diff options
Diffstat (limited to 'libgcc-math/dbl-64/s_tan.c')
-rw-r--r-- | libgcc-math/dbl-64/s_tan.c | 485 |
1 files changed, 0 insertions, 485 deletions
diff --git a/libgcc-math/dbl-64/s_tan.c b/libgcc-math/dbl-64/s_tan.c deleted file mode 100644 index 17bac52da03..00000000000 --- a/libgcc-math/dbl-64/s_tan.c +++ /dev/null @@ -1,485 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/*********************************************************************/ -/* MODULE_NAME: utan.c */ -/* */ -/* FUNCTIONS: utan */ -/* tanMp */ -/* */ -/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */ -/* branred.c sincos32.c mptan.c */ -/* utan.tbl */ -/* */ -/* An ultimate tan routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of tan(x). */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/*********************************************************************/ -#include "endian.h" -#include "dla.h" -#include "mpa.h" -#include "MathLib.h" - -static double tanMp(double); -void __mptan(double, mp_no *, int); - -double tan(double x) { -#include "utan.h" -#include "utan.tbl" - - int ux,i,n; - double a,da,a2,b,db,c,dc,c1,cc1,c2,cc2,c3,cc3,fi,ffi,gi,pz,s,sy, - t,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,w,x2,xn,xx2,y,ya,yya,z0,z,zz,z2,zz2; - int p; - number num,v; - mp_no mpa,mpt1,mpt2; -#if 0 - mp_no mpy; -#endif - - int __branred(double, double *, double *); - int __mpranred(double, mp_no *, int); - - /* x=+-INF, x=NaN */ - num.d = x; ux = num.i[HIGH_HALF]; - if ((ux&0x7ff00000)==0x7ff00000) return x-x; - - w=(x<ZERO) ? -x : x; - - /* (I) The case abs(x) <= 1.259e-8 */ - if (w<=g1.d) return x; - - /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ - if (w<=g2.d) { - - /* First stage */ - x2 = x*x; - t2 = x*x2*(d3.d+x2*(d5.d+x2*(d7.d+x2*(d9.d+x2*d11.d)))); - if ((y=x+(t2-u1.d*t2)) == x+(t2+u1.d*t2)) return y; - - /* Second stage */ - c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ - x2*a27.d)))))); - EMULV(x,x,x2,xx2,t1,t2,t3,t4,t5) - ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(x ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(x ,zero.d,c2,cc2,c1,cc1,t1,t2) - if ((y=c1+(cc1-u2.d*c1)) == c1+(cc1+u2.d*c1)) return y; - return tanMp(x); - } - - /* (III) The case 0.0608 < abs(x) <= 0.787 */ - if (w<=g3.d) { - - /* First stage */ - i = ((int) (mfftnhf.d+TWO8*w)); - z = w-xfg[i][0].d; z2 = z*z; s = (x<ZERO) ? MONE : ONE; - pz = z+z*z2*(e0.d+z2*e1.d); - fi = xfg[i][1].d; gi = xfg[i][2].d; t2 = pz*(gi+fi)/(gi-pz); - if ((y=fi+(t2-fi*u3.d))==fi+(t2+fi*u3.d)) return (s*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=fi+(t2-(t4=fi*ua3.d+t3*ub3.d)))==fi+(t2+t4)) return (s*y); - - /* Second stage */ - ffi = xfg[i][3].d; - c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); - EMULV(z,z,z2,zz2,t1,t2,t3,t4,t5) - ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(z ,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(z ,zero.d,c2,cc2,c1,cc1,t1,t2) - - ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) - MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) - SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2) - DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - - if ((y=c3+(cc3-u4.d*c3))==c3+(cc3+u4.d*c3)) return (s*y); - return tanMp(x); - } - - /* (---) The case 0.787 < abs(x) <= 25 */ - if (w<=g4.d) { - /* Range reduction by algorithm i */ - t = (x*hpinv.d + toint.d); - xn = t - toint.d; - v.d = t; - t1 = (x - xn*mp1.d) - xn*mp2.d; - n =v.i[LOW_HALF] & 0x00000001; - da = xn*mp3.d; - a=t1-da; - da = (t1-a)-da; - if (a<ZERO) {ya=-a; yya=-da; sy=MONE;} - else {ya= a; yya= da; sy= ONE;} - - /* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */ - if (ya<=gy1.d) return tanMp(x); - - /* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */ - if (ya<=gy2.d) { - a2 = a*a; - t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); - if (n) { - /* First stage -cot */ - EADD(a,t2,b,db) - DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c+(dc-u6.d*c))==c+(dc+u6.d*c)) return (-y); } - else { - /* First stage tan */ - if ((y=a+(t2-u5.d*a))==a+(t2+u5.d*a)) return y; } - /* Second stage */ - /* Range reduction by algorithm ii */ - t = (x*hpinv.d + toint.d); - xn = t - toint.d; - v.d = t; - t1 = (x - xn*mp1.d) - xn*mp2.d; - n =v.i[LOW_HALF] & 0x00000001; - da = xn*pp3.d; - t=t1-da; - da = (t1-t)-da; - t1 = xn*pp4.d; - a = t - t1; - da = ((t-a)-t1)+da; - - /* Second stage */ - EADD(a,da,t1,t2) a=t1; da=t2; - MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ - x2*a27.d)))))); - ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) - - if (n) { - /* Second stage -cot */ - DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c2+(cc2-u8.d*c2)) == c2+(cc2+u8.d*c2)) return (-y); } - else { - /* Second stage tan */ - if ((y=c1+(cc1-u7.d*c1)) == c1+(cc1+u7.d*c1)) return y; } - return tanMp(x); - } - - /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ - - /* First stage */ - i = ((int) (mfftnhf.d+TWO8*ya)); - z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; - pz = z+z*z2*(e0.d+z2*e1.d); - fi = xfg[i][1].d; gi = xfg[i][2].d; - - if (n) { - /* -cot */ - t2 = pz*(fi+gi)/(fi+pz); - if ((y=gi-(t2-gi*u10.d))==gi-(t2+gi*u10.d)) return (-sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=gi-(t2-(t4=gi*ua10.d+t3*ub10.d)))==gi-(t2+t4)) return (-sy*y); } - else { - /* tan */ - t2 = pz*(gi+fi)/(gi-pz); - if ((y=fi+(t2-fi*u9.d))==fi+(t2+fi*u9.d)) return (sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=fi+(t2-(t4=fi*ua9.d+t3*ub9.d)))==fi+(t2+t4)) return (sy*y); } - - /* Second stage */ - ffi = xfg[i][3].d; - EADD(z0,yya,z,zz) - MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); - ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) - - ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) - MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) - SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2) - - if (n) { - /* -cot */ - DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u12.d*c3))==c3+(cc3+u12.d*c3)) return (-sy*y); } - else { - /* tan */ - DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u11.d*c3))==c3+(cc3+u11.d*c3)) return (sy*y); } - - return tanMp(x); - } - - /* (---) The case 25 < abs(x) <= 1e8 */ - if (w<=g5.d) { - /* Range reduction by algorithm ii */ - t = (x*hpinv.d + toint.d); - xn = t - toint.d; - v.d = t; - t1 = (x - xn*mp1.d) - xn*mp2.d; - n =v.i[LOW_HALF] & 0x00000001; - da = xn*pp3.d; - t=t1-da; - da = (t1-t)-da; - t1 = xn*pp4.d; - a = t - t1; - da = ((t-a)-t1)+da; - EADD(a,da,t1,t2) a=t1; da=t2; - if (a<ZERO) {ya=-a; yya=-da; sy=MONE;} - else {ya= a; yya= da; sy= ONE;} - - /* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */ - if (ya<=gy1.d) return tanMp(x); - - /* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */ - if (ya<=gy2.d) { - a2 = a*a; - t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); - if (n) { - /* First stage -cot */ - EADD(a,t2,b,db) - DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c+(dc-u14.d*c))==c+(dc+u14.d*c)) return (-y); } - else { - /* First stage tan */ - if ((y=a+(t2-u13.d*a))==a+(t2+u13.d*a)) return y; } - - /* Second stage */ - MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ - x2*a27.d)))))); - ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) - - if (n) { - /* Second stage -cot */ - DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c2+(cc2-u16.d*c2)) == c2+(cc2+u16.d*c2)) return (-y); } - else { - /* Second stage tan */ - if ((y=c1+(cc1-u15.d*c1)) == c1+(cc1+u15.d*c1)) return (y); } - return tanMp(x); - } - - /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ - /* First stage */ - i = ((int) (mfftnhf.d+TWO8*ya)); - z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; - pz = z+z*z2*(e0.d+z2*e1.d); - fi = xfg[i][1].d; gi = xfg[i][2].d; - - if (n) { - /* -cot */ - t2 = pz*(fi+gi)/(fi+pz); - if ((y=gi-(t2-gi*u18.d))==gi-(t2+gi*u18.d)) return (-sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=gi-(t2-(t4=gi*ua18.d+t3*ub18.d)))==gi-(t2+t4)) return (-sy*y); } - else { - /* tan */ - t2 = pz*(gi+fi)/(gi-pz); - if ((y=fi+(t2-fi*u17.d))==fi+(t2+fi*u17.d)) return (sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=fi+(t2-(t4=fi*ua17.d+t3*ub17.d)))==fi+(t2+t4)) return (sy*y); } - - /* Second stage */ - ffi = xfg[i][3].d; - EADD(z0,yya,z,zz) - MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); - ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) - - ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) - MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) - SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2) - - if (n) { - /* -cot */ - DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u20.d*c3))==c3+(cc3+u20.d*c3)) return (-sy*y); } - else { - /* tan */ - DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u19.d*c3))==c3+(cc3+u19.d*c3)) return (sy*y); } - return tanMp(x); - } - - /* (---) The case 1e8 < abs(x) < 2**1024 */ - /* Range reduction by algorithm iii */ - n = (__branred(x,&a,&da)) & 0x00000001; - EADD(a,da,t1,t2) a=t1; da=t2; - if (a<ZERO) {ya=-a; yya=-da; sy=MONE;} - else {ya= a; yya= da; sy= ONE;} - - /* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */ - if (ya<=gy1.d) return tanMp(x); - - /* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */ - if (ya<=gy2.d) { - a2 = a*a; - t2 = da+a*a2*(d3.d+a2*(d5.d+a2*(d7.d+a2*(d9.d+a2*d11.d)))); - if (n) { - /* First stage -cot */ - EADD(a,t2,b,db) - DIV2(one.d,zero.d,b,db,c,dc,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c+(dc-u22.d*c))==c+(dc+u22.d*c)) return (-y); } - else { - /* First stage tan */ - if ((y=a+(t2-u21.d*a))==a+(t2+u21.d*a)) return y; } - - /* Second stage */ - /* Reduction by algorithm iv */ - p=10; n = (__mpranred(x,&mpa,p)) & 0x00000001; - __mp_dbl(&mpa,&a,p); __dbl_mp(a,&mpt1,p); - __sub(&mpa,&mpt1,&mpt2,p); __mp_dbl(&mpt2,&da,p); - - MUL2(a,da,a,da,x2,xx2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = x2*(a15.d+x2*(a17.d+x2*(a19.d+x2*(a21.d+x2*(a23.d+x2*(a25.d+ - x2*a27.d)))))); - ADD2(a13.d,aa13.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a11.d,aa11.d,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a9.d ,aa9.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a7.d ,aa7.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a5.d ,aa5.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d ,aa3.d ,c1,cc1,c2,cc2,t1,t2) - MUL2(x2,xx2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(a ,da ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a ,da ,c2,cc2,c1,cc1,t1,t2) - - if (n) { - /* Second stage -cot */ - DIV2(one.d,zero.d,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c2+(cc2-u24.d*c2)) == c2+(cc2+u24.d*c2)) return (-y); } - else { - /* Second stage tan */ - if ((y=c1+(cc1-u23.d*c1)) == c1+(cc1+u23.d*c1)) return y; } - return tanMp(x); - } - - /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ - /* First stage */ - i = ((int) (mfftnhf.d+TWO8*ya)); - z = (z0=(ya-xfg[i][0].d))+yya; z2 = z*z; - pz = z+z*z2*(e0.d+z2*e1.d); - fi = xfg[i][1].d; gi = xfg[i][2].d; - - if (n) { - /* -cot */ - t2 = pz*(fi+gi)/(fi+pz); - if ((y=gi-(t2-gi*u26.d))==gi-(t2+gi*u26.d)) return (-sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=gi-(t2-(t4=gi*ua26.d+t3*ub26.d)))==gi-(t2+t4)) return (-sy*y); } - else { - /* tan */ - t2 = pz*(gi+fi)/(gi-pz); - if ((y=fi+(t2-fi*u25.d))==fi+(t2+fi*u25.d)) return (sy*y); - t3 = (t2<ZERO) ? -t2 : t2; - if ((y=fi+(t2-(t4=fi*ua25.d+t3*ub25.d)))==fi+(t2+t4)) return (sy*y); } - - /* Second stage */ - ffi = xfg[i][3].d; - EADD(z0,yya,z,zz) - MUL2(z,zz,z,zz,z2,zz2,t1,t2,t3,t4,t5,t6,t7,t8) - c1 = z2*(a7.d+z2*(a9.d+z2*a11.d)); - ADD2(a5.d,aa5.d,c1,zero.d,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(a3.d,aa3.d,c1,cc1,c2,cc2,t1,t2) - MUL2(z2,zz2,c2,cc2,c1,cc1,t1,t2,t3,t4,t5,t6,t7,t8) - MUL2(z ,zz ,c1,cc1,c2,cc2,t1,t2,t3,t4,t5,t6,t7,t8) - ADD2(z ,zz ,c2,cc2,c1,cc1,t1,t2) - - ADD2(fi ,ffi,c1,cc1,c2,cc2,t1,t2) - MUL2(fi ,ffi,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8) - SUB2(one.d,zero.d,c3,cc3,c1,cc1,t1,t2) - - if (n) { - /* -cot */ - DIV2(c1,cc1,c2,cc2,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u28.d*c3))==c3+(cc3+u28.d*c3)) return (-sy*y); } - else { - /* tan */ - DIV2(c2,cc2,c1,cc1,c3,cc3,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) - if ((y=c3+(cc3-u27.d*c3))==c3+(cc3+u27.d*c3)) return (sy*y); } - return tanMp(x); -} - - -/* multiple precision stage */ -/* Convert x to multi precision number,compute tan(x) by mptan() routine */ -/* and converts result back to double */ -static double tanMp(double x) -{ - int p; - double y; - mp_no mpy; - p=32; - __mptan(x, &mpy, p); - __mp_dbl(&mpy,&y,p); - return y; -} - -#ifdef NO_LONG_DOUBLE -weak_alias (tan, tanl) -#endif |