diff options
Diffstat (limited to 'gcc/fold-const.c')
-rw-r--r-- | gcc/fold-const.c | 717 |
1 files changed, 0 insertions, 717 deletions
diff --git a/gcc/fold-const.c b/gcc/fold-const.c index c3fcaa58c96..c1af8248a39 100644 --- a/gcc/fold-const.c +++ b/gcc/fold-const.c @@ -93,8 +93,6 @@ enum comparison_code { COMPCODE_TRUE = 15 }; -static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT); -static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *); static bool negate_mathfn_p (enum built_in_function); static bool negate_expr_p (tree); static tree negate_expr (tree); @@ -159,721 +157,6 @@ static tree fold_convert_const (enum tree_code, tree, tree); sign. */ #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0) -/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic. - We do that by representing the two-word integer in 4 words, with only - HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive - number. The value of the word is LOWPART + HIGHPART * BASE. */ - -#define LOWPART(x) \ - ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1)) -#define HIGHPART(x) \ - ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2) -#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2) - -/* Unpack a two-word integer into 4 words. - LOW and HI are the integer, as two `HOST_WIDE_INT' pieces. - WORDS points to the array of HOST_WIDE_INTs. */ - -static void -encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) -{ - words[0] = LOWPART (low); - words[1] = HIGHPART (low); - words[2] = LOWPART (hi); - words[3] = HIGHPART (hi); -} - -/* Pack an array of 4 words into a two-word integer. - WORDS points to the array of words. - The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */ - -static void -decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low, - HOST_WIDE_INT *hi) -{ - *low = words[0] + words[1] * BASE; - *hi = words[2] + words[3] * BASE; -} - -/* Force the double-word integer L1, H1 to be within the range of the - integer type TYPE. Stores the properly truncated and sign-extended - double-word integer in *LV, *HV. Returns true if the operation - overflows, that is, argument and result are different. */ - -int -fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type) -{ - unsigned HOST_WIDE_INT low0 = l1; - HOST_WIDE_INT high0 = h1; - unsigned int prec = TYPE_PRECISION (type); - int sign_extended_type; - - /* Size types *are* sign extended. */ - sign_extended_type = (!TYPE_UNSIGNED (type) - || (TREE_CODE (type) == INTEGER_TYPE - && TYPE_IS_SIZETYPE (type))); - - /* First clear all bits that are beyond the type's precision. */ - if (prec >= 2 * HOST_BITS_PER_WIDE_INT) - ; - else if (prec > HOST_BITS_PER_WIDE_INT) - h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); - else - { - h1 = 0; - if (prec < HOST_BITS_PER_WIDE_INT) - l1 &= ~((HOST_WIDE_INT) (-1) << prec); - } - - /* Then do sign extension if necessary. */ - if (!sign_extended_type) - /* No sign extension */; - else if (prec >= 2 * HOST_BITS_PER_WIDE_INT) - /* Correct width already. */; - else if (prec > HOST_BITS_PER_WIDE_INT) - { - /* Sign extend top half? */ - if (h1 & ((unsigned HOST_WIDE_INT)1 - << (prec - HOST_BITS_PER_WIDE_INT - 1))) - h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT); - } - else if (prec == HOST_BITS_PER_WIDE_INT) - { - if ((HOST_WIDE_INT)l1 < 0) - h1 = -1; - } - else - { - /* Sign extend bottom half? */ - if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1))) - { - h1 = -1; - l1 |= (HOST_WIDE_INT)(-1) << prec; - } - } - - *lv = l1; - *hv = h1; - - /* If the value didn't fit, signal overflow. */ - return l1 != low0 || h1 != high0; -} - -/* We force the double-int HIGH:LOW to the range of the type TYPE by - sign or zero extending it. - OVERFLOWABLE indicates if we are interested - in overflow of the value, when >0 we are only interested in signed - overflow, for <0 we are interested in any overflow. OVERFLOWED - indicates whether overflow has already occurred. CONST_OVERFLOWED - indicates