summaryrefslogtreecommitdiff
path: root/gcc/fold-const.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/fold-const.c')
-rw-r--r--gcc/fold-const.c717
1 files changed, 0 insertions, 717 deletions
diff --git a/gcc/fold-const.c b/gcc/fold-const.c
index c3fcaa58c96..c1af8248a39 100644
--- a/gcc/fold-const.c
+++ b/gcc/fold-const.c
@@ -93,8 +93,6 @@ enum comparison_code {
COMPCODE_TRUE = 15
};
-static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
-static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
static bool negate_mathfn_p (enum built_in_function);
static bool negate_expr_p (tree);
static tree negate_expr (tree);
@@ -159,721 +157,6 @@ static tree fold_convert_const (enum tree_code, tree, tree);
sign. */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
-/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
- We do that by representing the two-word integer in 4 words, with only
- HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
- number. The value of the word is LOWPART + HIGHPART * BASE. */
-
-#define LOWPART(x) \
- ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
-#define HIGHPART(x) \
- ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
-#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
-
-/* Unpack a two-word integer into 4 words.
- LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
- WORDS points to the array of HOST_WIDE_INTs. */
-
-static void
-encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
-{
- words[0] = LOWPART (low);
- words[1] = HIGHPART (low);
- words[2] = LOWPART (hi);
- words[3] = HIGHPART (hi);
-}
-
-/* Pack an array of 4 words into a two-word integer.
- WORDS points to the array of words.
- The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
-
-static void
-decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
- HOST_WIDE_INT *hi)
-{
- *low = words[0] + words[1] * BASE;
- *hi = words[2] + words[3] * BASE;
-}
-
-/* Force the double-word integer L1, H1 to be within the range of the
- integer type TYPE. Stores the properly truncated and sign-extended
- double-word integer in *LV, *HV. Returns true if the operation
- overflows, that is, argument and result are different. */
-
-int
-fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type)
-{
- unsigned HOST_WIDE_INT low0 = l1;
- HOST_WIDE_INT high0 = h1;
- unsigned int prec = TYPE_PRECISION (type);
- int sign_extended_type;
-
- /* Size types *are* sign extended. */
- sign_extended_type = (!TYPE_UNSIGNED (type)
- || (TREE_CODE (type) == INTEGER_TYPE
- && TYPE_IS_SIZETYPE (type)));
-
- /* First clear all bits that are beyond the type's precision. */
- if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
- ;
- else if (prec > HOST_BITS_PER_WIDE_INT)
- h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
- else
- {
- h1 = 0;
- if (prec < HOST_BITS_PER_WIDE_INT)
- l1 &= ~((HOST_WIDE_INT) (-1) << prec);
- }
-
- /* Then do sign extension if necessary. */
- if (!sign_extended_type)
- /* No sign extension */;
- else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
- /* Correct width already. */;
- else if (prec > HOST_BITS_PER_WIDE_INT)
- {
- /* Sign extend top half? */
- if (h1 & ((unsigned HOST_WIDE_INT)1
- << (prec - HOST_BITS_PER_WIDE_INT - 1)))
- h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
- }
- else if (prec == HOST_BITS_PER_WIDE_INT)
- {
- if ((HOST_WIDE_INT)l1 < 0)
- h1 = -1;
- }
- else
- {
- /* Sign extend bottom half? */
- if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
- {
- h1 = -1;
- l1 |= (HOST_WIDE_INT)(-1) << prec;
- }
- }
-
- *lv = l1;
- *hv = h1;
-
- /* If the value didn't fit, signal overflow. */
- return l1 != low0 || h1 != high0;
-}
-
-/* We force the double-int HIGH:LOW to the range of the type TYPE by
- sign or zero extending it.
- OVERFLOWABLE indicates if we are interested
- in overflow of the value, when >0 we are only interested in signed
- overflow, for <0 we are interested in any overflow. OVERFLOWED
- indicates whether overflow has already occurred. CONST_OVERFLOWED
- indicates whether constant overflow has already occurred. We force
- T's value to be within range of T's type (by setting to 0 or 1 all
- the bits outside the type's range). We set TREE_OVERFLOWED if,
- OVERFLOWED is nonzero,
- or OVERFLOWABLE is >0 and signed overflow occurs
- or OVERFLOWABLE is <0 and any overflow occurs
- We return a new tree node for the extended double-int. The node
- is shared if no overflow flags are set. */
-
-tree
-force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
- HOST_WIDE_INT high, int overflowable,
- bool overflowed)
-{
- int sign_extended_type;
- bool overflow;
-
- /* Size types *are* sign extended. */
- sign_extended_type = (!TYPE_UNSIGNED (type)
- || (TREE_CODE (type) == INTEGER_TYPE
- && TYPE_IS_SIZETYPE (type)));
-
- overflow = fit_double_type (low, high, &low, &high, type);
-
- /* If we need to set overflow flags, return a new unshared node. */
- if (overflowed || overflow)
- {
- if (overflowed
- || overflowable < 0
- || (overflowable > 0 && sign_extended_type))
- {
- tree t = make_node (INTEGER_CST);
- TREE_INT_CST_LOW (t) = low;
- TREE_INT_CST_HIGH (t) = high;
- TREE_TYPE (t) = type;
- TREE_OVERFLOW (t) = 1;
- return t;
- }
- }
-
- /* Else build a shared node. */
- return build_int_cst_wide (type, low, high);
-}
-
-/* Add two doubleword integers with doubleword result.
