summaryrefslogtreecommitdiff
path: root/gcc/ada/5qtaprop.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/5qtaprop.adb')
-rw-r--r--gcc/ada/5qtaprop.adb1776
1 files changed, 0 insertions, 1776 deletions
diff --git a/gcc/ada/5qtaprop.adb b/gcc/ada/5qtaprop.adb
deleted file mode 100644
index aa1e97be694..00000000000
--- a/gcc/ada/5qtaprop.adb
+++ /dev/null
@@ -1,1776 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
--- --
--- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
--- --
--- GNARL is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 2, or (at your option) any later ver- --
--- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNARL; see file COPYING. If not, write --
--- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
--- MA 02111-1307, USA. --
--- --
--- As a special exception, if other files instantiate generics from this --
--- unit, or you link this unit with other files to produce an executable, --
--- this unit does not by itself cause the resulting executable to be --
--- covered by the GNU General Public License. This exception does not --
--- however invalidate any other reasons why the executable file might be --
--- covered by the GNU Public License. --
--- --
--- GNARL was developed by the GNARL team at Florida State University. It is --
--- now maintained by Ada Core Technologies, Inc. (http://www.gnat.com). --
--- --
-------------------------------------------------------------------------------
-
--- RT GNU/Linux version
-
--- ???? Later, look at what we might want to provide for interrupt
--- management.
-
-pragma Suppress (All_Checks);
-
-pragma Polling (Off);
--- Turn off polling, we do not want ATC polling to take place during
--- tasking operations. It causes infinite loops and other problems.
-
-with System.Machine_Code;
--- used for Asm
-
-with System.OS_Interface;
--- used for various types, constants, and operations
-
-with System.OS_Primitives;
--- used for Delay_Modes
-
-with System.Parameters;
--- used for Size_Type
-
-with System.Storage_Elements;
-
-with System.Tasking;
--- used for Ada_Task_Control_Block
--- Task_ID
-
-with Ada.Unchecked_Conversion;
-
-package body System.Task_Primitives.Operations is
-
- use System.Machine_Code,
- System.OS_Interface,
- System.OS_Primitives,
- System.Parameters,
- System.Tasking,
- System.Storage_Elements;
-
- --------------------------------
- -- RT GNU/Linux specific Data --
- --------------------------------
-
- -- Define two important parameters necessary for a GNU/Linux kernel module.
- -- Any module that is going to be loaded into the kernel space needs these
- -- parameters.
-
- Mod_Use_Count : Integer;
- pragma Export (C, Mod_Use_Count, "mod_use_count_");
- -- for module usage tracking by the kernel
-
- type Aliased_String is array (Positive range <>) of aliased Character;
- pragma Convention (C, Aliased_String);
-
- Kernel_Version : constant Aliased_String := "2.0.33" & ASCII.Nul;
- pragma Export (C, Kernel_Version, "kernel_version");
- -- So that insmod can find the version number.
-
- -- The following procedures have their name specified by the GNU/Linux
- -- module loader. Note that they simply correspond to adainit/adafinal.
-
- function Init_Module return Integer;
- pragma Export (C, Init_Module, "init_module");
-
- procedure Cleanup_Module;
- pragma Export (C, Cleanup_Module, "cleanup_module");
-
- ----------------
- -- Local Data --
- ----------------
-
- LF : constant String := ASCII.LF & ASCII.Nul;
-
- LFHT : constant String := ASCII.LF & ASCII.HT;
- -- used in inserted assembly code
-
- Max_Tasks : constant := 10;
- -- ??? Eventually, this should probably be in System.Parameters.
-
- Known_Tasks : array (0 .. Max_Tasks) of Task_ID;
- -- Global array of tasks read by gdb, and updated by Create_Task and
- -- Finalize_TCB. It's from System.Tasking.Debug. We moved it here to
- -- cut the dependence on that package. Consider moving it here or to
- -- this package specification, permanently????
-
- Max_Sensible_Delay : constant RTIME :=
- 365 * 24 * 60 * 60 * RT_TICKS_PER_SEC;
- -- Max of one year delay, needed to prevent exceptions for large
- -- delay values. It seems unlikely that any test will notice this
- -- restriction.
- -- ??? This is really declared in System.OS_Primitives,
- -- and the type is Duration, here its type is RTIME.
-
- Tick_Count : constant := RT_TICKS_PER_SEC / 20;
- Nano_Count : constant := 50_000_000;
- -- two constants used in conversions between RTIME and Duration.
-
- Addr_Bytes : constant Storage_Offset :=
- System.Address'Max_Size_In_Storage_Elements;
- -- number of bytes needed for storing an address.
-
- Guess : constant RTIME := 10;
- -- an approximate amount of RTIME used in scheduler to awake a task having
- -- its resume time within 'current time + Guess'
- -- The value of 10 is estimated here and may need further refinement
-
- TCB_Array : array (0 .. Max_Tasks)
- of aliased Restricted_Ada_Task_Control_Block (Entry_Num => 0);
- pragma Volatile_Components (TCB_Array);
-
- Available_TCBs : Task_ID;
- pragma Atomic (Available_TCBs);
- -- Head of linear linked list of available TCB's, linked using TCB's
- -- LL.Next. This list is Initialized to contain a fixed number of tasks,
- -- when the runtime system starts up.
-
- Current_Task : Task_ID;
- pragma Export (C, Current_Task, "current_task");
- pragma Atomic (Current_Task);
- -- This is the task currently running. We need the pragma here to specify
- -- the link-name for Current_Task is "current_task", rather than the long
- -- name (including the package name) that the Ada compiler would normally
- -- generate. "current_task" is referenced in procedure Rt_Switch_To below
-
- Idle_Task : aliased Restricted_Ada_Task_Control_Block (Entry_Num => 0);
- -- Tail of the circular queue of ready to run tasks.
-
- Scheduler_Idle : Boolean := False;
- -- True when the scheduler is idle (no task other than the idle task
- -- is on the ready queue).
-
- In_Elab_Code : Boolean := True;
- -- True when we are elaborating our application.
- -- Init_Module will set this flag to false and never revert it.
-
- Timer_Queue : aliased Restricted_Ada_Task_Control_Block (Entry_Num => 0);
- -- Header of the queue of delayed real-time tasks.
- -- Timer_Queue.LL has to be initialized properly before being used
-
- Timer_Expired : Boolean := False;
- -- flag to show whether the Timer_Queue needs to be checked
- -- when it becomes true, it means there is a task in the
- -- Timer_Queue having to be awakened and be moved to ready queue
-
- Environment_Task_ID : Task_ID;
- -- A variable to hold Task_ID for the environment task.
- -- Once initialized, this behaves as a constant.
- -- In the current implementation, this is the task assigned permanently
- -- as the regular GNU/Linux kernel.
-
- Single_RTS_Lock : aliased RTS_Lock;
- -- This is a lock to allow only one thread of control in the RTS at
- -- a time; it is used to execute in mutual exclusion from all other tasks.
- -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
-
- -- The followings are internal configuration constants needed.
- Next_Serial_Number : Task_Serial_Number := 100;
- pragma Volatile (Next_Serial_Number);
- -- We start at 100, to reserve some special values for
- -- using in error checking.
-
- GNU_Linux_Irq_State : Integer := 0;
- -- This needs comments ???