whether constant overflow has already occurred. We force - T's value to be within range of T's type (by setting to 0 or 1 all - the bits outside the type's range). We set TREE_OVERFLOWED if, - OVERFLOWED is nonzero, - or OVERFLOWABLE is >0 and signed overflow occurs - or OVERFLOWABLE is <0 and any overflow occurs - We return a new tree node for the extended double-int. The node - is shared if no overflow flags are set. */ - -tree -force_fit_type_double (tree type, unsigned HOST_WIDE_INT low, - HOST_WIDE_INT high, int overflowable, - bool overflowed) -{ - int sign_extended_type; - bool overflow; - - /* Size types *are* sign extended. */ - sign_extended_type = (!TYPE_UNSIGNED (type) - || (TREE_CODE (type) == INTEGER_TYPE - && TYPE_IS_SIZETYPE (type))); - - overflow = fit_double_type (low, high, &low, &high, type); - - /* If we need to set overflow flags, return a new unshared node. */ - if (overflowed || overflow) - { - if (overflowed - || overflowable < 0 - || (overflowable > 0 && sign_extended_type)) - { - tree t = make_node (INTEGER_CST); - TREE_INT_CST_LOW (t) = low; - TREE_INT_CST_HIGH (t) = high; - TREE_TYPE (t) = type; - TREE_OVERFLOW (t) = 1; - return t; - } - } - - /* Else build a shared node. */ - return build_int_cst_wide (type, low, high); -} - -/* Add two doubleword integers with doubleword result. - Return nonzero if the operation overflows according to UNSIGNED_P. - Each argument is given as two `HOST_WIDE_INT' pieces. - One argument is L1 and H1; the other, L2 and H2. - The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -int -add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, - bool unsigned_p) -{ - unsigned HOST_WIDE_INT l; - HOST_WIDE_INT h; - - l = l1 + l2; - h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1 - + (unsigned HOST_WIDE_INT) h2 - + (l < l1)); - - *lv = l; - *hv = h; - - if (unsigned_p) - return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1 - || (h == h1 - && l < l1)); - else - return OVERFLOW_SUM_SIGN (h1, h2, h); -} - -/* Negate a doubleword integer with doubleword result. - Return nonzero if the operation overflows, assuming it's signed. - The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1. - The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -int -neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) -{ - if (l1 == 0) - { - *lv = 0; - *hv = - h1; - return (*hv & h1) < 0; - } - else - { - *lv = -l1; - *hv = ~h1; - return 0; - } -} - -/* Multiply two doubleword integers with doubleword result. - Return nonzero if the operation overflows according to UNSIGNED_P. - Each argument is given as two `HOST_WIDE_INT' pieces. - One argument is L1 and H1; the other, L2 and H2. - The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -int -mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, - bool unsigned_p) -{ - HOST_WIDE_INT arg1[4]; - HOST_WIDE_INT arg2[4]; - HOST_WIDE_INT prod[4 * 2]; - unsigned HOST_WIDE_INT carry; - int i, j, k; - unsigned HOST_WIDE_INT toplow, neglow; - HOST_WIDE_INT tophigh, neghigh; - - encode (arg1, l1, h1); - encode (arg2, l2, h2); - - memset (prod, 0, sizeof prod); - - for (i = 0; i < 4; i++) - { - carry = 0; - for (j = 0; j < 4; j++) - { - k = i + j; - /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */ - carry += arg1[i] * arg2[j]; - /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */ - carry += prod[k]; - prod[k] = LOWPART (carry); - carry = HIGHPART (carry); - } - prod[i + 4] = carry; - } - - decode (prod, lv, hv); - decode (prod + 4, &toplow, &tophigh); - - /* Unsigned overflow is immediate. */ - if (unsigned_p) - return (toplow | tophigh) != 0; - - /* Check for signed overflow by calculating the signed representation of the - top half of the result; it should agree with the low half's sign bit. */ - if (h1 < 0) - { - neg_double (l2, h2, &neglow, &neghigh); - add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); - } - if (h2 < 0) - { - neg_double (l1, h1, &neglow, &neghigh); - add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh); - } - return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0; -} - -/* Shift the doubleword integer in L1, H1 left by COUNT places - keeping only PREC bits of result. - Shift right if COUNT is negative. - ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. - Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -void -lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - HOST_WIDE_INT count, unsigned int prec, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith) -{ - unsigned HOST_WIDE_INT signmask; - - if (count < 0) - { - rshift_double (l1, h1, -count, prec, lv, hv, arith); - return; - } - - if (SHIFT_COUNT_TRUNCATED) - count %= prec; - - if (count >= 2 * HOST_BITS_PER_WIDE_INT) - { - /* Shifting by the host word size is undefined according to the - ANSI standard, so we must handle this as a special case. */ - *hv = 0; - *lv = 0; - } - else if (count >= HOST_BITS_PER_WIDE_INT) - { - *hv = l1 << (count - HOST_BITS_PER_WIDE_INT); - *lv = 0; - } - else - { - *hv = (((unsigned HOST_WIDE_INT) h1 << count) - | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); - *lv = l1 << count; - } - - /* Sign extend all bits that are beyond the precision. */ - - signmask = -((prec > HOST_BITS_PER_WIDE_INT - ? ((unsigned HOST_WIDE_INT) *hv - >> (prec - HOST_BITS_PER_WIDE_INT - 1)) - : (*lv >> (prec - 1))) & 1); - - if (prec >= 2 * HOST_BITS_PER_WIDE_INT) - ; - else if (prec >= HOST_BITS_PER_WIDE_INT) - { - *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); - *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT); - } - else - { - *hv = signmask; - *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec); - *lv |= signmask << prec; - } -} - -/* Shift the doubleword integer in L1, H1 right by COUNT places - keeping only PREC bits of result. Shift left if COUNT is negative. - ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. - Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -void -rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - HOST_WIDE_INT count, unsigned int prec, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, - bool arith) -{ - unsigned HOST_WIDE_INT signmask; - - signmask = (arith - ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1)) - : 0); - - if (SHIFT_COUNT_TRUNCATED) - count %= prec; - - if (count >= 2 * HOST_BITS_PER_WIDE_INT) - { - /* Shifting by the host word size is undefined according to the - ANSI standard, so we must handle this as a special case. */ - *hv = 0; - *lv = 0; - } - else if (count >= HOST_BITS_PER_WIDE_INT) - { - *hv = 0; - *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT); - } - else - { - *hv = (unsigned HOST_WIDE_INT) h1 >> count; - *lv = ((l1 >> count) - | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); - } - - /* Zero / sign extend all bits that are beyond the precision. */ - - if (count >= (HOST_WIDE_INT)prec) - { - *hv = signmask; - *lv = signmask; - } - else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT) - ; - else if ((prec - count) >= HOST_BITS_PER_WIDE_INT) - { - *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT)); - *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT); - } - else - { - *hv = signmask; - *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count)); - *lv |= signmask << (prec - count); - } -} - -/* Rotate the doubleword integer in L1, H1 left by COUNT places - keeping only PREC bits of result. - Rotate right if COUNT is negative. - Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -void -lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - HOST_WIDE_INT count, unsigned int prec, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) -{ - unsigned HOST_WIDE_INT s1l, s2l; - HOST_WIDE_INT s1h, s2h; - - count %= prec; - if (count < 0) - count += prec; - - lshift_double (l1, h1, count, prec, &s1l, &s1h, 0); - rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0); - *lv = s1l | s2l; - *hv = s1h | s2h; -} - -/* Rotate the doubleword integer