- Return nonzero if the operation overflows according to UNSIGNED_P.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- bool unsigned_p)
-{
- unsigned HOST_WIDE_INT l;
- HOST_WIDE_INT h;
-
- l = l1 + l2;
- h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
- + (unsigned HOST_WIDE_INT) h2
- + (l < l1));
-
- *lv = l;
- *hv = h;
-
- if (unsigned_p)
- return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
- || (h == h1
- && l < l1));
- else
- return OVERFLOW_SUM_SIGN (h1, h2, h);
-}
-
-/* Negate a doubleword integer with doubleword result.
- Return nonzero if the operation overflows, assuming it's signed.
- The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
-{
- if (l1 == 0)
- {
- *lv = 0;
- *hv = - h1;
- return (*hv & h1) < 0;
- }
- else
- {
- *lv = -l1;
- *hv = ~h1;
- return 0;
- }
-}
-
-/* Multiply two doubleword integers with doubleword result.
- Return nonzero if the operation overflows according to UNSIGNED_P.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- bool unsigned_p)
-{
- HOST_WIDE_INT arg1[4];
- HOST_WIDE_INT arg2[4];
- HOST_WIDE_INT prod[4 * 2];
- unsigned HOST_WIDE_INT carry;
- int i, j, k;
- unsigned HOST_WIDE_INT toplow, neglow;
- HOST_WIDE_INT tophigh, neghigh;
-
- encode (arg1, l1, h1);
- encode (arg2, l2, h2);
-
- memset (prod, 0, sizeof prod);
-
- for (i = 0; i < 4; i++)
- {
- carry = 0;
- for (j = 0; j < 4; j++)
- {
- k = i + j;
- /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
- carry += arg1[i] * arg2[j];
- /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
- carry += prod[k];
- prod[k] = LOWPART (carry);
- carry = HIGHPART (carry);
- }
- prod[i + 4] = carry;
- }
-
- decode (prod, lv, hv);
- decode (prod + 4, &toplow, &tophigh);
-
- /* Unsigned overflow is immediate. */
- if (unsigned_p)
- return (toplow | tophigh) != 0;
-
- /* Check for signed overflow by calculating the signed representation of the
- top half of the result; it should agree with the low half's sign bit. */
- if (h1 < 0)
- {
- neg_double (l2, h2, &neglow, &neghigh);
- add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
- }
- if (h2 < 0)
- {
- neg_double (l1, h1, &neglow, &neghigh);
- add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
- }
- return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
-}
-
-/* Shift the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result.
- Shift right if COUNT is negative.
- ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith)
-{
- unsigned HOST_WIDE_INT signmask;
-
- if (count < 0)
- {
- rshift_double (l1, h1, -count, prec, lv, hv, arith);
- return;
- }
-
- if (SHIFT_COUNT_TRUNCATED)
- count %= prec;
-
- if (count >= 2 * HOST_BITS_PER_WIDE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- *hv = 0;
- *lv = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
- *lv = 0;
- }
- else
- {
- *hv = (((unsigned HOST_WIDE_INT) h1 << count)
- | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
- *lv = l1 << count;
- }
-
- /* Sign extend all bits that are beyond the precision. */
-
- signmask = -((prec > HOST_BITS_PER_WIDE_INT
- ? ((unsigned HOST_WIDE_INT) *hv
- >> (prec - HOST_BITS_PER_WIDE_INT - 1))
- : (*lv >> (prec - 1))) & 1);
-
- if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
- ;
- else if (prec >= HOST_BITS_PER_WIDE_INT)
- {
- *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
- *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = signmask;
- *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
- *lv |= signmask << prec;
- }
-}
-
-/* Shift the doubleword integer in L1, H1 right by COUNT places
- keeping only PREC bits of result. Shift left if COUNT is negative.
- ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
- bool arith)
-{
- unsigned HOST_WIDE_INT signmask;
-
- signmask = (arith
- ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
- : 0);
-
- if (SHIFT_COUNT_TRUNCATED)
- count %= prec;
-
- if (count >= 2 * HOST_BITS_PER_WIDE_INT)
- {
- /* Shifting by the host word size is undefined according to the
- ANSI standard, so we must handle this as a special case. */
- *hv = 0;
- *lv = 0;
- }
- else if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = 0;
- *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = (unsigned HOST_WIDE_INT) h1 >> count;
- *lv = ((l1 >> count)
- | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
- }
-
- /* Zero / sign extend all bits that are beyond the precision. */
-
- if (count >= (HOST_WIDE_INT)prec)
- {
- *hv = signmask;
- *lv = signmask;
- }
- else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
- ;
- else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
- {
- *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
- *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
- }
- else
- {
- *hv = signmask;
- *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
- *lv |= signmask << (prec - count);
- }
-}
-
-/* Rotate the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result.
- Rotate right if COUNT is negative.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
-{
- unsigned HOST_WIDE_INT s1l, s2l;
- HOST_WIDE_INT s1h, s2h;
-
- count %= prec;
- if (count < 0)
- count += prec;
-
- lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
- rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
- *lv = s1l | s2l;
- *hv = s1h | s2h;
-}
-
-/* Rotate the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result. COUNT must be positive.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
- HOST_WIDE_INT count, unsigned int prec,
- unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
-{
- unsigned HOST_WIDE_INT s1l, s2l;
- HOST_WIDE_INT s1h, s2h;
-
- count %= prec;
- if (count < 0)
- count += prec;
-
- rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
- lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
- *lv = s1l | s2l;
- *hv = s1h | s2h;
-}
-
-/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
- for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
- CODE is a tree code for a kind of division, one of
- TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
- or EXACT_DIV_EXPR
- It controls how the quotient is rounded to an integer.
- Return nonzero if the operation overflows.
- UNS nonzero says do unsigned division. */
-
-int
-div_and_round_double (enum tree_code code, int uns,
- unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
- HOST_WIDE_INT hnum_orig,
- unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
- HOST_WIDE_INT hden_orig,
- unsigned HOST_WIDE_INT *lquo,
- HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
- HOST_WIDE_INT *hrem)
-{
- int quo_neg = 0;
- HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
- HOST_WIDE_INT den[4], quo[4];
- int i, j;
- unsigned HOST_WIDE_INT work;
- unsigned HOST_WIDE_INT carry = 0;
- unsigned HOST_WIDE_INT lnum = lnum_orig;
- HOST_WIDE_INT hnum = hnum_orig;
- unsigned HOST_WIDE_INT lden = lden_orig;
- HOST_WIDE_INT hden = hden_orig;
- int overflow = 0;
-
- if (hden == 0 && lden == 0)
- overflow = 1, lden = 1;
-
- /* Calculate quotient sign and convert operands to unsigned. */
- if (!uns)
- {
- if (hnum < 0)
- {
- quo_neg = ~ quo_neg;
- /* (minimum integer) / (-1) is the only overflow case. */
- if (neg_double (lnum, hnum, &lnum, &hnum)
- && ((HOST_WIDE_INT) lden & hden) == -1)
- overflow = 1;
- }
- if (hden < 0)
- {
- quo_neg = ~ quo_neg;
- neg_double (lden, hden, &lden, &hden);
- }
- }
-
- if (hnum == 0 && hden == 0)
- { /* single precision */
- *hquo = *hrem = 0;
- /* This unsigned division rounds toward zero. */
- *lquo = lnum / lden;
- goto finish_up;
- }
-
- if (hnum == 0)
- { /* trivial case: dividend < divisor */
- /* hden != 0 already checked. */
- *hquo = *lquo = 0;
- *hrem = hnum;
- *lrem = lnum;
- goto finish_up;
- }
-
- memset (quo, 0, sizeof quo);
-
- memset (num, 0, sizeof num); /* to zero 9th element */
- memset (den, 0, sizeof den);
-
- encode (num, lnum, hnum);
- encode (den, lden, hden);
-
- /* Special code for when the divisor < BASE. */
- if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
- {
- /* hnum != 0 already checked. */
- for (i = 4 - 1; i >= 0; i--)
- {
- work = num[i] + carry * BASE;
- quo[i] = work / lden;
- carry = work % lden;
- }
- }
- else
- {
- /* Full double precision division,
- with thanks to Don Knuth's "Seminumerical Algorithms". */
- int num_hi_sig, den_hi_sig;
- unsigned HOST_WIDE_INT quo_est, scale;
-
- /* Find the highest nonzero divisor digit. */
- for (i = 4 - 1;; i--)
- if (den[i] != 0)
- {
- den_hi_sig = i;
- break;
- }
-
- /* Insure that the first digit of the divisor is at least BASE/2.
