summaryrefslogtreecommitdiff
path: root/libjava/java
diff options
context:
space:
mode:
authorTom Tromey <tromey@gcc.gnu.org>1999-06-24 20:06:09 +0000
committerTom Tromey <tromey@gcc.gnu.org>1999-06-24 20:06:09 +0000
commit0d16618c58103a8956b58e7d7476b7262828d93e (patch)
treef577c36db61fa83932e1fd4b93c845f64b0d2b7a /libjava/java
parentfe574d5d92f83b0b34a8d4cb782f2885a28d3754 (diff)
downloadgcc-0d16618c58103a8956b58e7d7476b7262828d93e.tar.gz
[multiple changes]
Fri May 28 22:20:03 1999 Anthony Green <green@cygnus.com> * java/lang/fdlibm.h: Don't use __uint32_t. Include mprec.h. * java/lang/e_log.c: Don't use __uint32_t. 1999-05-27 Eric Christopher <echristo@cygnus.com> * configure: Rebuilt * configure.in: Fixed ISO C9X and namespace collision with __uint32_t * acconfig.h: Rebuilt * include/config.h.in: Rebuilt * java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c, java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c, e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c, java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h, k_tan.c, java/lang/mprec.h, java/lang/s_atan.c, java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c, s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X and namespace collision with __uint32_t From-SVN: r27729
Diffstat (limited to 'libjava/java')
-rw-r--r--libjava/java/lang/dtoa.c8
-rw-r--r--libjava/java/lang/e_acos.c14
-rw-r--r--libjava/java/lang/e_atan2.c26
-rw-r--r--libjava/java/lang/e_exp.c40
-rw-r--r--libjava/java/lang/e_fmod.c22
-rw-r--r--libjava/java/lang/e_log.c42
-rw-r--r--libjava/java/lang/e_pow.c54
-rw-r--r--libjava/java/lang/e_rem_pio2.c74
-rw-r--r--libjava/java/lang/e_remainder.c14
-rw-r--r--libjava/java/lang/e_sqrt.c104
-rw-r--r--libjava/java/lang/k_cos.c22
-rw-r--r--libjava/java/lang/k_rem_pio2.c78
-rw-r--r--libjava/java/lang/k_sin.c20
-rw-r--r--libjava/java/lang/k_tan.c24
-rw-r--r--libjava/java/lang/mprec.h136
-rw-r--r--libjava/java/lang/s_atan.c20
-rw-r--r--libjava/java/lang/s_ceil.c14
-rw-r--r--libjava/java/lang/s_copysign.c4
-rw-r--r--libjava/java/lang/s_cos.c10
-rw-r--r--libjava/java/lang/s_fabs.c10
-rw-r--r--libjava/java/lang/s_floor.c26
-rw-r--r--libjava/java/lang/s_rint.c12
-rw-r--r--libjava/java/lang/s_scalbn.c16
-rw-r--r--libjava/java/lang/s_sin.c16
-rw-r--r--libjava/java/lang/s_tan.c16
-rw-r--r--libjava/java/lang/sf_rint.c10
26 files changed, 425 insertions, 407 deletions
diff --git a/libjava/java/lang/dtoa.c b/libjava/java/lang/dtoa.c
index fae45c5aeb4..e0d4aaaa8ee 100644
--- a/libjava/java/lang/dtoa.c
+++ b/libjava/java/lang/dtoa.c
@@ -205,7 +205,7 @@ _DEFUN (_dtoa_r,
char **rve _AND
int float_type)
{
- /*
+ /*
float_type == 0 for double precision, 1 for float.
Arguments ndigits, decpt, sign are similar to those
@@ -679,7 +679,7 @@ _DEFUN (_dtoa_r,
{
if (!word1 (d) && !(word0 (d) & Bndry_mask)
#ifndef Sudden_Underflow
- && word0 (d) & Exp_mask
+ && word0(d) & Exp_mask
#endif
)
{
@@ -893,7 +893,7 @@ _DEFUN (_dtoa,
char *buf _AND
int float_type)
{
- struct _Jv_reent reent;
+ struct _Jv_reent reent;
char *p;
memset (&reent, 0, sizeof reent);
@@ -902,5 +902,3 @@ _DEFUN (_dtoa,
return;
}
-
-
diff --git a/libjava/java/lang/e_acos.c b/libjava/java/lang/e_acos.c
index 319b1d56fa0..ee6b168a1c5 100644
--- a/libjava/java/lang/e_acos.c
+++ b/libjava/java/lang/e_acos.c
@@ -6,20 +6,20 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_acos(x)
- * Method :
+ * Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
- * = 2asin(sqrt((1-x)/2))
+ * = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
@@ -40,9 +40,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
@@ -67,11 +67,11 @@ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#endif
{
double z,p,q,r,w,s,c,df;
- __int32_t hx,ix;
+ int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
- __uint32_t lx;
+ uint32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
diff --git a/libjava/java/lang/e_atan2.c b/libjava/java/lang/e_atan2.c
index 8e9650f290d..c75448db26c 100644
--- a/libjava/java/lang/e_atan2.c
+++ b/libjava/java/lang/e_atan2.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
@@ -15,7 +15,7 @@
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
- * 2. Reduce x to positive by (if x and y are unexceptional):
+ * 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
@@ -33,9 +33,9 @@
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -44,9 +44,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
tiny = 1.0e-300,
zero = 0.0,
@@ -61,10 +61,10 @@ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
double __ieee754_atan2(y,x)
double y,x;
#endif
-{
+{
double z;
- __int32_t k,m,hx,hy,ix,iy;
- __uint32_t lx,ly;
+ int32_t k,m,hx,hy,ix,iy;
+ uint32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
@@ -79,7 +79,7 @@ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
- case 0:
+ case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
@@ -87,7 +87,7 @@ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
-
+
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
@@ -117,7 +117,7 @@ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
- __uint32_t zh;
+ uint32_t zh;
GET_HIGH_WORD(zh,z);
SET_HIGH_WORD(z,zh ^ 0x80000000);
}
diff --git a/libjava/java/lang/e_exp.c b/libjava/java/lang/e_exp.c
index ce093c61065..e11ca8b3856 100644
--- a/libjava/java/lang/e_exp.c
+++ b/libjava/java/lang/e_exp.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -19,36 +19,36 @@
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
- * x = k*ln2 + r, |r| <= 0.5*ln2.
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
*
- * Here r will be represented as r = hi-lo for better
+ * Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- * We use a special Reme algorithm on [0,0.34658] to generate
- * a polynomial of degree 5 to approximate R. The maximum error
+ * We use a special Reme algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
- * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
- * r*R1(r)
+ * r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
- *
+ *
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
@@ -63,13 +63,13 @@
* 1 ulp (unit in the last place).
