diff options
Diffstat (limited to 'libphobos/src/std/math.d')
-rw-r--r-- | libphobos/src/std/math.d | 8586 |
1 files changed, 0 insertions, 8586 deletions
diff --git a/libphobos/src/std/math.d b/libphobos/src/std/math.d deleted file mode 100644 index 336c11a55e2..00000000000 --- a/libphobos/src/std/math.d +++ /dev/null @@ -1,8586 +0,0 @@ -// Written in the D programming language. - -/** - * Contains the elementary mathematical functions (powers, roots, - * and trigonometric functions), and low-level floating-point operations. - * Mathematical special functions are available in $(D std.mathspecial). - * -$(SCRIPT inhibitQuickIndex = 1;) - -$(DIVC quickindex, -$(BOOKTABLE , -$(TR $(TH Category) $(TH Members) ) -$(TR $(TDNW Constants) $(TD - $(MYREF E) $(MYREF PI) $(MYREF PI_2) $(MYREF PI_4) $(MYREF M_1_PI) - $(MYREF M_2_PI) $(MYREF M_2_SQRTPI) $(MYREF LN10) $(MYREF LN2) - $(MYREF LOG2) $(MYREF LOG2E) $(MYREF LOG2T) $(MYREF LOG10E) - $(MYREF SQRT2) $(MYREF SQRT1_2) -)) -$(TR $(TDNW Classics) $(TD - $(MYREF abs) $(MYREF fabs) $(MYREF sqrt) $(MYREF cbrt) $(MYREF hypot) - $(MYREF poly) $(MYREF nextPow2) $(MYREF truncPow2) -)) -$(TR $(TDNW Trigonometry) $(TD - $(MYREF sin) $(MYREF cos) $(MYREF tan) $(MYREF asin) $(MYREF acos) - $(MYREF atan) $(MYREF atan2) $(MYREF sinh) $(MYREF cosh) $(MYREF tanh) - $(MYREF asinh) $(MYREF acosh) $(MYREF atanh) $(MYREF expi) -)) -$(TR $(TDNW Rounding) $(TD - $(MYREF ceil) $(MYREF floor) $(MYREF round) $(MYREF lround) - $(MYREF trunc) $(MYREF rint) $(MYREF lrint) $(MYREF nearbyint) - $(MYREF rndtol) $(MYREF quantize) -)) -$(TR $(TDNW Exponentiation & Logarithms) $(TD - $(MYREF pow) $(MYREF exp) $(MYREF exp2) $(MYREF expm1) $(MYREF ldexp) - $(MYREF frexp) $(MYREF log) $(MYREF log2) $(MYREF log10) $(MYREF logb) - $(MYREF ilogb) $(MYREF log1p) $(MYREF scalbn) -)) -$(TR $(TDNW Modulus) $(TD - $(MYREF fmod) $(MYREF modf) $(MYREF remainder) -)) -$(TR $(TDNW Floating-point operations) $(TD - $(MYREF approxEqual) $(MYREF feqrel) $(MYREF fdim) $(MYREF fmax) - $(MYREF fmin) $(MYREF fma) $(MYREF nextDown) $(MYREF nextUp) - $(MYREF nextafter) $(MYREF NaN) $(MYREF getNaNPayload) - $(MYREF cmp) -)) -$(TR $(TDNW Introspection) $(TD - $(MYREF isFinite) $(MYREF isIdentical) $(MYREF isInfinity) $(MYREF isNaN) - $(MYREF isNormal) $(MYREF isSubnormal) $(MYREF signbit) $(MYREF sgn) - $(MYREF copysign) $(MYREF isPowerOf2) -)) -$(TR $(TDNW Complex Numbers) $(TD - $(MYREF abs) $(MYREF conj) $(MYREF sin) $(MYREF cos) $(MYREF expi) -)) -$(TR $(TDNW Hardware Control) $(TD - $(MYREF IeeeFlags) $(MYREF FloatingPointControl) -)) -) -) - - * The functionality closely follows the IEEE754-2008 standard for - * floating-point arithmetic, including the use of camelCase names rather - * than C99-style lower case names. All of these functions behave correctly - * when presented with an infinity or NaN. - * - * The following IEEE 'real' formats are currently supported: - * $(UL - * $(LI 64 bit Big-endian 'double' (eg PowerPC)) - * $(LI 128 bit Big-endian 'quadruple' (eg SPARC)) - * $(LI 64 bit Little-endian 'double' (eg x86-SSE2)) - * $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium)) - * $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!)) - * $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support) - * ) - * Unlike C, there is no global 'errno' variable. Consequently, almost all of - * these functions are pure nothrow. - * - * Status: - * The semantics and names of feqrel and approxEqual will be revised. - * - * Macros: - * TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> - * <caption>Special Values</caption> - * $0</table> - * SVH = $(TR $(TH $1) $(TH $2)) - * SV = $(TR $(TD $1) $(TD $2)) - * TH3 = $(TR $(TH $1) $(TH $2) $(TH $3)) - * TD3 = $(TR $(TD $1) $(TD $2) $(TD $3)) - * TABLE_DOMRG = <table border="1" cellpadding="4" cellspacing="0"> - * $(SVH Domain X, Range Y) - $(SV $1, $2) - * </table> - * DOMAIN=$1 - * RANGE=$1 - - * NAN = $(RED NAN) - * SUP = <span style="vertical-align:super;font-size:smaller">$0</span> - * GAMMA = Γ - * THETA = θ - * INTEGRAL = ∫ - * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) - * POWER = $1<sup>$2</sup> - * SUB = $1<sub>$2</sub> - * BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) - * CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) - * PLUSMN = ± - * INFIN = ∞ - * PLUSMNINF = ±∞ - * PI = π - * LT = < - * GT = > - * SQRT = √ - * HALF = ½ - * - * Copyright: Copyright Digital Mars 2000 - 2011. - * D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p, - * log2, floor, ceil and lrint functions are based on the CEPHES math library, - * which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT) - * and are incorporated herein by permission of the author. The author - * reserves the right to distribute this material elsewhere under different - * copying permissions. These modifications are distributed here under - * the following terms: - * License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). - * Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, - * Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger - * Source: $(PHOBOSSRC std/_math.d) - */ - -/* NOTE: This file has been patched from the original DMD distribution to - * work with the GDC compiler. - */ -module std.math; - -version (Win64) -{ - version (D_InlineAsm_X86_64) - version = Win64_DMD_InlineAsm; -} - -static import core.math; -static import core.stdc.math; -static import core.stdc.fenv; -import std.traits; // CommonType, isFloatingPoint, isIntegral, isSigned, isUnsigned, Largest, Unqual - -version (LDC) -{ - import ldc.intrinsics; -} - -version (DigitalMars) -{ - version = INLINE_YL2X; // x87 has opcodes for these -} - -version (X86) version = X86_Any; -version (X86_64) version = X86_Any; -version (PPC) version = PPC_Any; -version (PPC64) version = PPC_Any; -version (MIPS32) version = MIPS_Any; -version (MIPS64) version = MIPS_Any; -version (AArch64) version = ARM_Any; -version (ARM) version = ARM_Any; -version (S390) version = IBMZ_Any; -version (SPARC) version = SPARC_Any; -version (SPARC64) version = SPARC_Any; -version (SystemZ) version = IBMZ_Any; -version (RISCV32) version = RISCV_Any; -version (RISCV64) version = RISCV_Any; - -version (D_InlineAsm_X86) version = InlineAsm_X86_Any; -version (D_InlineAsm_X86_64) version = InlineAsm_X86_Any; - -version (InlineAsm_X86_Any) version = InlineAsm_X87; -version (InlineAsm_X87) -{ - static assert(real.mant_dig == 64); - version (CRuntime_Microsoft) version = InlineAsm_X87_MSVC; -} - -version (X86_64) version = StaticallyHaveSSE; -version (X86) version (OSX) version = StaticallyHaveSSE; - -version (StaticallyHaveSSE) -{ - private enum bool haveSSE = true; -} -else version (X86) -{ - static import core.cpuid; - private alias haveSSE = core.cpuid.sse; -} - -version (D_SoftFloat) -{ - // Some soft float implementations may support IEEE floating flags. - // The implementation here supports hardware flags only and is so currently - // only available for supported targets. -} -else version (X86_Any) version = IeeeFlagsSupport; -else version (PPC_Any) version = IeeeFlagsSupport; -else version (RISCV_Any) version = IeeeFlagsSupport; -else version (MIPS_Any) version = IeeeFlagsSupport; -else version (ARM_Any) version = IeeeFlagsSupport; - -// Struct FloatingPointControl is only available if hardware FP units are available. -version (D_HardFloat) -{ - // FloatingPointControl.clearExceptions() depends on version IeeeFlagsSupport - version (IeeeFlagsSupport) version = FloatingPointControlSupport; -} - -version (GNU) -{ - // The compiler can unexpectedly rearrange floating point operations and - // access to the floating point status flags when optimizing. This means - // ieeeFlags tests cannot be reliably checked in optimized code. - // See https://github.com/ldc-developers/ldc/issues/888 -} -else -{ - version = IeeeFlagsUnittest; - version = FloatingPointControlUnittest; -} - -version (unittest) -{ - import core.stdc.stdio; // : sprintf; - - static if (real.sizeof > double.sizeof) - enum uint useDigits = 16; - else - enum uint useDigits = 15; - - /****************************************** - * Compare floating point numbers to n decimal digits of precision. - * Returns: - * 1 match - * 0 nomatch - */ - - private bool equalsDigit(real x, real y, uint ndigits) - { - if (signbit(x) != signbit(y)) - return 0; - - if (isInfinity(x) && isInfinity(y)) - return 1; - if (isInfinity(x) || isInfinity(y)) - return 0; - - if (isNaN(x) && isNaN(y)) - return 1; - if (isNaN(x) || isNaN(y)) - return 0; - - char[30] bufx; - char[30] bufy; - assert(ndigits < bufx.length); - - int ix; - int iy; - version (CRuntime_Microsoft) - alias real_t = double; - else - alias real_t = real; - ix = sprintf(bufx.ptr, is(real_t == real) ? "%.*Lg" : "%.*g", ndigits, cast(real_t) x); - iy = sprintf(bufy.ptr, is(real_t == real) ? "%.*Lg" : "%.*g", ndigits, cast(real_t) y); - assert(ix < bufx.length && ix > 0); - assert(ix < bufy.length && ix > 0); - - return bufx[0 .. ix] == bufy[0 .. iy]; - } -} - - - -package: -// The following IEEE 'real' formats are currently supported. -version (LittleEndian) -{ - static assert(real.mant_dig == 53 || real.mant_dig == 64 - || real.mant_dig == 113, - "Only 64-bit, 80-bit, and 128-bit reals"~ - " are supported for LittleEndian CPUs"); -} -else -{ - static assert(real.mant_dig == 53 || real.mant_dig == 106 - || real.mant_dig == 113, - "Only 64-bit and 128-bit reals are supported for BigEndian CPUs."~ - " double-double reals have partial support"); -} - -// Underlying format exposed through floatTraits -enum RealFormat -{ - ieeeHalf, - ieeeSingle, - ieeeDouble, - ieeeExtended, // x87 80-bit real - ieeeExtended53, // x87 real rounded to precision of double. - ibmExtended, // IBM 128-bit extended - ieeeQuadruple, -} - -// Constants used for extracting the components of the representation. -// They supplement the built-in floating point properties. -template floatTraits(T) -{ - // EXPMASK is a ushort mask to select the exponent portion (without sign) - // EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort - // EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1). - // EXPPOS_SHORT is the index of the exponent when represented as a ushort array. - // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. - // RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal - enum T RECIP_EPSILON = (1/T.epsilon); - static if (T.mant_dig == 24) - { - // Single precision float - enum ushort EXPMASK = 0x7F80; - enum ushort EXPSHIFT = 7; - enum ushort EXPBIAS = 0x3F00; - enum uint EXPMASK_INT = 0x7F80_0000; - enum uint MANTISSAMASK_INT = 0x007F_FFFF; - enum realFormat = RealFormat.ieeeSingle; - version (LittleEndian) - { - enum EXPPOS_SHORT = 1; - enum SIGNPOS_BYTE = 3; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else static if (T.mant_dig == 53) - { - static if (T.sizeof == 8) - { - // Double precision float, or real == double - enum ushort EXPMASK = 0x7FF0; - enum ushort EXPSHIFT = 4; - enum ushort EXPBIAS = 0x3FE0; - enum uint EXPMASK_INT = 0x7FF0_0000; - enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only - enum realFormat = RealFormat.ieeeDouble; - version (LittleEndian) - { - enum EXPPOS_SHORT = 3; - enum SIGNPOS_BYTE = 7; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else static if (T.sizeof == 12) - { - // Intel extended real80 rounded to double - enum ushort EXPMASK = 0x7FFF; - enum ushort EXPSHIFT = 0; - enum ushort EXPBIAS = 0x3FFE; - enum realFormat = RealFormat.ieeeExtended53; - version (LittleEndian) - { - enum EXPPOS_SHORT = 4; - enum SIGNPOS_BYTE = 9; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else - static assert(false, "No traits support for " ~ T.stringof); - } - else static if (T.mant_dig == 64) - { - // Intel extended real80 - enum ushort EXPMASK = 0x7FFF; - enum ushort EXPSHIFT = 0; - enum ushort EXPBIAS = 0x3FFE; - enum realFormat = RealFormat.ieeeExtended; - version (LittleEndian) - { - enum EXPPOS_SHORT = 4; - enum SIGNPOS_BYTE = 9; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else static if (T.mant_dig == 113) - { - // Quadruple precision float - enum ushort EXPMASK = 0x7FFF; - enum ushort EXPSHIFT = 0; - enum ushort EXPBIAS = 0x3FFE; - enum realFormat = RealFormat.ieeeQuadruple; - version (LittleEndian) - { - enum EXPPOS_SHORT = 7; - enum SIGNPOS_BYTE = 15; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else static if (T.mant_dig == 106) - { - // IBM Extended doubledouble - enum ushort EXPMASK = 0x7FF0; - enum ushort EXPSHIFT = 4; - enum realFormat = RealFormat.ibmExtended; - - // For IBM doubledouble the larger magnitude double comes first. - // It's really a double[2] and arrays don't index differently - // between little and big-endian targets. - enum DOUBLEPAIR_MSB = 0; - enum DOUBLEPAIR_LSB = 1; - - // The exponent/sign byte is for most significant part. - version (LittleEndian) - { - enum EXPPOS_SHORT = 3; - enum SIGNPOS_BYTE = 7; - } - else - { - enum EXPPOS_SHORT = 0; - enum SIGNPOS_BYTE = 0; - } - } - else - static assert(false, "No traits support for " ~ T.stringof); -} - -// These apply to all floating-point types -version (LittleEndian) -{ - enum MANTISSA_LSB = 0; - enum MANTISSA_MSB = 1; -} -else -{ - enum MANTISSA_LSB = 1; - enum MANTISSA_MSB = 0; -} - -// Common code for math implementations. - -// Helper for floor/ceil -T floorImpl(T)(const T x) @trusted pure nothrow @nogc -{ - alias F = floatTraits!(T); - // Take care not to trigger library calls from the compiler, - // while ensuring that we don't get defeated by some optimizers. - union floatBits - { - T rv; - ushort[T.sizeof/2] vu; - - // Other kinds of extractors for real formats. - static if (F.realFormat == RealFormat.ieeeSingle) - int vi; - } - floatBits y = void; - y.rv = x; - - // Find the exponent (power of 2) - // Do this by shifting the raw value so that the exponent lies in the low bits, - // then mask out the sign bit, and subtract the bias. - static if (F.realFormat == RealFormat.ieeeSingle) - { - int exp = ((y.vi >> (T.mant_dig - 1)) & 0xff) - 0x7f; - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - int exp = ((y.vu[F.EXPPOS_SHORT] >> 4) & 0x7ff) - 0x3ff; - - version (LittleEndian) - int pos = 0; - else - int pos = 3; - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; - - version (LittleEndian) - int pos = 0; - else - int pos = 4; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; - - version (LittleEndian) - int pos = 0; - else - int pos = 7; - } - else - static assert(false, "Not implemented for this architecture"); - - if (exp < 0) - { - if (x < 0.0) - return -1.0; - else - return 0.0; - } - - static if (F.realFormat == RealFormat.ieeeSingle) - { - if (exp < (T.mant_dig - 1)) - { - // Clear all bits representing the fraction part. - const uint fraction_mask = F.MANTISSAMASK_INT >> exp; - - if ((y.vi & fraction_mask) != 0) - { - // If 'x' is negative, then first substract 1.0 from the value. - if (y.vi < 0) - y.vi += 0x00800000 >> exp; - y.vi &= ~fraction_mask; - } - } - } - else - { - static if (F.realFormat == RealFormat.ieeeExtended53) - exp = (T.mant_dig + 11 - 1) - exp; // mant_dig is really 64 - else - exp = (T.mant_dig - 1) - exp; - - // Zero 16 bits at a time. - while (exp >= 16) - { - version (LittleEndian) - y.vu[pos++] = 0; - else - y.vu[pos--] = 0; - exp -= 16; - } - - // Clear the remaining bits. - if (exp > 0) - y.vu[pos] &= 0xffff ^ ((1 << exp) - 1); - - if ((x < 0.0) && (x != y.rv)) - y.rv -= 1.0; - } - - return y.rv; -} - -public: - -// Values obtained from Wolfram Alpha. 