diff options
Diffstat (limited to 'libgcc/config/libbid/bid64_to_uint32.c')
-rw-r--r-- | libgcc/config/libbid/bid64_to_uint32.c | 2275 |
1 files changed, 2275 insertions, 0 deletions
diff --git a/libgcc/config/libbid/bid64_to_uint32.c b/libgcc/config/libbid/bid64_to_uint32.c new file mode 100644 index 00000000000..041cca68f6a --- /dev/null +++ b/libgcc/config/libbid/bid64_to_uint32.c @@ -0,0 +1,2275 @@ +/* Copyright (C) 2007 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2, or (at your option) any later +version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to the Free +Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301, USA. */ + +#include "bid_internal.h" + +/***************************************************************************** + * BID64_to_uint32_rnint + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_rnint (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_rnint (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1/2 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 - 1/2 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32-1/2 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x9fffffffb, 1<=q<=16 + // <=> C * 10^(11-q) >= 0x9fffffffb, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffffb has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0x9fffffffbull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0x9fffffffb <=> + // C >= 0x9fffffffb * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0x9fffffffb*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffffbull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1/2 <= n < 2^32 - 1/2 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1) + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1) + // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1) + // res = 0 + // else if x > 0 + // res = +1 + // else // if x < 0 + // invalid exc + ind = q - 1; + if (C1 <= __bid_midpoint64[ind]) { + res = 0x00000000; // return 0 + } else if (x_sign) { // n < 0 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // n > 0 + res = 0x00000001; // return +1 + } + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // -2^32-1/2 <= x <= -1 or 1 <= x < 2^32-1/2 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32-1/2 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits + C1 = C1 + __bid_midpoint64[ind - 1]; + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = (C1 + 1/2 * 10^x) * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // if (0 < f* < 10^(-x)) then the result is a midpoint + // if floor(C*) is even then C* = floor(C*) - logical right + // shift; C* has p decimal digits, correct by Prop. 1) + // else if floor(C*) is odd C* = floor(C*)-1 (logical right + // shift; C* has p decimal digits, correct by Pr. 1) + // else + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + + // if the result was a midpoint it was rounded away from zero, so + // it will need a correction + // check for midpoints + if ((fstar.w[1] == 0) && fstar.w[0] && + (fstar.w[0] <= __bid_ten2mk128trunc[ind - 1].w[1])) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // the result is a midpoint; round to nearest + if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD] + // if floor(C*) is odd C = floor(C*) - 1; the result >= 1 + Cstar--; // Cstar is now even + } // else MP in [ODD, EVEN] + } + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_xrnint + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_xrnint (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_xrnint (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1/2 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 - 1/2 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32-1/2 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x9fffffffb, 1<=q<=16 + // <=> C * 10^(11-q) >= 0x9fffffffb, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffffb has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0x9fffffffbull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0x9fffffffb <=> + // C >= 0x9fffffffb * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0x9fffffffb*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffffbull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1/2 <= n < 2^32 - 1/2 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1) + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1) + // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1) + // res = 0 + // else if x > 0 + // res = +1 + // else // if x < 0 + // invalid exc + ind = q - 1; + if (C1 <= __bid_midpoint64[ind]) { + res = 0x00000000; // return 0 + } else if (x_sign) { // n < 0 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // n > 0 + res = 0x00000001; // return +1 + } + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // -2^32-1/2 <= x <= -1 or 1 <= x < 2^32-1/2 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32-1/2 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits + C1 = C1 + __bid_midpoint64[ind - 1]; + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = (C1 + 1/2 * 10^x) * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // if (0 < f* < 10^(-x)) then the result is a midpoint + // if floor(C*) is even then C* = floor(C*) - logical right + // shift; C* has p decimal digits, correct by Prop. 1) + // else if floor(C*) is odd C* = floor(C*)-1 (logical right + // shift; C* has p decimal digits, correct by Pr. 1) + // else + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + // determine inexactness of the rounding of C* + // if (0 < f* - 1/2 < 10^(-x)) then + // the result is exact + // else // if (f* - 1/2 > T*) then + // the result is inexact + if (ind - 1 <= 2) { // fstar.w[1] is 0 + if (fstar.w[0] > 0x8000000000000000ull) { + // f* > 1/2 and the result may be exact + tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2 + if ((tmp64 > __bid_ten2mk128trunc[ind - 1].w[1])) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // the result is inexact; f2* <= 1/2 + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] > __bid_one_half128[ind - 1] || + (fstar.w[1] == __bid_one_half128[ind - 1] && fstar.w[0])) { + // f2* > 1/2 and the result may be exact + // Calculate f2* - 1/2 + tmp64 = fstar.w[1] - __bid_one_half128[ind - 1]; + if (tmp64 || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // the result is inexact; f2* <= 1/2 + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } + } + + // if the result was a midpoint it was rounded away from zero, so + // it will need a correction + // check for midpoints + if ((fstar.w[1] == 0) && fstar.w[0] && + (fstar.w[0] <= __bid_ten2mk128trunc[ind - 1].w[1])) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // the result is a midpoint; round to nearest + if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD] + // if floor(C*) is odd C = floor(C*) - 1; the result >= 1 + Cstar--; // Cstar is now even + } // else MP in [ODD, EVEN] + } + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_floor + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_floor (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_floor (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + if (x_sign) { // if n < 0 the conversion is invalid + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + // n > 0 and q + exp = 10 + // if n >= 2^32 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0xa00000000, 1<=q<=16 + // <=> C * 10^(11-q) >= 0xa00000000, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0xa00000000 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0xa00000000ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0xa00000000 <=> + // C >= 0xa00000000 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0xa00000000*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0xa00000000ull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +0.[0...0]c(0)c(1)...c(q-1) + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // 1 <= x < 2^32 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_xfloor + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_xfloor (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_xfloor (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + if (x_sign) { // if n < 0 the conversion is invalid + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + // if n > 0 and q + exp = 10 + // if n >= 2^32 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0xa00000000, 1<=q<=16 + // <=> C * 10^(11-q) >= 0xa00000000, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0xa00000000 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0xa00000000ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0xa00000000 <=> + // C >= 0xa00000000 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0xa00000000*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0xa00000000ull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1) + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // 1 <= x < 2^32 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + // determine inexactness of the rounding of C* + // if (0 < f* < 10^(-x)) then + // the result is exact + // else // if (f* > T*) then + // the result is inexact + if (ind - 1 <= 2) { + if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_ceil + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_ceil (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_ceil (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n > 2^32 - 1 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^32 - 1 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x9fffffff6, 1<=q<=16 + // <=> C * 10^(11-q) > 0x9fffffff6, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffff6 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 > 0x9fffffff6ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) > 0x9fffffff6 <=> + // C > 0x9fffffff6 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1 up) + // Note: 0x9fffffff6*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffff6ull * __bid_ten2k64[q - 11]; + if (C1 > tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1) + // return 0 or 1 + if (x_sign) + res = 0x00000000; + else + res = 0x00000001; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // x <= -1 or 1 <= x <= 2^32 - 1 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x <= 2^32 - 1 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + // determine inexactness of the rounding of C* + // if (0 < f* < 10^(-x)) then + // the result is exact + // else // if (f* > T*) then + // the result is inexact + if (ind - 1 <= 2) { // fstar.w[1] is 0 + if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + Cstar++; + } // else the result is exact + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + Cstar++; + } // else the result is exact + } + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_xceil + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_xceil (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_xceil (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n > 2^32 - 1 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) > 2^32 - 1 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 > 0x9fffffff6, 1<=q<=16 + // <=> C * 10^(11-q) > 0x9fffffff6, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffff6 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 > 0x9fffffff6ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) > 0x9fffffff6 <=> + // C > 0x9fffffff6 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1 up) + // Note: 0x9fffffff6*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffff6ull * __bid_ten2k64[q - 11]; + if (C1 > tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1) + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + // return 0 or 1 + if (x_sign) + res = 0x00000000; + else + res = 0x00000001; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // x <= -1 or 1 <= x < 2^32 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + // determine inexactness of the rounding of C* + // if (0 < f* < 10^(-x)) then + // the result is exact + // else // if (f* > T*) then + // the result is inexact + if (ind - 1 <= 2) { // fstar.w[1] is 