*
* Misc. info.
- * For IEEE double
+ * For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -109,8 +109,8 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
#endif
{
double y,hi,lo,c,t;
- __int32_t k,xsb;
- __uint32_t hx;
+ int32_t k,xsb;
+ uint32_t hx;
GET_HIGH_WORD(hx,x);
xsb = (hx>>31)&1; /* sign bit of x */
@@ -119,9 +119,9 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
- __uint32_t lx;
+ uint32_t lx;
GET_LOW_WORD(lx,x);
- if(((hx&0xfffff)|lx)!=0)
+ if(((hx&0xfffff)|lx)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
@@ -130,7 +130,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
}
/* argument reduction */
- if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
@@ -140,7 +140,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
lo = t*ln2LO[0];
}
x = hi - lo;
- }
+ }
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
@@ -149,15 +149,15 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- if(k==0) return one-((x*c)/(c-2.0)-x);
+ if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
- __uint32_t hy;
+ uint32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
return y;
} else {
- __uint32_t hy;
+ uint32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
return y*twom1000;
diff --git a/libjava/java/lang/e_fmod.c b/libjava/java/lang/e_fmod.c
index f9739eec25d..1cf09907666 100644
--- a/libjava/java/lang/e_fmod.c
+++ b/libjava/java/lang/e_fmod.c
@@ -6,12 +6,12 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
-/*
+/*
* __ieee754_fmod(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
@@ -34,8 +34,8 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
double x,y ;
#endif
{
- __int32_t n,hx,hy,hz,ix,iy,sx,i;
- __uint32_t lx,ly,lz;
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+ uint32_t lx,ly,lz;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
@@ -49,8 +49,8 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
return (x*y)/(x*y);
if(hx<=hy) {
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
- if(lx==ly)
- return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
+ if(lx==ly)
+ return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
}
/* determine ix = ilogb(x) */
@@ -72,7 +72,7 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
} else iy = (hy>>20)-1023;
/* set up {hx,lx}, {hy,ly} and align y to x */
- if(ix >= -1022)
+ if(ix >= -1022)
hx = 0x00100000|(0x000fffff&hx);
else { /* subnormal x, shift x to normal */
n = -1022-ix;
@@ -84,7 +84,7 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
lx = 0;
}
}
- if(iy >= -1022)
+ if(iy >= -1022)
hy = 0x00100000|(0x000fffff&hy);
else { /* subnormal y, shift y to normal */
n = -1022-iy;
@@ -104,7 +104,7 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
+ return Zero[(uint32_t)sx>>31];
hx = hz+hz+(lz>>31); lx = lz+lz;
}
}
@@ -113,7 +113,7 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
+ return Zero[(uint32_t)sx>>31];
while(hx<0x00100000) { /* normalize x */
hx = hx+hx+(lx>>31); lx = lx+lx;
iy -= 1;
@@ -124,7 +124,7 @@ static double one = 1.0, Zero[] = {0.0, -0.0,};
} else { /* subnormal output */
n = -1022 - iy;
if(n<=20) {
- lx = (lx>>n)|((__uint32_t)hx<<(32-n));
+ lx = (lx>>n)|((uint32_t)hx<<(32-n));
hx >>= n;
} else if (n<=31) {
lx = (hx<<(32-n))|(lx>>n); hx = sx;
diff --git a/libjava/java/lang/e_log.c b/libjava/java/lang/e_log.c
index ea6c55f6c36..093473e1048 100644
--- a/libjava/java/lang/e_log.c
+++ b/libjava/java/lang/e_log.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -14,17 +14,17 @@
/* __ieee754_log(x)
* Return the logrithm of x
*
- * Method :
- * 1. Argument Reduction: find k and f such that
- * x = 2^k * (1+f),
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
- * We use a special Reme algorithm on [0,0.1716] to generate
- * a polynomial of degree 14 to approximate R The maximum error
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
@@ -32,22 +32,22 @@
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
- * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
- *
- * 3. Finally, log(x) = k*ln2 + log(1+f).
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- * Here ln2 is split into two floating point number:
+ * Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
- * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
@@ -56,9 +56,9 @@
* 1 ulp (unit in the last place).
*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -96,19 +96,19 @@ static double zero = 0.0;
#endif
{
double hfsq,f,s,z,R,w,t1,t2,dk;
- __int32_t k,hx,i,j;
- __uint32_t lx;
+ int32_t k,hx,i,j;
+ uint32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
- if (((hx&0x7fffffff)|lx)==0)
+ if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
- }
+ }
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
@@ -129,14 +129,14 @@ static double zero = 0.0;
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
- s = f/(2.0+f);
+ s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
- t1= w*(Lg2+w*(Lg4+w*Lg6));
- t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
diff --git a/libjava/java/lang/e_pow.c b/libjava/java/lang/e_pow.c
index f078dff344d..e53a8a287cc 100644
--- a/libjava/java/lang/e_pow.c
+++ b/libjava/java/lang/e_pow.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -18,7 +18,7 @@
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
@@ -46,13 +46,13 @@
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
- * always returns the correct integer provided it is
+ * always returns the correct integer provided it is
* representable.
