt
+ || gimple_bb (use_stmt) != gimple_bb (stmt))
+ continue;
+ if (!is_gimple_assign (use_stmt)
+ || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
+ && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
+ continue;
+ if (gimple_assign_rhs1 (use_stmt) != treeop0
+ || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
+ continue;
+ return code;
+ }
+
+ w = wi::lrshift (w, shift);
+ wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
+ wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
+ wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
+ tree c3 = wide_int_to_tree (type, m);
+ tree c5 = NULL_TREE;
+ wide_int d, e;
+ if (sgn == UNSIGNED)
+ {
+ d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
+ /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
+ otherwise use < or subtract one from C4. E.g. for
+ x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
+ x % 3U == 1 already needs to be
+ (x - 1) * 0xaaaaaaabU <= 0x55555554. */
+ if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
+ d -= 1;
+ if (shift)
+ d = wi::lrshift (d, shift);
+ }
+ else
+ {
+ e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
+ if (!shift)
+ d = wi::lshift (e, 1);
+ else
+ {
+ e = wi::bit_and (e, wi::mask (shift, true, prec));
+ d = wi::lrshift (e, shift - 1);
+ }
+ c5 = wide_int_to_tree (type, e);
+ }
+ tree c4 = wide_int_to_tree (type, d);
+
+ rtx op0 = expand_normal (treeop0);
+ treeop0 = make_tree (TREE_TYPE (treeop0), op0);
+
+ bool speed_p = optimize_insn_for_speed_p ();
+
+ do_pending_stack_adjust ();
+
+ location_t loc = gimple_location (stmt);
+ struct separate_ops ops;
+ ops.code = TRUNC_MOD_EXPR;
+ ops.location = loc;
+ ops.type = TREE_TYPE (treeop0);
+ ops.op0 = treeop0;
+ ops.op1 = treeop1;
+ ops.op2 = NULL_TREE;
+ start_sequence ();
+ rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
+ EXPAND_NORMAL);
+ rtx_insn *moinsns = get_insns ();
+ end_sequence ();
+
+ unsigned mocost = seq_cost (moinsns, speed_p);
+ mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
+ mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
+
+ tree t = fold_convert_loc (loc, type, treeop0);
+ if (!integer_zerop (*arg1))
+ t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
+ t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
+ if (sgn == SIGNED)
+ t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
+ if (shift)
+ {
+ tree s = build_int_cst (NULL_TREE, shift);
+ t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
+ }
+
+ start_sequence ();
+ rtx mur = expand_normal (t);
+ rtx_insn *muinsns = get_insns ();
+ end_sequence ();
+
+ unsigned mucost = seq_cost (muinsns, speed_p);
+ mucost += rtx_cost (mur, mode, LE, 0, speed_p);
+ mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
+
+ if (mocost <= mucost)
+ {
+ emit_insn (moinsns);
+ *arg0 = make_tree (TREE_TYPE (*arg0), mor);
+ return code;
+ }
+
+ emit_insn (muinsns);
+ *arg0 = make_tree (type, mur);
+ *arg1 = c4;
+ return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
+}
+
+/* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
+
+void
+maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
+{
+ gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
+ || code == LT_EXPR || code == LE_EXPR);
+ gcc_checking_assert (integer_zerop (*arg1));
+
+ if (!optimize)
+ return;
+
+ gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
+ if (stmt == NULL)
+ return;
+
+ tree treeop0 = gimple_assign_rhs1 (stmt);
+ tree treeop1 = gimple_assign_rhs2 (stmt);
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
+ return;
+
+ if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
+ warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
+ "assuming signed overflow does not occur when "
+ "simplifying %<X - Y %s 0%> to %<X %s Y%>",
+ op_symbol_code (code), op_symbol_code (code));
+
+ *arg0 = treeop0;
+ *arg1 = treeop1;
+}
+
+/* Generate code to calculate OPS, and exploded expression
+ using a store-flag instruction and return an rtx for the result.
+ OPS reflects a comparison.
+
+ If TARGET is nonzero, store the result there if convenient.
+
+ Return zero if there is no suitable set-flag instruction
+ available on this machine.
