summaryrefslogtreecommitdiff
path: root/gcc/ada/s-expgen.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/s-expgen.adb')
-rw-r--r--gcc/ada/s-expgen.adb183
1 files changed, 183 insertions, 0 deletions
diff --git a/gcc/ada/s-expgen.adb b/gcc/ada/s-expgen.adb
new file mode 100644
index 00000000000..4ae3c9830c6
--- /dev/null
+++ b/gcc/ada/s-expgen.adb
@@ -0,0 +1,183 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUNTIME COMPONENTS --
+-- --
+-- S Y S T E M . E X P _ G E N --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.11 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+package body System.Exp_Gen is
+
+ --------------------
+ -- Exp_Float_Type --
+ --------------------
+
+ function Exp_Float_Type
+ (Left : Type_Of_Base;
+ Right : Integer)
+ return Type_Of_Base
+ is
+ Result : Type_Of_Base := 1.0;
+ Factor : Type_Of_Base := Left;
+ Exp : Integer := Right;
+
+ begin
+ -- We use the standard logarithmic approach, Exp gets shifted right
+ -- testing successive low order bits and Factor is the value of the
+ -- base raised to the next power of 2. For positive exponents we
+ -- multiply the result by this factor, for negative exponents, we
+ -- divide by this factor.
+
+ if Exp >= 0 then
+
+ -- For a positive exponent, if we get a constraint error during
+ -- this loop, it is an overflow, and the constraint error will
+ -- simply be passed on to the caller.
+
+ loop
+ if Exp rem 2 /= 0 then
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Result := Result * Factor;
+ end;
+ end if;
+
+ Exp := Exp / 2;
+ exit when Exp = 0;
+
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Factor := Factor * Factor;
+ end;
+ end loop;
+
+ return Result;
+
+ -- Now we know that the exponent is negative, check for case of
+ -- base of 0.0 which always generates a constraint error.
+
+ elsif Factor = 0.0 then
+ raise Constraint_Error;
+
+ -- Here we have a negative exponent with a non-zero base
+
+ else
+
+ -- For the negative exponent case, a constraint error during this
+ -- calculation happens if Factor gets too large, and the proper
+ -- response is to return 0.0, since what we essenmtially have is
+ -- 1.0 / infinity, and the closest model number will be zero.
+
+ begin
+ loop
+ if Exp rem 2 /= 0 then
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Result := Result * Factor;
+ end;
+ end if;
+
+ Exp := Exp / 2;
+ exit when Exp = 0;
+
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Factor := Factor * Factor;
+ end;
+ end loop;
+
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ return 1.0 / Result;
+ end;
+
+ exception
+
+ when Constraint_Error =>
+ return 0.0;
+ end;
+ end if;
+ end Exp_Float_Type;
+
+ ----------------------
+ -- Exp_Integer_Type --
+ ----------------------
+
+ -- Note that negative exponents get a constraint error because the
+ -- subtype of the Right argument (the exponent) is Natural.
+
+ function Exp_Integer_Type
+ (Left : Type_Of_Base;
+ Right : Natural)
+ return Type_Of_Base
+ is
+ Result : Type_Of_Base := 1;
+ Factor : Type_Of_Base := Left;
+ Exp : Natural := Right;
+
+ begin
+ -- We use the standard logarithmic approach, Exp gets shifted right
+ -- testing successive low order bits and Factor is the value of the
+ -- base raised to the next power of 2.
+
+ -- Note: it is not worth special casing the cases of base values -1,0,+1
+ -- since the expander does this when the base is a literal, and other
+ -- cases will be extremely rare.
+
+ if Exp /= 0 then
+ loop
+ if Exp rem 2 /= 0 then
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Result := Result * Factor;
+ end;
+ end if;
+
+ Exp := Exp / 2;
+ exit when Exp = 0;
+
+ declare
+ pragma Unsuppress (All_Checks);
+ begin
+ Factor := Factor * Factor;
+ end;
+ end loop;
+ end if;
+
+ return Result;
+ end Exp_Integer_Type;
+
+end System.Exp_Gen;