*
* Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -61,9 +61,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
@@ -106,21 +106,21 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
- __int32_t i,j,k,yisint,n;
- __int32_t hx,hy,ix,iy;
- __uint32_t lx,ly;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy;
+ uint32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
- if((iy|ly)==0) return one;
+ if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return x+y;
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
@@ -128,22 +128,22 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
* yisint = 2 ... y is an even int
*/
yisint = 0;
- if(hx<0) {
+ if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
- if((__uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
+ if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
- }
- }
+ }
+ }
/* special value of y */
- if(ly==0) {
+ if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
@@ -151,14 +151,14 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
- }
+ }
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
- return __ieee754_sqrt(x);
+ return __ieee754_sqrt(x);
}
}
@@ -171,19 +171,19 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
+ } else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
-
+
/* (x<0)**(non-int) is NaN */
/* CYGNUS LOCAL: This used to be
if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
but ANSI C says a right shift of a signed negative quantity is
implementation defined. */
- if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+ if(((((uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
@@ -194,7 +194,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = x-1; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
@@ -254,7 +254,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
- if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
+ if(((((uint32_t)hx>>31)-1)|(yisint-1))==0)
s = -one;/* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
@@ -291,7 +291,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
- }
+ }
t = p_l+p_h;
SET_LOW_WORD(t,0);
u = t*lg2_h;
diff --git a/libjava/java/lang/e_rem_pio2.c b/libjava/java/lang/e_rem_pio2.c
index 3e5d0f7a227..6d3fd19a48c 100644
--- a/libjava/java/lang/e_rem_pio2.c
+++ b/libjava/java/lang/e_rem_pio2.c
@@ -6,15 +6,15 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_rem_pio2(x,y)
- *
- * return the remainder of x rem pi/2 in y[0]+y[1]
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
@@ -23,30 +23,30 @@
#ifndef _DOUBLE_IS_32BITS
/*
- * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
-static const __int32_t two_over_pi[] = {
+static const int32_t two_over_pi[] = {
#else
-static __int32_t two_over_pi[] = {
+static int32_t two_over_pi[] = {
#endif
-0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
-0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
-0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
-0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
-0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
-0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
-0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
-0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
-0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
-0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
-0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
+0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
+0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
+0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
+0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
+0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
+0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};
#ifdef __STDC__
-static const __int32_t npio2_hw[] = {
+static const int32_t npio2_hw[] = {
#else
-static __int32_t npio2_hw[] = {
+static int32_t npio2_hw[] = {
#endif
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
@@ -67,9 +67,9 @@ static __int32_t npio2_hw[] = {
*/
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
@@ -83,24 +83,24 @@ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
#ifdef __STDC__
- __int32_t __ieee754_rem_pio2(double x, double *y)
+ int32_t __ieee754_rem_pio2(double x, double *y)
#else
- __int32_t __ieee754_rem_pio2(x,y)
+ int32_t __ieee754_rem_pio2(x,y)
double x,y[];
#endif
{
double z,w,t,r,fn;
double tx[3];
- __int32_t i,j,n,ix,hx;
+ int32_t i,j,n,ix,hx;
int e0,nx;
- __uint32_t low;
+ uint32_t low;
GET_HIGH_WORD(hx,x); /* high word of x */
ix = hx&0x7fffffff;
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
- if(hx>0) {
+ if(hx>0) {
z = x - pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z - pio2_1t;
@@ -126,31 +126,31 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
}
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
t = fabs(x);
- n = (__int32_t) (t*invpio2+half);
+ n = (int32_t) (t*invpio2+half);
fn = (double)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 85 bit */
- if(n<32&&ix!=npio2_hw[n-1]) {
+ if(n<32&&ix!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
- __uint32_t high;
+ uint32_t high;
j = ix>>20;
- y[0] = r-w;
+ y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>16) { /* 2nd iteration needed, good to 118 */
t = r;
- w = fn*pio2_2;
+ w = fn*pio2_2;
r = t-w;
- w = fn*pio2_2t-((t-r)-w);
+ w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>49) { /* 3rd iteration need, 151 bits acc */
t = r; /* will cover all possible cases */
- w = fn*pio2_3;
+ w = fn*pio2_3;
r = t-w;
- w = fn*pio2_3t-((t-r)-w);
+ w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
@@ -159,7 +159,7 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
- /*
+ /*
* all other (large) arguments
*/
if(ix>=0x7ff00000) { /* x is inf or NaN */
@@ -169,9 +169,9 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
GET_LOW_WORD(low,x);
SET_LOW_WORD(z,low);
e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */
- SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20));
+ SET_HIGH_WORD(z, ix - ((int32_t)e0<<20));
for(i=0;i<2;i++) {
- tx[i] = (double)((__int32_t)(z));
+ tx[i] = (double)((int32_t)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
diff --git a/libjava/java/lang/e_remainder.c b/libjava/java/lang/e_remainder.c
index ae7ce649ad5..4716d8d05fd 100644
--- a/libjava/java/lang/e_remainder.c
+++ b/libjava/java/lang/e_remainder.c
@@ -6,17 +6,17 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_remainder(x,p)
- * Return :
- * returns x REM p = x - [x/p]*p as if in infinite
- * precise arithmetic, where [x/p] is the (infinite bit)
+ * Return :
+ * returns x REM p = x - [x/p]*p as if in infinite
+ * precise arithmetic, where [x/p] is the (infinite bit)
* integer nearest x/p (in half way case choose the even one).
- * Method :
+ * Method :
* Based on fmod() return x-[x/p]chopped*p exactlp.
*/
@@ -38,8 +38,8 @@ static double zero = 0.0;
double x,p;
#endif
{
- __int32_t hx,hp;
- __uint32_t sx,lx,lp;
+ int32_t hx,hp;
+ uint32_t sx,lx,lp;
double p_half;
EXTRACT_WORDS(hx,lx,x);
diff --git a/libjava/java/lang/e_sqrt.c b/libjava/java/lang/e_sqrt.c
index b56b1eedc94..1d566a0847e 100644
--- a/libjava/java/lang/e_sqrt.c
+++ b/libjava/java/lang/e_sqrt.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -16,10 +16,10 @@
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
- * Method:
- * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
- * Scale x to y in [1,4) with even powers of 2:
+ * Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
@@ -28,9 +28,9 @@
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
- *
- * To compute q from q , one checks whether
- * i+1 i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
@@ -40,12 +40,12 @@
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
- * that (2) is equivalent to
+ * that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
- * The advantage of (3) is that s and y can be computed by
+ * The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
@@ -57,10 +57,10 @@
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
- *
- * One may easily use induction to prove (4) and (5).