+
+ Once expand_expr has been called on the arguments of the comparison,
+ we are committed to doing the store flag, since it is not safe to
+ re-evaluate the expression. We emit the store-flag insn by calling
+ emit_store_flag, but only expand the arguments if we have a reason
+ to believe that emit_store_flag will be successful. If we think that
+ it will, but it isn't, we have to simulate the store-flag with a
+ set/jump/set sequence. */
+
+static rtx
+do_store_flag (sepops ops, rtx target, machine_mode mode)
+{
+ enum rtx_code code;
+ tree arg0, arg1, type;
+ machine_mode operand_mode;
+ int unsignedp;
+ rtx op0, op1;
+ rtx subtarget = target;
+ location_t loc = ops->location;
+
+ arg0 = ops->op0;
+ arg1 = ops->op1;
+
+ /* Don't crash if the comparison was erroneous. */
+ if (arg0 == error_mark_node || arg1 == error_mark_node)
+ return const0_rtx;
+
+ type = TREE_TYPE (arg0);
+ operand_mode = TYPE_MODE (type);
+ unsignedp = TYPE_UNSIGNED (type);
+
+ /* We won't bother with BLKmode store-flag operations because it would mean
+ passing a lot of information to emit_store_flag. */
+ if (operand_mode == BLKmode)
+ return 0;
+
+ /* We won't bother with store-flag operations involving function pointers
+ when function pointers must be canonicalized before comparisons. */
+ if (targetm.have_canonicalize_funcptr_for_compare ()
+ && ((POINTER_TYPE_P (TREE_TYPE (arg0))
+ && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
+ || (POINTER_TYPE_P (TREE_TYPE (arg1))
+ && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
+ return 0;
+
+ STRIP_NOPS (arg0);
+ STRIP_NOPS (arg1);
+
+ /* For vector typed comparisons emit code to generate the desired
+ all-ones or all-zeros mask. */
+ if (TREE_CODE (ops->type) == VECTOR_TYPE)
+ {
+ tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
+ if (VECTOR_BOOLEAN_TYPE_P (ops->type)
+ && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
+ return expand_vec_cmp_expr (ops->type, ifexp, target);
+ else
+ gcc_unreachable ();
+ }
+
+ /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
+ into (x - C2) * C3 < C4. */
+ if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
+ && TREE_CODE (arg0) == SSA_NAME
+ && TREE_CODE (arg1) == INTEGER_CST)
+ {
+ enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
+ &arg0, &arg1);
+ if (new_code != ops->code)
+ {
+ struct separate_ops nops = *ops;
+ nops.code = ops->code = new_code;
+ nops.op0 = arg0;
+ nops.op1 = arg1;
+ nops.type = TREE_TYPE (arg0);
+ return do_store_flag (&nops, target, mode);
+ }
+ }
+
+ /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
+ if (!unsignedp
+ && (ops->code == LT_EXPR || ops->code == LE_EXPR
+ || ops->code == GT_EXPR || ops->code == GE_EXPR)
+ && integer_zerop (arg1)
+ && TREE_CODE (arg0) == SSA_NAME)
+ maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
+
+ /* Get the rtx comparison code to use. We know that EXP is a comparison
+ operation of some type. Some comparisons against 1 and -1 can be
+ converted to comparisons with zero. Do so here so that the tests
+ below will be aware that we have a comparison with zero. These
+ tests will not catch constants in the first operand, but constants
+ are rarely passed as the first operand. */
+
+ switch (ops->code)
+ {
+ case EQ_EXPR:
+ code = EQ;
+ break;
+ case NE_EXPR:
+ code = NE;
+ break;
+ case LT_EXPR:
+ if (integer_onep (arg1))
+ arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
+ else
+ code = unsignedp ? LTU : LT;
+ break;
+ case LE_EXPR:
+ if (! unsignedp && integer_all_onesp (arg1))
+ arg1 = integer_zero_node, code = LT;
+ else
+ code = unsignedp ? LEU : LE;
+ break;
+ case GT_EXPR:
+ if (! unsignedp && integer_all_onesp (arg1))
+ arg1 = integer_zero_node, code = GE;
+ else
+ code = unsignedp ? GTU : GT;
+ break;
+ case GE_EXPR:
+ if (integer_onep (arg1))
+ arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
+ else
+ code = unsignedp ? GEU : GE;
+ break;
+
+ case UNORDERED_EXPR:
+ code = UNORDERED;
+ break;
+ case ORDERED_EXPR:
+ code = ORDERED;
+ break;
+ case UNLT_EXPR:
+ code = UNLT;
+ break;
+ case UNLE_EXPR:
+ code = UNLE;
+ break;
+ case UNGT_EXPR:
+ code = UNGT;
+ break;
+ case UNGE_EXPR:
+ code = UNGE;
+ break;
+ case UNEQ_EXPR:
+ code = UNEQ;
+ break;
+ case LTGT_EXPR:
+ code = LTGT;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Put a constant second. */
+ if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
+ || TREE_CODE (arg0) == FIXED_CST)
+ {
+ std::swap (arg0, arg1);
+ code = swap_condition (code);
+ }
+
+ /* If this is an equality or inequality test of a single bit, we can
+ do this by shifting the bit being tested to the low-order bit and
+ masking the result with the constant 1. If the condition was EQ,
+ we xor it with 1. This does not require an scc insn and is faster
+ than an scc insn even if we have it.