in L1, H1 left by COUNT places - keeping only PREC bits of result. COUNT must be positive. - Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ - -void -rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, - HOST_WIDE_INT count, unsigned int prec, - unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) -{ - unsigned HOST_WIDE_INT s1l, s2l; - HOST_WIDE_INT s1h, s2h; - - count %= prec; - if (count < 0) - count += prec; - - rshift_double (l1, h1, count, prec, &s1l, &s1h, 0); - lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0); - *lv = s1l | s2l; - *hv = s1h | s2h; -} - -/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN - for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM). - CODE is a tree code for a kind of division, one of - TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR - or EXACT_DIV_EXPR - It controls how the quotient is rounded to an integer. - Return nonzero if the operation overflows. - UNS nonzero says do unsigned division. */ - -int -div_and_round_double (enum tree_code code, int uns, - unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */ - HOST_WIDE_INT hnum_orig, - unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */ - HOST_WIDE_INT hden_orig, - unsigned HOST_WIDE_INT *lquo, - HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem, - HOST_WIDE_INT *hrem) -{ - int quo_neg = 0; - HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */ - HOST_WIDE_INT den[4], quo[4]; - int i, j; - unsigned HOST_WIDE_INT work; - unsigned HOST_WIDE_INT carry = 0; - unsigned HOST_WIDE_INT lnum = lnum_orig; - HOST_WIDE_INT hnum = hnum_orig; - unsigned HOST_WIDE_INT lden = lden_orig; - HOST_WIDE_INT hden = hden_orig; - int overflow = 0; - - if (hden == 0 && lden == 0) - overflow = 1, lden = 1; - - /* Calculate quotient sign and convert operands to unsigned. */ - if (!uns) - { - if (hnum < 0) - { - quo_neg = ~ quo_neg; - /* (minimum integer) / (-1) is the only overflow case. */ - if (neg_double (lnum, hnum, &lnum, &hnum) - && ((HOST_WIDE_INT) lden & hden) == -1) - overflow = 1; - } - if (hden < 0) - { - quo_neg = ~ quo_neg; - neg_double (lden, hden, &lden, &hden); - } - } - - if (hnum == 0 && hden == 0) - { /* single precision */ - *hquo = *hrem = 0; - /* This unsigned division rounds toward zero. */ - *lquo = lnum / lden; - goto finish_up; - } - - if (hnum == 0) - { /* trivial case: dividend < divisor */ - /* hden != 0 already checked. */ - *hquo = *lquo = 0; - *hrem = hnum; - *lrem = lnum; - goto finish_up; - } - - memset (quo, 0, sizeof quo); - - memset (num, 0, sizeof num); /* to zero 9th element */ - memset (den, 0, sizeof den); - - encode (num, lnum, hnum); - encode (den, lden, hden); - - /* Special code for when the divisor < BASE. */ - if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE) - { - /* hnum != 0 already checked. */ - for (i = 4 - 1; i >= 0; i--) - { - work = num[i] + carry * BASE; - quo[i] = work / lden; - carry = work % lden; - } - } - else - { - /* Full double precision division, - with thanks to Don Knuth's "Seminumerical Algorithms". */ - int num_hi_sig, den_hi_sig; - unsigned HOST_WIDE_INT quo_est, scale; - - /* Find the highest nonzero divisor digit. */ - for (i = 4 - 1;; i--) - if (den[i] != 0) - { - den_hi_sig = i; - break; - } - - /* Insure that the first digit of the divisor is at least BASE/2. - This is required by the quotient digit estimation algorithm. */ - - scale = BASE / (den[den_hi_sig] + 1); - if (scale > 1) - { /* scale divisor and dividend */ - carry = 0; - for (i = 0; i <= 4 - 1; i++) - { - work = (num[i] * scale) + carry; - num[i] = LOWPART (work); - carry = HIGHPART (work); - } - - num[4] = carry; - carry = 0; - for (i = 0; i <= 4 - 1; i++) - { - work = (den[i] * scale) + carry; - den[i] = LOWPART (work); - carry = HIGHPART (work); - if (den[i] != 0) den_hi_sig = i; - } - } - - num_hi_sig = 4; - - /* Main loop */ - for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) - { - /* Guess the next quotient digit, quo_est, by