+ *
+ * One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
- * it does not necessary to do a full (53-bit) comparison
+ * it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
@@ -70,7 +70,7 @@
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
- *
+ *
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
@@ -99,17 +99,17 @@ static double one = 1.0, tiny=1.0e-300;
#endif
{
double z;
- __int32_t sign = (int)0x80000000;
- __uint32_t r,t1,s1,ix1,q1;
- __int32_t ix0,s0,q,m,t,i;
+ int32_t sign = (int)0x80000000;
+ uint32_t r,t1,s1,ix1,q1;
+ int32_t ix0,s0,q,m,t,i;
EXTRACT_WORDS(ix0,ix1,x);
/* take care of Inf and NaN */
- if((ix0&0x7ff00000)==0x7ff00000) {
+ if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
- }
+ }
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
@@ -143,12 +143,12 @@ static double one = 1.0, tiny=1.0e-300;
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
- t = s0+r;
- if(t<=ix0) {
- s0 = t+r;
- ix0 -= t;
- q += r;
- }
+ t = s0+r;
+ if(t<=ix0) {
+ s0 = t+r;
+ ix0 -= t;
+ q += r;
+ }
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
@@ -156,11 +156,11 @@ static double one = 1.0, tiny=1.0e-300;
r = sign;
while(r!=0) {
- t1 = s1+r;
+ t1 = s1+r;
t = s0;
- if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
+ if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
- if(((t1&sign)==(__uint32_t)sign)&&(s1&sign)==0) s0 += 1;
+ if(((t1&sign)==(uint32_t)sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
@@ -176,10 +176,10 @@ static double one = 1.0, tiny=1.0e-300;
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
- if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
+ if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
- if (q1==(__uint32_t)0xfffffffe) q+=1;
- q1+=2;
+ if (q1==(uint32_t)0xfffffffe) q+=1;
+ q1+=2;
} else
q1 += (q1&1);
}
@@ -191,24 +191,24 @@ static double one = 1.0, tiny=1.0e-300;
INSERT_WORDS(z,ix0,ix1);
return z;
}
-
+
#endif /* defined(_DOUBLE_IS_32BITS) */
/*
Other methods (use floating-point arithmetic)
-------------
-(This is a copy of a drafted paper by Prof W. Kahan
+(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
- Two algorithms are given here to implement sqrt(x)
+ Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
- to chop results of arithmetic operations instead of round them,
+ to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
- is executed exactly with no roundoff error, all part of the
+ is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
@@ -218,7 +218,7 @@ A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
- a floating point number x (in IEEE double format) respectively
+ a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
@@ -226,7 +226,7 @@ A. sqrt(x) by Newton Iteration
------------------------------------------------------
msb lsb msb lsb ...order
-
+
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
@@ -251,7 +251,7 @@ A. sqrt(x) by Newton Iteration
(2) Iterative refinement
- Apply Heron's rule three times to y, we have y approximates
+ Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
@@ -276,12 +276,12 @@ A. sqrt(x) by Newton Iteration
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
- is slow. If division is very slow, then one should use the
+ is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
- By twiddling y's last bit it is possible to force y to be
+ By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
@@ -312,7 +312,7 @@ A. sqrt(x) by Newton Iteration
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
-
+
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
@@ -331,7 +331,7 @@ B. sqrt(x) by Reciproot Iteration
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
- Here k is a 32-bit integer and T2[] is an integer array
+ Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
@@ -352,9 +352,9 @@ B. sqrt(x) by Reciproot Iteration
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
- to about 1 ulp. To be exact, we will have
+ to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
-
+
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
@@ -363,14 +363,14 @@ B. sqrt(x) by Reciproot Iteration
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
- (a) the term z*y in the final iteration is always less than 1;
+ (a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
- By twiddling y's last bit it is possible to force y to be
+ By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
@@ -410,27 +410,27 @@ B. sqrt(x) by Reciproot Iteration
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
- k := z1 >> 26; ... get z's 25-th and 26-th
+ k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
- If multiplication is cheaper then the foregoing red tape, the
+ If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
- Note that z*z can overwrite I; this value must be sensed if it is
+ Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
- z1: | f2 |
+ z1: | f2 |
--------------------
bit 31 bit 0
@@ -447,6 +447,6 @@ B. sqrt(x) by Reciproot Iteration
11 01 even
-------------------------------------------------
- (4) Special cases (see (4) of Section A).
-
+ (4) Special cases (see (4) of Section A).
+
*/
diff --git a/libjava/java/lang/k_cos.c b/libjava/java/lang/k_cos.c
index 6c60c243856..acf50a82e83 100644
--- a/libjava/java/lang/k_cos.c
+++ b/libjava/java/lang/k_cos.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -15,7 +15,7 @@
* __kernel_cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
+ * Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
@@ -25,15 +25,15 @@
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
- *
+ *
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
- * | |
- *
- * 4 6 8 10 12 14
+ * | |
+ *
+ * 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) = 1 - x*x/2 + r
- * since cos(x+y) ~ cos(x) - sin(x)*y
+ * since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
@@ -51,9 +51,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
@@ -71,7 +71,7 @@ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
#endif
{
double a,hz,z,r,qx;
- __int32_t ix;
+ int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff; /* ix = |x|'s high word*/
if(ix<0x3e400000) { /* if x < 2**27 */
@@ -79,7 +79,7 @@ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
}
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
- if(ix < 0x3FD33333) /* if |x| < 0.3 */
+ if(ix < 0x3FD33333) /* if |x| < 0.3 */
return one - (0.5*z - (z*r - x*y));
else {
if(ix > 0x3fe90000) { /* x > 0.78125 */
diff --git a/libjava/java/lang/k_rem_pio2.c b/libjava/java/lang/k_rem_pio2.c
index 8569256686c..2f4ca17256c 100644
--- a/libjava/java/lang/k_rem_pio2.c
+++ b/libjava/java/lang/k_rem_pio2.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -14,12 +14,12 @@
/*
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
* double x[],y[]; int e0,nx,prec; int ipio2[];
- *
- * __kernel_rem_pio2 return the last three digits of N with
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
- * The method is to compute the integer (mod 8) and fraction parts of
+ * The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
@@ -28,10 +28,10 @@
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
- * x[] The input value (must be positive) is broken into nx
+ * x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
- * x[i] will be the i-th 24 bit of x. The scaled exponent
- * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
@@ -68,8 +68,8 @@
* 3 113 bits (quad)
*
* ipio2[]
- * integer array, contains the (24*i)-th to (24*i+23)-th
- * bit of 2/pi after binary point. The corresponding
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
@@ -84,8 +84,8 @@
* in the computation. The recommended value is 2,3,4,
* 6 for single, double, extended,and quad.
*
- * jz local integer variable indicating the number of
- * terms of ipio2[] used.
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
*
* jx nx - 1
*
@@ -105,9 +105,9 @@
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
- * into 24 bits chunks.
+ * into 24 bits chunks.