- This is required by the quotient digit estimation algorithm. */
-
- scale = BASE / (den[den_hi_sig] + 1);
- if (scale > 1)
- { /* scale divisor and dividend */
- carry = 0;
- for (i = 0; i <= 4 - 1; i++)
- {
- work = (num[i] * scale) + carry;
- num[i] = LOWPART (work);
- carry = HIGHPART (work);
- }
-
- num[4] = carry;
- carry = 0;
- for (i = 0; i <= 4 - 1; i++)
- {
- work = (den[i] * scale) + carry;
- den[i] = LOWPART (work);
- carry = HIGHPART (work);
- if (den[i] != 0) den_hi_sig = i;
- }
- }
-
- num_hi_sig = 4;
-
- /* Main loop */
- for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
- {
- /* Guess the next quotient digit, quo_est, by dividing the first
- two remaining dividend digits by the high order quotient digit.
- quo_est is never low and is at most 2 high. */
- unsigned HOST_WIDE_INT tmp;
-
- num_hi_sig = i + den_hi_sig + 1;
- work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
- if (num[num_hi_sig] != den[den_hi_sig])
- quo_est = work / den[den_hi_sig];
- else
- quo_est = BASE - 1;
-
- /* Refine quo_est so it's usually correct, and at most one high. */
- tmp = work - quo_est * den[den_hi_sig];
- if (tmp < BASE
- && (den[den_hi_sig - 1] * quo_est
- > (tmp * BASE + num[num_hi_sig - 2])))
- quo_est--;
-
- /* Try QUO_EST as the quotient digit, by multiplying the
- divisor by QUO_EST and subtracting from the remaining dividend.
- Keep in mind that QUO_EST is the I - 1st digit. */
-
- carry = 0;
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = quo_est * den[j] + carry;
- carry = HIGHPART (work);
- work = num[i + j] - LOWPART (work);
- num[i + j] = LOWPART (work);
- carry += HIGHPART (work) != 0;
- }
-
- /* If quo_est was high by one, then num[i] went negative and
- we need to correct things. */
- if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
- {
- quo_est--;
- carry = 0; /* add divisor back in */
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = num[i + j] + den[j] + carry;
- carry = HIGHPART (work);
- num[i + j] = LOWPART (work);
- }
-
- num [num_hi_sig] += carry;
- }
-
- /* Store the quotient digit. */
- quo[i] = quo_est;
- }
- }
-
- decode (quo, lquo, hquo);
-
- finish_up:
- /* If result is negative, make it so. */
- if (quo_neg)
- neg_double (*lquo, *hquo, lquo, hquo);
-
- /* Compute trial remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
-
- switch (code)
- {
- case TRUNC_DIV_EXPR:
- case TRUNC_MOD_EXPR: /* round toward zero */
- case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
- return overflow;
-
- case FLOOR_DIV_EXPR:
- case FLOOR_MOD_EXPR: /* round toward negative infinity */
- if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
- {
- /* quo = quo - 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
- lquo, hquo);
- }
- else
- return overflow;
- break;
-
- case CEIL_DIV_EXPR:
- case CEIL_MOD_EXPR: /* round toward positive infinity */
- if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
- {
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else
- return overflow;
- break;
-
- case ROUND_DIV_EXPR:
- case ROUND_MOD_EXPR: /* round to closest integer */
- {
- unsigned HOST_WIDE_INT labs_rem = *lrem;
- HOST_WIDE_INT habs_rem = *hrem;
- unsigned HOST_WIDE_INT labs_den = lden, ltwice;
- HOST_WIDE_INT habs_den = hden, htwice;
-
- /* Get absolute values. */
- if (*hrem < 0)
- neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
- if (hden < 0)
- neg_double (lden, hden, &labs_den, &habs_den);
-
- /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
- mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
- labs_rem, habs_rem, &ltwice, &htwice);
-
- if (((unsigned HOST_WIDE_INT) habs_den
- < (unsigned HOST_WIDE_INT) htwice)
- || (((unsigned HOST_WIDE_INT) habs_den
- == (unsigned HOST_WIDE_INT) htwice)
- && (labs_den <= ltwice)))
- {
- if (*hquo < 0)
- /* quo = quo - 1; */
- add_double (*lquo, *hquo,
- (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
- else
- /* quo = quo + 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else
- return overflow;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* Compute true remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
- return overflow;
-}
-
/* If ARG2 divides ARG1 with zero remainder, carries out the division
of type CODE and returns the quotient.
Otherwise returns NULL_TREE. */