116 bits ought to be enough for anybody. -// Wolfram Alpha LLC. 2011. Wolfram|Alpha. http://www.wolframalpha.com/input/?i=e+in+base+16 (access July 6, 2011). -enum real E = 0x1.5bf0a8b1457695355fb8ac404e7a8p+1L; /** e = 2.718281... */ -enum real LOG2T = 0x1.a934f0979a3715fc9257edfe9b5fbp+1L; /** $(SUB log, 2)10 = 3.321928... */ -enum real LOG2E = 0x1.71547652b82fe1777d0ffda0d23a8p+0L; /** $(SUB log, 2)e = 1.442695... */ -enum real LOG2 = 0x1.34413509f79fef311f12b35816f92p-2L; /** $(SUB log, 10)2 = 0.301029... */ -enum real LOG10E = 0x1.bcb7b1526e50e32a6ab7555f5a67cp-2L; /** $(SUB log, 10)e = 0.434294... */ -enum real LN2 = 0x1.62e42fefa39ef35793c7673007e5fp-1L; /** ln 2 = 0.693147... */ -enum real LN10 = 0x1.26bb1bbb5551582dd4adac5705a61p+1L; /** ln 10 = 2.302585... */ -enum real PI = 0x1.921fb54442d18469898cc51701b84p+1L; /** $(_PI) = 3.141592... */ -enum real PI_2 = PI/2; /** $(PI) / 2 = 1.570796... */ -enum real PI_4 = PI/4; /** $(PI) / 4 = 0.785398... */ -enum real M_1_PI = 0x1.45f306dc9c882a53f84eafa3ea69cp-2L; /** 1 / $(PI) = 0.318309... */ -enum real M_2_PI = 2*M_1_PI; /** 2 / $(PI) = 0.636619... */ -enum real M_2_SQRTPI = 0x1.20dd750429b6d11ae3a914fed7fd8p+0L; /** 2 / $(SQRT)$(PI) = 1.128379... */ -enum real SQRT2 = 0x1.6a09e667f3bcc908b2fb1366ea958p+0L; /** $(SQRT)2 = 1.414213... */ -enum real SQRT1_2 = SQRT2/2; /** $(SQRT)$(HALF) = 0.707106... */ -// Note: Make sure the magic numbers in compiler backend for x87 match these. - - -/*********************************** - * Calculates the absolute value of a number - * - * Params: - * Num = (template parameter) type of number - * x = real number value - * z = complex number value - * y = imaginary number value - * - * Returns: - * The absolute value of the number. If floating-point or integral, - * the return type will be the same as the input; if complex or - * imaginary, the returned value will be the corresponding floating - * point type. - * - * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) - * = hypot(z.re, z.im). - */ -Num abs(Num)(Num x) @safe pure nothrow -if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) && - !(is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) - || is(Num* : const(ireal*)))) -{ - static if (isFloatingPoint!(Num)) - return fabs(x); - else - return x >= 0 ? x : -x; -} - -/// ditto -auto abs(Num)(Num z) @safe pure nothrow @nogc -if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) - || is(Num* : const(creal*))) -{ - return hypot(z.re, z.im); -} - -/// ditto -auto abs(Num)(Num y) @safe pure nothrow @nogc -if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) - || is(Num* : const(ireal*))) -{ - return fabs(y.im); -} - -/// ditto -@safe pure nothrow @nogc unittest -{ - assert(isIdentical(abs(-0.0L), 0.0L)); - assert(isNaN(abs(real.nan))); - assert(abs(-real.infinity) == real.infinity); - assert(abs(-3.2Li) == 3.2L); - assert(abs(71.6Li) == 71.6L); - assert(abs(-56) == 56); - assert(abs(2321312L) == 2321312L); - assert(abs(-1L+1i) == sqrt(2.0L)); -} - -@safe pure nothrow @nogc unittest -{ - import std.meta : AliasSeq; - foreach (T; AliasSeq!(float, double, real)) - { - T f = 3; - assert(abs(f) == f); - assert(abs(-f) == f); - } - foreach (T; AliasSeq!(cfloat, cdouble, creal)) - { - T f = -12+3i; - assert(abs(f) == hypot(f.re, f.im)); - assert(abs(-f) == hypot(f.re, f.im)); - } -} - -/*********************************** - * Complex conjugate - * - * conj(x + iy) = x - iy - * - * Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2) - * is always a real number - */ -auto conj(Num)(Num z) @safe pure nothrow @nogc -if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) - || is(Num* : const(creal*))) -{ - //FIXME - //Issue 14206 - static if (is(Num* : const(cdouble*))) - return cast(cdouble) conj(cast(creal) z); - else - return z.re - z.im*1fi; -} - -/** ditto */ -auto conj(Num)(Num y) @safe pure nothrow @nogc -if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) - || is(Num* : const(ireal*))) -{ - return -y; -} - -/// -@safe pure nothrow @nogc unittest -{ - creal c = 7 + 3Li; - assert(conj(c) == 7-3Li); - ireal z = -3.2Li; - assert(conj(z) == -z); -} -//Issue 14206 -@safe pure nothrow @nogc unittest -{ - cdouble c = 7 + 3i; - assert(conj(c) == 7-3i); - idouble z = -3.2i; - assert(conj(z) == -z); -} -//Issue 14206 -@safe pure nothrow @nogc unittest -{ - cfloat c = 7f + 3fi; - assert(conj(c) == 7f-3fi); - ifloat z = -3.2fi; - assert(conj(z) == -z); -} - -/*********************************** - * Returns cosine of x. x is in radians. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) - * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) - * ) - * Bugs: - * Results are undefined if |x| >= $(POWER 2,64). - */ - -real cos(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.cos(x); } -//FIXME -///ditto -double cos(double x) @safe pure nothrow @nogc { return cos(cast(real) x); } -//FIXME -///ditto -float cos(float x) @safe pure nothrow @nogc { return cos(cast(real) x); } - -@safe unittest -{ - real function(real) pcos = &cos; - assert(pcos != null); -} - -/*********************************** - * Returns $(HTTP en.wikipedia.org/wiki/Sine, sine) of x. x is in $(HTTP en.wikipedia.org/wiki/Radian, radians). - * - * $(TABLE_SV - * $(TH3 x , sin(x) , invalid?) - * $(TD3 $(NAN) , $(NAN) , yes ) - * $(TD3 $(PLUSMN)0.0, $(PLUSMN)0.0, no ) - * $(TD3 $(PLUSMNINF), $(NAN) , yes ) - * ) - * - * Params: - * x = angle in radians (not degrees) - * Returns: - * sine of x - * See_Also: - * $(MYREF cos), $(MYREF tan), $(MYREF asin) - * Bugs: - * Results are undefined if |x| >= $(POWER 2,64). - */ - -real sin(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.sin(x); } -//FIXME -///ditto -double sin(double x) @safe pure nothrow @nogc { return sin(cast(real) x); } -//FIXME -///ditto -float sin(float x) @safe pure nothrow @nogc { return sin(cast(real) x); } - -/// -@safe unittest -{ - import std.math : sin, PI; - import std.stdio : writefln; - - void someFunc() - { - real x = 30.0; - auto result = sin(x * (PI / 180)); // convert degrees to radians - writefln("The sine of %s degrees is %s", x, result); - } -} - -@safe unittest -{ - real function(real) psin = &sin; - assert(psin != null); -} - -/*********************************** - * Returns sine for complex and imaginary arguments. - * - * sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i - * - * If both sin($(THETA)) and cos($(THETA)) are required, - * it is most efficient to use expi($(THETA)). - */ -creal sin(creal z) @safe pure nothrow @nogc -{ - const creal cs = expi(z.re); - const creal csh = coshisinh(z.im); - return cs.im * csh.re + cs.re * csh.im * 1i; -} - -/** ditto */ -ireal sin(ireal y) @safe pure nothrow @nogc -{ - return cosh(y.im)*1i; -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(sin(0.0+0.0i) == 0.0); - assert(sin(2.0+0.0i) == sin(2.0L) ); -} - -/*********************************** - * cosine, complex and imaginary - * - * cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i - */ -creal cos(creal z) @safe pure nothrow @nogc -{ - const creal cs = expi(z.re); - const creal csh = coshisinh(z.im); - return cs.re * csh.re - cs.im * csh.im * 1i; -} - -/** ditto */ -real cos(ireal y) @safe pure nothrow @nogc -{ - return cosh(y.im); -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(cos(0.0+0.0i)==1.0); - assert(cos(1.3L+0.0i)==cos(1.3L)); - assert(cos(5.2Li)== cosh(5.2L)); -} - -/**************************************************************************** - * Returns tangent of x. x is in radians. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) - * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) - * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) - * ) - */ - -real tan(real x) @trusted pure nothrow @nogc -{ - version (D_InlineAsm_X86) - { - asm pure nothrow @nogc - { - fld x[EBP] ; // load theta - fxam ; // test for oddball values - fstsw AX ; - sahf ; - jc trigerr ; // x is NAN, infinity, or empty - // 387's can handle subnormals -SC18: fptan ; - fstsw AX ; - sahf ; - jnp Clear1 ; // C2 = 1 (x is out of range) - - // Do argument reduction to bring x into range - fldpi ; - fxch ; -SC17: fprem1 ; - fstsw AX ; - sahf ; - jp SC17 ; - fstp ST(1) ; // remove pi from stack - jmp SC18 ; - -trigerr: - jnp Lret ; // if theta is NAN, return theta - fstp ST(0) ; // dump theta - } - return real.nan; - -Clear1: asm pure nothrow @nogc{ - fstp ST(0) ; // dump X, which is always 1 - } - -Lret: {} - } - else version (D_InlineAsm_X86_64) - { - version (Win64) - { - asm pure nothrow @nogc - { - fld real ptr [RCX] ; // load theta - } - } - else - { - asm pure nothrow @nogc - { - fld x[RBP] ; // load theta - } - } - asm pure nothrow @nogc - { - fxam ; // test for oddball values - fstsw AX ; - test AH,1 ; - jnz trigerr ; // x is NAN, infinity, or empty - // 387's can handle subnormals -SC18: fptan ; - fstsw AX ; - test AH,4 ; - jz Clear1 ; // C2 = 1 (x is out of range) - - // Do argument reduction to bring x into range - fldpi ; - fxch ; -SC17: fprem1 ; - fstsw AX ; - test AH,4 ; - jnz SC17 ; - fstp ST(1) ; // remove pi from stack - jmp SC18 ; - -trigerr: - test AH,4 ; - jz Lret ; // if theta is NAN, return theta - fstp ST(0) ; // dump theta - } - return real.nan; - -Clear1: asm pure nothrow @nogc{ - fstp ST(0) ; // dump X, which is always 1 - } - -Lret: {} - } - else - { - // Coefficients for tan(x) and PI/4 split into three parts. - static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) - { - static immutable real[6] P = [ - 2.883414728874239697964612246732416606301E10L, - -2.307030822693734879744223131873392503321E9L, - 5.160188250214037865511600561074819366815E7L, - -4.249691853501233575668486667664718192660E5L, - 1.272297782199996882828849455156962260810E3L, - -9.889929415807650724957118893791829849557E-1L - ]; - static immutable real[7] Q = [ - 8.650244186622719093893836740197250197602E10L, - -4.152206921457208101480801635640958361612E10L, - 2.758476078803232151774723646710890525496E9L, - -5.733709132766856723608447733926138506824E7L, - 4.529422062441341616231663543669583527923E5L, - -1.317243702830553658702531997959756728291E3L, - 1.0 - ]; - - enum real P1 = - 7.853981633974483067550664827649598009884357452392578125E-1L; - enum real P2 = - 2.8605943630549158983813312792950660807511260829685741796657E-18L; - enum real P3 = - 2.1679525325309452561992610065108379921905808E-35L; - } - else - { - static immutable real[3] P = [ - -1.7956525197648487798769E7L, - 1.1535166483858741613983E6L, - -1.3093693918138377764608E4L, - ]; - static immutable real[5] Q = [ - -5.3869575592945462988123E7L, - 2.5008380182335791583922E7L, - -1.3208923444021096744731E6L, - 1.3681296347069295467845E4L, - 1.0000000000000000000000E0L, - ]; - - enum real P1 = 7.853981554508209228515625E-1L; - enum real P2 = 7.946627356147928367136046290398E-9L; - enum real P3 = 3.061616997868382943065164830688E-17L; - } - - // Special cases. - if (x == 0.0 || isNaN(x)) - return x; - if (isInfinity(x)) - return real.nan; - - // Make argument positive but save the sign. - bool sign = false; - if (signbit(x)) - { - sign = true; - x = -x; - } - - // Compute x mod PI/4. - real y = floor(x / PI_4); - // Strip high bits of integer part. - real z = ldexp(y, -4); - // Compute y - 16 * (y / 16). - z = y - ldexp(floor(z), 4); - - // Integer and fraction part modulo one octant. - int j = cast(int)(z); - - // Map zeros and singularities to origin. - if (j & 1) - { - j += 1; - y += 1.0; - } - - z = ((x - y * P1) - y * P2) - y * P3; - const real zz = z * z; - - if (zz > 1.0e-20L) - y = z + z * (zz * poly(zz, P) / poly(zz, Q)); - else - y = z; - - if (j & 2) - y = -1.0 / y; - - return (sign) ? -y : y; - } -} - -@safe nothrow @nogc unittest -{ - static real[2][] vals = // angle,tan - [ - [ 0, 0], - [ .5, .5463024898], - [ 1, 1.557407725], - [ 1.5, 14.10141995], - [ 2, -2.185039863], - [ 2.5,-.7470222972], - [ 3, -.1425465431], - [ 3.5, .3745856402], - [ 4, 1.157821282], - [ 4.5, 4.637332055], - [ 5, -3.380515006], - [ 5.5,-.9955840522], - [ 6, -.2910061914], - [ 6.5, .2202772003], - [ 10, .6483608275], - - // special angles - [ PI_4, 1], - //[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. - [ 3*PI_4, -1], - [ PI, 0], - [ 5*PI_4, 1], - //[ 3*PI_2, -real.infinity], - [ 7*PI_4, -1], - [ 2*PI, 0], - ]; - int i; - - for (i = 0; i < vals.length; i++) - { - real x = vals[i][0]; - real r = vals[i][1]; - real t = tan(x); - - //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); - assert(approxEqual(r, t)); - - x = -x; - r = -r; - t = tan(x); - //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); - assert(approxEqual(r, t)); - } - // overflow - assert(isNaN(tan(real.infinity))); - assert(isNaN(tan(-real.infinity))); - // NaN propagation - assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); -} - -@system unittest -{ - assert(equalsDigit(tan(PI / 3), std.math.sqrt(3.0), useDigits)); -} - -/*************** - * Calculates the arc cosine of x, - * returning a value ranging from 0 to $(PI). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) - * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) - * ) - */ -real acos(real x) @safe pure nothrow @nogc -{ - return atan2(sqrt(1-x*x), x); -} - -/// ditto -double acos(double x) @safe pure nothrow @nogc { return acos(cast(real) x); } - -/// ditto -float acos(float x) @safe pure nothrow @nogc { return acos(cast(real) x); } - -@system unittest -{ - assert(equalsDigit(acos(0.5), std.math.PI / 3, useDigits)); -} - -/*************** - * Calculates the arc sine of x, - * returning a value ranging from -$(PI)/2 to $(PI)/2. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) - * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) - * ) - */ -real asin(real x) @safe pure nothrow @nogc -{ - return atan2(x, sqrt(1-x*x)); -} - -/// ditto -double asin(double x) @safe pure nothrow @nogc { return asin(cast(real) x); } - -/// ditto -float asin(float x) @safe pure nothrow @nogc { return asin(cast(real) x); } - -@system unittest -{ - assert(asin(0.5).approxEqual(PI / 6)); -} - -/*************** - * Calculates the arc tangent of x, - * returning a value ranging from -$(PI)/2 to $(PI)/2. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) - * ) - */ -real atan(real x) @safe pure nothrow @nogc -{ - version (InlineAsm_X86_Any) - { - return atan2(x, 1.0L); - } - else - { - // Coefficients for atan(x) - static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) - { - static immutable real[9] P = [ - -6.880597774405940432145577545328795037141E2L, - -2.514829758941713674909996882101723647996E3L, - -3.696264445691821235400930243493001671932E3L, - -2.792272753241044941703278827346430350236E3L, - -1.148164399808514330375280133523543970854E3L, - -2.497759878476618348858065206895055957104E2L, - -2.548067867495502632615671450650071218995E1L, - -8.768423468036849091777415076702113400070E-1L, - -6.635810778635296712545011270011752799963E-4L - ]; - static immutable real[9] Q = [ - 2.064179332321782129643673263598686441900E3L, - 8.782996876218210302516194604424986107121E3L, - 1.547394317752562611786521896296215170819E4L, - 1.458510242529987155225086911411015961174E4L, - 7.928572347062145288093560392463784743935E3L, - 2.494680540950601626662048893678584497900E3L, - 4.308348370818927353321556740027020068897E2L, - 3.566239794444800849656497338030115886153E1L, - 1.0 - ]; - } - else - { - static immutable real[5] P = [ - -5.0894116899623603312185E1L, - -9.9988763777265819915721E1L, - -6.3976888655834347413154E1L, - -1.4683508633175792446076E1L, - -8.6863818178092187535440E-1L, - ]; - static immutable real[6] Q = [ - 1.5268235069887081006606E2L, - 3.9157570175111990631099E2L, - 3.6144079386152023162701E2L, - 1.4399096122250781605352E2L, - 2.2981886733594175366172E1L, - 1.0000000000000000000000E0L, - ]; - } - - // tan(PI/8) - enum real TAN_PI_8 = 0.414213562373095048801688724209698078569672L; - // tan(3 * PI/8) - enum real TAN3_PI_8 = 2.414213562373095048801688724209698078569672L; - - // Special cases. - if (x == 0.0) - return x; - if (isInfinity(x)) - return copysign(PI_2, x); - - // Make argument positive but save the sign. - bool sign = false; - if (signbit(x)) - { - sign = true; - x = -x; - } - - // Range reduction. - real y; - if (x > TAN3_PI_8) - { - y = PI_2; - x = -(1.0 / x); - } - else if (x > TAN_PI_8) - { - y = PI_4; - x = (x - 1.0)/(x + 1.0); - } - else - y = 0.0; - - // Rational form in x^^2. - const real z = x * x; - y = y + (poly(z, P) / poly(z, Q)) * z * x + x; - - return (sign) ? -y : y; - } -} - -/// ditto -double atan(double x) @safe pure nothrow @nogc { return atan(cast(real) x); } - -/// ditto -float atan(float x) @safe pure nothrow @nogc { return atan(cast(real) x); } - -@system unittest -{ - assert(equalsDigit(atan(std.math.sqrt(3.0)), PI / 3, useDigits)); -} - -/*************** - * Calculates the arc tangent of y / x, - * returning a value ranging from -$(PI) to $(PI). - * - * $(TABLE_SV - * $(TR $(TH y) $(TH x) $(TH atan(y, x))) - * $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) - * $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) - * $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) - * $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) - * $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) - * $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) - * $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) - * ) - */ -real atan2(real y, real x) @trusted pure nothrow @nogc -{ - version (InlineAsm_X86_Any) - { - version (Win64) - { - asm pure nothrow @nogc { - naked; - fld real ptr [RDX]; // y - fld real ptr [RCX]; // x - fpatan; - ret; - } - } - else - { - asm pure nothrow @nogc { - fld y; - fld x; - fpatan; - } - } - } - else - { - // Special cases. - if (isNaN(x) || isNaN(y)) - return real.nan; - if (y == 0.0) - { - if (x >= 0 && !signbit(x)) - return copysign(0, y); - else - return copysign(PI, y); - } - if (x == 0.0) - return copysign(PI_2, y); - if (isInfinity(x)) - { - if (signbit(x)) - { - if (isInfinity(y)) - return copysign(3*PI_4, y); - else - return copysign(PI, y); - } - else - { - if (isInfinity(y)) - return copysign(PI_4, y); - else - return copysign(0.0, y); - } - } - if (isInfinity(y)) - return copysign(PI_2, y); - - // Call atan and determine the quadrant. - real z = atan(y / x); - - if (signbit(x)) - { - if (signbit(y)) - z = z - PI; - else - z = z + PI; - } - - if (z == 0.0) - return copysign(z, y); - - return z; - } -} - -/// ditto -double atan2(double y, double x) @safe pure nothrow @nogc -{ - return atan2(cast(real) y, cast(real) x); -} - -/// ditto -float atan2(float y, float x) @safe pure nothrow @nogc -{ - return atan2(cast(real) y, cast(real) x); -} - -@system unittest -{ - assert(atan2(1.0, sqrt(3.0)).approxEqual(PI / 6)); -} - -/*********************************** - * Calculates the hyperbolic cosine of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) - * ) - */ -real cosh(real x) @safe pure nothrow @nogc -{ - // cosh = (exp(x)+exp(-x))/2. - // The naive implementation works correctly. - const real y = exp(x); - return (y + 1.0/y) * 0.5; -} - -/// ditto -double cosh(double x) @safe pure nothrow @nogc { return cosh(cast(real) x); } - -/// ditto -float cosh(float x) @safe pure nothrow @nogc { return cosh(cast(real) x); } - -@system unittest -{ - assert(equalsDigit(cosh(1.0), (E + 1.0 / E) / 2, useDigits)); -} - -/*********************************** - * Calculates the hyperbolic sine of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) - * ) - */ -real sinh(real x) @safe pure nothrow @nogc -{ - // sinh(x) = (exp(x)-exp(-x))/2; - // Very large arguments could cause an overflow, but - // the maximum value of x for which exp(x) + exp(-x)) != exp(x) - // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. - if (fabs(x) > real.mant_dig * LN2) - { - return copysign(0.5 * exp(fabs(x)), x); - } - - const real y = expm1(x); - return 0.5 * y / (y+1) * (y+2); -} - -/// ditto -double sinh(double x) @safe pure nothrow @nogc { return sinh(cast(real) x); } - -/// ditto -float sinh(float x) @safe pure nothrow @nogc { return sinh(cast(real) x); } - -@system unittest -{ - assert(sinh(1.0).approxEqual((E - 1.0 / E) / 2)); -} - -/*********************************** - * Calculates the hyperbolic tangent of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) - * ) - */ -real tanh(real x) @safe pure nothrow @nogc -{ - // tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) - if (fabs(x) > real.mant_dig * LN2) - { - return copysign(1, x); - } - - const real y = expm1(2*x); - return y / (y + 2); -} - -/// ditto -double tanh(double x) @safe pure nothrow @nogc { return tanh(cast(real) x); } - -/// ditto -float tanh(float x) @safe pure nothrow @nogc { return tanh(cast(real) x); } - -@system unittest -{ - assert(equalsDigit(tanh(1.0), sinh(1.0) / cosh(1.0), 15)); -} - -package: - -/* Returns cosh(x) + I * sinh(x) - * Only one call to exp() is performed. - */ -creal coshisinh(real x) @safe pure nothrow @nogc -{ - // See comments for cosh, sinh. - if (fabs(x) > real.mant_dig * LN2) - { - const real y = exp(fabs(x)); - return y * 0.5 + 0.5i * copysign(y, x); - } - else - { - const real y = expm1(x); - return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2); - } -} - -@safe pure nothrow @nogc unittest -{ - creal c = coshisinh(3.0L); - assert(c.re == cosh(3.0L)); - assert(c.im == sinh(3.0L)); -} - -public: - -/*********************************** - * Calculates the inverse hyperbolic cosine of x. - * - * Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) - * - * $(TABLE_DOMRG - * $(DOMAIN 1..$(INFIN)), - * $(RANGE 0..$(INFIN)) - * ) - * - * $(TABLE_SV - * $(SVH x, acosh(x) ) - * $(SV $(NAN), $(NAN) ) - * $(SV $(LT)1, $(NAN) ) - * $(SV 1, 0 ) - * $(SV +$(INFIN),+$(INFIN)) - * ) - */ -real acosh(real x) @safe pure nothrow @nogc -{ - if (x > 1/real.epsilon) - return LN2 + log(x); - else - return log(x + sqrt(x*x - 1)); -} - -/// ditto -double acosh(double x) @safe pure nothrow @nogc { return acosh(cast(real) x); } - -/// ditto -float acosh(float x) @safe pure nothrow @nogc { return acosh(cast(real) x); } - - -@system unittest -{ - assert(isNaN(acosh(0.9))); - assert(isNaN(acosh(real.nan))); - assert(acosh(1.0)==0.0); - assert(acosh(real.infinity) == real.infinity); - assert(isNaN(acosh(0.5))); - assert(equalsDigit(acosh(cosh(3.0)), 3, useDigits)); -} - -/*********************************** - * Calculates the inverse hyperbolic sine of x. - * - * Mathematically, - * --------------- - * asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 - * asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 - * ------------- - * - * $(TABLE_SV - * $(SVH x, asinh(x) ) - * $(SV $(NAN), $(NAN) ) - * $(SV $(PLUSMN)0, $(PLUSMN)0 ) - * $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) - * ) - */ -real asinh(real x) @safe pure nothrow @nogc -{ - return (fabs(x) > 1 / real.epsilon) - // beyond this point, x*x + 1 == x*x - ? copysign(LN2 + log(fabs(x)), x) - // sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) - : copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); -} - -/// ditto -double asinh(double x) @safe pure nothrow @nogc { return asinh(cast(real) x); } - -/// ditto -float asinh(float x) @safe pure nothrow @nogc { return asinh(cast(real) x); } - -@system unittest -{ - assert(isIdentical(asinh(0.0), 0.0)); - assert(isIdentical(asinh(-0.0), -0.0)); - assert(asinh(real.infinity) == real.infinity); - assert(asinh(-real.infinity) == -real.infinity); - assert(isNaN(asinh(real.nan))); - assert(equalsDigit(asinh(sinh(3.0)), 3, useDigits)); -} - -/*********************************** - * Calculates the inverse hyperbolic tangent of x, - * returning a value from ranging from -1 to 1. - * - * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 - * - * $(TABLE_DOMRG - * $(DOMAIN -$(INFIN)..$(INFIN)), - * $(RANGE -1 .. 1) - * ) - * $(BR) - * $(TABLE_SV - * $(SVH x, acosh(x) ) - * $(SV $(NAN), $(NAN) ) - * $(SV $(PLUSMN)0, $(PLUSMN)0) - * $(SV -$(INFIN), -0) - * ) - */ -real atanh(real x) @safe pure nothrow @nogc -{ - // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) - return 0.5 * log1p( 2 * x / (1 - x) ); -} - -/// ditto -double atanh(double x) @safe pure nothrow @nogc { return atanh(cast(real) x); } - -/// ditto -float atanh(float x) @safe pure nothrow @nogc { return atanh(cast(real) x); } - - -@system unittest -{ - assert(isIdentical(atanh(0.0), 0.0)); - assert(isIdentical(atanh(-0.0),-0.0)); - assert(isNaN(atanh(real.nan))); - assert(isNaN(atanh(-real.infinity))); - assert(atanh(0.0) == 0); - assert(equalsDigit(atanh(tanh(0.5L)), 0.5, useDigits)); -} - -/***************************************** - * Returns x rounded to a long value using the current rounding mode. - * If the integer value of x is - * greater than long.max, the result is - * indeterminate. - */ -long rndtol(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.rndtol(x); } -//FIXME -///ditto -long rndtol(double x) @safe pure nothrow @nogc { return rndtol(cast(real) x); } -//FIXME -///ditto -long rndtol(float x) @safe pure nothrow @nogc { return rndtol(cast(real) x); } - -@safe unittest -{ - long function(real) prndtol = &rndtol; - assert(prndtol != null); -} - -/***************************************** - * Returns x rounded to a long value using the FE_TONEAREST rounding mode. - * If the integer value of x is - * greater than long.max, the result is - * indeterminate. - */ -extern (C) real rndtonl(real x); - -/*************************************** - * Compute square root of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) - * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) - * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) - * ) - */ -float sqrt(float x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } - -/// ditto -double sqrt(double x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } - -/// ditto -real sqrt(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } - -@safe pure nothrow @nogc unittest -{ - //ctfe - enum ZX80 = sqrt(7.0f); - enum ZX81 = sqrt(7.0); - enum ZX82 = sqrt(7.0L); - - assert(isNaN(sqrt(-1.0f))); - assert(isNaN(sqrt(-1.0))); - assert(isNaN(sqrt(-1.0L))); -} - -@safe unittest -{ - float function(float) psqrtf = &sqrt; - assert(psqrtf != null); - double function(double) psqrtd = &sqrt; - assert(psqrtd != null); - real function(real) psqrtr = &sqrt; - assert(psqrtr != null); -} - -creal sqrt(creal z) @nogc @safe pure nothrow -{ - creal c; - real x,y,w,r; - - if (z == 0) - { - c = 0 + 0i; - } - else - { - const real z_re = z.re; - const real z_im = z.im; - - x = fabs(z_re); - y = fabs(z_im); - if (x >= y) - { - r = y / x; - w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); - } - else - { - r = x / y; - w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); - } - - if (z_re >= 0) - { - c = w + (z_im / (w + w)) * 1.0i; - } - else - { - if (z_im < 0) - w = -w; - c = z_im / (w + w) + w * 1.0i; - } - } - return c; -} - -/** - * Calculates e$(SUPERSCRIPT x). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH e$(SUPERSCRIPT x)) ) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) - * $(TR $(TD -$(INFIN)) $(TD +0.0) ) - * $(TR $(TD $(NAN)) $(TD $(NAN)) ) - * ) - */ -real exp(real x) @trusted pure nothrow @nogc -{ - version (D_InlineAsm_X86) - { - // e^^x = 2^^(LOG2E*x) - // (This is valid because the overflow & underflow limits for exp - // and exp2 are so similar). - return exp2(LOG2E*x); - } - else version (D_InlineAsm_X86_64) - { - // e^^x = 2^^(LOG2E*x) - // (This is valid because the overflow & underflow limits for exp - // and exp2 are so similar). - return exp2(LOG2E*x); - } - else - { - alias F = floatTraits!real; - static if (F.realFormat == RealFormat.ieeeDouble) - { - // Coefficients for exp(x) - static immutable real[3] P = [ - 9.99999999999999999910E-1L, - 3.02994407707441961300E-2L, - 1.26177193074810590878E-4L, - ]; - static immutable real[4] Q = [ - 2.00000000000000000009E0L, - 2.27265548208155028766E-1L, - 2.52448340349684104192E-3L, - 3.00198505138664455042E-6L, - ]; - - // C1 + C2 = LN2. - enum real C1 = 6.93145751953125E-1; - enum real C2 = 1.42860682030941723212E-6; - - // Overflow and Underflow limits. - enum real OF = 7.09782712893383996732E2; // ln((1-2^-53) * 2^1024) - enum real UF = -7.451332191019412076235E2; // ln(2^-1075) - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - // Coefficients for exp(x) - static immutable real[3] P = [ - 9.9999999999999999991025E-1L, - 3.0299440770744196129956E-2L, - 1.2617719307481059087798E-4L, - ]; - static immutable real[4] Q = [ - 2.0000000000000000000897E0L, - 2.2726554820815502876593E-1L, - 2.5244834034968410419224E-3L, - 3.0019850513866445504159E-6L, - ]; - - // C1 + C2 = LN2. - enum real C1 = 6.9314575195312500000000E-1L; - enum real C2 = 1.4286068203094172321215E-6L; - - // Overflow and Underflow limits. - enum real OF = 1.1356523406294143949492E4L; // ln((1-2^-64) * 2^16384) - enum real UF = -1.13994985314888605586758E4L; // ln(2^-16446) - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - // Coefficients for exp(x) - 1 - static immutable real[5] P = [ - 9.999999999999999999999999999999999998502E-1L, - 3.508710990737834361215404761139478627390E-2L, - 2.708775201978218837374512615596512792224E-4L, - 6.141506007208645008909088812338454698548E-7L, - 3.279723985560247033712687707263393506266E-10L - ]; - static immutable real[6] Q = [ - 2.000000000000000000000000000000000000150E0, - 2.368408864814233538909747618894558968880E-1L, - 3.611828913847589925056132680618007270344E-3L, - 1.504792651814944826817779302637284053660E-5L, - 1.771372078166251484503904874657985291164E-8L, - 2.980756652081995192255342779918052538681E-12L - ]; - - // C1 + C2 = LN2. - enum real C1 = 6.93145751953125E-1L; - enum real C2 = 1.428606820309417232121458176568075500134E-6L; - - // Overflow and Underflow limits. - enum real OF = 1.135583025911358400418251384584930671458833e4L; - enum real UF = -1.143276959615573793352782661133116431383730e4L; - } - else - static assert(0, "Not implemented for this architecture"); - - // Special cases. Raises an overflow or underflow flag accordingly, - // except in the case for CTFE, where there are no hardware controls. - if (isNaN(x)) - return x; - if (x > OF) - return real.infinity; - if (x < UF) - return 0.0; - - // Express: e^^x = e^^g * 2^^n - // = e^^g * e^^(n * LOG2E) - // = e^^(g + n * LOG2E) - int n = cast(int) floor(LOG2E * x + 0.5); - x -= n * C1; - x -= n * C2; - - // Rational approximation for exponential of the fractional part: - // e^^x = 1 + 2x P(x^^2) / (Q(x^^2) - P(x^^2)) - const real xx = x * x; - const real px = x * poly(xx, P); - x = px / (poly(xx, Q) - px); - x = 1.0 + ldexp(x, 1); - - // Scale by power of 2. - x = ldexp(x, n); - - return x; - } -} - -/// ditto -double exp(double x) @safe pure nothrow @nogc { return exp(cast(real) x); } - -/// ditto -float exp(float x) @safe pure nothrow @nogc { return exp(cast(real) x); } - -@system unittest -{ - assert(exp(3.0).feqrel(E * E * E) > 16); -} - -/** - * Calculates the value of the natural logarithm base (e) - * raised to the power of x, minus 1. - * - * For very small x, expm1(x) is more accurate - * than exp(x)-1. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH e$(SUPERSCRIPT x)-1) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) - * $(TR $(TD -$(INFIN)) $(TD -1.0) ) - * $(TR $(TD $(NAN)) $(TD $(NAN)) ) - * ) - */ -real expm1(real x) @trusted pure nothrow @nogc -{ - version (D_InlineAsm_X86) - { - enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4 - asm pure nothrow @nogc - { - /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. - * Author: Don Clugston. - * - * expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x. - * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y)) - * and 2ym1 = (2^^(y-rndint(y))-1). - * If 2rndy < 0.5*real.epsilon, result is -1. - * Implementation is otherwise the same as for exp2() - */ - naked; - fld real ptr [ESP+4] ; // x - mov AX, [ESP+4+8]; // AX = exponent and sign - sub ESP, 12+8; // Create scratch space on the stack - // [ESP,ESP+2] = scratchint - // [ESP+4..+6, +8..+10, +10] = scratchreal - // set scratchreal mantissa = 1.0 - mov dword ptr [ESP+8], 0; - mov dword ptr [ESP+8+4], 0x80000000; - and AX, 0x7FFF; // drop sign bit - cmp AX, 0x401D; // avoid InvalidException in fist - jae L_extreme; - fldl2e; - fmulp ST(1), ST; // y = x*log2(e) - fist dword ptr [ESP]; // scratchint = rndint(y) - fisub dword ptr [ESP]; // y - rndint(y) - // and now set scratchreal exponent - mov EAX, [ESP]; - add EAX, 0x3fff; - jle short L_largenegative; - cmp EAX,0x8000; - jge short L_largepositive; - mov [ESP+8+8],AX; - f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1 - fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y) - fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1 - fld1; - fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1 - faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1 - add ESP,12+8; - ret PARAMSIZE; - -L_extreme: // Extreme exponent. X is very large positive, very - // large negative, infinity, or NaN. - fxam; - fstsw AX; - test AX, 0x0400; // NaN_or_zero, but we already know x != 0 - jz L_was_nan; // if x is NaN, returns x - test AX, 0x0200; - jnz L_largenegative; -L_largepositive: - // Set scratchreal = real.max. - // squaring it will create infinity, and set overflow flag. - mov word ptr [ESP+8+8], 0x7FFE; - fstp ST(0); - fld real ptr [ESP+8]; // load scratchreal - fmul ST(0), ST; // square it, to create havoc! -L_was_nan: - add ESP,12+8; - ret PARAMSIZE; -L_largenegative: - fstp ST(0); - fld1; - fchs; // return -1. Underflow flag is not set. - add ESP,12+8; - ret PARAMSIZE; - } - } - else version (D_InlineAsm_X86_64) - { - asm pure nothrow @nogc - { - naked; - } - version (Win64) - { - asm pure nothrow @nogc - { - fld real ptr [RCX]; // x - mov AX,[RCX+8]; // AX = exponent and sign - } - } - else - { - asm pure nothrow @nogc - { - fld real ptr [RSP+8]; // x - mov AX,[RSP+8+8]; // AX = exponent and sign - } - } - asm pure nothrow @nogc - { - /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. - * Author: Don Clugston. - * - * expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. - * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) - * and 2ym1 = (2^(y-rndint(y))-1). - * If 2rndy < 0.5*real.epsilon, result is -1. - * Implementation is otherwise the same as for exp2() - */ - sub RSP, 24; // Create scratch space on the stack - // [RSP,RSP+2] = scratchint - // [RSP+4..+6, +8..+10, +10] = scratchreal - // set scratchreal mantissa = 1.0 - mov dword ptr [RSP+8], 0; - mov dword ptr [RSP+8+4], 0x80000000; - and AX, 0x7FFF; // drop sign bit - cmp AX, 0x401D; // avoid InvalidException in fist - jae L_extreme; - fldl2e; - fmul ; // y = x*log2(e) - fist dword ptr [RSP]; // scratchint = rndint(y) - fisub dword ptr [RSP]; // y - rndint(y) - // and now set scratchreal exponent - mov EAX, [RSP]; - add EAX, 0x3fff; - jle short L_largenegative; - cmp EAX,0x8000; - jge short L_largepositive; - mov [RSP+8+8],AX; - f2xm1; // 2^(y-rndint(y)) -1 - fld real ptr [RSP+8] ; // 2^rndint(y) - fmul ST(1), ST; - fld1; - fsubp ST(1), ST; - fadd; - add RSP,24; - ret; - -L_extreme: // Extreme exponent. X is very large positive, very - // large negative, infinity, or NaN. - fxam; - fstsw AX; - test AX, 0x0400; // NaN_or_zero, but we already know x != 0 - jz L_was_nan; // if x is NaN, returns x - test AX, 0x0200; - jnz L_largenegative; -L_largepositive: - // Set scratchreal = real.max. - // squaring it will create infinity, and set overflow flag. - mov word ptr [RSP+8+8], 0x7FFE; - fstp ST(0); - fld real ptr [RSP+8]; // load scratchreal - fmul ST(0), ST; // square it, to create havoc! -L_was_nan: - add RSP,24; - ret; - -L_largenegative: - fstp ST(0); - fld1; - fchs; // return -1. Underflow flag is not set. - add RSP,24; - ret; - } - } - else - { - // Coefficients for exp(x) - 1 and overflow/underflow limits. - static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) - { - static immutable real[8] P = [ - 2.943520915569954073888921213330863757240E8L, - -5.722847283900608941516165725053359168840E7L, - 8.944630806357575461578107295909719817253E6L, - -7.212432713558031519943281748462837065308E5L, - 4.578962475841642634225390068461943438441E4L, - -1.716772506388927649032068540558788106762E3L, - 4.401308817383362136048032038528753151144E1L, - -4.888737542888633647784737721812546636240E-1L - ]; - - static immutable real[9] Q = [ - 1.766112549341972444333352727998584753865E9L, - -7.848989743695296475743081255027098295771E8L, - 1.615869009634292424463780387327037251069E8L, - -2.019684072836541751428967854947019415698E7L, - 1.682912729190313538934190635536631941751E6L, - -9.615511549171441430850103489315371768998E4L, - 3.697714952261803935521187272204485251835E3L, - -8.802340681794263968892934703309274564037E1L, - 1.0 - ]; - - enum real OF = 1.1356523406294143949491931077970764891253E4L; - enum real UF = -1.143276959615573793352782661133116431383730e4L; - } - else - { - static immutable real[5] P = [ - -1.586135578666346600772998894928250240826E4L, - 2.642771505685952966904660652518429479531E3L, - -3.423199068835684263987132888286791620673E2L, - 1.800826371455042224581246202420972737840E1L, - -5.238523121205561042771939008061958820811E-1L, - ]; - static immutable real[6] Q = [ - -9.516813471998079611319047060563358064497E4L, - 3.964866271411091674556850458227710004570E4L, - -7.207678383830091850230366618190187434796E3L, - 7.206038318724600171970199625081491823079E2L, - -4.002027679107076077238836622982900945173E1L, - 1.0 - ]; - - enum real OF = 1.1356523406294143949492E4L; - enum real UF = -4.5054566736396445112120088E1L; - } - - - // C1 + C2 = LN2. - enum real C1 = 6.9314575195312500000000E-1L; - enum real C2 = 1.428606820309417232121458176568075500134E-6L; - - // Special cases. Raises an overflow flag, except in the case - // for CTFE, where there are no hardware controls. - if (x > OF) - return real.infinity; - if (x == 0.0) - return x; - if (x < UF) - return -1.0; - - // Express x = LN2 (n + remainder), remainder not exceeding 1/2. - int n = cast(int) floor(0.5 + x / LN2); - x -= n * C1; - x -= n * C2; - - // Rational approximation: - // exp(x) - 1 = x + 0.5 x^^2 + x^^3 P(x) / Q(x) - real px = x * poly(x, P); - real qx = poly(x, Q); - const real xx = x * x; - qx = x + (0.5 * xx + xx * px / qx); - - // We have qx = exp(remainder LN2) - 1, so: - // exp(x) - 1 = 2^^n (qx + 1) - 1 = 2^^n qx + 2^^n - 1. - px = ldexp(1.0, n); - x = px * qx + (px - 1.0); - - return x; - } -} - - - -/** - * Calculates 2$(SUPERSCRIPT x). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH exp2(x)) ) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) - * $(TR $(TD -$(INFIN)) $(TD +0.0) ) - * $(TR $(TD $(NAN)) $(TD $(NAN)) ) - * ) - */ -pragma(inline, true) -real exp2(real x) @nogc @trusted pure nothrow -{ - version (InlineAsm_X86_Any) - { - if (!__ctfe) - return exp2Asm(x); - else - return exp2Impl(x); - } - else - { - return exp2Impl(x); - } -} - -version (InlineAsm_X86_Any) -private real exp2Asm(real x) @nogc @trusted pure nothrow -{ - version (D_InlineAsm_X86) - { - enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4 - - asm pure nothrow @nogc - { - /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. - * Author: Don Clugston. - * - * exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x)) - * The trick for high performance is to avoid the fscale(28cycles on core2), - * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. - * - * We can do frndint by using fist. BUT we can't use it for huge numbers, - * because it will set the Invalid Operation flag if overflow or NaN occurs. - * Fortunately, whenever this happens the result would be zero or infinity. - * - * We can perform fscale by directly poking into the exponent. BUT this doesn't - * work for the (very rare) cases where the result is subnormal. So we fall back - * to the slow method in that case. - */ - naked; - fld real ptr [ESP+4] ; // x - mov AX, [ESP+4+8]; // AX = exponent and sign - sub ESP, 12+8; // Create scratch space on the stack - // [ESP,ESP+2] = scratchint - // [ESP+4..+6, +8..+10, +10] = scratchreal - // set scratchreal mantissa = 1.0 - mov dword ptr [ESP+8], 0; - mov dword ptr [ESP+8+4], 0x80000000; - and AX, 0x7FFF; // drop sign bit - cmp AX, 0x401D; // avoid InvalidException in fist - jae L_extreme; - fist dword ptr [ESP]; // scratchint = rndint(x) - fisub dword ptr [ESP]; // x - rndint(x) - // and now set scratchreal exponent - mov EAX, [ESP]; - add EAX, 0x3fff; - jle short L_subnormal; - cmp EAX,0x8000; - jge short L_overflow; - mov [ESP+8+8],AX; -L_normal: - f2xm1; - fld1; - faddp ST(1), ST; // 2^^(x-rndint(x)) - fld real ptr [ESP+8] ; // 2^^rndint(x) - add ESP,12+8; - fmulp ST(1), ST; - ret PARAMSIZE; - -L_subnormal: - // Result will be subnormal. - // In this rare case, the simple poking method doesn't work. - // The speed doesn't matter, so use the slow fscale method. - fild dword ptr [ESP]; // scratchint - fld1; - fscale; - fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint - fstp ST(0); // drop scratchint - jmp L_normal; - -L_extreme: // Extreme exponent. X is very large positive, very - // large negative, infinity, or NaN. - fxam; - fstsw AX; - test AX, 0x0400; // NaN_or_zero, but we already know x != 0 - jz L_was_nan; // if x is NaN, returns x - // set scratchreal = real.min_normal - // squaring it will return 0, setting underflow flag - mov word ptr [ESP+8+8], 1; - test AX, 0x0200; - jnz L_waslargenegative; -L_overflow: - // Set scratchreal = real.max. - // squaring it will create infinity, and set overflow flag. - mov word ptr [ESP+8+8], 0x7FFE; -L_waslargenegative: - fstp ST(0); - fld real ptr [ESP+8]; // load scratchreal - fmul ST(0), ST; // square it, to create havoc! -L_was_nan: - add ESP,12+8; - ret PARAMSIZE; - } - } - else version (D_InlineAsm_X86_64) - { - asm pure nothrow @nogc - { - naked; - } - version (Win64) - { - asm pure nothrow @nogc - { - fld real ptr [RCX]; // x - mov AX,[RCX+8]; // AX = exponent and sign - } - } - else - { - asm pure nothrow @nogc - { - fld real ptr [RSP+8]; // x - mov AX,[RSP+8+8]; // AX = exponent and sign - } - } - asm pure nothrow @nogc - { - /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. - * Author: Don Clugston. - * - * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) - * The trick for high performance is to avoid the fscale(28cycles on core2), - * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. - * - * We can do frndint by using fist. BUT we can't use it for huge numbers, - * because it will set the Invalid Operation flag is overflow or NaN occurs. - * Fortunately, whenever this happens the result would be zero or infinity. - * - * We can perform fscale by directly poking into the exponent. BUT this doesn't - * work for the (very rare) cases where the result is subnormal. So we fall back - * to the slow method in that case. - */ - sub RSP, 24; // Create scratch space on the stack - // [RSP,RSP+2] = scratchint - // [RSP+4..+6, +8..