diff options
Diffstat (limited to 'libgfortran/generated/maxloc1_8_i1.c')
-rw-r--r-- | libgfortran/generated/maxloc1_8_i1.c | 421 |
1 files changed, 421 insertions, 0 deletions
diff --git a/libgfortran/generated/maxloc1_8_i1.c b/libgfortran/generated/maxloc1_8_i1.c new file mode 100644 index 00000000000..f103083c34a --- /dev/null +++ b/libgfortran/generated/maxloc1_8_i1.c @@ -0,0 +1,421 @@ +/* Implementation of the MAXLOC intrinsic + Copyright 2002 Free Software Foundation, Inc. + Contributed by Paul Brook <paul@nowt.org> + +This file is part of the GNU Fortran 95 runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 2 of the License, or (at your option) any later version. + +In addition to the permissions in the GNU General Public License, the +Free Software Foundation gives you unlimited permission to link the +compiled version of this file into combinations with other programs, +and to distribute those combinations without any restriction coming +from the use of this file. (The General Public License restrictions +do apply in other respects; for example, they cover modification of +the file, and distribution when not linked into a combine +executable.) + +Libgfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public +License along with libgfortran; see the file COPYING. If not, +write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#include "config.h" +#include <stdlib.h> +#include <assert.h> +#include <float.h> +#include <limits.h> +#include "libgfortran.h" + + +#if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_8) + + +extern void maxloc1_8_i1 (gfc_array_i8 * const restrict, + gfc_array_i1 * const restrict, const index_type * const restrict); +export_proto(maxloc1_8_i1); + +void +maxloc1_8_i1 (gfc_array_i8 * const restrict retarray, + gfc_array_i1 * const restrict array, + const index_type * const restrict pdim) +{ + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type dstride[GFC_MAX_DIMENSIONS]; + const GFC_INTEGER_1 * restrict base; + GFC_INTEGER_8 * restrict dest; + index_type rank; + index_type n; + index_type len; + index_type delta; + index_type dim; + + /* Make dim zero based to avoid confusion. */ + dim = (*pdim) - 1; + rank = GFC_DESCRIPTOR_RANK (array) - 1; + + len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; + delta = array->dim[dim].stride; + + for (n = 0; n < dim; n++) + { + sstride[n] = array->dim[n].stride; + extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + + if (extent[n] < 0) + extent[n] = 0; + } + for (n = dim; n < rank; n++) + { + sstride[n] = array->dim[n + 1].stride; + extent[n] = + array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + + if (extent[n] < 0) + extent[n] = 0; + } + + if (retarray->data == NULL) + { + size_t alloc_size; + + for (n = 0; n < rank; n++) + { + retarray->dim[n].lbound = 0; + retarray->dim[n].ubound = extent[n]-1; + if (n == 0) + retarray->dim[n].stride = 1; + else + retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; + } + + retarray->offset = 0; + retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; + + alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride + * extent[rank-1]; + + if (alloc_size == 0) + { + /* Make sure we have a zero-sized array. */ + retarray->dim[0].lbound = 0; + retarray->dim[0].ubound = -1; + return; + } + else + retarray->data = internal_malloc_size (alloc_size); + } + else + { + if (rank != GFC_DESCRIPTOR_RANK (retarray)) + runtime_error ("rank of return array incorrect"); + } + + for (n = 0; n < rank; n++) + { + count[n] = 0; + dstride[n] = retarray->dim[n].stride; + if (extent[n] <= 0) + len = 0; + } + + base = array->data; + dest = retarray->data; + + while (base) + { + const GFC_INTEGER_1 * restrict src; + GFC_INTEGER_8 result; + src = base; + { + + GFC_INTEGER_1 maxval; + maxval = (-GFC_INTEGER_1_HUGE-1); + result = 0; + if (len <= 0) + *dest = 0; + else + { + for (n = 0; n < len; n++, src += delta) + { + + if (*src > maxval || !result) + { + maxval = *src; + result = (GFC_INTEGER_8)n + 1; + } + } + *dest = result; + } + } + /* Advance to the next element. */ + count[0]++; + base += sstride[0]; + dest += dstride[0]; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + base -= sstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + base = NULL; + break; + } + else + { + count[n]++; + base += sstride[n]; + dest += dstride[n]; + } + } + } +} + + +extern void mmaxloc1_8_i1 (gfc_array_i8 * const restrict, + gfc_array_i1 * const restrict, const index_type * const restrict, + gfc_array_l4 * const restrict); +export_proto(mmaxloc1_8_i1); + +void +mmaxloc1_8_i1 (gfc_array_i8 * const restrict