-
- type Duration_As_Integer is delta 1.0
- range -2.0**(Duration'Size - 1) .. 2.0**(Duration'Size - 1) - 1.0;
- -- used for output RTIME value during debugging
-
- type Address_Ptr is access all System.Address;
- pragma Convention (C, Address_Ptr);
-
- --------------------------------
- -- Local conversion functions --
- --------------------------------
-
- function To_Task_ID is new
- Ada.Unchecked_Conversion (System.Address, Task_ID);
-
- function To_Address is new
- Ada.Unchecked_Conversion (Task_ID, System.Address);
-
- function RTIME_To_D_Int is new
- Ada.Unchecked_Conversion (RTIME, Duration_As_Integer);
-
- function Raw_RTIME is new
- Ada.Unchecked_Conversion (Duration, RTIME);
-
- function Raw_Duration is new
- Ada.Unchecked_Conversion (RTIME, Duration);
-
- function To_Duration (T : RTIME) return Duration;
- pragma Inline (To_Duration);
-
- function To_RTIME (D : Duration) return RTIME;
- pragma Inline (To_RTIME);
-
- function To_Integer is new
- Ada.Unchecked_Conversion (System.Parameters.Size_Type, Integer);
-
- function To_Address_Ptr is
- new Ada.Unchecked_Conversion (System.Address, Address_Ptr);
-
- function To_RTS_Lock_Ptr is new
- Ada.Unchecked_Conversion (Lock_Ptr, RTS_Lock_Ptr);
-
- -----------------------------------
- -- Local Subprogram Declarations --
- -----------------------------------
-
- procedure Rt_Switch_To (Tsk : Task_ID);
- pragma Inline (Rt_Switch_To);
- -- switch from the 'current_task' to 'Tsk'
- -- and 'Tsk' then becomes 'current_task'
-
- procedure R_Save_Flags (F : out Integer);
- pragma Inline (R_Save_Flags);
- -- save EFLAGS register to 'F'
-
- procedure R_Restore_Flags (F : Integer);
- pragma Inline (R_Restore_Flags);
- -- restore EFLAGS register from 'F'
-
- procedure R_Cli;
- pragma Inline (R_Cli);
- -- disable interrupts
-
- procedure R_Sti;
- pragma Inline (R_Sti);
- -- enable interrupts
-
- procedure Timer_Wrapper;
- -- the timer handler. It sets Timer_Expired flag to True and
- -- then calls Rt_Schedule
-
- procedure Rt_Schedule;
- -- the scheduler
-
- procedure Insert_R (T : Task_ID);
- pragma Inline (Insert_R);
- -- insert 'T' into the tail of the ready queue for its active
- -- priority
- -- if original queue is 6 5 4 4 3 2 and T has priority of 4
- -- then after T is inserted the queue becomes 6 5 4 4 T 3 2
-
- procedure Insert_RF (T : Task_ID);
- pragma Inline (Insert_RF);
- -- insert 'T' into the front of the ready queue for its active
- -- priority
- -- if original queue is 6 5 4 4 3 2 and T has priority of 4
- -- then after T is inserted the queue becomes 6 5 T 4 4 3 2
-
- procedure Delete_R (T : Task_ID);
- pragma Inline (Delete_R);
- -- delete 'T' from the ready queue. If 'T' is not in any queue
- -- the operation has no effect
-
- procedure Insert_T (T : Task_ID);
- pragma Inline (Insert_T);
- -- insert 'T' into the waiting queue according to its Resume_Time.
- -- If there are tasks in the waiting queue that have the same
- -- Resume_Time as 'T', 'T' is then inserted into the queue for
- -- its active priority
-
- procedure Delete_T (T : Task_ID);
- pragma Inline (Delete_T);
- -- delete 'T' from the waiting queue.
-
- procedure Move_Top_Task_From_Timer_Queue_To_Ready_Queue;
- pragma Inline (Move_Top_Task_From_Timer_Queue_To_Ready_Queue);
- -- remove the task in the front of the waiting queue and insert it
- -- into the tail of the ready queue for its active priority
-
- -------------------------
- -- Local Subprograms --
- -------------------------
-
- procedure Rt_Switch_To (Tsk : Task_ID) is
- begin
- pragma Debug (Printk ("procedure Rt_Switch_To called" & LF));
-
- Asm (
- "pushl %%eax" & LFHT &
- "pushl %%ebp" & LFHT &
- "pushl %%edi" & LFHT &
- "pushl %%esi" & LFHT &
- "pushl %%edx" & LFHT &
- "pushl %%ecx" & LFHT &
- "pushl %%ebx" & LFHT &
-
- "movl current_task, %%edx" & LFHT &
- "cmpl $0, 36(%%edx)" & LFHT &
- -- 36 is hard-coded, 36(%%edx) is actually
- -- Current_Task.Common.LL.Uses_Fp
-
- "jz 25f" & LFHT &
- "sub $108,%%esp" & LFHT &
- "fsave (%%esp)" & LFHT &
- "25: pushl $1f" & LFHT &
- "movl %%esp, 32(%%edx)" & LFHT &
- -- 32 is hard-coded, 32(%%edx) is actually
- -- Current_Task.Common.LL.Stack
-
- "movl 32(%%ecx), %%esp" & LFHT &
- -- 32 is hard-coded, 32(%%ecx) is actually Tsk.Common.LL.Stack.
- -- Tsk is the task to be switched to
-
- "movl %%ecx, current_task" & LFHT &
- "ret" & LFHT &
- "1: cmpl $0, 36(%%ecx)" & LFHT &
- -- 36(%%exc) is Tsk.Common.LL.Stack (hard coded)
- "jz 26f" & LFHT &
- "frstor (%%esp)" & LFHT &
- "add $108,%%esp" & LFHT &
- "26: popl %%ebx" & LFHT &
- "popl %%ecx" & LFHT &
- "popl %%edx" & LFHT &
- "popl %%esi" & LFHT &
- "popl %%edi" & LFHT &
- "popl %%ebp" & LFHT &
- "popl %%eax",
- Outputs => No_Output_Operands,
- Inputs => Task_ID'Asm_Input ("c", Tsk),
- Clobber => "cx",
- Volatile => True);
- end Rt_Switch_To;
-
- procedure R_Save_Flags (F : out Integer) is
- begin
- Asm (
- "pushfl" & LFHT &
- "popl %0",
- Outputs => Integer'Asm_Output ("=g", F),
- Inputs => No_Input_Operands,
- Clobber => "memory",
- Volatile => True);
- end R_Save_Flags;
-
- procedure R_Restore_Flags (F : Integer) is
- begin
- Asm (
- "pushl %0" & LFHT &
- "popfl",
- Outputs => No_Output_Operands,
- Inputs => Integer'Asm_Input ("g", F),
- Clobber => "memory",
- Volatile => True);
- end R_Restore_Flags;
-
- procedure R_Sti is
- begin
- Asm (
- "sti",
- Outputs => No_Output_Operands,
- Inputs => No_Input_Operands,
- Clobber => "memory",
- Volatile => True);
- end R_Sti;
-
- procedure R_Cli is
- begin
- Asm (
- "cli",
- Outputs => No_Output_Operands,
- Inputs => No_Input_Operands,
- Clobber => "memory",
- Volatile => True);
- end R_Cli;
-
- -- A wrapper for Rt_Schedule, works as the timer handler
-
- procedure Timer_Wrapper is
- begin
- pragma Debug (Printk ("procedure Timer_Wrapper called" & LF));
-
- Timer_Expired := True;
- Rt_Schedule;
- end Timer_Wrapper;
-
- procedure Rt_Schedule is
- Now : RTIME;
- Top_Task : Task_ID;
- Flags : Integer;
-
- procedure Debug_Timer_Queue;
- -- Check the state of the Timer Queue.