+10, +10] = scratchreal - // set scratchreal mantissa = 1.0 - mov dword ptr [RSP+8], 0; - mov dword ptr [RSP+8+4], 0x80000000; - and AX, 0x7FFF; // drop sign bit - cmp AX, 0x401D; // avoid InvalidException in fist - jae L_extreme; - fist dword ptr [RSP]; // scratchint = rndint(x) - fisub dword ptr [RSP]; // x - rndint(x) - // and now set scratchreal exponent - mov EAX, [RSP]; - add EAX, 0x3fff; - jle short L_subnormal; - cmp EAX,0x8000; - jge short L_overflow; - mov [RSP+8+8],AX; -L_normal: - f2xm1; - fld1; - fadd; // 2^(x-rndint(x)) - fld real ptr [RSP+8] ; // 2^rndint(x) - add RSP,24; - fmulp ST(1), ST; - ret; - -L_subnormal: - // Result will be subnormal. - // In this rare case, the simple poking method doesn't work. - // The speed doesn't matter, so use the slow fscale method. - fild dword ptr [RSP]; // scratchint - fld1; - fscale; - fstp real ptr [RSP+8]; // scratchreal = 2^scratchint - fstp ST(0); // drop scratchint - jmp L_normal; - -L_extreme: // Extreme exponent. X is very large positive, very - // large negative, infinity, or NaN. - fxam; - fstsw AX; - test AX, 0x0400; // NaN_or_zero, but we already know x != 0 - jz L_was_nan; // if x is NaN, returns x - // set scratchreal = real.min - // squaring it will return 0, setting underflow flag - mov word ptr [RSP+8+8], 1; - test AX, 0x0200; - jnz L_waslargenegative; -L_overflow: - // Set scratchreal = real.max. - // squaring it will create infinity, and set overflow flag. - mov word ptr [RSP+8+8], 0x7FFE; -L_waslargenegative: - fstp ST(0); - fld real ptr [RSP+8]; // load scratchreal - fmul ST(0), ST; // square it, to create havoc! -L_was_nan: - add RSP,24; - ret; - } - } - else - static assert(0); -} - -private real exp2Impl(real x) @nogc @trusted pure nothrow -{ - // Coefficients for exp2(x) - static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) - { - static immutable real[5] P = [ - 9.079594442980146270952372234833529694788E12L, - 1.530625323728429161131811299626419117557E11L, - 5.677513871931844661829755443994214173883E8L, - 6.185032670011643762127954396427045467506E5L, - 1.587171580015525194694938306936721666031E2L - ]; - - static immutable real[6] Q = [ - 2.619817175234089411411070339065679229869E13L, - 1.490560994263653042761789432690793026977E12L, - 1.092141473886177435056423606755843616331E10L, - 2.186249607051644894762167991800811827835E7L, - 1.236602014442099053716561665053645270207E4L, - 1.0 - ]; - } - else - { - static immutable real[3] P = [ - 2.0803843631901852422887E6L, - 3.0286971917562792508623E4L, - 6.0614853552242266094567E1L, - ]; - static immutable real[4] Q = [ - 6.0027204078348487957118E6L, - 3.2772515434906797273099E5L, - 1.7492876999891839021063E3L, - 1.0000000000000000000000E0L, - ]; - } - - // Overflow and Underflow limits. - enum real OF = 16_384.0L; - enum real UF = -16_382.0L; - - // Special cases. Raises an overflow or underflow flag accordingly, - // except in the case for CTFE, where there are no hardware controls. - if (isNaN(x)) - return x; - if (x > OF) - return real.infinity; - if (x < UF) - return 0.0; - - // Separate into integer and fractional parts. - int n = cast(int) floor(x + 0.5); - x -= n; - - // Rational approximation: - // exp2(x) = 1.0 + 2x P(x^^2) / (Q(x^^2) - P(x^^2)) - const real xx = x * x; - const real px = x * poly(xx, P); - x = px / (poly(xx, Q) - px); - x = 1.0 + ldexp(x, 1); - - // Scale by power of 2. - x = ldexp(x, n); - - return x; -} - -/// -@safe unittest -{ - assert(feqrel(exp2(0.5L), SQRT2) >= real.mant_dig -1); - assert(exp2(8.0L) == 256.0); - assert(exp2(-9.0L)== 1.0L/512.0); -} - -@safe unittest -{ - version (CRuntime_Microsoft) {} else // aexp2/exp2f/exp2l not implemented - { - assert( core.stdc.math.exp2f(0.0f) == 1 ); - assert( core.stdc.math.exp2 (0.0) == 1 ); - assert( core.stdc.math.exp2l(0.0L) == 1 ); - } -} - -@system unittest -{ - version (FloatingPointControlSupport) - { - FloatingPointControl ctrl; - if (FloatingPointControl.hasExceptionTraps) - ctrl.disableExceptions(FloatingPointControl.allExceptions); - ctrl.rounding = FloatingPointControl.roundToNearest; - } - - enum realFormat = floatTraits!real.realFormat; - static if (realFormat == RealFormat.ieeeQuadruple) - { - static immutable real[2][] exptestpoints = - [ // x exp(x) - [ 1.0L, E ], - [ 0.5L, 0x1.a61298e1e069bc972dfefab6df34p+0L ], - [ 3.0L, E*E*E ], - [ 0x1.6p+13L, 0x1.6e509d45728655cdb4840542acb5p+16250L ], // near overflow - [ 0x1.7p+13L, real.infinity ], // close overflow - [ 0x1p+80L, real.infinity ], // far overflow - [ real.infinity, real.infinity ], - [-0x1.18p+13L, 0x1.5e4bf54b4807034ea97fef0059a6p-12927L ], // near underflow - [-0x1.625p+13L, 0x1.a6bd68a39d11fec3a250cd97f524p-16358L ], // ditto - [-0x1.62dafp+13L, 0x0.cb629e9813b80ed4d639e875be6cp-16382L ], // near underflow - subnormal - [-0x1.6549p+13L, 0x0.0000000000000000000000000001p-16382L ], // ditto - [-0x1.655p+13L, 0 ], // close underflow - [-0x1p+30L, 0 ], // far underflow - ]; - } - else static if (realFormat == RealFormat.ieeeExtended || - realFormat == RealFormat.ieeeExtended53) - { - static immutable real[2][] exptestpoints = - [ // x exp(x) - [ 1.0L, E ], - [ 0.5L, 0x1.a61298e1e069bc97p+0L ], - [ 3.0L, E*E*E ], - [ 0x1.1p+13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow - [ 0x1.7p+13L, real.infinity ], // close overflow - [ 0x1p+80L, real.infinity ], // far overflow - [ real.infinity, real.infinity ], - [-0x1.18p+13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow - [-0x1.625p+13L, 0x1.a6bd68a39d11f35cp-16358L ], // ditto - [-0x1.62dafp+13L, 0x1.96c53d30277021dp-16383L ], // near underflow - subnormal - [-0x1.643p+13L, 0x1p-16444L ], // ditto - [-0x1.645p+13L, 0 ], // close underflow - [-0x1p+30L, 0 ], // far underflow - ]; - } - else static if (realFormat == RealFormat.ieeeDouble) - { - static immutable real[2][] exptestpoints = - [ // x, exp(x) - [ 1.0L, E ], - [ 0.5L, 0x1.a61298e1e069cp+0L ], - [ 3.0L, E*E*E ], - [ 0x1.6p+9L, 0x1.93bf4ec282efbp+1015L ], // near overflow - [ 0x1.7p+9L, real.infinity ], // close overflow - [ 0x1p+80L, real.infinity ], // far overflow - [ real.infinity, real.infinity ], - [-0x1.6p+9L, 0x1.44a3824e5285fp-1016L ], // near underflow - [-0x1.64p+9L, 0x0.06f84920bb2d3p-1022L ], // near underflow - subnormal - [-0x1.743p+9L, 0x0.0000000000001p-1022L ], // ditto - [-0x1.8p+9L, 0 ], // close underflow - [-0x1p30L, 0 ], // far underflow - ]; - } - else - static assert(0, "No exp() tests for real type!"); - - const minEqualMantissaBits = real.mant_dig - 13; - real x; - version (IeeeFlagsSupport) IeeeFlags f; - foreach (ref pair; exptestpoints) - { - version (IeeeFlagsSupport) resetIeeeFlags(); - x = exp(pair[0]); - assert(feqrel(x, pair[1]) >= minEqualMantissaBits); - } - - // Ideally, exp(0) would not set the inexact flag. - // Unfortunately, fldl2e sets it! - // So it's not realistic to avoid setting it. - assert(exp(0.0L) == 1.0); - - // NaN propagation. Doesn't set flags, bcos was already NaN. - version (IeeeFlagsSupport) - { - resetIeeeFlags(); - x = exp(real.nan); - f = ieeeFlags; - assert(isIdentical(abs(x), real.nan)); - assert(f.flags == 0); - - resetIeeeFlags(); - x = exp(-real.nan); - f = ieeeFlags; - assert(isIdentical(abs(x), real.nan)); - assert(f.flags == 0); - } - else - { - x = exp(real.nan); - assert(isIdentical(abs(x), real.nan)); - - x = exp(-real.nan); - assert(isIdentical(abs(x), real.nan)); - } - - x = exp(NaN(0x123)); - assert(isIdentical(x, NaN(0x123))); - - // High resolution test (verified against GNU MPFR/Mathematica). - assert(exp(0.5L) == 0x1.A612_98E1_E069_BC97_2DFE_FAB6_DF34p+0L); -} - - -/** - * Calculate cos(y) + i sin(y). - * - * On many CPUs (such as x86), this is a very efficient operation; - * almost twice as fast as calculating sin(y) and cos(y) separately, - * and is the preferred method when both are required. - */ -creal expi(real y) @trusted pure nothrow @nogc -{ - version (InlineAsm_X86_Any) - { - version (Win64) - { - asm pure nothrow @nogc - { - naked; - fld real ptr [ECX]; - fsincos; - fxch ST(1), ST(0); - ret; - } - } - else - { - asm pure nothrow @nogc - { - fld y; - fsincos; - fxch ST(1), ST(0); - } - } - } - else - { - return cos(y) + sin(y)*1i; - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i); - assert(expi(0.0L) == 1L + 0.0Li); -} - -/********************************************************************* - * Separate floating point value into significand and exponent. - * - * Returns: - * Calculate and return $(I x) and $(I exp) such that - * value =$(I x)*2$(SUPERSCRIPT exp) and - * .5 $(LT)= |$(I x)| $(LT) 1.0 - * - * $(I x) has same sign as value. - * - * $(TABLE_SV - * $(TR $(TH value) $(TH returns) $(TH exp)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0)) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max)) - * $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min)) - * $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min)) - * ) - */ -T frexp(T)(const T value, out int exp) @trusted pure nothrow @nogc -if (isFloatingPoint!T) -{ - Unqual!T vf = value; - ushort* vu = cast(ushort*)&vf; - static if (is(Unqual!T == float)) - int* vi = cast(int*)&vf; - else - long* vl = cast(long*)&vf; - int ex; - alias F = floatTraits!T; - - ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; - static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - if (ex) - { // If exponent is non-zero - if (ex == F.EXPMASK) // infinity or NaN - { - if (*vl & 0x7FFF_FFFF_FFFF_FFFF) // NaN - { - *vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ - exp = int.min; - } - else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity - exp = int.min; - else // positive infinity - exp = int.max; - - } - else - { - exp = ex - F.EXPBIAS; - vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; - } - } - else if (!*vl) - { - // vf is +-0.0 - exp = 0; - } - else - { - // subnormal - - vf *= F.RECIP_EPSILON; - ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; - exp = ex - F.EXPBIAS - T.mant_dig + 1; - vu[F.EXPPOS_SHORT] = ((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FFE; - } - return vf; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) - { - // infinity or NaN - if (vl[MANTISSA_LSB] | - (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN - { - // convert NaNS to NaNQ - vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000; - exp = int.min; - } - else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity - exp = int.min; - else // positive infinity - exp = int.max; - } - else - { - exp = ex - F.EXPBIAS; - vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]); - } - } - else if ((vl[MANTISSA_LSB] | - (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) - { - // vf is +-0.0 - exp = 0; - } - else - { - // subnormal - vf *= F.RECIP_EPSILON; - ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; - exp = ex - F.EXPBIAS - T.mant_dig + 1; - vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]); - } - return vf; - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) // infinity or NaN - { - if (*vl == 0x7FF0_0000_0000_0000) // positive infinity - { - exp = int.max; - } - else if (*vl == 0xFFF0_0000_0000_0000) // negative infinity - exp = int.min; - else - { // NaN - *vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ - exp = int.min; - } - } - else - { - exp = (ex - F.EXPBIAS) >> 4; - vu[F.EXPPOS_SHORT] = cast(ushort)((0x800F & vu[F.EXPPOS_SHORT]) | 0x3FE0); - } - } - else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) - { - // vf is +-0.0 - exp = 0; - } - else - { - // subnormal - vf *= F.RECIP_EPSILON; - ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; - exp = ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1; - vu[F.EXPPOS_SHORT] = - cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FE0); - } - return vf; - } - else static if (F.realFormat == RealFormat.ieeeSingle) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) // infinity or NaN - { - if (*vi == 0x7F80_0000) // positive infinity - { - exp = int.max; - } - else if (*vi == 0xFF80_0000) // negative infinity - exp = int.min; - else - { // NaN - *vi |= 0x0040_0000; // convert NaNS to NaNQ - exp = int.min; - } - } - else - { - exp = (ex - F.EXPBIAS) >> 7; - vu[F.EXPPOS_SHORT] = cast(ushort)((0x807F & vu[F.EXPPOS_SHORT]) | 0x3F00); - } - } - else if (!(*vi & 0x7FFF_FFFF)) - { - // vf is +-0.0 - exp = 0; - } - else - { - // subnormal - vf *= F.RECIP_EPSILON; - ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; - exp = ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1; - vu[F.EXPPOS_SHORT] = - cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3F00); - } - return vf; - } - else // static if (F.realFormat == RealFormat.ibmExtended) - { - assert(0, "frexp not implemented"); - } -} - -/// -@system unittest -{ - int exp; - real mantissa = frexp(123.456L, exp); - - // check if values are equal to 19 decimal digits of precision - assert(equalsDigit(mantissa * pow(2.0L, cast(real) exp), 123.456L, 19)); - - assert(frexp(-real.nan, exp) && exp == int.min); - assert(frexp(real.nan, exp) && exp == int.min); - assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min); - assert(frexp(real.infinity, exp) == real.infinity && exp == int.max); - assert(frexp(-0.0, exp) == -0.0 && exp == 0); - assert(frexp(0.0, exp) == 0.0 && exp == 0); -} - -@safe unittest -{ - import std.meta : AliasSeq; - import std.typecons : tuple, Tuple; - - foreach (T; AliasSeq!(real, double, float)) - { - Tuple!(T, T, int)[] vals = // x,frexp,exp - [ - tuple(T(0.0), T( 0.0 ), 0), - tuple(T(-0.0), T( -0.0), 0), - tuple(T(1.0), T( .5 ), 1), - tuple(T(-1.0), T( -.5 ), 1), - tuple(T(2.0), T( .5 ), 2), - tuple(T(float.min_normal/2.0f), T(.5), -126), - tuple(T.infinity, T.infinity, int.max), - tuple(-T.infinity, -T.infinity, int.min), - tuple(T.nan, T.nan, int.min), - tuple(-T.nan, -T.nan, int.min), - - // Phobos issue #16026: - tuple(3 * (T.min_normal * T.epsilon), T( .75), (T.min_exp - T.mant_dig) + 2) - ]; - - foreach (elem; vals) - { - T x = elem[0]; - T e = elem[1]; - int exp = elem[2]; - int eptr; - T v = frexp(x, eptr); - assert(isIdentical(e, v)); - assert(exp == eptr); - - } - - static if (floatTraits!(T).realFormat == RealFormat.ieeeExtended) - { - static T[3][] extendedvals = [ // x,frexp,exp - [0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal - [0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063], - [T.min_normal, .5, -16381], - [T.min_normal/2.0L, .5, -16382] // subnormal - ]; - foreach (elem; extendedvals) - { - T x = elem[0]; - T e = elem[1]; - int exp = cast(int) elem[2]; - int eptr; - T v = frexp(x, eptr); - assert(isIdentical(e, v)); - assert(exp == eptr); - - } - } - } -} - -@safe unittest -{ - import std.meta : AliasSeq; - void foo() { - foreach (T; AliasSeq!(real, double, float)) - { - int exp; - const T a = 1; - immutable T b = 2; - auto c = frexp(a, exp); - auto d = frexp(b, exp); - } - } -} - -/****************************************** - * Extracts the exponent of x as a signed integral value. - * - * If x is not a special value, the result is the same as - * $(D cast(int) logb(x)). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?)) - * $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes)) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no)) - * $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no)) - * ) - */ -int ilogb(T)(const T x) @trusted pure nothrow @nogc -if (isFloatingPoint!T) -{ - import core.bitop : bsr; - alias F = floatTraits!T; - - union floatBits - { - T rv; - ushort[T.sizeof/2] vu; - uint[T.sizeof/4] vui; - static if (T.sizeof >= 8) - ulong[T.sizeof/8] vul; - } - floatBits y = void; - y.rv = x; - - int ex = y.vu[F.EXPPOS_SHORT] & F.EXPMASK; - static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - if (ex) - { - // If exponent is non-zero - if (ex == F.EXPMASK) // infinity or NaN - { - if (y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) // NaN - return FP_ILOGBNAN; - else // +-infinity - return int.max; - } - else - { - return ex - F.EXPBIAS - 1; - } - } - else if (!y.vul[0]) - { - // vf is +-0.0 - return FP_ILOGB0; - } - else - { - // subnormal - return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(y.vul[0]); - } - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) - { - // infinity or NaN - if (y.vul[MANTISSA_LSB] | ( y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN - return FP_ILOGBNAN; - else // +- infinity - return int.max; - } - else - { - return ex - F.EXPBIAS - 1; - } - } - else if ((y.vul[MANTISSA_LSB] | (y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) - { - // vf is +-0.0 - return FP_ILOGB0; - } - else - { - // subnormal - const ulong msb = y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF; - const ulong lsb = y.vul[MANTISSA_LSB]; - if (msb) - return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(msb) + 64; - else - return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(lsb); - } - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) // infinity or NaN - { - if ((y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF0_0000_0000_0000) // +- infinity - return int.max; - else // NaN - return FP_ILOGBNAN; - } - else - { - return ((ex - F.EXPBIAS) >> 4) - 1; - } - } - else if (!