retarray, + gfc_array_i1 * const restrict array, + const index_type * const restrict pdim, + gfc_array_l4 * const restrict mask) +{ + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type dstride[GFC_MAX_DIMENSIONS]; + index_type mstride[GFC_MAX_DIMENSIONS]; + GFC_INTEGER_8 * restrict dest; + const GFC_INTEGER_1 * restrict base; + const GFC_LOGICAL_4 * restrict mbase; + int rank; + int dim; + index_type n; + index_type len; + index_type delta; + index_type mdelta; + + dim = (*pdim) - 1; + rank = GFC_DESCRIPTOR_RANK (array) - 1; + + len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; + if (len <= 0) + return; + delta = array->dim[dim].stride; + mdelta = mask->dim[dim].stride; + + for (n = 0; n < dim; n++) + { + sstride[n] = array->dim[n].stride; + mstride[n] = mask->dim[n].stride; + extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; + + if (extent[n] < 0) + extent[n] = 0; + + } + for (n = dim; n < rank; n++) + { + sstride[n] = array->dim[n + 1].stride; + mstride[n] = mask->dim[n + 1].stride; + extent[n] = + array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; + + if (extent[n] < 0) + extent[n] = 0; + } + + if (retarray->data == NULL) + { + size_t alloc_size; + + for (n = 0; n < rank; n++) + { + retarray->dim[n].lbound = 0; + retarray->dim[n].ubound = extent[n]-1; + if (n == 0) + retarray->dim[n].stride = 1; + else + retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; + } + + alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride + * extent[rank-1]; + + retarray->offset = 0; + retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; + + if (alloc_size == 0) + { + /* Make sure we have a zero-sized array. */ + retarray->dim[0].lbound = 0; + retarray->dim[0].ubound = -1; + return; + } + else + retarray->data = internal_malloc_size (alloc_size); + + } + else + { + if (rank != GFC_DESCRIPTOR_RANK (retarray)) + runtime_error ("rank of return array incorrect"); + } + + for (n = 0; n < rank; n++) + { + count[n] = 0; + dstride[n] = retarray->dim[n].stride; + if (extent[n] <= 0) + return; + } + + dest = retarray->data; + base = array->data; + mbase = mask->data; + + if (GFC_DESCRIPTOR_SIZE (mask) != 4) + { + /* This allows the same loop to be used for all logical types. */ + assert (GFC_DESCRIPTOR_SIZE (mask) == 8); + for (n = 0; n < rank; n++) + mstride[n] <<= 1; + mdelta <<= 1; + mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); + } + + while (base) + { + const GFC_INTEGER_1 * restrict src; + const GFC_LOGICAL_4 * restrict msrc; + GFC_INTEGER_8 result; + src = base; + msrc = mbase; + { + + GFC_INTEGER_1 maxval; + maxval = (-GFC_INTEGER_1_HUGE-1); + result = 0; + if (len <= 0) + *dest = 0; + else + { + for (n = 0; n < len; n++, src += delta, msrc += mdelta) + { + + if (*msrc && (*src > maxval || !result)) + { + maxval = *src; + result = (GFC_INTEGER_8)n + 1; + } + } + *dest = result; + } + } + /* Advance to the next element. */ + count[0]++; + base += sstride[0]; + mbase += mstride[0]; + dest += dstride[0]; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + base -= sstride[n] * extent[n]; + mbase -= mstride[n] * extent[n]; + dest -= dstride[n] * extent[n]; + n++; + if (n == rank) + { + /* Break out of the look. */ + base = NULL; + break; + } + else + { + count[n]++; + base += sstride[n]; + mbase += mstride[n]; + dest += dstride[n]; + } + } + } +} + + +extern void smaxloc1_8_i1 (gfc_array_i8 * const restrict, + gfc_array_i1 * const restrict, const index_type * const restrict, + GFC_LOGICAL_4 *); +export_proto(smaxloc1_8_i1); + +void +smaxloc1_8_i1 (gfc_array_i8 * const restrict retarray, + gfc_array_i1 * const restrict array, + const index_type * const restrict pdim, + GFC_LOGICAL_4 * mask) +{ + index_type rank; + index_type n; + index_type dstride; + GFC_INTEGER_8 *dest; + + if (*mask) + { + maxloc1_8_i1 (retarray, array, pdim); + return; + } + rank = GFC_DESCRIPTOR_RANK (array); + if (rank <= 0) + runtime_error ("Rank of array needs to be > 0"); + + if (retarray->data == NULL) + { + retarray->dim[0].lbound = 0; + retarray->dim[0].ubound = rank-1; + retarray->dim[0].stride = 1; + retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; + retarray->offset = 0; + retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank); + } + else + { + if (GFC_DESCRIPTOR_RANK (retarray) != 1) + runtime_error ("rank of return array does not equal 1"); + + if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank) + runtime_error ("dimension of return array incorrect"); + } + + dstride = retarray->dim[0].stride; + dest = retarray->data; + + for (n = 0; n < rank; n++) + dest[n * dstride] = 0 ; +} + +#endif |