-
- procedure Debug_Timer_Queue is
- begin
- if Timer_Queue.Common.LL.Succ /= Timer_Queue'Address then
- Printk ("Timer_Queue not empty" & LF);
- end if;
-
- if To_Task_ID (Timer_Queue.Common.LL.Succ).Common.LL.Resume_Time <
- Now + Guess
- then
- Printk ("and need to move top task to ready queue" & LF);
- end if;
- end Debug_Timer_Queue;
-
- begin
- pragma Debug (Printk ("procedure Rt_Schedule called" & LF));
-
- -- Scheduler_Idle means that this call comes from an interrupt
- -- handler (e.g timer) that interrupted the idle loop below.
-
- if Scheduler_Idle then
- return;
- end if;
-
- <<Idle>>
- R_Save_Flags (Flags);
- R_Cli;
-
- Scheduler_Idle := False;
-
- if Timer_Expired then
- pragma Debug (Printk ("Timer expired" & LF));
- Timer_Expired := False;
-
- -- Check for expired time delays.
- Now := Rt_Get_Time;
-
- -- Need another (circular) queue for delayed tasks, this one ordered
- -- by wakeup time, so the one at the front has the earliest resume
- -- time. Wake up all the tasks sleeping on time delays that should
- -- be awakened at this time.
-
- -- ??? This is not very good, since we may waste time here waking
- -- up a bunch of lower priority tasks, adding to the blocking time
- -- of higher priority ready tasks, but we don't see how to get
- -- around this without adding more wasted time elsewhere.
-
- pragma Debug (Debug_Timer_Queue);
-
- while Timer_Queue.Common.LL.Succ /= Timer_Queue'Address and then
- To_Task_ID
- (Timer_Queue.Common.LL.Succ).Common.LL.Resume_Time < Now + Guess
- loop
- To_Task_ID (Timer_Queue.Common.LL.Succ).Common.LL.State :=
- RT_TASK_READY;
- Move_Top_Task_From_Timer_Queue_To_Ready_Queue;
- end loop;
-
- -- Arm the timer if necessary.
- -- ??? This may be wasteful, if the tasks on the timer queue are
- -- of lower priority than the current task's priority. The problem
- -- is that we can't tell this without scanning the whole timer
- -- queue. This scanning takes extra time.
-
- if Timer_Queue.Common.LL.Succ /= Timer_Queue'Address then
- -- Timer_Queue is not empty, so set the timer to interrupt at
- -- the next resume time. The Wakeup procedure must also do this,
- -- and must do it while interrupts are disabled so that there is
- -- no danger of interleaving with this code.
- Rt_Set_Timer
- (To_Task_ID (Timer_Queue.Common.LL.Succ).Common.LL.Resume_Time);
- else
- Rt_No_Timer;
- end if;
- end if;
-
- Top_Task := To_Task_ID (Idle_Task.Common.LL.Succ);
-
- -- If the ready queue is empty, the kernel has to wait until the timer
- -- or another interrupt makes a task ready.
-
- if Top_Task = To_Task_ID (Idle_Task'Address) then
- Scheduler_Idle := True;
- R_Restore_Flags (Flags);
- pragma Debug (Printk ("!!!kernel idle!!!" & LF));
- goto Idle;
- end if;
-
- if Top_Task = Current_Task then
- pragma Debug (Printk ("Rt_Schedule: Top_Task = Current_Task" & LF));
- -- if current task continues, just return.
-
- R_Restore_Flags (Flags);
- return;
- end if;
-
- if Top_Task = Environment_Task_ID then
- pragma Debug (Printk
- ("Rt_Schedule: Top_Task = Environment_Task" & LF));
- -- If there are no RT tasks ready, we execute the regular
- -- GNU/Linux kernel, and allow the regular GNU/Linux interrupt
- -- handlers to preempt the current task again.
-
- if not In_Elab_Code then
- SFIF := GNU_Linux_Irq_State;
- end if;
-
- elsif Current_Task = Environment_Task_ID then
- pragma Debug (Printk
- ("Rt_Schedule: Current_Task = Environment_Task" & LF));
- -- We are going to preempt the regular GNU/Linux kernel to
- -- execute an RT task, so don't allow the regular GNU/Linux
- -- interrupt handlers to preempt the current task any more.
-
- GNU_Linux_Irq_State := SFIF;
- SFIF := 0;
- end if;
-
- Top_Task.Common.LL.State := RT_TASK_READY;
- Rt_Switch_To (Top_Task);
- R_Restore_Flags (Flags);
- end Rt_Schedule;
-
- procedure Insert_R (T : Task_ID) is
- Q : Task_ID := To_Task_ID (Idle_Task.Common.LL.Succ);
- begin
- pragma Debug (Printk ("procedure Insert_R called" & LF));
-
- pragma Assert (T.Common.LL.Succ = To_Address (T));
- pragma Assert (T.Common.LL.Pred = To_Address (T));
-
- -- T is inserted in the queue between a task that has higher
- -- or the same Active_Priority as T and a task that has lower
- -- Active_Priority than T
-
- while Q /= To_Task_ID (Idle_Task'Address)
- and then T.Common.LL.Active_Priority <= Q.Common.LL.Active_Priority
- loop
- Q := To_Task_ID (Q.Common.LL.Succ);
- end loop;
-
- -- Q is successor of T
-
- T.Common.LL.Succ := To_Address (Q);
- T.Common.LL.Pred := Q.Common.LL.Pred;
- To_Task_ID (T.Common.LL.Pred).Common.LL.Succ := To_Address (T);
- Q.Common.LL.Pred := To_Address (T);
- end Insert_R;
-
- procedure Insert_RF (T : Task_ID) is
- Q : Task_ID := To_Task_ID (Idle_Task.Common.LL.Succ);
- begin
- pragma Debug (Printk ("procedure Insert_RF called" & LF));
-
- pragma Assert (T.Common.LL.Succ = To_Address (T));
- pragma Assert (T.Common.LL.Pred = To_Address (T));
-
- -- T is inserted in the queue between a task that has higher
- -- Active_Priority as T and a task that has lower or the same
- -- Active_Priority as T
-
- while Q /= To_Task_ID (Idle_Task'Address) and then
- T.Common.LL.Active_Priority < Q.Common.LL.Active_Priority
- loop
- Q := To_Task_ID (Q.Common.LL.Succ);
- end loop;
-
- -- Q is successor of T
-
- T.Common.LL.Succ := To_Address (Q);
- T.Common.LL.Pred := Q.Common.LL.Pred;
- To_Task_ID (T.Common.LL.Pred).Common.LL.Succ := To_Address (T);
- Q.Common.LL.Pred := To_Address (T);
- end Insert_RF;
-
- procedure Delete_R (T : Task_ID) is
- Tpred : constant Task_ID := To_Task_ID (T.Common.LL.Pred);
- Tsucc : constant Task_ID := To_Task_ID (T.Common.LL.Succ);
-
- begin
- pragma Debug (Printk ("procedure Delete_R called" & LF));
-
- -- checking whether T is in the queue is not necessary because
- -- if T is not in the queue, following statements changes
- -- nothing. But T cannot be in the Timer_Queue, otherwise
- -- activate the check below, note that checking whether T is
- -- in a queue is a relatively expensive operation
-
- Tpred.Common.LL.Succ := To_Address (Tsucc);
- Tsucc.Common.LL.Pred := To_Address (Tpred);
- T.Common.LL.Succ := To_Address (T);
- T.Common.LL.Pred := To_Address (T);
- end Delete_R;
-
- procedure Insert_T (T : Task_ID) is
- Q : Task_ID := To_Task_ID (Timer_Queue.Common.LL.Succ);
- begin
- pragma Debug (Printk ("procedure Insert_T called" & LF));
-
- pragma Assert (T.Common.LL.Succ = To_Address (T));
-
- while Q /= To_Task_ID (Timer_Queue'Address) and then
- T.Common.LL.Resume_Time > Q.Common.LL.Resume_Time