dividing the first - two remaining dividend digits by the high order quotient digit. - quo_est is never low and is at most 2 high. */ - unsigned HOST_WIDE_INT tmp; - - num_hi_sig = i + den_hi_sig + 1; - work = num[num_hi_sig] * BASE + num[num_hi_sig - 1]; - if (num[num_hi_sig] != den[den_hi_sig]) - quo_est = work / den[den_hi_sig]; - else - quo_est = BASE - 1; - - /* Refine quo_est so it's usually correct, and at most one high. */ - tmp = work - quo_est * den[den_hi_sig]; - if (tmp < BASE - && (den[den_hi_sig - 1] * quo_est - > (tmp * BASE + num[num_hi_sig - 2]))) - quo_est--; - - /* Try QUO_EST as the quotient digit, by multiplying the - divisor by QUO_EST and subtracting from the remaining dividend. - Keep in mind that QUO_EST is the I - 1st digit. */ - - carry = 0; - for (j = 0; j <= den_hi_sig; j++) - { - work = quo_est * den[j] + carry; - carry = HIGHPART (work); - work = num[i + j] - LOWPART (work); - num[i + j] = LOWPART (work); - carry += HIGHPART (work) != 0; - } - - /* If quo_est was high by one, then num[i] went negative and - we need to correct things. */ - if (num[num_hi_sig] < (HOST_WIDE_INT) carry) - { - quo_est--; - carry = 0; /* add divisor back in */ - for (j = 0; j <= den_hi_sig; j++) - { - work = num[i + j] + den[j] + carry; - carry = HIGHPART (work); - num[i + j] = LOWPART (work); - } - - num [num_hi_sig] += carry; - } - - /* Store the quotient digit. */ - quo[i] = quo_est; - } - } - - decode (quo, lquo, hquo); - - finish_up: - /* If result is negative, make it so. */ - if (quo_neg) - neg_double (*lquo, *hquo, lquo, hquo); - - /* Compute trial remainder: rem = num - (quo * den) */ - mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); - neg_double (*lrem, *hrem, lrem, hrem); - add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); - - switch (code) - { - case TRUNC_DIV_EXPR: - case TRUNC_MOD_EXPR: /* round toward zero */ - case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */ - return overflow; - - case FLOOR_DIV_EXPR: - case FLOOR_MOD_EXPR: /* round toward negative infinity */ - if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */ - { - /* quo = quo - 1; */ - add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, - lquo, hquo); - } - else - return overflow; - break; - - case CEIL_DIV_EXPR: - case CEIL_MOD_EXPR: /* round toward positive infinity */ - if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */ - { - add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, - lquo, hquo); - } - else - return overflow; - break; - - case ROUND_DIV_EXPR: - case ROUND_MOD_EXPR: /* round to closest integer */ - { - unsigned HOST_WIDE_INT labs_rem = *lrem; - HOST_WIDE_INT habs_rem = *hrem; - unsigned HOST_WIDE_INT labs_den = lden, ltwice; - HOST_WIDE_INT habs_den = hden, htwice; - - /* Get absolute values. */ - if (*hrem < 0) - neg_double (*lrem, *hrem, &labs_rem, &habs_rem); - if (hden < 0) - neg_double (lden, hden, &labs_den, &habs_den); - - /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */ - mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0, - labs_rem, habs_rem, <wice, &htwice); - - if (((unsigned HOST_WIDE_INT) habs_den - < (unsigned HOST_WIDE_INT) htwice) - || (((unsigned HOST_WIDE_INT) habs_den - == (unsigned HOST_WIDE_INT) htwice) - && (labs_den <= ltwice))) - { - if (*hquo < 0) - /* quo = quo - 1; */ - add_double (*lquo, *hquo, - (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); - else - /* quo = quo + 1; */ - add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, - lquo, hquo); - } - else - return overflow; - } - break; - - default: - gcc_unreachable (); - } - - /* Compute true remainder: rem = num - (quo * den) */ - mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); - neg_double (*lrem, *hrem, lrem, hrem); - add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); - return overflow; -} - /* If ARG2 divides ARG1 with zero remainder, carries out the division of type CODE and returns the quotient. Otherwise returns NULL_TREE. */ |