(y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF)) - { - // vf is +-0.0 - return FP_ILOGB0; - } - else - { - // subnormal - enum MANTISSAMASK_64 = ((cast(ulong) F.MANTISSAMASK_INT) << 32) | 0xFFFF_FFFF; - return ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1 + bsr(y.vul[0] & MANTISSAMASK_64); - } - } - else static if (F.realFormat == RealFormat.ieeeSingle) - { - if (ex) // If exponent is non-zero - { - if (ex == F.EXPMASK) // infinity or NaN - { - if ((y.vui[0] & 0x7FFF_FFFF) == 0x7F80_0000) // +- infinity - return int.max; - else // NaN - return FP_ILOGBNAN; - } - else - { - return ((ex - F.EXPBIAS) >> 7) - 1; - } - } - else if (!(y.vui[0] & 0x7FFF_FFFF)) - { - // vf is +-0.0 - return FP_ILOGB0; - } - else - { - // subnormal - const uint mantissa = y.vui[0] & F.MANTISSAMASK_INT; - return ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1 + bsr(mantissa); - } - } - else // static if (F.realFormat == RealFormat.ibmExtended) - { - core.stdc.math.ilogbl(x); - } -} -/// ditto -int ilogb(T)(const T x) @safe pure nothrow @nogc -if (isIntegral!T && isUnsigned!T) -{ - import core.bitop : bsr; - if (x == 0) - return FP_ILOGB0; - else - { - static assert(T.sizeof <= ulong.sizeof, "integer size too large for the current ilogb implementation"); - return bsr(x); - } -} -/// ditto -int ilogb(T)(const T x) @safe pure nothrow @nogc -if (isIntegral!T && isSigned!T) -{ - import std.traits : Unsigned; - // Note: abs(x) can not be used because the return type is not Unsigned and - // the return value would be wrong for x == int.min - Unsigned!T absx = x >= 0 ? x : -x; - return ilogb(absx); -} - -alias FP_ILOGB0 = core.stdc.math.FP_ILOGB0; -alias FP_ILOGBNAN = core.stdc.math.FP_ILOGBNAN; - -@system nothrow @nogc unittest -{ - import std.meta : AliasSeq; - import std.typecons : Tuple; - foreach (F; AliasSeq!(float, double, real)) - { - alias T = Tuple!(F, int); - T[13] vals = // x, ilogb(x) - [ - T( F.nan , FP_ILOGBNAN ), - T( -F.nan , FP_ILOGBNAN ), - T( F.infinity, int.max ), - T( -F.infinity, int.max ), - T( 0.0 , FP_ILOGB0 ), - T( -0.0 , FP_ILOGB0 ), - T( 2.0 , 1 ), - T( 2.0001 , 1 ), - T( 1.9999 , 0 ), - T( 0.5 , -1 ), - T( 123.123 , 6 ), - T( -123.123 , 6 ), - T( 0.123 , -4 ), - ]; - - foreach (elem; vals) - { - assert(ilogb(elem[0]) == elem[1]); - } - } - - // min_normal and subnormals - assert(ilogb(-float.min_normal) == -126); - assert(ilogb(nextUp(-float.min_normal)) == -127); - assert(ilogb(nextUp(-float(0.0))) == -149); - assert(ilogb(-double.min_normal) == -1022); - assert(ilogb(nextUp(-double.min_normal)) == -1023); - assert(ilogb(nextUp(-double(0.0))) == -1074); - static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) - { - assert(ilogb(-real.min_normal) == -16382); - assert(ilogb(nextUp(-real.min_normal)) == -16383); - assert(ilogb(nextUp(-real(0.0))) == -16445); - } - else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) - { - assert(ilogb(-real.min_normal) == -1022); - assert(ilogb(nextUp(-real.min_normal)) == -1023); - assert(ilogb(nextUp(-real(0.0))) == -1074); - } - - // test integer types - assert(ilogb(0) == FP_ILOGB0); - assert(ilogb(int.max) == 30); - assert(ilogb(int.min) == 31); - assert(ilogb(uint.max) == 31); - assert(ilogb(long.max) == 62); - assert(ilogb(long.min) == 63); - assert(ilogb(ulong.max) == 63); -} - -/******************************************* - * Compute n * 2$(SUPERSCRIPT exp) - * References: frexp - */ - -real ldexp(real n, int exp) @nogc @safe pure nothrow { pragma(inline, true); return core.math.ldexp(n, exp); } -//FIXME -///ditto -double ldexp(double n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); } -//FIXME -///ditto -float ldexp(float n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); } - -/// -@nogc @safe pure nothrow unittest -{ - import std.meta : AliasSeq; - foreach (T; AliasSeq!(float, double, real)) - { - T r; - - r = ldexp(3.0L, 3); - assert(r == 24); - - r = ldexp(cast(T) 3.0, cast(int) 3); - assert(r == 24); - - T n = 3.0; - int exp = 3; - r = ldexp(n, exp); - assert(r == 24); - } -} - -@safe pure nothrow @nogc unittest -{ - static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || - floatTraits!(real).realFormat == RealFormat.ieeeExtended53 || - floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) - { - assert(ldexp(1.0L, -16384) == 0x1p-16384L); - assert(ldexp(1.0L, -16382) == 0x1p-16382L); - int x; - real n = frexp(0x1p-16384L, x); - assert(n == 0.5L); - assert(x==-16383); - assert(ldexp(n, x)==0x1p-16384L); - } - else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) - { - assert(ldexp(1.0L, -1024) == 0x1p-1024L); - assert(ldexp(1.0L, -1022) == 0x1p-1022L); - int x; - real n = frexp(0x1p-1024L, x); - assert(n == 0.5L); - assert(x==-1023); - assert(ldexp(n, x)==0x1p-1024L); - } - else static assert(false, "Floating point type real not supported"); -} - -/* workaround Issue 14718, float parsing depends on platform strtold -@safe pure nothrow @nogc unittest -{ - assert(ldexp(1.0, -1024) == 0x1p-1024); - assert(ldexp(1.0, -1022) == 0x1p-1022); - int x; - double n = frexp(0x1p-1024, x); - assert(n == 0.5); - assert(x==-1023); - assert(ldexp(n, x)==0x1p-1024); -} - -@safe pure nothrow @nogc unittest -{ - assert(ldexp(1.0f, -128) == 0x1p-128f); - assert(ldexp(1.0f, -126) == 0x1p-126f); - int x; - float n = frexp(0x1p-128f, x); - assert(n == 0.5f); - assert(x==-127); - assert(ldexp(n, x)==0x1p-128f); -} -*/ - -@system unittest -{ - static real[3][] vals = // value,exp,ldexp - [ - [ 0, 0, 0], - [ 1, 0, 1], - [ -1, 0, -1], - [ 1, 1, 2], - [ 123, 10, 125952], - [ real.max, int.max, real.infinity], - [ real.max, -int.max, 0], - [ real.min_normal, -int.max, 0], - ]; - int i; - - for (i = 0; i < vals.length; i++) - { - real x = vals[i][0]; - int exp = cast(int) vals[i][1]; - real z = vals[i][2]; - real l = ldexp(x, exp); - - assert(equalsDigit(z, l, 7)); - } - - real function(real, int) pldexp = &ldexp; - assert(pldexp != null); -} - -private -{ - version (INLINE_YL2X) {} else - { - static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) - { - // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x) - static immutable real[13] logCoeffsP = [ - 1.313572404063446165910279910527789794488E4L, - 7.771154681358524243729929227226708890930E4L, - 2.014652742082537582487669938141683759923E5L, - 3.007007295140399532324943111654767187848E5L, - 2.854829159639697837788887080758954924001E5L, - 1.797628303815655343403735250238293741397E5L, - 7.594356839258970405033155585486712125861E4L, - 2.128857716871515081352991964243375186031E4L, - 3.824952356185897735160588078446136783779E3L, - 4.114517881637811823002128927449878962058E2L, - 2.321125933898420063925789532045674660756E1L, - 4.998469661968096229986658302195402690910E-1L, - 1.538612243596254322971797716843006400388E-6L - ]; - static immutable real[13] logCoeffsQ = [ - 3.940717212190338497730839731583397586124E4L, - 2.626900195321832660448791748036714883242E5L, - 7.777690340007566932935753241556479363645E5L, - 1.347518538384329112529391120390701166528E6L, - 1.514882452993549494932585972882995548426E6L, - 1.158019977462989115839826904108208787040E6L, - 6.132189329546557743179177159925690841200E5L, - 2.248234257620569139969141618556349415120E5L, - 5.605842085972455027590989944010492125825E4L, - 9.147150349299596453976674231612674085381E3L, - 9.104928120962988414618126155557301584078E2L, - 4.839208193348159620282142911143429644326E1L, - 1.0 - ]; - - // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2) - // where z = 2(x-1)/(x+1) - static immutable real[6] logCoeffsR = [ - -8.828896441624934385266096344596648080902E-1L, - 8.057002716646055371965756206836056074715E1L, - -2.024301798136027039250415126250455056397E3L, - 2.048819892795278657810231591630928516206E4L, - -8.977257995689735303686582344659576526998E4L, - 1.418134209872192732479751274970992665513E5L - ]; - static immutable real[6] logCoeffsS = [ - 1.701761051846631278975701529965589676574E6L - -1.332535117259762928288745111081235577029E6L, - 4.001557694070773974936904547424676279307E5L, - -5.748542087379434595104154610899551484314E4L, - 3.998526750980007367835804959888064681098E3L, - -1.186359407982897997337150403816839480438E2L, - 1.0 - ]; - } - else - { - // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x) - static immutable real[7] logCoeffsP = [ - 2.0039553499201281259648E1L, - 5.7112963590585538103336E1L, - 6.0949667980987787057556E1L, - 2.9911919328553073277375E1L, - 6.5787325942061044846969E0L, - 4.9854102823193375972212E-1L, - 4.5270000862445199635215E-5L, - ]; - static immutable real[7] logCoeffsQ = [ - 6.0118660497603843919306E1L, - 2.1642788614495947685003E2L, - 3.0909872225312059774938E2L, - 2.2176239823732856465394E2L, - 8.3047565967967209469434E1L, - 1.5062909083469192043167E1L, - 1.0000000000000000000000E0L, - ]; - - // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2) - // where z = 2(x-1)/(x+1) - static immutable real[4] logCoeffsR = [ - -3.5717684488096787370998E1L, - 1.0777257190312272158094E1L, - -7.1990767473014147232598E-1L, - 1.9757429581415468984296E-3L, - ]; - static immutable real[4] logCoeffsS = [ - -4.2861221385716144629696E2L, - 1.9361891836232102174846E2L, - -2.6201045551331104417768E1L, - 1.0000000000000000000000E0L, - ]; - } - } -} - -/************************************** - * Calculate the natural logarithm of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) - * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) - * ) - */ -real log(real x) @safe pure nothrow @nogc -{ - version (INLINE_YL2X) - return core.math.yl2x(x, LN2); - else - { - // C1 + C2 = LN2. - enum real C1 = 6.93145751953125E-1L; - enum real C2 = 1.428606820309417232121458176568075500134E-6L; - - // Special cases. - if (isNaN(x)) - return x; - if (isInfinity(x) && !signbit(x)) - return x; - if (x == 0.0) - return -real.infinity; - if (x < 0.0) - return real.nan; - - // Separate mantissa from exponent. - // Note, frexp is used so that denormal numbers will be handled properly. - real y, z; - int exp; - - x = frexp(x, exp); - - // Logarithm using log(x) = z + z^^3 R(z) / S(z), - // where z = 2(x - 1)/(x + 1) - if ((exp > 2) || (exp < -2)) - { - if (x < SQRT1_2) - { // 2(2x - 1)/(2x + 1) - exp -= 1; - z = x - 0.5; - y = 0.5 * z + 0.5; - } - else - { // 2(x - 1)/(x + 1) - z = x - 0.5; - z -= 0.5; - y = 0.5 * x + 0.5; - } - x = z / y; - z = x * x; - z = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); - z += exp * C2; - z += x; - z += exp * C1; - - return z; - } - - // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) - if (x < SQRT1_2) - { // 2x - 1 - exp -= 1; - x = ldexp(x, 1) - 1.0; - } - else - { - x = x - 1.0; - } - z = x * x; - y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); - y += exp * C2; - z = y - ldexp(z, -1); - - // Note, the sum of above terms does not exceed x/4, - // so it contributes at most about 1/4 lsb to the error. - z += x; - z += exp * C1; - - return z; - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(log(E) == 1); -} - -/************************************** - * Calculate the base-10 logarithm of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) - * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) - * ) - */ -real log10(real x) @safe pure nothrow @nogc -{ - version (INLINE_YL2X) - return core.math.yl2x(x, LOG2); - else - { - // log10(2) split into two parts. - enum real L102A = 0.3125L; - enum real L102B = -1.14700043360188047862611052755069732318101185E-2L; - - // log10(e) split into two parts. - enum real L10EA = 0.5L; - enum real L10EB = -6.570551809674817234887108108339491770560299E-2L; - - // Special cases are the same as for log. - if (isNaN(x)) - return x; - if (isInfinity(x) && !signbit(x)) - return x; - if (x == 0.0) - return -real.infinity; - if (x < 0.0) - return real.nan; - - // Separate mantissa from exponent. - // Note, frexp is used so that denormal numbers will be handled properly. - real y, z; - int exp; - - x = frexp(x, exp); - - // Logarithm using log(x) = z + z^^3 R(z) / S(z), - // where z = 2(x - 1)/(x + 1) - if ((exp > 2) || (exp < -2)) - { - if (x < SQRT1_2) - { // 2(2x - 1)/(2x + 1) - exp -= 1; - z = x - 0.5; - y = 0.5 * z + 0.5; - } - else - { // 2(x - 1)/(x + 1) - z = x - 0.5; - z -= 0.5; - y = 0.5 * x + 0.5; - } - x = z / y; - z = x * x; - y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); - goto Ldone; - } - - // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) - if (x < SQRT1_2) - { // 2x - 1 - exp -= 1; - x = ldexp(x, 1) - 1.0; - } - else - x = x - 1.0; - - z = x * x; - y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); - y = y - ldexp(z, -1); - - // Multiply log of fraction by log10(e) and base 2 exponent by log10(2). - // This sequence of operations is critical and it may be horribly - // defeated by some compiler optimizers. - Ldone: - z = y * L10EB; - z += x * L10EB; - z += exp * L102B; - z += y * L10EA; - z += x * L10EA; - z += exp * L102A; - - return z; - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(fabs(log10(1000) - 3) < .000001); -} - -/****************************************** - * Calculates the natural logarithm of 1 + x. - * - * For very small x, log1p(x) will be more accurate than - * log(1 + x). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) - * $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) - * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) - * $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) - * ) - */ -real log1p(real x) @safe pure nothrow @nogc -{ - version (INLINE_YL2X) - { - // On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5, - // ie if -0.29 <= x <= 0.414 - return (fabs(x) <= 0.25) ? core.math.yl2xp1(x, LN2) : core.math.yl2x(x+1, LN2); - } - else - { - // Special cases. - if (isNaN(x) || x == 0.0) - return x; - if (isInfinity(x) && !signbit(x)) - return x; - if (x == -1.0) - return -real.infinity; - if (x < -1.0) - return real.nan; - - return log(x + 1.0); - } -} - -/*************************************** - * Calculates the base-2 logarithm of x: - * $(SUB log, 2)x - * - * $(TABLE_SV - * $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) - * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) - * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) - * ) - */ -real log2(real x) @safe pure nothrow @nogc -{ - version (INLINE_YL2X) - return core.math.yl2x(x, 1.0L); - else - { - // Special cases are the same as for log. - if (isNaN(x)) - return x; - if (isInfinity(x) && !signbit(x)) - return x; - if (x == 0.0) - return -real.infinity; - if (x < 0.0) - return real.nan; - - // Separate mantissa from exponent. - // Note, frexp is used so that denormal numbers will be handled properly. - real y, z; - int exp; - - x = frexp(x, exp); - - // Logarithm using log(x) = z + z^^3 R(z) / S(z), - // where z = 2(x - 1)/(x + 1) - if ((exp > 2) || (exp < -2)) - { - if (x < SQRT1_2) - { // 2(2x - 1)/(2x + 1) - exp -= 1; - z = x - 0.5; - y = 0.5 * z + 0.5; - } - else - { // 2(x - 1)/(x + 1) - z = x - 0.5; - z -= 0.5; - y = 0.5 * x + 0.5; - } - x = z / y; - z = x * x; - y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); - goto Ldone; - } - - // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) - if (x < SQRT1_2) - { // 2x - 1 - exp -= 1; - x = ldexp(x, 1) - 1.0; - } - else - x = x - 1.0; - - z = x * x; - y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); - y = y - ldexp(z, -1); - - // Multiply log of fraction by log10(e) and base 2 exponent by log10(2). - // This sequence of operations is critical and it may be horribly - // defeated by some compiler optimizers. - Ldone: - z = y * (LOG2E - 1.0); - z += x * (LOG2E - 1.0); - z += y; - z += x; - z += exp; - - return z; - } -} - -/// -@system unittest -{ - // check if values are equal to 19 decimal digits of precision - assert(equalsDigit(log2(1024.0L), 10, 19)); -} - -/***************************************** - * Extracts the exponent of x as a signed integral value. - * - * If x is subnormal, it is treated as if it were normalized. - * For a positive, finite x: - * - * 1 $(LT)= $(I x) * FLT_RADIX$(SUPERSCRIPT -logb(x)) $(LT) FLT_RADIX - * - * $(TABLE_SV - * $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) - * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) ) - * ) - */ -real logb(real x) @trusted nothrow @nogc -{ - version (Win64_DMD_InlineAsm) - { - asm pure nothrow @nogc - { - naked ; - fld real ptr [RCX] ; - fxtract ; - fstp ST(0) ; - ret ; - } - } - else version (MSVC_InlineAsm) - { - asm pure nothrow @nogc - { - fld x ; - fxtract ; - fstp ST(0) ; - } - } - else - return core.stdc.math.logbl(x); -} - -/************************************ - * Calculates the remainder from the calculation x/y. - * Returns: - * The value of x - i * y, where i is the number of times that y can - * be completely subtracted from x. The result has the same sign as x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH y) $(TH fmod(x, y)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no)) - * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes)) - * $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no)) - * ) - */ -real fmod(real x, real y) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - return x % y; - } - else - return core.stdc.math.fmodl(x, y); -} - -/************************************ - * Breaks x into an integral part and a fractional part, each of which has - * the same sign as x. The integral part is stored in i. - * Returns: - * The fractional part of x. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH i (on input)) $(TH modf(x, i)) $(TH i (on return))) - * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF))) - * ) - */ -real modf(real x, ref real i) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - i = trunc(x); - return copysign(isInfinity(x) ? 0.0 : x - i, x); - } - else - return core.stdc.math.modfl(x,&i); -} - -/************************************* - * Efficiently calculates x * 2$(SUPERSCRIPT n). - * - * scalbn handles underflow and overflow in - * the same fashion as the basic arithmetic operators. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH scalb(x))) - * $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) - * ) - */ -real scalbn(real x, int n) @trusted nothrow @nogc -{ - version (InlineAsm_X86_Any) - { - // scalbnl is not supported on DMD-Windows, so use asm pure nothrow @nogc. - version (Win64) - { - asm pure nothrow @nogc { - naked ; - mov 16[RSP],RCX ; - fild word ptr 16[RSP] ; - fld real ptr [RDX] ; - fscale ; - fstp ST(1) ; - ret ; - } - } - else - { - asm pure nothrow @nogc { - fild n; - fld x; - fscale; - fstp ST(1); - } - } - } - else - { - return core.stdc.math.scalbnl(x, n); - } -} - -/// -@safe nothrow @nogc unittest -{ - assert(scalbn(-real.infinity, 5) == -real.infinity); -} - -/*************** - * Calculates the cube root of x. - * - * $(TABLE_SV - * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) - * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) - * ) - */ -real cbrt(real x) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - version (INLINE_YL2X) - return copysign(exp2(core.math.yl2x(fabs(x), 1.0L/3.0L)), x); - else - return core.stdc.math.cbrtl(x); - } - else - return core.stdc.math.cbrtl(x); -} - - -/******************************* - * Returns |x| - * - * $(TABLE_SV - * $(TR $(TH x) $(TH fabs(x))) - * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) - * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) - * ) - */ -real fabs(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.fabs(x); } -//FIXME -///ditto -double fabs(double x) @safe pure nothrow @nogc { return fabs(cast(real) x); } -//FIXME -///ditto -float fabs(float x) @safe pure nothrow @nogc { return fabs(cast(real) x); } - -@safe unittest -{ - real function(real) pfabs = &fabs; - assert(pfabs != null); -} - -/*********************************************************************** - * Calculates the length of the - * hypotenuse of a right-angled triangle with sides of length x and y. - * The hypotenuse is the value of the square root of - * the sums of the squares of x and y: - * - * sqrt($(POWER x, 2) + $(POWER y, 2)) - * - * Note that hypot(x, y), hypot(y, x) and - * hypot(x, -y) are equivalent. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) - * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) - * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) - * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) - * ) - */ - -real hypot(real x, real y) @safe pure nothrow @nogc -{ - // Scale x and y to avoid underflow and overflow. - // If one is huge and the other tiny, return the larger. - // If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2). - // If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon). - - enum real SQRTMIN = 0.5 * sqrt(real.min_normal); // This is a power of 2. - enum real SQRTMAX = 1.0L / SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max)) - - static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max); - - // Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal) - static assert(real.min_normal*real.max > 2 && real.min_normal*real.max <= 4); - - real u = fabs(x); - real v = fabs(y); - if (!(u >= v)) // check for NaN as well. - { - v = u; - u = fabs(y); - if (u == real.infinity) return u; // hypot(inf, nan) == inf - if (v == real.infinity) return v; // hypot(nan, inf) == inf - } - - // Now u >= v, or else one is NaN. - if (v >= SQRTMAX*0.5) - { - // hypot(huge, huge) -- avoid overflow - u *= SQRTMIN*0.5; - v *= SQRTMIN*0.5; - return sqrt(u*u + v*v) * SQRTMAX * 2.0; - } - - if (u <= SQRTMIN) - { - // hypot (tiny, tiny) -- avoid underflow - // This is only necessary to avoid setting the underflow - // flag. - u *= SQRTMAX / real.epsilon; - v *= SQRTMAX / real.epsilon; - return sqrt(u*u + v*v) * SQRTMIN * real.epsilon; - } - - if (u * real.epsilon > v) - { - // hypot (huge, tiny) = huge - return u; - } - - // both are in the normal range - return sqrt(u*u + v*v); -} - -@safe unittest -{ - static real[3][] vals = // x,y,hypot - [ - [ 0.0, 0.0, 0.0], - [ 0.0, -0.0, 0.0], - [ -0.0, -0.0, 0.0], - [ 3.0, 4.0, 5.0], - [ -300, -400, 500], - [0.0, 7.0, 7.0], - [9.0, 9*real.epsilon, 9.0], - [88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))], - [88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))], - [3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon], - [ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal], - [ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max], - [ real.infinity, real.nan, real.infinity], - [ real.nan, real.infinity, real.infinity], - [ real.nan, real.nan, real.nan], - [ real.nan, real.max, real.nan], - [ real.max, real.nan, real.nan], - ]; - for (int i = 0; i < vals.length; i++) - { - real x = vals[i][0]; - real y = vals[i][1]; - real z = vals[i][2]; - real h = hypot(x, y); - assert(isIdentical(z,h) || feqrel(z, h) >= real.mant_dig - 1); - } -} - -/************************************** - * Returns the value of x rounded upward to the next integer - * (toward positive infinity). - */ -real ceil(real x) @trusted pure nothrow @nogc -{ - version (Win64_DMD_InlineAsm) - { - asm pure nothrow @nogc - { - naked ; - fld real ptr [RCX] ; - fstcw 8[RSP] ; - mov AL,9[RSP] ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x08 ; // round to +infinity - mov 9[RSP],AL ; - fldcw 8[RSP] ; - frndint ; - mov 9[RSP],DL ; - fldcw 8[RSP] ; - ret ; - } - } - else version (MSVC_InlineAsm) - { - short cw; - asm pure nothrow @nogc - { - fld x ; - fstcw cw ; - mov AL,byte ptr cw+1 ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x08 ; // round to +infinity - mov byte ptr cw+1,AL ; - fldcw cw ; - frndint ; - mov byte ptr cw+1,DL ; - fldcw cw ; - } - } - else - { - // Special cases. - if (isNaN(x) || isInfinity(x)) - return x; - - real y = floorImpl(x); - if (y < x) - y += 1.0; - - return y; - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(ceil(+123.456L) == +124); - assert(ceil(-123.456L) == -123); - assert(ceil(-1.234L) == -1); - assert(ceil(-0.123L) == 0); - assert(ceil(0.0L) == 0); - assert(ceil(+0.123L) == 1); - assert(ceil(+1.234L) == 2); - assert(ceil(real.infinity) == real.infinity); - assert(isNaN(ceil(real.nan))); - assert(isNaN(ceil(real.init))); -} - -// ditto -double ceil(double x) @trusted pure nothrow @nogc -{ - // Special cases. - if (isNaN(x) || isInfinity(x)) - return x; - - double y = floorImpl(x); - if (y < x) - y += 1.0; - - return y; -} - -@safe pure nothrow @nogc unittest -{ - assert(ceil(+123.456) == +124); - assert(ceil(-123.456) == -123); - assert(ceil(-1.234) == -1); - assert(ceil(-0.123) == 0); - assert(ceil(0.0) == 0); - assert(ceil(+0.123) == 1); - assert(ceil(+1.234) == 2); - assert(ceil(double.infinity) == double.infinity); - assert(isNaN(ceil(double.nan))); - assert(isNaN(ceil(double.init))); -} - -// ditto -float ceil(float x) @trusted pure nothrow @nogc -{ - // Special cases. - if (isNaN(x) || isInfinity(x)) - return x; - - float y = floorImpl(x); - if (y < x) - y += 1.0; - - return y; -} - -@safe pure nothrow @nogc unittest -{ - assert(ceil(+123.456f) == +124); - assert(ceil(-123.456f) == -123); - assert(ceil(-1.234f) == -1); - assert(ceil(-0.123f) == 0); - assert(ceil(0.0f) == 0); - assert(ceil(+0.123f) == 1); - assert(ceil(+1.234f) == 2); - assert(ceil(float.infinity) == float.infinity); - assert(isNaN(ceil(float.nan))); - assert(isNaN(ceil(float.init))); -} - -/************************************** - * Returns the value of x rounded downward to the next integer - * (toward negative infinity). - */ -real floor(real x) @trusted pure nothrow @nogc -{ - version (Win64_DMD_InlineAsm) - { - asm pure nothrow @nogc - { - naked ; - fld real ptr [RCX] ; - fstcw 8[RSP] ; - mov AL,9[RSP] ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x04 ; // round to -infinity - mov 9[RSP],AL ; - fldcw 8[RSP] ; - frndint ; - mov 9[RSP],DL ; - fldcw 8[RSP] ; - ret ; - } - } - else version (MSVC_InlineAsm) - { - short cw; - asm pure nothrow @nogc - { - fld x ; - fstcw cw ; - mov AL,byte ptr cw+1 ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x04 ; // round to -infinity - mov byte ptr cw+1,AL ; - fldcw cw ; - frndint ; - mov byte ptr cw+1,DL ; - fldcw cw ; - } - } - else - { - // Special cases. - if (isNaN(x) || isInfinity(x) || x == 0.0) - return x; - - return floorImpl(x); - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(floor(+123.456L) == +123); - assert(floor(-123.456L) == -124); - assert(floor(-1.234L) == -2); - assert(floor(-0.123L) == -1); - assert(floor(0.0L) == 0); - assert(floor(+0.123L) == 0); - assert(floor(+1.234L) == 1); - assert(floor(real.infinity) == real.infinity); - assert(isNaN(floor(real.nan))); - assert(isNaN(floor(real.init))); -} - -// ditto -double floor(double x) @trusted pure nothrow @nogc -{ - // Special cases. - if (isNaN(x) || isInfinity(x) || x == 0.0) - return x; - - return floorImpl(x); -} - -@safe pure nothrow @nogc unittest -{ - assert(floor(+123.456) == +123); - assert(floor(-123.456) == -124); - assert(floor(-1.234) == -2); - assert(floor(-0.123) == -1); - assert(floor(0.0) == 0); - assert(floor(+0.123) == 0); - assert(floor(+1.234) == 1); - assert(floor(double.infinity) == double.infinity); - assert(isNaN(floor(double.nan))); - assert(isNaN(floor(double.init))); -} - -// ditto -float floor(float x) @trusted pure nothrow @nogc -{ - // Special cases. - if (isNaN(x) || isInfinity(x) || x == 0.0) - return x; - - return floorImpl(x); -} - -@safe pure nothrow @nogc unittest -{ - assert(floor(+123.456f) == +123); - assert(floor(-123.456f) == -124); - assert(floor(-1.234f) == -2); - assert(floor(-0.123f) == -1); - assert(floor(0.0f) == 0); - assert(floor(+0.123f) == 0); - assert(floor(+1.234f) == 1); - assert(floor(float.infinity) == float.infinity); - assert(isNaN(floor(float.nan))); - assert(isNaN(floor(float.init))); -} - -/** - * Round `val` to a multiple of `unit`. `rfunc` specifies the rounding - * function to use; by default this is `rint`, which uses the current - * rounding mode. - */ -Unqual!F quantize(alias rfunc = rint, F)(const F val, const F unit) -if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F) -{ - typeof(return) ret = val; - if (unit != 0) - { - const scaled = val / unit; - if (!scaled.isInfinity) - ret = rfunc(scaled) * unit; - } - return ret; -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(12345.6789L.quantize(0.01L) == 12345.68L); - assert(12345.6789L.quantize!floor(0.01L) == 12345.67L); - assert(12345.6789L.quantize(22.0L) == 12342.0L); -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(12345.6789L.quantize(0) == 12345.6789L); - assert(12345.6789L.quantize(real.infinity).isNaN); - assert(12345.6789L.quantize(real.nan).isNaN); - assert(real.infinity.quantize(0.01L) == real.infinity); - assert(real.infinity.quantize(real.nan).isNaN); - assert(real.nan.quantize(0.01L).isNaN); - assert(real.nan.quantize(real.infinity).isNaN); - assert(real.nan.quantize(real.nan).isNaN); -} - -/** - * Round `val` to a multiple of `pow(base, exp)`. `rfunc` specifies the - * rounding function to use; by default this is `rint`, which uses the - * current rounding mode. - */ -Unqual!F quantize(real base, alias rfunc = rint, F, E)(const F val, const E exp) -if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F && isIntegral!E) -{ - // TODO: Compile-time optimization for power-of-two bases? - return quantize!rfunc(val, pow(cast(F) base, exp)); -} - -/// ditto -Unqual!F quantize(real base, long exp = 1, alias rfunc = rint, F)(const F val) -if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F) -{ - enum unit = cast(F) pow(base, exp); - return quantize!rfunc(val, unit); -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(12345.6789L.quantize!10(-2) == 12345.68L); - assert(12345.6789L.quantize!(10, -2) == 12345.68L); - assert(12345.6789L.quantize!(10, floor)(-2) == 12345.67L); - assert(12345.6789L.quantize!(10, -2, floor) == 12345.67L); - - assert(12345.6789L.quantize!22(1) == 12342.0L); - assert(12345.6789L.quantize!22 == 12342.0L); -} - -@safe pure nothrow @nogc unittest -{ - import std.meta : AliasSeq; - - foreach (F; AliasSeq!