*
- * f[] ipio2[] in floating point
+ * f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
@@ -121,9 +121,9 @@
/*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -134,7 +134,7 @@
#ifdef __STDC__
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
#else
-static int init_jk[] = {2,3,4,6};
+static int init_jk[] = {2,3,4,6};
#endif
#ifdef __STDC__
@@ -153,9 +153,9 @@ static double PIo2[] = {
};
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
zero = 0.0,
one = 1.0,
@@ -163,13 +163,13 @@ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
#ifdef __STDC__
- int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2)
+ int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
#else
- int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
- double x[], y[]; int e0,nx,prec; __int32_t ipio2[];
+ int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ double x[], y[]; int e0,nx,prec; int32_t ipio2[];
#endif
{
- __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+ int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
@@ -194,22 +194,22 @@ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
- fw = (double)((__int32_t)(twon24* z));
- iq[i] = (__int32_t)(z-two24*fw);
+ fw = (double)((int32_t)(twon24* z));
+ iq[i] = (int32_t)(z-two24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbn(z,(int)q0); /* actual value of z */
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
- n = (__int32_t) z;
+ n = (int32_t) z;
z -= (double)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(24-q0)); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
- }
+ }
else if(q0==0) ih = iq[jz-1]>>23;
else if(z>=0.5) ih=2;
@@ -260,12 +260,12 @@ recompute:
while(iq[jz]==0) { jz--; q0-=24;}
} else { /* break z into 24-bit if necessary */
z = scalbn(z,-(int)q0);
- if(z>=two24) {
- fw = (double)((__int32_t)(twon24*z));
- iq[jz] = (__int32_t)(z-two24*fw);
+ if(z>=two24) {
+ fw = (double)((int32_t)(twon24*z));
+ iq[jz] = (int32_t)(z-two24*fw);
jz += 1; q0 += 24;
- iq[jz] = (__int32_t) fw;
- } else iq[jz] = (__int32_t) z ;
+ iq[jz] = (int32_t) fw;
+ } else iq[jz] = (int32_t) z ;
}
/* convert integer "bit" chunk to floating-point value */
@@ -285,29 +285,29 @@ recompute:
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
+ y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
- for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
- y[1] = (ih==0)? fw: -fw;
+ y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
- fw = fq[i-1]+fq[i];
+ fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
- fw = fq[i-1]+fq[i];
+ fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
- for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+ for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
diff --git a/libjava/java/lang/k_sin.c b/libjava/java/lang/k_sin.c
index f119916dfbc..b4ad387c589 100644
--- a/libjava/java/lang/k_sin.c
+++ b/libjava/java/lang/k_sin.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -15,24 +15,24 @@
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
- * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
- * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
- *
+ *
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
- * | x |
- *
+ * | x |
+ *
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
- * For better accuracy, let
+ * For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
@@ -44,9 +44,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
@@ -64,7 +64,7 @@ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
#endif
{
double z,r,v;
- __int32_t ix;
+ int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff; /* high word of x */
if(ix<0x3e400000) /* |x| < 2**-27 */
diff --git a/libjava/java/lang/k_tan.c b/libjava/java/lang/k_tan.c
index 9f5b307600c..a1067a70a0d 100644
--- a/libjava/java/lang/k_tan.c
+++ b/libjava/java/lang/k_tan.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -15,25 +15,25 @@
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
- * Input k indicates whether tan (if k=1) or
+ * Input k indicates whether tan (if k=1) or
* -1/tan (if k= -1) is returned.
*
* Algorithm
- * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
- *
+ *
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
- * | x |
- *
+ * | x |
+ *
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
- * Therefore, for better accuracy in computing tan(x+y), let
+ * Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
@@ -50,9 +50,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
-static const double
+static const double
#else
-static double
+static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
@@ -81,12 +81,12 @@ T[] = {
#endif
{
double z,r,v,w,s;
- __int32_t ix,hx;
+ int32_t ix,hx;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff; /* high word of |x| */
if(ix<0x3e300000) /* x < 2**-28 */
{if((int)x==0) { /* generate inexact */
- __uint32_t low;
+ uint32_t low;
GET_LOW_WORD(low,x);
if(((ix|low)|(iy+1))==0) return one/fabs(x);
else return (iy==1)? x: -one/x;
@@ -115,7 +115,7 @@ T[] = {
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
}
if(iy==1) return w;
- else { /* if allow error up to 2 ulp,
+ else { /* if allow error up to 2 ulp,
simply return -1.0/(x+r) here */
/* compute -1.0/(x+r) accurately */
double a,t;
diff --git a/libjava/java/lang/mprec.h b/libjava/java/lang/mprec.h
index 192243157df..7989075aac3 100644
--- a/libjava/java/lang/mprec.h
+++ b/libjava/java/lang/mprec.h
@@ -37,13 +37,35 @@ extern "C" {
// #include <float.h>
// #include <errno.h>
-/* These typedefs are true for the targets running Java. */
+#if defined HAVE_STDINT_H
+#include <stdint.h>
+#elif defined HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+#if defined HAVE_SYS_TYPES_H
+#include <sys/types.h>
+#endif
-#ifndef HAVE_INT32_DEFINED
-typedef int __int32_t;
-typedef unsigned int __uint32_t;
+#if defined HAVE_SYS_CONFIG_H
+#include <sys/config.h>
#endif
+
+/* ISO C9X int type declarations */
+
+#if !defined HAVE_INT32_DEFINED && defined HAVE_BSD_INT32_DEFINED
+typedef u_int32_t uint32_t;
+#endif
+
+#if !defined HAVE_BSD_INT32_DEFINED && !defined HAVE_INT32_DEFINED
+// FIXME -- this could have problems with systems that don't define SI to be 4
+typedef int int32_t __attribute__((mode(SI)));
+typedef unsigned int uint32_t __attribute__((mode(SI)));
+#endif
+
+ /* These typedefs are true for the targets running Java. */
+
#ifdef __IEEE_LITTLE_ENDIAN
#define IEEE_8087
#endif
@@ -63,7 +85,7 @@ typedef unsigned int __uint32_t;
#ifdef Unsigned_Shifts
-#define Sign_Extend(a,b) if (b < 0) a |= (__uint32_t)0xffff0000;
+#define Sign_Extend(a,b) if (b < 0) a |= (uint32_t)0xffff0000;
#else
#define Sign_Extend(a,b) /*no-op*/
#endif
@@ -79,8 +101,7 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
union double_union
{
double d;
- // FIXME: This should be some well-defined 32 bit type.