+
+ The code to make this transformation was moved into fold_single_bit_test,
+ so we just call into the folder and expand its result. */
+
+ if ((code == NE || code == EQ)
+ && integer_zerop (arg1)
+ && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
+ {
+ gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
+ if (srcstmt
+ && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
+ {
+ enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
+ type = lang_hooks.types.type_for_mode (mode, unsignedp);
+ tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
+ gimple_assign_rhs1 (srcstmt),
+ gimple_assign_rhs2 (srcstmt));
+ temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
+ if (temp)
+ return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
+ }
+ }
+
+ if (! get_subtarget (target)
+ || GET_MODE (subtarget) != operand_mode)
+ subtarget = 0;
+
+ expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
+
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+
+ /* Try a cstore if possible. */
+ return emit_store_flag_force (target, code, op0, op1,
+ operand_mode, unsignedp,
+ (TYPE_PRECISION (ops->type) == 1
+ && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
+}
+
+/* Attempt to generate a casesi instruction. Returns 1 if successful,
+ 0 otherwise (i.e. if there is no casesi instruction).
+
+ DEFAULT_PROBABILITY is the probability of jumping to the default
+ label. */
+int
+try_casesi (tree index_type, tree index_expr, tree minval, tree range,
+ rtx table_label, rtx default_label, rtx fallback_label,
+ profile_probability default_probability)
+{
+ class expand_operand ops[5];
+ scalar_int_mode index_mode = SImode;
+ rtx op1, op2, index;
+
+ if (! targetm.have_casesi ())
+ return 0;
+
+ /* The index must be some form of integer. Convert it to SImode. */
+ scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
+ if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
+ {
+ rtx rangertx = expand_normal (range);
+
+ /* We must handle the endpoints in the original mode. */
+ index_expr = build2 (MINUS_EXPR, index_type,
+ index_expr, minval);
+ minval = integer_zero_node;
+ index = expand_normal (index_expr);
+ if (default_label)
+ emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
+ omode, 1, default_label,
+ default_probability);
+ /* Now we can safely truncate. */
+ index = convert_to_mode (index_mode, index, 0);
+ }
+ else
+ {
+ if (omode != index_mode)
+ {
+ index_type = lang_hooks.types.type_for_mode (index_mode, 0);
+ index_expr = fold_convert (index_type, index_expr);
+ }
+
+ index = expand_normal (index_expr);
+ }
+
+ do_pending_stack_adjust ();
+
+ op1 = expand_normal (minval);
+ op2 = expand_normal (range);
+
+ create_input_operand (&ops[0], index, index_mode);
+ create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
+ create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
+ create_fixed_operand (&ops[3], table_label);
+ create_fixed_operand (&ops[4], (default_label
+ ? default_label
+ : fallback_label));
+ expand_jump_insn (targetm.code_for_casesi, 5, ops);
+ return 1;
+}
+
+/* Attempt to generate a tablejump instruction; same concept. */
+/* Subroutine of the next function.
+
+ INDEX is the value being switched on, with the lowest value
+ in the table already subtracted.
