diff options
Diffstat (limited to 'gcc/fortran/intrinsic.texi')
-rw-r--r-- | gcc/fortran/intrinsic.texi | 33 |
1 files changed, 17 insertions, 16 deletions
diff --git a/gcc/fortran/intrinsic.texi b/gcc/fortran/intrinsic.texi index eb0956adb22..34783b4a5e0 100644 --- a/gcc/fortran/intrinsic.texi +++ b/gcc/fortran/intrinsic.texi @@ -2676,7 +2676,7 @@ Inverse function: @ref{ACOS} @code{COSH(X)} computes the hyperbolic cosine of @var{X}. @item @emph{Standard}: -Fortran 77 and later +Fortran 77 and later, for a complex argument Fortran 2008 or later @item @emph{Class}: Elemental function @@ -2686,14 +2686,14 @@ Elemental function @item @emph{Arguments}: @multitable @columnfractions .15 .70 -@item @var{X} @tab The type shall be @code{REAL}. +@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}. @end multitable @item @emph{Return value}: -The return value is of type @code{REAL} and it is positive -(@math{ \cosh (x) \geq 0 }). For a @code{REAL} argument @var{X}, -@math{ \cosh (x) \geq 1 }. -The return value is of the same kind as @var{X}. +The return value has same type and kind as @var{X}. If @var{X} is +complex, the imaginary part of the result is in radians. If @var{X} +is @code{REAL}, the return value has a lower bound of one, +@math{\cosh (x) \geq 1}. @item @emph{Example}: @smallexample @@ -9820,7 +9820,7 @@ end program test_sin @code{SINH(X)} computes the hyperbolic sine of @var{X}. @item @emph{Standard}: -Fortran 95 and later +Fortran 95 and later, for a complex argument Fortran 2008 or later @item @emph{Class}: Elemental function @@ -9830,11 +9830,11 @@ Elemental function @item @emph{Arguments}: @multitable @columnfractions .15 .70 -@item @var{X} @tab The type shall be @code{REAL}. +@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}. @end multitable @item @emph{Return value}: -The return value is of type @code{REAL}. +The return value has same type and kind as @var{X}. @item @emph{Example}: @smallexample @@ -10508,7 +10508,7 @@ END PROGRAM @code{TAN(X)} computes the tangent of @var{X}. @item @emph{Standard}: -Fortran 77 and later +Fortran 77 and later, for a complex argument Fortran 2008 or later @item @emph{Class}: Elemental function @@ -10518,12 +10518,11 @@ Elemental function @item @emph{Arguments}: @multitable @columnfractions .15 .70 -@item @var{X} @tab The type shall be @code{REAL}. +@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}. @end multitable @item @emph{Return value}: -The return value is of type @code{REAL}. The kind type parameter is -the same as @var{X}. +The return value has same type and kind as @var{X}. @item @emph{Example}: @smallexample @@ -10558,7 +10557,7 @@ end program test_tan @code{TANH(X)} computes the hyperbolic tangent of @var{X}. @item @emph{Standard}: -Fortran 77 and later +Fortran 77 and later, for a complex argument Fortran 2008 or later @item @emph{Class}: Elemental function @@ -10568,11 +10567,13 @@ Elemental function @item @emph{Arguments}: @multitable @columnfractions .15 .70 -@item @var{X} @tab The type shall be @code{REAL}. +@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}. @end multitable @item @emph{Return value}: -The return value is of type @code{REAL} and lies in the range +The return value has same type and kind as @var{X}. If @var{X} is +complex, the imaginary part of the result is in radians. If @var{X} +is @code{REAL}, the return value lies in the range @math{ - 1 \leq tanh(x) \leq 1 }. @item @emph{Example}: |