- __uint32_t i[2];
+ uint32_t i[2];
};
#ifdef IEEE_8087
@@ -110,37 +131,37 @@ union double_union
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
#if defined(IEEE_8087) + defined(IEEE_MC68k)
-#if defined (_DOUBLE_IS_32BITS)
+#if defined (_DOUBLE_IS_32BITS)
#define Exp_shift 23
#define Exp_shift1 23
-#define Exp_msk1 ((__uint32_t)0x00800000L)
-#define Exp_msk11 ((__uint32_t)0x00800000L)
-#define Exp_mask ((__uint32_t)0x7f800000L)
+#define Exp_msk1 ((uint32_t)0x00800000L)
+#define Exp_msk11 ((uint32_t)0x00800000L)
+#define Exp_mask ((uint32_t)0x7f800000L)
#define P 24
#define Bias 127
#if 0
#define IEEE_Arith /* it is, but the code doesn't handle IEEE singles yet */
#endif
#define Emin (-126)
-#define Exp_1 ((__uint32_t)0x3f800000L)
-#define Exp_11 ((__uint32_t)0x3f800000L)
+#define Exp_1 ((uint32_t)0x3f800000L)
+#define Exp_11 ((uint32_t)0x3f800000L)
#define Ebits 8
-#define Frac_mask ((__uint32_t)0x007fffffL)
-#define Frac_mask1 ((__uint32_t)0x007fffffL)
+#define Frac_mask ((uint32_t)0x007fffffL)
+#define Frac_mask1 ((uint32_t)0x007fffffL)
#define Ten_pmax 10
-#define Sign_bit ((__uint32_t)0x80000000L)
+#define Sign_bit ((uint32_t)0x80000000L)
#define Ten_pmax 10
#define Bletch 2
-#define Bndry_mask ((__uint32_t)0x007fffffL)
-#define Bndry_mask1 ((__uint32_t)0x007fffffL)
+#define Bndry_mask ((uint32_t)0x007fffffL)
+#define Bndry_mask1 ((uint32_t)0x007fffffL)
#define LSB 1
-#define Sign_bit ((__uint32_t)0x80000000L)
+#define Sign_bit ((uint32_t)0x80000000L)
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 5
#define Int_max 6
-#define Infinite(x) (word0(x) == ((__uint32_t)0x7f800000L))
+#define Infinite(x) (word0(x) == ((uint32_t)0x7f800000L))
#undef word0
#undef word1
@@ -150,30 +171,30 @@ union double_union
#define Exp_shift 20
#define Exp_shift1 20
-#define Exp_msk1 ((__uint32_t)0x100000L)
-#define Exp_msk11 ((__uint32_t)0x100000L)
-#define Exp_mask ((__uint32_t)0x7ff00000L)
+#define Exp_msk1 ((uint32_t)0x100000L)
+#define Exp_msk11 ((uint32_t)0x100000L)
+#define Exp_mask ((uint32_t)0x7ff00000L)
#define P 53
#define Bias 1023
#define IEEE_Arith
#define Emin (-1022)
-#define Exp_1 ((__uint32_t)0x3ff00000L)
-#define Exp_11 ((__uint32_t)0x3ff00000L)
+#define Exp_1 ((uint32_t)0x3ff00000L)
+#define Exp_11 ((uint32_t)0x3ff00000L)
#define Ebits 11
-#define Frac_mask ((__uint32_t)0xfffffL)
-#define Frac_mask1 ((__uint32_t)0xfffffL)
+#define Frac_mask ((uint32_t)0xfffffL)
+#define Frac_mask1 ((uint32_t)0xfffffL)
#define Ten_pmax 22
#define Bletch 0x10
-#define Bndry_mask ((__uint32_t)0xfffffL)
-#define Bndry_mask1 ((__uint32_t)0xfffffL)
+#define Bndry_mask ((uint32_t)0xfffffL)
+#define Bndry_mask1 ((uint32_t)0xfffffL)
#define LSB 1
-#define Sign_bit ((__uint32_t)0x80000000L)
+#define Sign_bit ((uint32_t)0x80000000L)
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
-#define Infinite(x) (word0(x) == ((__uint32_t)0x7ff00000L)) /* sufficient test for here */
+#define Infinite(x) (word0(x) == ((uint32_t)0x7ff00000L)) /* sufficient test for here */
#endif
#else
@@ -182,24 +203,24 @@ union double_union
#ifdef IBM
#define Exp_shift 24
#define Exp_shift1 24
-#define Exp_msk1 ((__uint32_t)0x1000000L)
-#define Exp_msk11 ((__uint32_t)0x1000000L)
-#define Exp_mask ((__uint32_t)0x7f000000L)
+#define Exp_msk1 ((uint32_t)0x1000000L)
+#define Exp_msk11 ((uint32_t)0x1000000L)
+#define Exp_mask ((uint32_t)0x7f000000L)
#define P 14
#define Bias 65
-#define Exp_1 ((__uint32_t)0x41000000L)
-#define Exp_11 ((__uint32_t)0x41000000L)
+#define Exp_1 ((uint32_t)0x41000000L)
+#define Exp_11 ((uint32_t)0x41000000L)
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
-#define Frac_mask ((__uint32_t)0xffffffL)
-#define Frac_mask1 ((__uint32_t)0xffffffL)
+#define Frac_mask ((uint32_t)0xffffffL)
+#define Frac_mask1 ((uint32_t)0xffffffL)
#define Bletch 4
#define Ten_pmax 22
-#define Bndry_mask ((__uint32_t)0xefffffL)
-#define Bndry_mask1 ((__uint32_t)0xffffffL)
+#define Bndry_mask ((uint32_t)0xefffffL)
+#define Bndry_mask1 ((uint32_t)0xffffffL)
#define LSB 1
-#define Sign_bit ((__uint32_t)0x80000000L)
+#define Sign_bit ((uint32_t)0x80000000L)
#define Log2P 4
-#define Tiny0 ((__uint32_t)0x100000L)
+#define Tiny0 ((uint32_t)0x100000L)
#define Tiny1 0
#define Quick_max 14
#define Int_max 15
@@ -207,21 +228,21 @@ union double_union
#define Exp_shift 23
#define Exp_shift1 7
#define Exp_msk1 0x80
-#define Exp_msk11 ((__uint32_t)0x800000L)
-#define Exp_mask ((__uint32_t)0x7f80L)
+#define Exp_msk11 ((uint32_t)0x800000L)
+#define Exp_mask ((uint32_t)0x7f80L)
#define P 56
#define Bias 129
-#define Exp_1 ((__uint32_t)0x40800000L)
-#define Exp_11 ((__uint32_t)0x4080L)
+#define Exp_1 ((uint32_t)0x40800000L)
+#define Exp_11 ((uint32_t)0x4080L)
#define Ebits 8
-#define Frac_mask ((__uint32_t)0x7fffffL)
-#define Frac_mask1 ((__uint32_t)0xffff007fL)
+#define Frac_mask ((uint32_t)0x7fffffL)
+#define Frac_mask1 ((uint32_t)0xffff007fL)
#define Ten_pmax 24
#define Bletch 2
-#define Bndry_mask ((__uint32_t)0xffff007fL)
-#define Bndry_mask1 ((__uint32_t)0xffff007fL)
-#define LSB ((__uint32_t)0x10000L)
-#define Sign_bit ((__uint32_t)0x8000L)
+#define Bndry_mask ((uint32_t)0xffff007fL)
+#define Bndry_mask1 ((uint32_t)0xffff007fL)
+#define LSB ((uint32_t)0x10000L)
+#define Sign_bit ((uint32_t)0x8000L)
#define Log2P 1
#define Tiny0 0x80
#define Tiny1 0
@@ -248,7 +269,7 @@ extern double rnd_prod(double, double), rnd_quot(double, double);
#endif
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 ((__uint32_t)0xffffffffL)
+#define Big1 ((uint32_t)0xffffffffL)
#ifndef Just_16
/* When Pack_32 is not defined, we store 16 bits per 32-bit long.