- loop
- Q := To_Task_ID (Q.Common.LL.Succ);
- end loop;
-
- -- Q is the task that has Resume_Time equal to or greater than that
- -- of T. If they have the same Resume_Time, continue looking for the
- -- location T is to be inserted using its Active_Priority
-
- while Q /= To_Task_ID (Timer_Queue'Address) and then
- T.Common.LL.Resume_Time = Q.Common.LL.Resume_Time
- loop
- exit when T.Common.LL.Active_Priority > Q.Common.LL.Active_Priority;
- Q := To_Task_ID (Q.Common.LL.Succ);
- end loop;
-
- -- Q is successor of T
-
- T.Common.LL.Succ := To_Address (Q);
- T.Common.LL.Pred := Q.Common.LL.Pred;
- To_Task_ID (T.Common.LL.Pred).Common.LL.Succ := To_Address (T);
- Q.Common.LL.Pred := To_Address (T);
- end Insert_T;
-
- procedure Delete_T (T : Task_ID) is
- Tpred : constant Task_ID := To_Task_ID (T.Common.LL.Pred);
- Tsucc : constant Task_ID := To_Task_ID (T.Common.LL.Succ);
-
- begin
- pragma Debug (Printk ("procedure Delete_T called" & LF));
-
- pragma Assert (T /= To_Task_ID (Timer_Queue'Address));
-
- Tpred.Common.LL.Succ := To_Address (Tsucc);
- Tsucc.Common.LL.Pred := To_Address (Tpred);
- T.Common.LL.Succ := To_Address (T);
- T.Common.LL.Pred := To_Address (T);
- end Delete_T;
-
- procedure Move_Top_Task_From_Timer_Queue_To_Ready_Queue is
- Top_Task : Task_ID := To_Task_ID (Timer_Queue.Common.LL.Succ);
- begin
- pragma Debug (Printk ("procedure Move_Top_Task called" & LF));
-
- if Top_Task /= To_Task_ID (Timer_Queue'Address) then
- Delete_T (Top_Task);
- Top_Task.Common.LL.State := RT_TASK_READY;
- Insert_R (Top_Task);
- end if;
- end Move_Top_Task_From_Timer_Queue_To_Ready_Queue;
-
- ----------
- -- Self --
- ----------
-
- function Self return Task_ID is
- begin
- pragma Debug (Printk ("function Self called" & LF));
-
- return Current_Task;
- end Self;
-
- ---------------------
- -- Initialize_Lock --
- ---------------------
-
- procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is
- begin
- pragma Debug (Printk ("procedure Initialize_Lock called" & LF));
-
- L.Ceiling_Priority := Prio;
- L.Owner := System.Null_Address;
- end Initialize_Lock;
-
- procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
- begin
- pragma Debug (Printk ("procedure Initialize_Lock (RTS) called" & LF));
-
- L.Ceiling_Priority := System.Any_Priority'Last;
- L.Owner := System.Null_Address;
- end Initialize_Lock;
-
- -------------------
- -- Finalize_Lock --
- -------------------
-
- procedure Finalize_Lock (L : access Lock) is
- begin
- pragma Debug (Printk ("procedure Finalize_Lock called" & LF));
- null;
- end Finalize_Lock;
-
- procedure Finalize_Lock (L : access RTS_Lock) is
- begin
- pragma Debug (Printk ("procedure Finalize_Lock (RTS) called" & LF));
- null;
- end Finalize_Lock;
-
- ----------------
- -- Write_Lock --
- ----------------
-
- procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
- Prio : constant System.Any_Priority :=
- Current_Task.Common.LL.Active_Priority;
-
- begin
- pragma Debug (Printk ("procedure Write_Lock called" & LF));
-
- Ceiling_Violation := False;
-
- if Prio > L.Ceiling_Priority then
- -- Ceiling violation.
- -- This should never happen, unless something is seriously
- -- wrong with task T or the entire run-time system.
- -- ???? extreme error recovery, e.g. shut down the system or task
-
- Ceiling_Violation := True;
- pragma Debug (Printk ("Ceiling Violation in Write_Lock" & LF));
- return;
- end if;
-
- L.Pre_Locking_Priority := Prio;
- L.Owner := To_Address (Current_Task);
- Current_Task.Common.LL.Active_Priority := L.Ceiling_Priority;
-
- if Current_Task.Common.LL.Outer_Lock = null then
- -- If this lock is not nested, record a pointer to it.
-
- Current_Task.Common.LL.Outer_Lock :=
- To_RTS_Lock_Ptr (L.all'Unchecked_Access);
- end if;
- end Write_Lock;
-
- procedure Write_Lock
- (L : access RTS_Lock; Global_Lock : Boolean := False)
- is
- Prio : constant System.Any_Priority :=
- Current_Task.Common.LL.Active_Priority;
-
- begin
- pragma Debug (Printk ("procedure Write_Lock (RTS) called" & LF));
-
- if Prio > L.Ceiling_Priority then
- -- Ceiling violation.
- -- This should never happen, unless something is seriously
- -- wrong with task T or the entire runtime system.
- -- ???? extreme error recovery, e.g. shut down the system or task
-
- Printk ("Ceiling Violation in Write_Lock (RTS)" & LF);
- return;
- end if;
-
- L.Pre_Locking_Priority := Prio;
- L.Owner := To_Address (Current_Task);
- Current_Task.Common.LL.Active_Priority := L.Ceiling_Priority;
-
- if Current_Task.Common.LL.Outer_Lock = null then
- Current_Task.Common.LL.Outer_Lock := L.all'Unchecked_Access;
- end if;
- end Write_Lock;
-
- procedure Write_Lock (T : Task_ID) is
- Prio : constant System.Any_Priority :=
- Current_Task.Common.LL.Active_Priority;
-
- begin
- pragma Debug (Printk ("procedure Write_Lock (Task_ID) called" & LF));
-
- if Prio > T.Common.LL.L.Ceiling_Priority then
- -- Ceiling violation.
- -- This should never happen, unless something is seriously
- -- wrong with task T or the entire runtime system.
- -- ???? extreme error recovery, e.g. shut down the system or task
-
- Printk ("Ceiling Violation in Write_Lock (Task)" & LF);
- return;
- end if;
-
- T.Common.LL.L.Pre_Locking_Priority := Prio;
- T.Common.LL.L.Owner := To_Address (Current_Task);
- Current_Task.Common.LL.Active_Priority := T.Common.LL.L.Ceiling_Priority;
-
- if Current_Task.Common.LL.Outer_Lock = null then
- Current_Task.Common.LL.Outer_Lock := T.Common.LL.L'Access;
- end if;
- end Write_Lock;
-
- ---------------
- -- Read_Lock --
- ---------------
-
- procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
- begin
- pragma Debug (Printk ("procedure Read_Lock called" & LF));
- Write_Lock (L, Ceiling_Violation);
- end Read_Lock;
-
- ------------
- -- Unlock --
- ------------
-
- procedure Unlock (L : access Lock) is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Unlock called" & LF));
-
- if L.Owner /= To_Address (Current_Task) then
- -- ...error recovery
-
- null;
- Printk ("The caller is not the owner of the lock" & LF);
- return;
- end if;
-
- L.Owner := System.Null_Address;
-
- -- Now that the lock is released, lower own priority,
-
- if Current_Task.Common.LL.Outer_Lock =
- To_RTS_Lock_Ptr (L.all'Unchecked_Access)
- then
- -- This lock is the outer-most one, reset own priority to
- -- Current_Priority;
-
- Current_Task.Common.LL.Active_Priority :=
- Current_Task.Common.Current_Priority;
- Current_Task.Common.LL.Outer_Lock := null;
-
- else
- -- If this lock is nested, pop the old active priority.
