diff options
Diffstat (limited to 'gcc/double-int.c')
-rw-r--r-- | gcc/double-int.c | 737 |
1 files changed, 736 insertions, 1 deletions
diff --git a/gcc/double-int.c b/gcc/double-int.c index 1a746814598..96e5884c96f 100644 --- a/gcc/double-int.c +++ b/gcc/double-int.c @@ -23,6 +23,741 @@ along with GCC; see the file COPYING3. If not see #include "tm.h" #include "tree.h" +/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring + overflow. Suppose A, B and SUM have the same respective signs as A1, B1, + and SUM1. Then this yields nonzero if overflow occurred during the + addition. + + Overflow occurs if A and B have the same sign, but A and SUM differ in + sign. Use `^' to test whether signs differ, and `< 0' to isolate the + sign. */ +#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0) + +/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic. + We do that by representing the two-word integer in 4 words, with only + HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive + number. The value of the word is LOWPART + HIGHPART * BASE. */ + +#define LOWPART(x) \ + ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1)) +#define HIGHPART(x) \ + ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2) +#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2) + +/* Unpack a two-word integer into 4 words. + LOW and HI are the integer, as two `HOST_WIDE_INT' pieces. + WORDS points to the array of HOST_WIDE_INTs. */ + +static void +encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) +{ + words[0] = LOWPART (low); + words[1] = HIGHPART (low); + words[2] = LOWPART (hi); + words[3] = HIGHPART (hi); +} + +/* Pack an array of 4 words into a two-word integer. + WORDS points to the array of words. + The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */ + +static void +decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low, + HOST_WIDE_INT *hi) +{ + *low = words[0] + words[1] * BASE; + *hi = words[2] + words[3] * BASE; +} + +/* Force the double-word integer L1, H1 to be within the range of the + integer type TYPE. Stores the properly truncated and sign-extended + double-word integer in *LV, *HV. Returns true if the operation + overflows, that is, argument and result are different. */ + +int +fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type) +{ + unsigned HOST_WIDE_INT low0 = l1; + HOST_WIDE_INT high0 = h1; + unsigned int prec = TYPE_PRECISION (type); + int sign_extended_type; + + /* Size types *are* sign extended. */ + sign_extended_type = (!TYPE_UNSIGNED (type) + || (TREE_CODE (type) == INTEGER_TYPE + && TYPE_IS_SIZETYPE (type))); + + /* First clear all bits that are beyond the type's precision. */ + if (prec >= 2 * HOST_BITS_PER_WIDE_INT) + ; + else if (prec > HOST_BITS_PER_WIDE_INT) + h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); + else + { + h1 = 0; + if (prec < HOST_BITS_PER_WIDE_INT) + l1 &= ~((HOST_WIDE_INT) (-1) << prec); + } + + /* Then do sign extension if necessary. */ + if (!sign_extended_type) + /* No sign extension */; + else if (prec >= 2 * HOST_BITS_PER_WIDE_INT) + /* Correct width already. */; + else if (prec > HOST_BITS_PER_WIDE_INT) + { + /* Sign extend top half? */ + if (h1 & ((unsigned HOST_WIDE_INT)1 + << (prec - HOST_BITS_PER_WIDE_INT - 1))) + h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT); + } + else if (prec == HOST_BITS_PER_WIDE_INT) + { + if ((HOST_WIDE_INT)l1 < 0) + h1 = -1; + } + else + { + /* Sign extend bottom half? */ + if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1))) + { + h1 = -1; + l1 |= (HOST_WIDE_INT)(-1) << prec; + } + } + + *lv = l1; + *hv = h1; + + /* If the value didn't fit, signal overflow. */ + return l1 != low0 || h1 != high0; +} + +/* We force the double-int HIGH:LOW to the range of the type TYPE by + sign or zero extending it. + OVERFLOWABLE indicates if we are interested + in overflow of the value, when >0 we are only interested