@@ -266,7 +287,7 @@ extern double rnd_prod(double, double), rnd_quot(double, double);
#define MAX_BIGNUMS 16
#define MAX_BIGNUM_WDS 32
-struct _Jv_Bigint
+struct _Jv_Bigint
{
struct _Jv_Bigint *_next;
int _k, _maxwds, _sign, _wds;
@@ -333,10 +354,10 @@ typedef struct _Jv_Bigint _Jv_Bigint;
#define _strtod_r _Jv_strtod_r
extern double _EXFUN(_strtod_r, (struct _Jv_reent *ptr, const char *s00, char **se));
-extern char* _EXFUN(_dtoa_r, (struct _Jv_reent *ptr, double d,
- int mode, int ndigits, int *decpt, int *sign,
+extern char* _EXFUN(_dtoa_r, (struct _Jv_reent *ptr, double d,
+ int mode, int ndigits, int *decpt, int *sign,
char **rve, int float_type));
-void _EXFUN(_dtoa, (double d, int mode, int ndigits, int *decpt, int *sign,
+void _EXFUN(_dtoa, (double d, int mode, int ndigits, int *decpt, int *sign,
char **rve, char *buf, int float_type));
double _EXFUN(ulp,(double x));
@@ -371,4 +392,3 @@ extern _CONST double tens[];
#ifdef __cplusplus
}
#endif
-
diff --git a/libjava/java/lang/s_atan.c b/libjava/java/lang/s_atan.c
index b1410ecca55..2ee74585423 100644
--- a/libjava/java/lang/s_atan.c
+++ b/libjava/java/lang/s_atan.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
@@ -67,9 +67,9 @@ PORTABILITY
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
@@ -118,9 +118,9 @@ static double aT[] = {
};
#ifdef __STDC__
- static const double
+ static const double
#else
- static double
+ static double
#endif
one = 1.0,
huge = 1.0e300;
@@ -133,12 +133,12 @@ huge = 1.0e300;
#endif
{
double w,s1,s2,z;
- __int32_t ix,hx,id;
+ int32_t ix,hx,id;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x44100000) { /* if |x| >= 2^66 */
- __uint32_t low;
+ uint32_t low;
GET_LOW_WORD(low,x);
if(ix>0x7ff00000||
(ix==0x7ff00000&&(low!=0)))
@@ -154,9 +154,9 @@ huge = 1.0e300;
x = fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
- id = 0; x = (2.0*x-one)/(2.0+x);
+ id = 0; x = (2.0*x-one)/(2.0+x);
} else { /* 11/16<=|x|< 19/16 */
- id = 1; x = (x-one)/(x+one);
+ id = 1; x = (x-one)/(x+one);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
diff --git a/libjava/java/lang/s_ceil.c b/libjava/java/lang/s_ceil.c
index 1476ef821be..250373b40d1 100644
--- a/libjava/java/lang/s_ceil.c
+++ b/libjava/java/lang/s_ceil.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -37,14 +37,14 @@ static double huge = 1.0e300;
double x;
#endif
{
- __int32_t i0,i1,j0;
- __uint32_t i,j;
+ int32_t i0,i1,j0;
+ uint32_t i,j;
EXTRACT_WORDS(i0,i1,x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0<0) {i0=0x80000000;i1=0;}
+ if(i0<0) {i0=0x80000000;i1=0;}
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
}
} else {
@@ -59,14 +59,14 @@ static double huge = 1.0e300;
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
- i = ((__uint32_t)(0xffffffff))>>(j0-20);
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0>0) {
- if(j0==20) i0+=1;
+ if(j0==20) i0+=1;
else {
j = i1 + (1<<(52-j0));
- if(j<(__uint32_t)i1) i0+=1; /* got a carry */
+ if(j<(uint32_t)i1) i0+=1; /* got a carry */
i1 = j;
}
}
diff --git a/libjava/java/lang/s_copysign.c b/libjava/java/lang/s_copysign.c
index bfc546db503..4804df130dc 100644
--- a/libjava/java/lang/s_copysign.c
+++ b/libjava/java/lang/s_copysign.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -72,7 +72,7 @@ Definition (Issue 2).
double x,y;
#endif
{
- __uint32_t hx,hy;
+ uint32_t hx,hy;
GET_HIGH_WORD(hx,x);
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
diff --git a/libjava/java/lang/s_cos.c b/libjava/java/lang/s_cos.c
index c4712330137..be1538d4c0b 100644
--- a/libjava/java/lang/s_cos.c
+++ b/libjava/java/lang/s_cos.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -20,8 +20,8 @@
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
@@ -39,7 +39,7 @@
* trig(NaN) is that NaN;
*
* Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
+ * TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
@@ -54,7 +54,7 @@
#endif
{
double y[2],z=0.0;
- __int32_t n,ix;
+ int32_t n,ix;
/* High word of x. */
GET_HIGH_WORD(ix,x);
diff --git a/libjava/java/lang/s_fabs.c b/libjava/java/lang/s_fabs.c
index 95b871ca53a..dfee33fecdb 100644
--- a/libjava/java/lang/s_fabs.c
+++ b/libjava/java/lang/s_fabs.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -26,16 +26,16 @@ ANSI_SYNOPSIS
TRAD_SYNOPSIS
#include <math.h>
- double fabs(<[x]>)
+ double fabs(<[x]>)
double <[x]>;
float fabsf(<[x]>)
float <[x]>;
DESCRIPTION
-<<fabs>> and <<fabsf>> calculate
+<<fabs>> and <<fabsf>> calculate
@tex
-$|x|$,
+$|x|$,
@end tex
the absolute value (magnitude) of the argument <[x]>, by direct
manipulation of the bit representation of <[x]>.
@@ -64,7 +64,7 @@ PORTABILITY
double x;
#endif
{
- __uint32_t high;
+ uint32_t high;
GET_HIGH_WORD(high,x);
SET_HIGH_WORD(x,high&0x7fffffff);
return x;
diff --git a/libjava/java/lang/s_floor.c b/libjava/java/lang/s_floor.c
index 86f73e0e136..77e39cb7de0 100644
--- a/libjava/java/lang/s_floor.c
+++ b/libjava/java/lang/s_floor.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -34,20 +34,20 @@ TRAD_SYNOPSIS
#include <math.h>
double floor(<[x]>)
double <[x]>;
- float floorf(<[x]>)
+ float floorf(<[x]>)
float <[x]>;
- double ceil(<[x]>)
+ double ceil(<[x]>)
double <[x]>;
- float ceilf(<[x]>)
+ float ceilf(<[x]>)
float <[x]>;
DESCRIPTION
-<<floor>> and <<floorf>> find
+<<floor>> and <<floorf>> find
@tex
-$\lfloor x \rfloor$,
+$\lfloor x \rfloor$,
@end tex
the nearest integer less than or equal to <[x]>.