+ MODE is its expected mode (needed if INDEX is constant).
+ RANGE is the length of the jump table.
+ TABLE_LABEL is a CODE_LABEL rtx for the table itself.
+
+ DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
+ index value is out of range.
+ DEFAULT_PROBABILITY is the probability of jumping to
+ the default label. */
+
+static void
+do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
+ rtx default_label, profile_probability default_probability)
+{
+ rtx temp, vector;
+
+ if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
+ cfun->cfg->max_jumptable_ents = INTVAL (range);
+
+ /* Do an unsigned comparison (in the proper mode) between the index
+ expression and the value which represents the length of the range.
+ Since we just finished subtracting the lower bound of the range
+ from the index expression, this comparison allows us to simultaneously
+ check that the original index expression value is both greater than
+ or equal to the minimum value of the range and less than or equal to
+ the maximum value of the range. */
+
+ if (default_label)
+ emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
+ default_label, default_probability);
+
+ /* If index is in range, it must fit in Pmode.
+ Convert to Pmode so we can index with it. */
+ if (mode != Pmode)
+ {
+ unsigned int width;
+
+ /* We know the value of INDEX is between 0 and RANGE. If we have a
+ sign-extended subreg, and RANGE does not have the sign bit set, then
+ we have a value that is valid for both sign and zero extension. In
+ this case, we get better code if we sign extend. */
+ if (GET_CODE (index) == SUBREG
+ && SUBREG_PROMOTED_VAR_P (index)
+ && SUBREG_PROMOTED_SIGNED_P (index)
+ && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
+ index = convert_to_mode (Pmode, index, 0);
+ else
+ index = convert_to_mode (Pmode, index, 1);
+ }
+
+ /* Don't let a MEM slip through, because then INDEX that comes
+ out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
+ and break_out_memory_refs will go to work on it and mess it up. */
+#ifdef PIC_CASE_VECTOR_ADDRESS
+ if (flag_pic && !REG_P (index))
+ index = copy_to_mode_reg (Pmode, index);
+#endif
+
+ /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
+ GET_MODE_SIZE, because this indicates how large insns are. The other
+ uses should all be Pmode, because they are addresses. This code
+ could fail if addresses and insns are not the same size. */
+ index = simplify_gen_binary (MULT, Pmode, index,
+ gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
+ Pmode));
+ index = simplify_gen_binary (PLUS, Pmode, index,
+ gen_rtx_LABEL_REF (Pmode, table_label));
+
+#ifdef PIC_CASE_VECTOR_ADDRESS
+ if (flag_pic)
+ index = PIC_CASE_VECTOR_ADDRESS (index);
+ else
+#endif
+ index = memory_address (CASE_VECTOR_MODE, index);
+ temp = gen_reg_rtx (CASE_VECTOR_MODE);
+ vector = gen_const_mem (CASE_VECTOR_MODE, index);
+ convert_move (temp, vector, 0);
+
+ emit_jump_insn (targetm.gen_tablejump (temp, table_label));
+
+ /* If we are generating PIC code or if the table is PC-relative, the
+ table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
+ if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
+ emit_barrier ();
+}
+
+int
+try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
+ rtx table_label, rtx default_label,
+ profile_probability default_probability)
+{
+ rtx index;
+
+ if (! targetm.have_tablejump ())
+ return 0;
+
+ index_expr = fold_build2 (MINUS_EXPR, index_type,
+ fold_convert (index_type, index_expr),
+ fold_convert (index_type, minval));
+ index = expand_normal (index_expr);
+ do_pending_stack_adjust ();
+
+ do_tablejump (index, TYPE_MODE (index_type),
+ convert_modes (TYPE_MODE (index_type),
+ TYPE_MODE (TREE_TYPE (range)),
+ expand_normal (range),
+ TYPE_UNSIGNED (TREE_TYPE (range))),
+ table_label, default_label, default_probability);
+ return 1;
+}
+
+/* Return a CONST_VECTOR rtx representing vector mask for
+ a VECTOR_CST of booleans. */
+static rtx
+const_vector_mask_from_tree (tree exp)
+{
+ machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
+ machine_mode inner = GET_MODE_INNER (mode);
+
+ rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
+ VECTOR_CST_NELTS_PER_PATTERN (exp));
+ unsigned int count = builder.encoded_nelts ();
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ tree elt = VECTOR_CST_ELT (exp, i);
+ gcc_assert (TREE_CODE (elt) == INTEGER_CST);
+ if (integer_zerop (elt))
+ builder.quick_push (CONST0_RTX (inner));
+ else if (integer_onep (elt)
+ || integer_minus_onep (elt))
+ builder.quick_push (CONSTM1_RTX (inner));
+ else
+ gcc_unreachable ();
+ }
+ return builder.build ();
+}
+
+/* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
+static rtx
+const_vector_from_tree (tree exp)
+{
+ machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
+
+ if (initializer_zerop (exp))
+ return CONST0_RTX (mode);
+
+ if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
+ return const_vector_mask_from_tree (exp);
+
+ machine_mode inner = GET_MODE_INNER (mode);
+
+ rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
+ VECTOR_CST_NELTS_PER_PATTERN (exp));
+ unsigned int count = builder.encoded_nelts ();
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ tree elt = VECTOR_CST_ELT (exp, i);
+ if (TREE_CODE (elt) == REAL_CST)
+ builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
+ inner));
+ else if (TREE_CODE (elt) == FIXED_CST)
+ builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
+ inner));
+ else
+ builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
+ inner));
+ }
+ return builder.build ();
+}
+
+/* Build a decl for a personality function given a language prefix. */
+
+tree
+build_personality_function (const char *lang)
+{
+ const char *unwind_and_version;
+ tree decl, type;
+ char *name;
+
+ switch (targetm_common.except_unwind_info (&global_options))
+ {
+ case UI_NONE:
+ return NULL;
+ case UI_SJLJ:
+ unwind_and_version = "_sj0";
+ break;
+ case UI_DWARF2:
+ case UI_TARGET:
+ unwind_and_version = "_v0";
+ break;
+ case UI_SEH:
+ unwind_and_version = "_seh0";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
+
+ type = build_function_type_list (unsigned_type_node,
+ integer_type_node, integer_type_node,
+ long_long_unsigned_type_node,
+ ptr_type_node, ptr_type_node, NULL_TREE);
+ decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
+ get_identifier (name), type);
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+
+ /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
+ are the flags assigned by targetm.encode_section_info. */
+ SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
+
+ return decl;
+}
+
+/* Extracts the personality function of DECL and returns the corresponding
+ libfunc. */
+
+rtx
+get_personality_function (tree decl)
+{
+ tree personality = DECL_FUNCTION_PERSONALITY (decl);
+ enum eh_personality_kind pk;
+
+ pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
+ if (pk == eh_personality_none)
+ return NULL;
+
+ if (!personality
+ && pk == eh_personality_any)
+ personality = lang_hooks.eh_personality ();
+
+ if (pk == eh_personality_lang)
+ gcc_assert (personality != NULL_TREE);
+
+ return XEXP (DECL_RTL (personality), 0);
+}
+
+/* Returns a tree for the size of EXP in bytes. */
+
+static tree
+tree_expr_size (const_tree exp)
+{
+ if (DECL_P (exp)
+ && DECL_SIZE_UNIT (exp) != 0)
+ return DECL_SIZE_UNIT (exp);
+ else
+ return size_in_bytes (TREE_TYPE (exp));
+}
+
+/* Return an rtx for the size in bytes of the value of EXP. */
+
+rtx
+expr_size (tree exp)
+{
+ tree size;
+
+ if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+ size = TREE_OPERAND (exp, 1);
+ else
+ {
+ size = tree_expr_size (exp);
+ gcc_assert (size);
+ gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
+ }
+
+ return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
+}
+
+/* Return a wide integer for the size in bytes of the value of EXP, or -1
+ if the size can vary or is larger than an integer. */
+
+static HOST_WIDE_INT
+int_expr_size (tree exp)
+{
+ tree size;
+
+ if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+ size = TREE_OPERAND (exp, 1);
+ else
+ {
+ size = tree_expr_size (exp);
+ gcc_assert (size);
+ }
+
+ if (size == 0 || !tree_fits_shwi_p (size))
+ return -1;
+
+ return tree_to_shwi (size);
+}