-
- Current_Task.Common.LL.Active_Priority := L.Pre_Locking_Priority;
- end if;
-
- -- Reschedule the task if necessary. Note we only need to reschedule
- -- the task if its Active_Priority becomes less than the one following
- -- it. The check depends on the fact that Environment_Task (tail of
- -- the ready queue) has the lowest Active_Priority
-
- if Current_Task.Common.LL.Active_Priority
- < To_Task_ID (Current_Task.Common.LL.Succ).Common.LL.Active_Priority
- then
- R_Save_Flags (Flags);
- R_Cli;
- Delete_R (Current_Task);
- Insert_RF (Current_Task);
- R_Restore_Flags (Flags);
- Rt_Schedule;
- end if;
- end Unlock;
-
- procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Unlock (RTS_Lock) called" & LF));
-
- if L.Owner /= To_Address (Current_Task) then
- null;
- Printk ("The caller is not the owner of the lock" & LF);
- return;
- end if;
-
- L.Owner := System.Null_Address;
-
- if Current_Task.Common.LL.Outer_Lock = L.all'Unchecked_Access then
- Current_Task.Common.LL.Active_Priority :=
- Current_Task.Common.Current_Priority;
- Current_Task.Common.LL.Outer_Lock := null;
-
- else
- Current_Task.Common.LL.Active_Priority := L.Pre_Locking_Priority;
- end if;
-
- -- Reschedule the task if necessary
-
- if Current_Task.Common.LL.Active_Priority
- < To_Task_ID (Current_Task.Common.LL.Succ).Common.LL.Active_Priority
- then
- R_Save_Flags (Flags);
- R_Cli;
- Delete_R (Current_Task);
- Insert_RF (Current_Task);
- R_Restore_Flags (Flags);
- Rt_Schedule;
- end if;
- end Unlock;
-
- procedure Unlock (T : Task_ID) is
- begin
- pragma Debug (Printk ("procedure Unlock (Task_ID) called" & LF));
- Unlock (T.Common.LL.L'Access);
- end Unlock;
-
- -----------
- -- Sleep --
- -----------
-
- -- Unlock Self_ID.Common.LL.L and suspend Self_ID, atomically.
- -- Before return, lock Self_ID.Common.LL.L again
- -- Self_ID can only be reactivated by calling Wakeup.
- -- Unlock code is repeated intentionally.
-
- procedure Sleep
- (Self_ID : Task_ID;
- Reason : ST.Task_States)
- is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Sleep called" & LF));
-
- -- Note that Self_ID is actually Current_Task, that is, only the
- -- task that is running can put itself into sleep. To preserve
- -- consistency, we use Self_ID throughout the code here
-
- Self_ID.Common.State := Reason;
- Self_ID.Common.LL.State := RT_TASK_DORMANT;
-
- R_Save_Flags (Flags);
- R_Cli;
-
- Delete_R (Self_ID);
-
- -- Arrange to unlock Self_ID's ATCB lock. The following check
- -- may be unnecessary because the specification of Sleep says
- -- the caller should hold its own ATCB lock before calling Sleep
-
- if Self_ID.Common.LL.L.Owner = To_Address (Self_ID) then
- Self_ID.Common.LL.L.Owner := System.Null_Address;
-
- if Self_ID.Common.LL.Outer_Lock = Self_ID.Common.LL.L'Access then
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.Current_Priority;
- Self_ID.Common.LL.Outer_Lock := null;
-
- else
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.LL.L.Pre_Locking_Priority;
- end if;
- end if;
-
- R_Restore_Flags (Flags);
- Rt_Schedule;
-
- -- Before leave, regain the lock
-
- Write_Lock (Self_ID);
- end Sleep;
-
- -----------------
- -- Timed_Sleep --
- -----------------
-
- -- Arrange to be awakened after/at Time (depending on Mode) then Unlock
- -- Self_ID.Common.LL.L and suspend self. If the timeout expires first,
- -- that should awaken the task. If it's awakened (by some other task
- -- calling Wakeup) before the timeout expires, the timeout should be
- -- cancelled.
-
- -- This is for use within the run-time system, so abort is
- -- assumed to be already deferred, and the caller should be
- -- holding its own ATCB lock.
-
- procedure Timed_Sleep
- (Self_ID : Task_ID;
- Time : Duration;
- Mode : ST.Delay_Modes;
- Reason : Task_States;
- Timedout : out Boolean;
- Yielded : out Boolean)
- is
- Flags : Integer;
- Abs_Time : RTIME;
-
- begin
- pragma Debug (Printk ("procedure Timed_Sleep called" & LF));
-
- Timedout := True;
- Yielded := False;
- -- ??? These two boolean seems not relevant here
-
- if Mode = Relative then
- Abs_Time := To_RTIME (Time) + Rt_Get_Time;
- else
- Abs_Time := To_RTIME (Time);
- end if;
-
- Self_ID.Common.LL.Resume_Time := Abs_Time;
- Self_ID.Common.LL.State := RT_TASK_DELAYED;
-
- R_Save_Flags (Flags);
- R_Cli;
- Delete_R (Self_ID);
- Insert_T (Self_ID);
-
- -- Check if the timer needs to be set
-
- if Timer_Queue.Common.LL.Succ = To_Address (Self_ID) then
- Rt_Set_Timer (Abs_Time);
- end if;
-
- -- Another way to do it
- --
- -- if Abs_Time <
- -- To_Task_ID (Timer_Queue.Common.LL.Succ).Common.LL.Resume_Time
- -- then
- -- Rt_Set_Timer (Abs_Time);
- -- end if;
-
- -- Arrange to unlock Self_ID's ATCB lock. see comments in Sleep
-
- if Self_ID.Common.LL.L.Owner = To_Address (Self_ID) then
- Self_ID.Common.LL.L.Owner := System.Null_Address;
-
- if Self_ID.Common.LL.Outer_Lock = Self_ID.Common.LL.L'Access then
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.Current_Priority;
- Self_ID.Common.LL.Outer_Lock := null;
-
- else
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.LL.L.Pre_Locking_Priority;
- end if;
- end if;
-
- R_Restore_Flags (Flags);
- Rt_Schedule;
-
- -- Before leaving, regain the lock
-
- Write_Lock (Self_ID);
- end Timed_Sleep;
-
- -----------------
- -- Timed_Delay --
- -----------------
-
- -- This is for use in implementing delay statements, so we assume
- -- the caller is not abort-deferred and is holding no locks.
- -- Self_ID can only be awakened after the timeout, no Wakeup on it.
-
- procedure Timed_Delay
- (Self_ID : Task_ID;
- Time : Duration;
- Mode : ST.Delay_Modes)
- is
- Flags : Integer;
- Abs_Time : RTIME;
-
- begin
- pragma Debug (Printk ("procedure Timed_Delay called" & LF));
-
- -- Only the little window between deferring abort and
- -- locking Self_ID is the reason we need to
- -- check for pending abort and priority change below! :(
-
- Write_Lock (Self_ID);
-
- -- Take the lock in case its ATCB needs to be modified
-
- if Mode = Relative then
- Abs_Time := To_RTIME (Time) + Rt_Get_Time;
- else
- Abs_Time := To_RTIME (Time);
- end if;
-
- Self_ID.Common.LL.Resume_Time := Abs_Time;
- Self_ID.Common.LL.State := RT_TASK_DELAYED;
-
- R_Save_Flags (Flags);
- R_Cli;
- Delete_R (Self_ID);
- Insert_T (Self_ID);
-
- -- Check if the timer needs to be set
-
- if Timer_Queue.Common.LL.Succ = To_Address (Self_ID) then
- Rt_Set_Timer (Abs_Time);
- end if;
-
- -- Arrange to unlock Self_ID's ATCB lock.