-<<ceil>> and <<ceilf>> find
+<<ceil>> and <<ceilf>> find
@tex
$\lceil x\rceil$,
@end tex
@@ -90,14 +90,14 @@ static double huge = 1.0e300;
double x;
#endif
{
- __int32_t i0,i1,j0;
- __uint32_t i,j;
+ int32_t i0,i1,j0;
+ uint32_t i,j;
EXTRACT_WORDS(i0,i1,x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0>=0) {i0=i1=0;}
+ if(i0>=0) {i0=i1=0;}
else if(((i0&0x7fffffff)|i1)!=0)
{ i0=0xbff00000;i1=0;}
}
@@ -113,14 +113,14 @@ static double huge = 1.0e300;
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
- i = ((__uint32_t)(0xffffffff))>>(j0-20);
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0<0) {
- if(j0==20) i0+=1;
+ if(j0==20) i0+=1;
else {
j = i1+(1<<(52-j0));
- if(j<(__uint32_t)i1) i0 +=1 ; /* got a carry */
+ if(j<(uint32_t)i1) i0 +=1 ; /* got a carry */
i1=j;
}
}
diff --git a/libjava/java/lang/s_rint.c b/libjava/java/lang/s_rint.c
index 9936a49b801..5d3f8114e2b 100644
--- a/libjava/java/lang/s_rint.c
+++ b/libjava/java/lang/s_rint.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -28,7 +28,7 @@
#ifdef __STDC__
static const double
#else
-static double
+static double
#endif
TWO52[2]={
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
@@ -42,15 +42,15 @@ TWO52[2]={
double x;
#endif
{
- __int32_t i0,j0,sx;
- __uint32_t i,i1;
+ int32_t i0,j0,sx;
+ uint32_t i,i1;
double t;
volatile double w;
EXTRACT_WORDS(i0,i1,x);
sx = (i0>>31)&1;
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
- if(j0<0) {
+ if(j0<0) {
if(((i0&0x7fffffff)|i1)==0) return x;
i1 |= (i0&0x0fffff);
i0 &= 0xfffe0000;
@@ -74,7 +74,7 @@ TWO52[2]={
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
- i = ((__uint32_t)(0xffffffff))>>(j0-20);
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
i>>=1;
if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
diff --git a/libjava/java/lang/s_scalbn.c b/libjava/java/lang/s_scalbn.c
index b06834e913f..36ee88981ba 100644
--- a/libjava/java/lang/s_scalbn.c
+++ b/libjava/java/lang/s_scalbn.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -48,10 +48,10 @@ Interface Definition (Issue 2).
*/
-/*
+/*
* scalbn (double x, int n)
- * scalbn(x,n) returns x* 2**n computed by exponent
- * manipulation rather than by actually performing an
+ * scalbn(x,n) returns x* 2**n computed by exponent
+ * manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
@@ -76,18 +76,18 @@ tiny = 1.0e-300;
double x; int n;
#endif
{
- __int32_t k,hx,lx;
+ int32_t k,hx,lx;
EXTRACT_WORDS(hx,lx,x);
k = (hx&0x7ff00000)>>20; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
- x *= two54;
+ x *= two54;
GET_HIGH_WORD(hx,x);
- k = ((hx&0x7ff00000)>>20) - 54;
+ k = ((hx&0x7ff00000)>>20) - 54;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7ff) return x+x; /* NaN or Inf */
- k = k+n;
+ k = k+n;
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
diff --git a/libjava/java/lang/s_sin.c b/libjava/java/lang/s_sin.c
index 28259f378fe..d315455549c 100644
--- a/libjava/java/lang/s_sin.c
+++ b/libjava/java/lang/s_sin.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -43,17 +43,17 @@ TRAD_SYNOPSIS
DESCRIPTION
<<sin>> and <<cos>> compute (respectively) the sine and cosine
- of the argument <[x]>. Angles are specified in radians.
+ of the argument <[x]>. Angles are specified in radians.
<<sinf>> and <<cosf>> are identical, save that they take and
- return <<float>> values.
+ return <<float>> values.
RETURNS
The sine or cosine of <[x]> is returned.
PORTABILITY
- <<sin>> and <<cos>> are ANSI C.
+ <<sin>> and <<cos>> are ANSI C.
<<sinf>> and <<cosf>> are extensions.
QUICKREF
@@ -70,8 +70,8 @@ QUICKREF
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
@@ -89,7 +89,7 @@ QUICKREF
* trig(NaN) is that NaN;
*
* Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
+ * TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
@@ -104,7 +104,7 @@ QUICKREF
#endif
{
double y[2],z=0.0;
- __int32_t n,ix;
+ int32_t n,ix;
/* High word of x. */
GET_HIGH_WORD(ix,x);
diff --git a/libjava/java/lang/s_tan.c b/libjava/java/lang/s_tan.c
index 2959f416e83..20995fcbdee 100644
--- a/libjava/java/lang/s_tan.c
+++ b/libjava/java/lang/s_tan.c
@@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -37,13 +37,13 @@ TRAD_SYNOPSIS
DESCRIPTION
-<<tan>> computes the tangent of the argument <[x]>.
-Angles are specified in radians.
+<<tan>> computes the tangent of the argument <[x]>.
+Angles are specified in radians.
<<tanf>> is identical, save that it takes and returns <<float>> values.
RETURNS
-The tangent of <[x]> is returned.
+The tangent of <[x]> is returned.
PORTABILITY
<<tan>> is ANSI. <<tanf>> is an extension.
@@ -57,8 +57,8 @@ PORTABILITY
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
@@ -76,7 +76,7 @@ PORTABILITY
* trig(NaN) is that NaN;
*
* Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
+ * TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
@@ -91,7 +91,7 @@ PORTABILITY
#endif
{
double y[2],z=0.0;
- __int32_t n,ix;
+ int32_t n,ix;
/* High word of x. */
GET_HIGH_WORD(ix,x);
diff --git a/libjava/java/lang/sf_rint.c b/libjava/java/lang/sf_rint.c
index e4769e0dc60..f442072874e 100644
--- a/libjava/java/lang/sf_rint.c
+++ b/libjava/java/lang/sf_rint.c
@@ -8,7 +8,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -18,7 +18,7 @@
#ifdef __STDC__
static const float
#else
-static float
+static float
#endif
TWO23[2]={
8.3886080000e+06, /* 0x4b000000 */
@@ -32,14 +32,14 @@ TWO23[2]={
float x;
#endif
{
- __int32_t i0,j0,sx;
- __uint32_t i,i1;
+ int32_t i0,j0,sx;
+ uint32_t i,i1;
float w,t;
GET_FLOAT_WORD(i0,x);
sx = (i0>>31)&1;
j0 = ((i0>>23)&0xff)-0x7f;
if(j0<23) {
- if(j0<0) {
+ if(j0<0) {
if((i0&0x7fffffff)==0) return x;
i1 = (i0&0x07fffff);
i0 &= 0xfff00000;