0 + if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + Cstar++; + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + Cstar++; + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_int + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_int (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) +{ + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_int (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) +{ +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0xa00000000, 1<=q<=16 + // <=> C * 10^(11-q) >= 0xa00000000, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0xa00000000 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0xa00000000ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0xa00000000 <=> + // C >= 0xa00000000 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0xa00000000*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0xa00000000ull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1) + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // x <= -1 or 1 <= x < 2^32 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_xint + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_xint (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_xint (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0xa00000000, 1<=q<=16 + // <=> C * 10^(11-q) >= 0xa00000000, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0xa00000000 has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0xa00000000ull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0xa00000000 <=> + // C >= 0xa00000000 * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0xa00000000*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0xa00000000ull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1 < n < 2^32 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1) + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // x <= -1 or 1 <= x < 2^32 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 fits in 64 bits + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = C1 * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + // determine inexactness of the rounding of C* + // if (0 < f* < 10^(-x)) then + // the result is exact + // else // if (f* > T*) then + // the result is inexact + if (ind - 1 <= 2) { // fstar.w[1] is 0 + if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } + + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_rninta + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_rninta (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_rninta (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1/2 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 - 1/2 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32-1/2 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x9fffffffb, 1<=q<=16 + // <=> C * 10^(11-q) >= 0x9fffffffb, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffffb has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0x9fffffffbull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0x9fffffffb <=> + // C >= 0x9fffffffb * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0x9fffffffb*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffffbull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1/2 < n < 2^32 - 1/2 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1) + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1) + // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1) + // res = 0 + // else if x > 0 + // res = +1 + // else // if x < 0 + // invalid exc + ind = q - 1; + if (C1 < __bid_midpoint64[ind]) { + res = 0x00000000; // return 0 + } else if (x_sign) { // n < 0 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // n > 0 + res = 0x00000001; // return +1 + } + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // -2^32-1/2 <= x <= -1 or 1 <= x < 2^32-1/2 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32-1/2 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits + C1 = C1 + __bid_midpoint64[ind - 1]; + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = (C1 + 1/2 * 10^x) * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + + // if the result was a midpoint it was rounded away from zero + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} + +/***************************************************************************** + * BID64_to_uint32_xrninta + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +__bid64_to_uint32_xrninta (unsigned int *pres, UINT64 * px + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +unsigned int +__bid64_to_uint32_xrninta (UINT64 x + _EXC_FLAGS_PARAM _EXC_MASKS_PARAM + _EXC_INFO_PARAM) { +#endif + unsigned int res; + UINT64 x_sign; + UINT64 x_exp; + int exp; // unbiased exponent + // Note: C1 represents x_significand (UINT64) + UINT64 tmp64; + BID_UI64DOUBLE tmp1; + unsigned int x_nr_bits; + int q, ind, shift; + UINT64 C1; + UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits + UINT128 fstar; + UINT128 P128; + + // check for NaN or Infinity + if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // unpack x + x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased + C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (C1 > 9999999999999999ull) { // non-canonical + x_exp = 0; + C1 = 0; + } + } else { + x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased + C1 = x & MASK_BINARY_SIG1; + } + + // check for zeros (possibly from non-canonical values) + if (C1 == 0x0ull) { + // x is 0 + res = 0x00000000; + BID_RETURN (res); + } + // x is not special and is not zero + + // q = nr. of decimal digits in x (1 <= q <= 54) + // determine first the nr. of bits in x + if (C1 >= 0x0020000000000000ull) { // x >= 2^53 + // split the 64-bit value in two 32-bit halves to avoid rounding errors + if (C1 >= 0x0000000100000000ull) { // x >= 2^32 + tmp1.d = (double) (C1 >> 32); // exact conversion + x_nr_bits = + 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } else { // x < 2^32 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + } else { // if x < 2^53 + tmp1.d = (double) C1; // exact conversion + x_nr_bits = + 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); + } + q = __bid_nr_digits[x_nr_bits - 1].digits; + if (q == 0) { + q = __bid_nr_digits[x_nr_bits - 1].digits1; + if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo) + q++; + } + exp = x_exp - 398; // unbiased exponent + + if ((q + exp) > 10) { // x >= 10^10 ~= 2^33.2... (cannot fit in 32 bits) + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else if ((q + exp) == 10) { // x = c(0)c(1)...c(9).c(10)...c(q-1) + // in this case 2^29.89... ~= 10^9 <= x < 10^10 ~= 2^33.2... + // so x rounded to an integer may or may not fit in an unsigned 32-bit int + // the cases that do not fit are identified here; the ones that fit + // fall through and will be handled with other cases further, + // under '1 <= q + exp <= 10' + if (x_sign) { // if n < 0 and q + exp = 10 then x is much less than -1/2 + // => set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // if n > 0 and q + exp = 10 + // if n >= 2^32 - 1/2 then n is too large + // too large if c(0)c(1)...c(9).c(10)...c(q-1) >= 2^32-1/2 + // <=> 0.c(0)c(1)...c(q-1) * 10^11 >= 0x9fffffffb, 1<=q<=16 + // <=> C * 10^(11-q) >= 0x9fffffffb, 1<=q<=16 + if (q <= 11) { + // Note: C * 10^(11-q) has 10 or 11 digits; 0x9fffffffb has 11 digits + tmp64 = C1 * __bid_ten2k64[11 - q]; // C scaled up to 11-digit int + // c(0)c(1)...c(9)c(10) or c(0)c(1)...c(q-1)0...0 (11 digits) + if (tmp64 >= 0x9fffffffbull) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit unsigned int fall through + // to '1 <= q + exp <= 10' + } else { // if (q > 11), i.e. 12 <= q <= 16 and so -15 <= exp <= -2 + // C * 10^(11-q) >= 0x9fffffffb <=> + // C >= 0x9fffffffb * 10^(q-11) where 1 <= q - 11 <= 5 + // (scale 2^32-1/2 up) + // Note: 0x9fffffffb*10^(q-11) has q-1 or q digits, where q <= 16 + tmp64 = 0x9fffffffbull * __bid_ten2k64[q - 11]; + if (C1 >= tmp64) { + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // else cases that can be rounded to a 32-bit int fall through + // to '1 <= q + exp <= 10' + } + } + } + // n is not too large to be converted to int32 if -1/2 < n < 2^32 - 1/2 + // Note: some of the cases tested for above fall through to this point + if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1) + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + // return 0 + res = 0x00000000; + BID_RETURN (res); + } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1) + // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1) + // res = 0 + // else if x > 0 + // res = +1 + // else // if x < 0 + // invalid exc + ind = q - 1; + if (C1 < __bid_midpoint64[ind]) { + res = 0x00000000; // return 0 + } else if (x_sign) { // n < 0 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } else { // n > 0 + res = 0x00000001; // return +1 + } + // set inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } else { // if (1 <= q + exp <= 10, 1 <= q <= 16, -15 <= exp <= 9) + // -2^32-1/2 <= x <= -1 or 1 <= x < 2^32-1/2 so if positive, x can be + // rounded to nearest to a 32-bit unsigned integer + if (x_sign) { // x <= -1 + // set invalid flag + *pfpsf |= INVALID_EXCEPTION; + // return Integer Indefinite + res = 0x80000000; + BID_RETURN (res); + } + // 1 <= x < 2^32-1/2 so x can be rounded + // to nearest to a 32-bit unsigned integer + if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 10 + ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x' + // chop off ind digits from the lower part of C1 + // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits + C1 = C1 + __bid_midpoint64[ind - 1]; + // calculate C* and f* + // C* is actually floor(C*) in this case + // C* and f* need shifting and masking, as shown by + // __bid_shiftright128[] and __bid_maskhigh128[] + // 1 <= x <= 15 + // kx = 10^(-x) = __bid_ten2mk64[ind - 1] + // C* = (C1 + 1/2 * 10^x) * 10^(-x) + // the approximation of 10^(-x) was rounded up to 54 bits + __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]); + Cstar = P128.w[1]; + fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1]; + fstar.w[0] = P128.w[0]; + // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g. + // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999 + // C* = floor(C*) (logical right shift; C has p decimal digits, + // correct by Property 1) + // n = C* * 10^(e+x) + + // shift right C* by Ex-64 = __bid_shiftright128[ind] + shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39 + Cstar = Cstar >> shift; + + // determine inexactness of the rounding of C* + // if (0 < f* - 1/2 < 10^(-x)) then + // the result is exact + // else // if (f* - 1/2 > T*) then + // the result is inexact + if (ind - 1 <= 2) { // fstar.w[1] is 0 + if (fstar.w[0] > 0x8000000000000000ull) { + // f* > 1/2 and the result may be exact + tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2 + if ((tmp64 > __bid_ten2mk128trunc[ind - 1].w[1])) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // the result is inexact; f2* <= 1/2 + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } + } else { // if 3 <= ind - 1 <= 14 + if (fstar.w[1] > __bid_one_half128[ind - 1] || + (fstar.w[1] == __bid_one_half128[ind - 1] && fstar.w[0])) { + // f2* > 1/2 and the result may be exact + // Calculate f2* - 1/2 + tmp64 = fstar.w[1] - __bid_one_half128[ind - 1]; + if (tmp64 || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) { + // __bid_ten2mk128trunc[ind -1].w[1] is identical to + // __bid_ten2mk128[ind -1].w[1] + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } // else the result is exact + } else { // the result is inexact; f2* <= 1/2 + // set the inexact flag + *pfpsf |= INEXACT_EXCEPTION; + } + } + + // if the result was a midpoint it was rounded away from zero + res = Cstar; // the result is positive + } else if (exp == 0) { + // 1 <= q <= 10 + // res = +C (exact) + res = C1; // the result is positive + } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10 + // res = +C * 10^exp (exact) + res = C1 * __bid_ten2k64[exp]; // the result is positive + } + } + BID_RETURN (res); +} |