diff options
Diffstat (limited to 'libgo/go/exp/regexp/exec.go')
-rw-r--r-- | libgo/go/exp/regexp/exec.go | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/libgo/go/exp/regexp/exec.go b/libgo/go/exp/regexp/exec.go new file mode 100644 index 00000000000..0670bb9b1b4 --- /dev/null +++ b/libgo/go/exp/regexp/exec.go @@ -0,0 +1,295 @@ +package regexp + +import "exp/regexp/syntax" + +// A queue is a 'sparse array' holding pending threads of execution. +// See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html +type queue struct { + sparse []uint32 + dense []entry +} + +// A entry is an entry on a queue. +// It holds both the instruction pc and the actual thread. +// Some queue entries are just place holders so that the machine +// knows it has considered that pc. Such entries have t == nil. +type entry struct { + pc uint32 + t *thread +} + +// A thread is the state of a single path through the machine: +// an instruction and a corresponding capture array. +// See http://swtch.com/~rsc/regexp/regexp2.html +type thread struct { + inst *syntax.Inst + cap []int +} + +// A machine holds all the state during an NFA simulation for p. +type machine struct { + re *Regexp // corresponding Regexp + p *syntax.Prog // compiled program + q0, q1 queue // two queues for runq, nextq + pool []*thread // pool of available threads + matched bool // whether a match was found + matchcap []int // capture information for the match +} + +// progMachine returns a new machine running the prog p. +func progMachine(p *syntax.Prog) *machine { + m := &machine{p: p} + n := len(m.p.Inst) + m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} + m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} + ncap := p.NumCap + if ncap < 2 { + ncap = 2 + } + m.matchcap = make([]int, ncap) + return m +} + +// alloc allocates a new thread with the given instruction. +// It uses the free pool if possible. +func (m *machine) alloc(i *syntax.Inst) *thread { + var t *thread + if n := len(m.pool); n > 0 { + t = m.pool[n-1] + m.pool = m.pool[:n-1] + } else { + t = new(thread) + t.cap = make([]int, cap(m.matchcap)) + } + t.cap = t.cap[:len(m.matchcap)] + t.inst = i + return t +} + +// free returns t to the free pool. +func (m *machine) free(t *thread) { + m.pool = append(m.pool, t) +} + +// match runs the machine over the input starting at pos. +// It reports whether a match was found. +// If so, m.matchcap holds the submatch information. +func (m *machine) match(i input, pos int) bool { + startCond := m.re.cond + if startCond == ^syntax.EmptyOp(0) { // impossible + return false + } + m.matched = false + for i := range m.matchcap { + m.matchcap[i] = -1 + } + runq, nextq := &m.q0, &m.q1 + rune, rune1 := endOfText, endOfText + width, width1 := 0, 0 + rune, width = i.step(pos) + if rune != endOfText { + rune1, width1 = i.step(pos + width) + } + // TODO: Let caller specify the initial flag setting. + // For now assume pos == 0 is beginning of text and + // pos != 0 is not even beginning of line. + // TODO: Word boundary. + var flag syntax.EmptyOp + if pos == 0 { + flag = syntax.EmptyBeginText | syntax.EmptyBeginLine + } + + // Update flag using lookahead rune. + if rune1 == '\n' { + flag |= syntax.EmptyEndLine + } + if rune1 == endOfText { + flag |= syntax.EmptyEndText + } + + for { + if len(runq.dense) == 0 { + if startCond&syntax.EmptyBeginText != 0 && pos != 0 { + // Anchored match, past beginning of text. + break + } + if m.matched { + // Have match; finished exploring alternatives. + break + } + if len(m.re.prefix) > 0 && rune1 != m.re.prefixRune && i.canCheckPrefix() { + // Match requires literal prefix; fast search for it. + advance := i.index(m.re, pos) + if advance < 0 { + break + } + pos += advance + rune, width = i.step(pos) + rune1, width1 = i.step(pos + width) + } + } + if !m.matched { + if len(m.matchcap) > 0 { + m.matchcap[0] = pos + } + m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag) + } + // TODO: word boundary + flag = 0 + if rune == '\n' { + flag |= syntax.EmptyBeginLine + } + if rune1 == '\n' { + flag |= syntax.EmptyEndLine + } + if rune1 == endOfText { + flag |= syntax.EmptyEndText + } + m.step(runq, nextq, pos, pos+width, rune, flag) + if width == 0 { + break + } + pos += width + rune, width = rune1, width1 + if rune != endOfText { + rune1, width1 = i.step(pos + width) + } + runq, nextq = nextq, runq + } + m.clear(nextq) + return m.matched +} + +// clear frees all threads on the thread queue. +func (m *machine) clear(q *queue) { + for _, d := range q.dense { + if d.t != nil { + m.free(d.t) + } + } + q.dense = q.dense[:0] +} + +// step executes one step of the machine, running each of the threads +// on runq and appending new threads to nextq. +// The step processes the rune c (which may be endOfText), +// which starts at position pos and ends at nextPos. +// nextCond gives the setting for the empty-width flags after c. +func (m *machine) step(runq, nextq *queue, pos, nextPos, c int, nextCond syntax.EmptyOp) { + for j := 0; j < len(runq.dense); j++ { + d := &runq.dense[j] + t := d.t + if t == nil { + continue + } + /* + * If we support leftmost-longest matching: + if longest && matched && match[0] < t.cap[0] { + m.free(t) + continue + } + */ + + i := t.inst + switch i.Op { + default: + panic("bad inst") + + case syntax.InstMatch: + if len(t.cap) > 0 { + t.cap[1] = pos + copy(m.matchcap, t.cap) + } + m.matched = true + for _, d := range runq.dense[j+1:] { + if d.t != nil { + m.free(d.t) + } + } + runq.dense = runq.dense[:0] + + case syntax.InstRune: + if i.MatchRune(c) { + m.add(nextq, i.Out, nextPos, t.cap, nextCond) + } + } + m.free(t) + } + runq.dense = runq.dense[:0] +} + +// add adds an entry to q for pc, unless the q already has such an entry. +// It also recursively adds an entry for all instructions reachable from pc by following +// empty-width conditions satisfied by cond. pos gives the current position +// in the input. +func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp) { + if pc == 0 { + return + } + if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { + return + } + + j := len(q.dense) + q.dense = q.dense[:j+1] + d := &q.dense[j] + d.t = nil + d.pc = pc + q.sparse[pc] = uint32(j) + + i := &m.p.Inst[pc] + switch i.Op { + default: + panic("unhandled") + case syntax.InstFail: + // nothing + case syntax.InstAlt, syntax.InstAltMatch: + m.add(q, i.Out, pos, cap, cond) + m.add(q, i.Arg, pos, cap, cond) + case syntax.InstEmptyWidth: + if syntax.EmptyOp(i.Arg)&^cond == 0 { + m.add(q, i.Out, pos, cap, cond) + } + case syntax.InstNop: + m.add(q, i.Out, pos, cap, cond) + case syntax.InstCapture: + if int(i.Arg) < len(cap) { + opos := cap[i.Arg] + cap[i.Arg] = pos + m.add(q, i.Out, pos, cap, cond) + cap[i.Arg] = opos + } else { + m.add(q, i.Out, pos, cap, cond) + } + case syntax.InstMatch, syntax.InstRune: + t := m.alloc(i) + if len(t.cap) > 0 { + copy(t.cap, cap) + } + d.t = t + } +} + +// empty is a non-nil 0-element slice, +// so doExecute can avoid an allocation +// when 0 captures are requested from a successful match. +var empty = make([]int, 0) + +// doExecute finds the leftmost match in the input and returns +// the position of its subexpressions. +func (re *Regexp) doExecute(i input, pos int, ncap int) []int { + m := re.get() + m.matchcap = m.matchcap[:ncap] + if !m.match(i, pos) { + re.put(m) + return nil + } + if ncap == 0 { + re.put(m) + return empty // empty but not nil + } + cap := make([]int, ncap) + copy(cap, m.matchcap) + re.put(m) + return cap +} |