in signed + overflow, for <0 we are interested in any overflow. OVERFLOWED + indicates whether overflow has already occurred. CONST_OVERFLOWED + indicates whether constant overflow has already occurred. We force + T's value to be within range of T's type (by setting to 0 or 1 all + the bits outside the type's range). We set TREE_OVERFLOWED if, + OVERFLOWED is nonzero, + or OVERFLOWABLE is >0 and signed overflow occurs + or OVERFLOWABLE is <0 and any overflow occurs + We return a new tree node for the extended double-int. The node + is shared if no overflow flags are set. */ + +tree +force_fit_type_double (tree type, unsigned HOST_WIDE_INT low, + HOST_WIDE_INT high, int overflowable, + bool overflowed) +{ + int sign_extended_type; + bool overflow; + + /* Size types *are* sign extended. */ + sign_extended_type = (!TYPE_UNSIGNED (type) + || (TREE_CODE (type) == INTEGER_TYPE + && TYPE_IS_SIZETYPE (type))); + + overflow = fit_double_type (low, high, &low, &high, type); + + /* If we need to set overflow flags, return a new unshared node. */ + if (overflowed || overflow) + { + if (overflowed + || overflowable < 0 + || (overflowable > 0 && sign_extended_type)) + { + tree t = make_node (INTEGER_CST); + TREE_INT_CST_LOW (t) = low; + TREE_INT_CST_HIGH (t) = high; + TREE_TYPE (t) = type; + TREE_OVERFLOW (t) = 1; + return t; + } + } + + /* Else build a shared node. */ + return build_int_cst_wide (type, low, high); +} + +/* Add two doubleword integers with doubleword result. + Return nonzero if the operation overflows according to UNSIGNED_P. + Each argument is given as two `HOST_WIDE_INT' pieces. + One argument is L1 and H1; the other, L2 and H2. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool unsigned_p) +{ + unsigned HOST_WIDE_INT l; + HOST_WIDE_INT h; + + l = l1 + l2; + h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1 + + (unsigned HOST_WIDE_INT) h2 + + (l < l1)); + + *lv = l; + *hv = h; + + if (unsigned_p) + return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1 + || (h == h1 + && l < l1)); + else + return OVERFLOW_SUM_SIGN (h1, h2, h); +} + +/* Negate a doubleword integer with doubleword result. + Return nonzero if the operation overflows, assuming it's signed. + The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) +{ + if (l1 == 0) + { + *lv = 0; + *hv = - h1; + return (*hv & h1) < 0; + } + else + { + *lv = -l1; + *hv = ~h1; + return 0; + } +} + +/* Multiply two doubleword integers with doubleword result. + Return nonzero if the operation overflows according to UNSIGNED_P. + Each argument is given as two `HOST_WIDE_INT' pieces. + One argument is L1 and H1; the other, L2 and H2. + The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +int +mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool unsigned_p) +{ + HOST_WIDE_INT arg1[4]; + HOST_WIDE_INT arg2[4]; + HOST_WIDE_INT prod[4 * 2]; + unsigned HOST_WIDE_INT carry; + int i, j, k; + unsigned HOST_WIDE_INT toplow, neglow; + HOST_WIDE_INT tophigh, neghigh; + + encode (arg1, l1, h1); + encode (arg2, l2, h2); + + memset (prod, 0, sizeof prod); + + for (i = 0; i < 4; i++) + { + carry = 0; + for (j = 0; j < 4; j++) + { + k = i + j; + /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */ + carry += arg1[i] * arg2[j]; + /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */ + carry += prod[k]; + prod[k] = LOWPART (carry); + carry = HIGHPART (carry); + } + prod[i + 4] = carry; + } + + decode (prod, lv, hv); + decode (prod + 4, &toplow, &tophigh); + + /* Unsigned overflow is immediate. */ + if (unsigned_p) + return (toplow | tophigh) != 0; + + /* Check for signed overflow by calculating the signed representation of the + top half of the result; it should agree with the low half's sign bit. */ + if (h1 < 0) + { + neg_double (l2, h2, &neglow, &neghigh); + add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); + } + if (h2 < 0) + { + neg_double (l1, h1, &neglow, &neghigh); + add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); + } + return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0; +} + +/* Shift the doubleword integer in L1, H1 left by COUNT places + keeping only PREC bits of result. + Shift right if COUNT is negative. + ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith) +{ + unsigned HOST_WIDE_INT signmask; + + if (count < 0) + { + rshift_double (l1, h1, -count, prec, lv, hv, arith); + return; + } + + if (SHIFT_COUNT_TRUNCATED) + count %= prec; + + if (count >= 2 * HOST_BITS_PER_WIDE_INT) + { + /* Shifting by the host word size is undefined according to the + ANSI standard, so we must handle this as a special case. */ + *hv = 0; + *lv = 0; + } + else if (count >= HOST_BITS_PER_WIDE_INT) + { + *hv = l1 << (count - HOST_BITS_PER_WIDE_INT); + *lv = 0; + } + else + { + *hv = (((unsigned HOST_WIDE_INT) h1 << count) + | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); + *lv = l1 << count; + } + + /* Sign extend all bits that are beyond the precision. */ + + signmask = -((prec > HOST_BITS_PER_WIDE_INT + ? ((unsigned HOST_WIDE_INT) *hv + >> (prec - HOST_BITS_PER_WIDE_INT - 1)) + : (*lv >> (prec - 1))) & 1); + + if (prec >= 2 * HOST_BITS_PER_WIDE_INT) + ; + else if (prec >= HOST_BITS_PER_WIDE_INT) + { + *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); + *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = signmask; + *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec); + *lv |= signmask << prec; + } +} + +/* Shift the doubleword integer in L1, H1 right by COUNT places + keeping only PREC bits of result. Shift left if COUNT is negative. + ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, + bool arith) +{ + unsigned HOST_WIDE_INT signmask; + + if (count < 0) + { + lshift_double (l1, h1, -count, prec, lv, hv, arith); + return; + } + + signmask = (arith + ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1)) + : 0); + + if (SHIFT_COUNT_TRUNCATED) + count %= prec; + + if (count >= 2 * HOST_BITS_PER_WIDE_INT) + { + /* Shifting by the host word size is undefined according to the + ANSI standard, so we must handle this as a special case. */ + *hv = 0; + *lv = 0; + } + else if (count >= HOST_BITS_PER_WIDE_INT) + { + *hv = 0; + *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = (unsigned HOST_WIDE_INT) h1 >> count; + *lv = ((l1 >> count) + | ((unsigned HOST_WIDE_INT) h1 + << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); + } + + /* Zero / sign extend all bits that are beyond the precision. */ + + if (count >= (HOST_WIDE_INT)prec) + { + *hv = signmask; + *lv = signmask; + } + else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT) + ; + else if ((prec - count) >= HOST_BITS_PER_WIDE_INT) + { + *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT)); + *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT); + } + else + { + *hv = signmask; + *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count)); + *lv |= signmask << (prec - count); + } +} + +/* Rotate the doubleword integer in L1, H1 left by COUNT places + keeping only PREC bits of result. + Rotate right if COUNT is negative. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) +{ + unsigned HOST_WIDE_INT s1l, s2l; + HOST_WIDE_INT s1h, s2h; + + count %= prec; + if (count < 0) + count += prec; + + lshift_double (l1, h1, count, prec, &s1l, &s1h, 0); + rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0); + *lv = s1l | s2l; + *hv = s1h | s2h; +} + +/* Rotate the doubleword integer in L1, H1 left by COUNT places + keeping only PREC bits of result. COUNT must be positive. + Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ + +void +rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, + HOST_WIDE_INT count, unsigned int prec, + unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) +{ + unsigned HOST_WIDE_INT s1l, s2l; + HOST_WIDE_INT s1h, s2h; + + count %= prec; + if (count < 0) + count += prec; + + rshift_double (l1, h1, count, prec, &s1l, &s1h, 0); + lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0); + *lv = s1l | s2l; + *hv = s1h | s2h; +} + +/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN + for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM). + CODE is a tree code for a kind of division, one of + TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR + or EXACT_DIV_EXPR + It controls how the quotient is rounded to an integer. + Return nonzero if the operation overflows. + UNS nonzero says do unsigned division. */ + +int +div_and_round_double (unsigned code, int uns, + /* num == numerator == dividend */ + unsigned HOST_WIDE_INT lnum_orig, + HOST_WIDE_INT hnum_orig, + /* den == denominator == divisor */ + unsigned HOST_WIDE_INT lden_orig, + HOST_WIDE_INT hden_orig, + unsigned HOST_WIDE_INT *lquo, + HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem, + HOST_WIDE_INT *hrem) +{ + int quo_neg = 0; + HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */ + HOST_WIDE_INT den[4], quo[4]; + int i, j; + unsigned HOST_WIDE_INT work; + unsigned HOST_WIDE_INT carry = 0; + unsigned HOST_WIDE_INT lnum = lnum_orig; + HOST_WIDE_INT hnum = hnum_orig; + unsigned HOST_WIDE_INT lden = lden_orig; + HOST_WIDE_INT hden = hden_orig; + int overflow = 0; + + if (hden == 0 && lden == 0) + overflow = 1, lden = 1; + + /* Calculate quotient sign and convert operands to unsigned. */ + if (!uns) + { + if (hnum < 0) + { + quo_neg = ~ quo_neg; + /* (minimum integer) / (-1) is the only overflow case. */ + if (neg_double (lnum, hnum, &lnum, &hnum) + && ((HOST_WIDE_INT) lden & hden) == -1) + overflow = 1; + } + if (hden < 0) + { + quo_neg = ~ quo_neg; + neg_double (lden, hden, &lden, &hden); + } + } + + if (hnum == 0 && hden == 0) + { /* single precision */ + *hquo = *hrem = 0; + /* This unsigned division rounds toward zero. */ + *lquo = lnum / lden; + goto finish_up; + } + + if (hnum == 0) + { /* trivial case: dividend < divisor */ + /* hden != 0 already checked. */ + *hquo = *lquo = 0; + *hrem = hnum; + *lrem = lnum; + goto finish_up; + } + + memset (quo, 0, sizeof quo); + + memset (num, 0, sizeof num); /* to zero 9th element */ + memset (den, 0, sizeof den); + + encode (num, lnum, hnum); + encode (den, lden, hden); + + /* Special code for when the divisor < BASE. */ + if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE) + { + /* hnum != 0 already checked. */ + for (i = 4 - 1; i >= 0; i--) + { + work = num[i] + carry * BASE; + quo[i] = work / lden; + carry = work % lden; + } + } + else + { + /* Full double precision division, + with thanks to Don Knuth's "Seminumerical Algorithms". */ + int num_hi_sig, den_hi_sig; + unsigned HOST_WIDE_INT quo_est, scale; + + /* Find the highest nonzero divisor digit. */ + for (i = 4 - 1;; i--) + if (den[i] != 0) + { + den_hi_sig = i; + break; + } + + /* Insure that the first digit of the divisor is at least BASE/2. + This is required by the quotient digit estimation algorithm. */ + + scale = BASE / (den[den_hi_sig] + 1); + if (scale > 1) + { /* scale divisor and dividend */ + carry = 0; + for (i = 0; i <= 4 - 1; i++) + { + work = (num[i] * scale) + carry; + num[i] = LOWPART (work); + carry = HIGHPART (work); + } + + num[4] = carry; + carry = 0; + for (i = 0; i <= 4 - 1; i++) + { + work = (den[i] * scale) + carry; + den[i] = LOWPART (work); + carry = HIGHPART (work); + if (den[i] != 0) den_hi_sig = i; + } + } + + num_hi_sig = 4; + + /* Main loop */ + for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) + { + /* Guess the next quotient digit, quo_est, by dividing the first + two remaining dividend digits by the high order quotient digit. + quo_est is never low and is at most 2 high. */ + unsigned HOST_WIDE_INT tmp; + + num_hi_sig = i + den_hi_sig + 1; + work = num[num_hi_sig] * BASE + num[num_hi_sig - 1]; + if (num[num_hi_sig] != den[den_hi_sig]) + quo_est = work / den[den_hi_sig]; + else + quo_est = BASE - 1; + + /* Refine quo_est so it's usually correct, and at most one high. */ + tmp = work - quo_est * den[den_hi_sig]; + if (tmp < BASE + && (den[den_hi_sig - 1] * quo_est + > (tmp * BASE + num[num_hi_sig - 2]))) + quo_est--; + + /* Try QUO_EST as the quotient digit, by multiplying the + divisor by QUO_EST and subtracting from the remaining dividend. + Keep in mind that QUO_EST is the I - 1st digit. */ + + carry = 0; + for (j = 0; j <= den_hi_sig; j++) + { + work = quo_est * den[j] + carry; + carry = HIGHPART (work); + work = num[i + j] - LOWPART (work); + num[i + j] = LOWPART (work); + carry += HIGHPART (work) != 0; + } + + /* If quo_est was high by one, then num[i] went negative and + we need to correct things. */ + if (num[num_hi_sig] < (HOST_WIDE_INT) carry) + { + quo_est--; + carry = 0; /* add divisor back in */ + for (j = 0; j <= den_hi_sig; j++) + { + work = num[i + j] + den[j] + carry; + carry = HIGHPART (work); + num[i + j] = LOWPART (work); + } + + num [num_hi_sig] += carry; + } + + /* Store the quotient digit. */ + quo[i] = quo_est; + } + } + + decode (quo, lquo, hquo); + + finish_up: + /* If result is negative, make it so. */ + if (quo_neg) + neg_double (*lquo, *hquo, lquo, hquo); + + /* Compute trial remainder: rem = num - (quo * den) */ + mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); + neg_double (*lrem, *hrem, lrem, hrem); + add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); + + switch (code) + { + case TRUNC_DIV_EXPR: + case TRUNC_MOD_EXPR: /* round toward zero */ + case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */ + return overflow; + + case FLOOR_DIV_EXPR: + case FLOOR_MOD_EXPR: /* round toward negative infinity */ + if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */ + { + /* quo = quo - 1; */ + add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, + lquo, hquo); + } + else + return overflow; + break; + + case CEIL_DIV_EXPR: + case CEIL_MOD_EXPR: /* round toward positive infinity */ + if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */ + { + add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, + lquo, hquo); + } + else + return overflow; + break; + + case ROUND_DIV_EXPR: + case ROUND_MOD_EXPR: /* round to closest integer */ + { + unsigned HOST_WIDE_INT labs_rem = *lrem; + HOST_WIDE_INT habs_rem = *hrem; + unsigned HOST_WIDE_INT labs_den = lden, ltwice; + HOST_WIDE_INT habs_den = hden, htwice; + + /* Get absolute values. */ + if (*hrem < 0) + neg_double (*lrem, *hrem, &labs_rem, &habs_rem); + if (hden < 0) + neg_double (lden, hden, &labs_den, &habs_den); + + /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */ + mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0, + labs_rem, habs_rem, <wice, &htwice); + + if (((unsigned HOST_WIDE_INT) habs_den + < (unsigned HOST_WIDE_INT) htwice) + || (((unsigned HOST_WIDE_INT) habs_den + == (unsigned HOST_WIDE_INT) htwice) + && (labs_den <= ltwice))) + { + if (*hquo < 0) + /* quo = quo - 1; */ + add_double (*lquo, *hquo, + (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); + else + /* quo = quo + 1; */ + add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, + lquo, hquo); + } + else + return overflow; + } + break; + + default: + gcc_unreachable (); + } + + /* Compute true remainder: rem = num - (quo * den) */ + mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); + neg_double (*lrem, *hrem, lrem, hrem); + add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); + return overflow; +} + + /* Returns mask for PREC bits. */ double_int @@ -211,7 +946,7 @@ double_int_divmod (double_int a, double_int b, bool uns, unsigned code, { double_int ret; - div_and_round_double ((enum tree_code) code, uns, a.low, a.high, + div_and_round_double (code, uns, a.low, a.high, b.low, b.high, &ret.low, &ret.high, &mod->low, &mod->high); return ret; |