- -- Note that the code below is slightly different from Unlock, so
- -- it is more than inline it.
-
- if To_Task_ID (Self_ID.Common.LL.L.Owner) = Self_ID then
- Self_ID.Common.LL.L.Owner := System.Null_Address;
-
- if Self_ID.Common.LL.Outer_Lock = Self_ID.Common.LL.L'Access then
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.Current_Priority;
- Self_ID.Common.LL.Outer_Lock := null;
-
- else
- Self_ID.Common.LL.Active_Priority :=
- Self_ID.Common.LL.L.Pre_Locking_Priority;
- end if;
- end if;
-
- R_Restore_Flags (Flags);
- Rt_Schedule;
- end Timed_Delay;
-
- ---------------------
- -- Monotonic_Clock --
- ---------------------
-
- -- RTIME is represented as a 64-bit signed count of ticks,
- -- where there are 1_193_180 ticks per second.
-
- -- Let T be a count of ticks and N the corresponding count of nanoseconds.
- -- From the following relationship
- -- T / (ticks_per_second) = N / (ns_per_second)
- -- where ns_per_second is 1_000_000_000 (number of nanoseconds in
- -- a second), we get
- -- T * (ns_per_second) = N * (ticks_per_second)
- -- or
- -- T * 1_000_000_000 = N * 1_193_180
- -- which can be reduced to
- -- T * 50_000_000 = N * 59_659
- -- Let Nano_Count = 50_000_000 and Tick_Count = 59_659, we then have
- -- T * Nano_Count = N * Tick_Count
-
- -- IMPORTANT FACT:
- -- These numbers are small enough that we can do arithmetic
- -- on them without overflowing 64 bits. To see this, observe
-
- -- 10**3 = 1000 < 1024 = 2**10
- -- Tick_Count < 60 * 1000 < 64 * 1024 < 2**16
- -- Nano_Count < 50 * 1000 * 1000 < 64 * 1024 * 1024 < 2**26
-
- -- It follows that if 0 <= R < Tick_Count, we can compute
- -- R * Nano_Count < 2**42 without overflow in 64 bits.
- -- Similarly, if 0 <= R < Nano_Count, we can compute
- -- R * Tick_Count < 2**42 without overflow in 64 bits.
-
- -- GNAT represents Duration as a count of nanoseconds internally.
-
- -- To convert T from RTIME to Duration, let
- -- Q = T / Tick_Count, with truncation
- -- R = T - Q * Tick_Count, the remainder 0 <= R < Tick_Count
- -- so
- -- N * Tick_Count
- -- = T * Nano_Count - Q * Tick_Count * Nano_Count
- -- + Q * Tick_Count * Nano_Count
- -- = (T - Q * Tick_Count) * Nano_Count
- -- + (Q * Nano_Count) * Tick_Count
- -- = R * Nano_Count + (Q * Nano_Count) * Tick_Count
-
- -- Now, let
- -- Q1 = R * Nano_Count / Tick_Count, with truncation
- -- R1 = R * Nano_Count - Q1 * Tick_Count, 0 <= R1 <Tick_Count
- -- R * Nano_Count = Q1 * Tick_Count + R1
- -- so
- -- N * Tick_Count
- -- = R * Nano_Count + (Q * Nano_Count) * Tick_Count
- -- = Q1 * Tick_Count + R1 + (Q * Nano_Count) * Tick_Count
- -- = R1 + (Q * Nano_Count + Q1) * Tick_Count
- -- and
- -- N = Q * Nano_Count + Q1 + R1 /Tick_Count,
- -- where 0 <= R1 /Tick_Count < 1
-
- function To_Duration (T : RTIME) return Duration is
- Q, Q1, RN : RTIME;
- begin
- Q := T / Tick_Count;
- RN := (T - Q * Tick_Count) * Nano_Count;
- Q1 := RN / Tick_Count;
- return Raw_Duration (Q * Nano_Count + Q1);
- end To_Duration;
-
- -- To convert D from Duration to RTIME,
- -- Let D be a Duration value, and N be the representation of D as an
- -- integer count of nanoseconds. Let
- -- Q = N / Nano_Count, with truncation
- -- R = N - Q * Nano_Count, the remainder 0 <= R < Nano_Count
- -- so
- -- T * Nano_Count
- -- = N * Tick_Count - Q * Nano_Count * Tick_Count
- -- + Q * Nano_Count * Tick_Count
- -- = (N - Q * Nano_Count) * Tick_Count
- -- + (Q * Tick_Count) * Nano_Count
- -- = R * Tick_Count + (Q * Tick_Count) * Nano_Count
- -- Now, let
- -- Q1 = R * Tick_Count / Nano_Count, with truncation
- -- R1 = R * Tick_Count - Q1 * Nano_Count, 0 <= R1 < Nano_Count
- -- R * Tick_Count = Q1 * Nano_Count + R1
- -- so
- -- T * Nano_Count
- -- = R * Tick_Count + (Q * Tick_Count) * Nano_Count
- -- = Q1 * Nano_Count + R1 + (Q * Tick_Count) * Nano_Count
- -- = (Q * Tick_Count + Q1) * Nano_Count + R1
- -- and
- -- T = Q * Tick_Count + Q1 + R1 / Nano_Count,
- -- where 0 <= R1 / Nano_Count < 1
-
- function To_RTIME (D : Duration) return RTIME is
- N : RTIME := Raw_RTIME (D);
- Q, Q1, RT : RTIME;
-
- begin
- Q := N / Nano_Count;
- RT := (N - Q * Nano_Count) * Tick_Count;
- Q1 := RT / Nano_Count;
- return Q * Tick_Count + Q1;
- end To_RTIME;
-
- function Monotonic_Clock return Duration is
- begin
- pragma Debug (Printk ("procedure Clock called" & LF));
-
- return To_Duration (Rt_Get_Time);
- end Monotonic_Clock;
-
- -------------------
- -- RT_Resolution --
- -------------------
-
- function RT_Resolution return Duration is
- begin
- return 10#1.0#E-6;
- end RT_Resolution;
-
- ------------
- -- Wakeup --
- ------------
-
- procedure Wakeup (T : Task_ID; Reason : ST.Task_States) is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Wakeup called" & LF));
-
- T.Common.State := Reason;
- T.Common.LL.State := RT_TASK_READY;
-
- R_Save_Flags (Flags);
- R_Cli;
-
- if Timer_Queue.Common.LL.Succ = To_Address (T) then
- -- T is the first task in Timer_Queue, further check
-
- if T.Common.LL.Succ = Timer_Queue'Address then
- -- T is the only task in Timer_Queue, so deactivate timer
-
- Rt_No_Timer;
-
- else
- -- T is the first task in Timer_Queue, so set timer to T's
- -- successor's Resume_Time
-
- Rt_Set_Timer (To_Task_ID (T.Common.LL.Succ).Common.LL.Resume_Time);
- end if;
- end if;
-
- Delete_T (T);
-
- -- If T is in Timer_Queue, T is removed. If not, nothing happened
-
- Insert_R (T);
- R_Restore_Flags (Flags);
-
- Rt_Schedule;
- end Wakeup;
-
- -----------
- -- Yield --
- -----------
-
- procedure Yield (Do_Yield : Boolean := True) is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Yield called" & LF));
-
- pragma Assert (Current_Task /= To_Task_ID (Idle_Task'Address));
-
- R_Save_Flags (Flags);
- R_Cli;
- Delete_R (Current_Task);
- Insert_R (Current_Task);
-
- -- Remove Current_Task from the top of the Ready_Queue
- -- and reinsert it back at proper position (the end of
- -- tasks with the same active priority).
-
- R_Restore_Flags (Flags);
- Rt_Schedule;
- end Yield;
-
- ------------------
- -- Set_Priority --
- ------------------
-
- -- This version implicitly assume that T is the Current_Task
-
- procedure Set_Priority
- (T : Task_ID;
- Prio : System.Any_Priority;
- Loss_Of_Inheritance : Boolean := False)
- is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Set_Priority called" & LF));
- pragma Assert (T = Self);
-
- T.Common.Current_Priority := Prio;
-
- if T.Common.LL.Outer_Lock /= null then
- -- If the task T is holding any lock, defer the priority change
- -- until the lock is released. That is, T's Active_Priority will
- -- be set to Prio after it unlocks the outer-most lock. See
- -- Unlock for detail.
- -- Nothing needs to be done here for this case
-
- null;
- else
- -- If T is not holding any lock, change the priority right away.
-
- R_Save_Flags (Flags);
- R_Cli;
- T.Common.LL.Active_Priority := Prio;
- Delete_R (T);
- Insert_RF (T);
-
- -- Insert at the front of the queue for its new priority
-
- R_Restore_Flags (Flags);
- end if;
-
- Rt_Schedule;
- end Set_Priority;
-
- ------------------
- -- Get_Priority --
- ------------------
-
- function Get_Priority (T : Task_ID) return System.Any_Priority is
- begin
- pragma Debug (Printk ("procedure Get_Priority called" & LF));
-
- return T.Common.Current_Priority;
- end Get_Priority;
-
- ----------------
- -- Enter_Task --
- ----------------
-
- -- Do any target-specific initialization that is needed for a new task
- -- that has to be done by the task itself. This is called from the task
- -- wrapper, immediately after the task starts execution.
-
- procedure Enter_Task (Self_ID : Task_ID) is
- begin
- -- Use this as "hook" to re-enable interrupts.
- pragma Debug (Printk ("procedure Enter_Task called" & LF));
-
- R_Sti;
- end Enter_Task;
-
- ----------------
- -- New_ATCB --
- ----------------
-
- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
- T : constant Task_ID := Available_TCBs;
- begin
- pragma Debug (Printk ("function New_ATCB called" & LF));
-
- if Entry_Num /= 0 then
- -- We are preallocating all TCBs, so they must all have the
- -- same number of entries, which means the value of
- -- Entry_Num must be bounded. We probably could choose a
- -- non-zero upper bound here, but the Ravenscar Profile
- -- specifies that there be no task entries.
- -- ???
- -- Later, do something better for recovery from this error.
-
- null;
- end if;
-
- if T /= null then
- Available_TCBs := To_Task_ID (T.Common.LL.Next);
- T.Common.LL.Next := System.Null_Address;
- Known_Tasks (T.Known_Tasks_Index) := T;
- end if;
-
- return T;
- end New_ATCB;
-
- ----------------------
- -- Initialize_TCB --
- ----------------------
-
- procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
- begin
- pragma Debug (Printk ("procedure Initialize_TCB called" & LF));
-
- -- Give the task a unique serial number.
-
- Self_ID.Serial_Number := Next_Serial_Number;
- Next_Serial_Number := Next_Serial_Number + 1;
- pragma Assert (Next_Serial_Number /= 0);
-
- Self_ID.Common.LL.L.Ceiling_Priority := System.Any_Priority'Last;
- Self_ID.Common.LL.L.Owner := System.Null_Address;
- Succeeded := True;
- end Initialize_TCB;
-
- -----------------
- -- Create_Task --
- -----------------
-
- procedure Create_Task
- (T : Task_ID;
- Wrapper : System.Address;
- Stack_Size : System.Parameters.Size_Type;
- Priority : System.Any_Priority;
- Succeeded : out Boolean)
- is
- Adjusted_Stack_Size : Integer;
- Bottom : System.Address;
- Flags : Integer;
-
- begin
- pragma Debug (Printk ("procedure Create_Task called" & LF));
-
- Succeeded := True;
-
- if T.Common.LL.Magic = RT_TASK_MAGIC then
- Succeeded := False;
- return;
- end if;
-
- if Stack_Size = Unspecified_Size then
- Adjusted_Stack_Size := To_Integer (Default_Stack_Size);
- elsif Stack_Size < Minimum_Stack_Size then
- Adjusted_Stack_Size := To_Integer (Minimum_Stack_Size);
- else
- Adjusted_Stack_Size := To_Integer (Stack_Size);
- end if;
-
- Bottom := Kmalloc (Adjusted_Stack_Size, GFP_KERNEL);
-
- if Bottom = System.Null_Address then
- Succeeded := False;
- return;
- end if;
-
- T.Common.LL.Uses_Fp := 1;
-
- -- This field has to be reset to 1 if T uses FP unit. But, without
- -- a library-level procedure provided by this package, it cannot
- -- be set easily. So temporarily, set it to 1 (which means all the
- -- tasks will use FP unit. ???
-
- T.Common.LL.Magic := RT_TASK_MAGIC;
- T.Common.LL.State := RT_TASK_READY;
- T.Common.LL.Succ := To_Address (T);
- T.Common.LL.Pred := To_Address (T);
- T.Common.LL.Active_Priority := Priority;
- T.Common.Current_Priority := Priority;
-
- T.Common.LL.Stack_Bottom := Bottom;
- T.Common.LL.Stack := Bottom + Storage_Offset (Adjusted_Stack_Size);
-
- -- Store the value T into the stack, so that Task_wrapper (defined
- -- in System.Tasking.Stages) will find that value for its parameter
- -- Self_ID, when the scheduler eventually transfers control to the
- -- new task.
-
- T.Common.LL.Stack := T.Common.LL.Stack - Addr_Bytes;
- To_Address_Ptr (T.Common.LL.Stack).all := To_Address (T);
-
- -- Leave space for the return address, which will not be used,
- -- since the task wrapper should never return.
-
- T.Common.LL.Stack := T.Common.LL.Stack - Addr_Bytes;
- To_Address_Ptr (T.Common.LL.Stack).all := System.Null_Address;
-
- -- Put the entry point address of the task wrapper
- -- procedure on the new top of the stack.
-
- T.Common.LL.Stack := T.Common.LL.Stack - Addr_Bytes;
- To_Address_Ptr (T.Common.LL.Stack).all := Wrapper;
-
- R_Save_Flags (Flags);
- R_Cli;
- Insert_R (T);
- R_Restore_Flags (Flags);
- end Create_Task;
-
- ------------------
- -- Finalize_TCB --
- ------------------
-
- procedure Finalize_TCB (T : Task_ID) is
- begin
- pragma Debug (Printk ("procedure Finalize_TCB called" & LF));
-
- pragma Assert (T.Common.LL.Succ = To_Address (T));
-
- if T.Common.LL.State = RT_TASK_DORMANT then
- Known_Tasks (T.Known_Tasks_Index) := null;
- T.Common.LL.Next := To_Address (Available_TCBs);
- Available_TCBs := T;
- Kfree (T.Common.LL.Stack_Bottom);
- end if;
- end Finalize_TCB;
-
- ---------------
- -- Exit_Task --
- ---------------
-
- procedure Exit_Task is
- Flags : Integer;
- begin
- pragma Debug (Printk ("procedure Exit_Task called" & LF));
- pragma Assert (Current_Task /= To_Task_ID (Idle_Task'Address));
- pragma Assert (Current_Task /= Environment_Task_ID);
-
- R_Save_Flags (Flags);
- R_Cli;
- Current_Task.Common.LL.State := RT_TASK_DORMANT;
- Current_Task.Common.LL.Magic := 0;
- Delete_R (Current_Task);
- R_Restore_Flags (Flags);
- Rt_Schedule;
- end Exit_Task;
-
- ----------------
- -- Abort_Task --
- ----------------
-
- -- ??? Not implemented for now
-
- procedure Abort_Task (T : Task_ID) is
- -- Should cause T to raise Abort_Signal the next time it
- -- executes.
- -- ??? Can this ever be called when T = Current_Task?
- -- To be safe, do nothing in this case.
- begin
- pragma Debug (Printk ("procedure Abort_Task called" & LF));
- null;
- end Abort_Task;
-
- ----------------
- -- Check_Exit --
- ----------------
-
- -- Dummy versions. The only currently working versions is for solaris
- -- (native).
- -- We should probably copy the working versions over from the Solaris
- -- version of this package, with any appropriate changes, since without
- -- the checks on it will probably be nearly impossible to debug the
- -- run-time system.
-
- -- Not implemented for now
-
- function Check_Exit (Self_ID : Task_ID) return Boolean is
- begin
- pragma Debug (Printk ("function Check_Exit called" & LF));
-
- return True;
- end Check_Exit;
-
- --------------------
- -- Check_No_Locks --
- --------------------
-
- function Check_No_Locks (Self_ID : Task_ID) return Boolean is
- begin
- pragma Debug (Printk ("function Check_No_Locks called" & LF));
-
- if Self_ID.Common.LL.Outer_Lock = null then
- return True;
- else
- return False;
- end if;
- end Check_No_Locks;
-
- ----------------------
- -- Environment_Task --
- ----------------------
-
- function Environment_Task return Task_ID is
- begin
- return Environment_Task_ID;
- end Environment_Task;
-
- --------------
- -- Lock_RTS --
- --------------
-
- procedure Lock_RTS is
- begin
- Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
- end Lock_RTS;
-
- ----------------
- -- Unlock_RTS --
- ----------------
-
- procedure Unlock_RTS is
- begin
- Unlock (Single_RTS_Lock'Access, Global_Lock => True);
- end Unlock_RTS;
-
- -----------------
- -- Stack_Guard --
- -----------------
-
- -- Not implemented for now
-
- procedure Stack_Guard (T : Task_ID; On : Boolean) is
- begin
- null;
- end Stack_Guard;
-
- --------------------
- -- Get_Thread_Id --
- --------------------
-
- function Get_Thread_Id (T : Task_ID) return OSI.Thread_Id is
- begin
- return To_Address (T);
- end Get_Thread_Id;
-
- ------------------
- -- Suspend_Task --
- ------------------
-
- function Suspend_Task
- (T : Task_ID;
- Thread_Self : OSI.Thread_Id) return Boolean is
- begin
- return False;
- end Suspend_Task;
-
- -----------------
- -- Resume_Task --
- -----------------
-
- function Resume_Task
- (T : ST.Task_ID;
- Thread_Self : OSI.Thread_Id) return Boolean is
- begin
- return False;
- end Resume_Task;
-
- -----------------
- -- Init_Module --
- -----------------
-
- function Init_Module return Integer is
- procedure adainit;
- pragma Import (C, adainit);
-
- begin
- adainit;
- In_Elab_Code := False;
- Set_Priority (Environment_Task_ID, Any_Priority'First);
- return 0;
- end Init_Module;
-
- --------------------
- -- Cleanup_Module --
- --------------------
-
- procedure Cleanup_Module is
- procedure adafinal;
- pragma Import (C, adafinal);
-
- begin
- adafinal;
- end Cleanup_Module;
-
- ----------------
- -- Initialize --
- ----------------
-
- -- The environment task is "special". The TCB of the environment task is
- -- not in the TCB_Array above. Logically, all initialization code for the
- -- runtime system is executed by the environment task, but until the
- -- environment task has initialized its own TCB we dare not execute any
- -- calls that try to access the TCB of Current_Task. It is allocated by
- -- target-independent runtime system code, in System.Tasking.Initializa-
- -- tion.Init_RTS, before the call to this procedure Initialize. The
- -- target-independent runtime system initializes all the components that
- -- are target-independent, but this package needs to be given a chance to
- -- initialize the target-dependent data. We do that in this procedure.
-
- -- In the present implementation, Environment_Task is set to be the
- -- regular GNU/Linux kernel task.
-
- procedure Initialize (Environment_Task : Task_ID) is
- begin
- pragma Debug (Printk ("procedure Initialize called" & LF));
-
- Environment_Task_ID := Environment_Task;
-
- -- Build the list of available ATCB's.
-
- Available_TCBs := To_Task_ID (TCB_Array (1)'Address);
-
- for J in TCB_Array'First + 1 .. TCB_Array'Last - 1 loop
- -- Note that the zeroth element in TCB_Array is not used, see
- -- comments following the declaration of TCB_Array
-
- TCB_Array (J).Common.LL.Next := TCB_Array (J + 1)'Address;
- end loop;
-
- TCB_Array (TCB_Array'Last).Common.LL.Next := System.Null_Address;
-
- -- Initialize the idle task, which is the head of Ready_Queue.
-
- Idle_Task.Common.LL.Magic := RT_TASK_MAGIC;
- Idle_Task.Common.LL.State := RT_TASK_READY;
- Idle_Task.Common.Current_Priority := System.Any_Priority'First;
- Idle_Task.Common.LL.Active_Priority := System.Any_Priority'First;
- Idle_Task.Common.LL.Succ := Idle_Task'Address;
- Idle_Task.Common.LL.Pred := Idle_Task'Address;
-
- -- Initialize the regular GNU/Linux kernel task.
-
- Environment_Task.Common.LL.Magic := RT_TASK_MAGIC;
- Environment_Task.Common.LL.State := RT_TASK_READY;
- Environment_Task.Common.Current_Priority := System.Any_Priority'First;
- Environment_Task.Common.LL.Active_Priority := System.Any_Priority'First;
- Environment_Task.Common.LL.Succ := To_Address (Environment_Task);
- Environment_Task.Common.LL.Pred := To_Address (Environment_Task);
-
- -- Initialize the head of Timer_Queue
-
- Timer_Queue.Common.LL.Succ := Timer_Queue'Address;
- Timer_Queue.Common.LL.Pred := Timer_Queue'Address;
- Timer_Queue.Common.LL.Resume_Time := Max_Sensible_Delay;
-
- -- Set the current task to regular GNU/Linux kernel task
-
- Current_Task := Environment_Task;
-
- -- Set Timer_Wrapper to be the timer handler
-
- Rt_Free_Timer;
- Rt_Request_Timer (Timer_Wrapper'Address);
-
- -- Initialize the lock used to synchronize chain of all ATCBs.
-
- Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-
- -- Single_Lock isn't supported in this configuration
- pragma Assert (not Single_Lock);
-
- Enter_Task (Environment_Task);
- end Initialize;
-
-end System.Task_Primitives.Operations;