(real, double, float)) - { - const maxL10 = cast(int) F.max.log10.floor; - const maxR10 = pow(cast(F) 10, maxL10); - assert((cast(F) 0.9L * maxR10).quantize!10(maxL10) == maxR10); - assert((cast(F)-0.9L * maxR10).quantize!10(maxL10) == -maxR10); - - assert(F.max.quantize(F.min_normal) == F.max); - assert((-F.max).quantize(F.min_normal) == -F.max); - assert(F.min_normal.quantize(F.max) == 0); - assert((-F.min_normal).quantize(F.max) == 0); - assert(F.min_normal.quantize(F.min_normal) == F.min_normal); - assert((-F.min_normal).quantize(F.min_normal) == -F.min_normal); - } -} - -/****************************************** - * Rounds x to the nearest integer value, using the current rounding - * mode. - * - * Unlike the rint functions, nearbyint does not raise the - * FE_INEXACT exception. - */ -real nearbyint(real x) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - assert(0); // not implemented in C library - } - else - return core.stdc.math.nearbyintl(x); -} - -/********************************** - * Rounds x to the nearest integer value, using the current rounding - * mode. - * If the return value is not equal to x, the FE_INEXACT - * exception is raised. - * $(B nearbyint) performs - * the same operation, but does not set the FE_INEXACT exception. - */ -real rint(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.rint(x); } -//FIXME -///ditto -double rint(double x) @safe pure nothrow @nogc { return rint(cast(real) x); } -//FIXME -///ditto -float rint(float x) @safe pure nothrow @nogc { return rint(cast(real) x); } - -@safe unittest -{ - real function(real) print = &rint; - assert(print != null); -} - -/*************************************** - * Rounds x to the nearest integer value, using the current rounding - * mode. - * - * This is generally the fastest method to convert a floating-point number - * to an integer. Note that the results from this function - * depend on the rounding mode, if the fractional part of x is exactly 0.5. - * If using the default rounding mode (ties round to even integers) - * lrint(4.5) == 4, lrint(5.5)==6. - */ -long lrint(real x) @trusted pure nothrow @nogc -{ - version (InlineAsm_X86_Any) - { - version (Win64) - { - asm pure nothrow @nogc - { - naked; - fld real ptr [RCX]; - fistp qword ptr 8[RSP]; - mov RAX,8[RSP]; - ret; - } - } - else - { - long n; - asm pure nothrow @nogc - { - fld x; - fistp n; - } - return n; - } - } - else - { - alias F = floatTraits!(real); - static if (F.realFormat == RealFormat.ieeeDouble) - { - long result; - - // Rounding limit when casting from real(double) to ulong. - enum real OF = 4.50359962737049600000E15L; - - uint* vi = cast(uint*)(&x); - - // Find the exponent and sign - uint msb = vi[MANTISSA_MSB]; - uint lsb = vi[MANTISSA_LSB]; - int exp = ((msb >> 20) & 0x7ff) - 0x3ff; - const int sign = msb >> 31; - msb &= 0xfffff; - msb |= 0x100000; - - if (exp < 63) - { - if (exp >= 52) - result = (cast(long) msb << (exp - 20)) | (lsb << (exp - 52)); - else - { - // Adjust x and check result. - const real j = sign ? -OF : OF; - x = (j + x) - j; - msb = vi[MANTISSA_MSB]; - lsb = vi[MANTISSA_LSB]; - exp = ((msb >> 20) & 0x7ff) - 0x3ff; - msb &= 0xfffff; - msb |= 0x100000; - - if (exp < 0) - result = 0; - else if (exp < 20) - result = cast(long) msb >> (20 - exp); - else if (exp == 20) - result = cast(long) msb; - else - result = (cast(long) msb << (exp - 20)) | (lsb >> (52 - exp)); - } - } - else - { - // It is left implementation defined when the number is too large. - return cast(long) x; - } - - return sign ? -result : result; - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - long result; - - // Rounding limit when casting from real(80-bit) to ulong. - static if (F.realFormat == RealFormat.ieeeExtended) - enum real OF = 9.22337203685477580800E18L; - else - enum real OF = 4.50359962737049600000E15L; - - ushort* vu = cast(ushort*)(&x); - uint* vi = cast(uint*)(&x); - - // Find the exponent and sign - int exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; - const int sign = (vu[F.EXPPOS_SHORT] >> 15) & 1; - - if (exp < 63) - { - // Adjust x and check result. - const real j = sign ? -OF : OF; - x = (j + x) - j; - exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; - - version (LittleEndian) - { - if (exp < 0) - result = 0; - else if (exp <= 31) - result = vi[1] >> (31 - exp); - else - result = (cast(long) vi[1] << (exp - 31)) | (vi[0] >> (63 - exp)); - } - else - { - if (exp < 0) - result = 0; - else if (exp <= 31) - result = vi[1] >> (31 - exp); - else - result = (cast(long) vi[1] << (exp - 31)) | (vi[2] >> (63 - exp)); - } - } - else - { - // It is left implementation defined when the number is too large - // to fit in a 64bit long. - return cast(long) x; - } - - return sign ? -result : result; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - const vu = cast(ushort*)(&x); - - // Find the exponent and sign - const sign = (vu[F.EXPPOS_SHORT] >> 15) & 1; - if ((vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1) > 63) - { - // The result is left implementation defined when the number is - // too large to fit in a 64 bit long. - return cast(long) x; - } - - // Force rounding of lower bits according to current rounding - // mode by adding ±2^-112 and subtracting it again. - enum OF = 5.19229685853482762853049632922009600E33L; - const j = sign ? -OF : OF; - x = (j + x) - j; - - const exp = (vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1); - const implicitOne = 1UL << 48; - auto vl = cast(ulong*)(&x); - vl[MANTISSA_MSB] &= implicitOne - 1; - vl[MANTISSA_MSB] |= implicitOne; - - long result; - - if (exp < 0) - result = 0; - else if (exp <= 48) - result = vl[MANTISSA_MSB] >> (48 - exp); - else - result = (vl[MANTISSA_MSB] << (exp - 48)) | (vl[MANTISSA_LSB] >> (112 - exp)); - - return sign ? -result : result; - } - else - { - static assert(false, "real type not supported by lrint()"); - } - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(lrint(4.5) == 4); - assert(lrint(5.5) == 6); - assert(lrint(-4.5) == -4); - assert(lrint(-5.5) == -6); - - assert(lrint(int.max - 0.5) == 2147483646L); - assert(lrint(int.max + 0.5) == 2147483648L); - assert(lrint(int.min - 0.5) == -2147483648L); - assert(lrint(int.min + 0.5) == -2147483648L); -} - -static if (real.mant_dig >= long.sizeof * 8) -{ - @safe pure nothrow @nogc unittest - { - assert(lrint(long.max - 1.5L) == long.max - 1); - assert(lrint(long.max - 0.5L) == long.max - 1); - assert(lrint(long.min + 0.5L) == long.min); - assert(lrint(long.min + 1.5L) == long.min + 2); - } -} - -/******************************************* - * Return the value of x rounded to the nearest integer. - * If the fractional part of x is exactly 0.5, the return value is - * rounded away from zero. - */ -real round(real x) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - auto old = FloatingPointControl.getControlState(); - FloatingPointControl.setControlState( - (old & ~FloatingPointControl.roundingMask) | FloatingPointControl.roundToZero - ); - x = rint((x >= 0) ? x + 0.5 : x - 0.5); - FloatingPointControl.setControlState(old); - return x; - } - else - return core.stdc.math.roundl(x); -} - -/********************************************** - * Return the value of x rounded to the nearest integer. - * - * If the fractional part of x is exactly 0.5, the return value is rounded - * away from zero. - * - * $(BLUE This function is not implemented for Digital Mars C runtime.) - */ -long lround(real x) @trusted nothrow @nogc -{ - version (CRuntime_DigitalMars) - assert(0, "lround not implemented"); - else - return core.stdc.math.llroundl(x); -} - -/// -@safe nothrow @nogc unittest -{ - version (CRuntime_DigitalMars) {} - else - { - assert(lround(0.49) == 0); - assert(lround(0.5) == 1); - assert(lround(1.5) == 2); - } -} - -/**************************************************** - * Returns the integer portion of x, dropping the fractional portion. - * - * This is also known as "chop" rounding. - */ -real trunc(real x) @trusted nothrow @nogc -{ - version (Win64_DMD_InlineAsm) - { - asm pure nothrow @nogc - { - naked ; - fld real ptr [RCX] ; - fstcw 8[RSP] ; - mov AL,9[RSP] ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x0C ; // round to 0 - mov 9[RSP],AL ; - fldcw 8[RSP] ; - frndint ; - mov 9[RSP],DL ; - fldcw 8[RSP] ; - ret ; - } - } - else version (MSVC_InlineAsm) - { - short cw; - asm pure nothrow @nogc - { - fld x ; - fstcw cw ; - mov AL,byte ptr cw+1 ; - mov DL,AL ; - and AL,0xC3 ; - or AL,0x0C ; // round to 0 - mov byte ptr cw+1,AL ; - fldcw cw ; - frndint ; - mov byte ptr cw+1,DL ; - fldcw cw ; - } - } - else - return core.stdc.math.truncl(x); -} - -/**************************************************** - * Calculate the remainder x REM y, following IEC 60559. - * - * REM is the value of x - y * n, where n is the integer nearest the exact - * value of x / y. - * If |n - x / y| == 0.5, n is even. - * If the result is zero, it has the same sign as x. - * Otherwise, the sign of the result is the sign of x / y. - * Precision mode has no effect on the remainder functions. - * - * remquo returns n in the parameter n. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?)) - * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no)) - * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes)) - * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes)) - * $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no)) - * ) - * - * $(BLUE `remquo` and `remainder` not supported on Windows.) - */ -real remainder(real x, real y) @trusted nothrow @nogc -{ - version (CRuntime_Microsoft) - { - int n; - return remquo(x, y, n); - } - else - return core.stdc.math.remainderl(x, y); -} - -real remquo(real x, real y, out int n) @trusted nothrow @nogc /// ditto -{ - version (Posix) - return core.stdc.math.remquol(x, y, &n); - else - assert(0, "remquo not implemented"); -} - - -version (IeeeFlagsSupport) -{ - -/** IEEE exception status flags ('sticky bits') - - These flags indicate that an exceptional floating-point condition has occurred. - They indicate that a NaN or an infinity has been generated, that a result - is inexact, or that a signalling NaN has been encountered. If floating-point - exceptions are enabled (unmasked), a hardware exception will be generated - instead of setting these flags. - */ -struct IeeeFlags -{ -private: - // The x87 FPU status register is 16 bits. - // The Pentium SSE2 status register is 32 bits. - // The ARM and PowerPC FPSCR is a 32-bit register. - // The SPARC FSR is a 32bit register (64 bits for SPARC 7 & 8, but high bits are uninteresting). - // The RISC-V (32 & 64 bit) fcsr is 32-bit register. - uint flags; - - version (CRuntime_Microsoft) - { - // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv). - // Applies to both x87 status word (16 bits) and SSE2 status word(32 bits). - enum : int - { - INEXACT_MASK = 0x20, - UNDERFLOW_MASK = 0x10, - OVERFLOW_MASK = 0x08, - DIVBYZERO_MASK = 0x04, - INVALID_MASK = 0x01, - - EXCEPTIONS_MASK = 0b11_1111 - } - // Don't bother about subnormals, they are not supported on most CPUs. - // SUBNORMAL_MASK = 0x02; - } - else - { - enum : int - { - INEXACT_MASK = core.stdc.fenv.FE_INEXACT, - UNDERFLOW_MASK = core.stdc.fenv.FE_UNDERFLOW, - OVERFLOW_MASK = core.stdc.fenv.FE_OVERFLOW, - DIVBYZERO_MASK = core.stdc.fenv.FE_DIVBYZERO, - INVALID_MASK = core.stdc.fenv.FE_INVALID, - EXCEPTIONS_MASK = core.stdc.fenv.FE_ALL_EXCEPT, - } - } - -private: - static uint getIeeeFlags() - { - version (GNU) - { - version (X86_Any) - { - ushort sw; - asm pure nothrow @nogc - { - "fstsw %0" : "=a" (sw); - } - // OR the result with the SSE2 status register (MXCSR). - if (haveSSE) - { - uint mxcsr; - asm pure nothrow @nogc - { - "stmxcsr %0" : "=m" (mxcsr); - } - return (sw | mxcsr) & EXCEPTIONS_MASK; - } - else - return sw & EXCEPTIONS_MASK; - } - else version (ARM) - { - version (ARM_SoftFloat) - return 0; - else - { - uint result = void; - asm pure nothrow @nogc - { - "vmrs %0, FPSCR; and %0, %0, #0x1F;" : "=r" (result); - } - return result; - } - } - else version (RISCV_Any) - { - version (D_SoftFloat) - return 0; - else - { - uint result = void; - asm pure nothrow @nogc - { - "frflags %0" : "=r" (result); - } - return result; - } - } - else - assert(0, "Not yet supported"); - } - else - version (InlineAsm_X86_Any) - { - ushort sw; - asm pure nothrow @nogc { fstsw sw; } - - // OR the result with the SSE2 status register (MXCSR). - if (haveSSE) - { - uint mxcsr; - asm pure nothrow @nogc { stmxcsr mxcsr; } - return (sw | mxcsr) & EXCEPTIONS_MASK; - } - else return sw & EXCEPTIONS_MASK; - } - else version (SPARC) - { - /* - int retval; - asm pure nothrow @nogc { st %fsr, retval; } - return retval; - */ - assert(0, "Not yet supported"); - } - else version (ARM) - { - assert(false, "Not yet supported."); - } - else - assert(0, "Not yet supported"); - } - - static void resetIeeeFlags() @nogc - { - version (GNU) - { - version (X86_Any) - { - asm nothrow @nogc - { - "fnclex"; - } - - // Also clear exception flags in MXCSR, SSE's control register. - if (haveSSE) - { - uint mxcsr; - asm nothrow @nogc - { - "stmxcsr %0" : "=m" (mxcsr); - } - mxcsr &= ~EXCEPTIONS_MASK; - asm nothrow @nogc - { - "ldmxcsr %0" : : "m" (mxcsr); - } - } - } - else version (ARM) - { - version (ARM_SoftFloat) - return; - else - { - uint old = FloatingPointControl.getControlState(); - old &= ~0b11111; // http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408i/Chdfifdc.html - asm nothrow @nogc - { - "vmsr FPSCR, %0" : : "r" (old); - } - } - } - else version (RISCV_Any) - { - version (D_SoftFloat) - return; - else - { - uint newValues = 0x0; - asm nothrow @nogc - { - "fsflags %0" : : "r" (newValues); - } - } - } - else - assert(0, "Not yet supported"); - } - else - version (InlineAsm_X86_Any) - { - asm nothrow @nogc - { - fnclex; - } - - // Also clear exception flags in MXCSR, SSE's control register. - if (haveSSE) - { - uint mxcsr; - asm nothrow @nogc { stmxcsr mxcsr; } - mxcsr &= ~EXCEPTIONS_MASK; - asm nothrow @nogc { ldmxcsr mxcsr; } - } - } - else - { - /* SPARC: - int tmpval; - asm pure nothrow @nogc { st %fsr, tmpval; } - tmpval &=0xFFFF_FC00; - asm pure nothrow @nogc { ld tmpval, %fsr; } - */ - assert(0, "Not yet supported"); - } - } -public: - version (IeeeFlagsSupport) - { - - /** - * The result cannot be represented exactly, so rounding occurred. - * Example: `x = sin(0.1);` - */ - @property bool inexact() const { return (flags & INEXACT_MASK) != 0; } - - /** - * A zero was generated by underflow - * Example: `x = real.min*real.epsilon/2;` - */ - @property bool underflow() const { return (flags & UNDERFLOW_MASK) != 0; } - - /** - * An infinity was generated by overflow - * Example: `x = real.max*2;` - */ - @property bool overflow() const { return (flags & OVERFLOW_MASK) != 0; } - - /** - * An infinity was generated by division by zero - * Example: `x = 3/0.0;` - */ - @property bool divByZero() const { return (flags & DIVBYZERO_MASK) != 0; } - - /** - * A machine NaN was generated. - * Example: `x = real.infinity * 0.0;` - */ - @property bool invalid() const { return (flags & INVALID_MASK) != 0; } - - } -} - -/// -version (IeeeFlagsUnittest) -@system unittest -{ - static void func() { - int a = 10 * 10; - } - pragma(inline, false) static void blockopt(ref real x) {} - real a = 3.5; - // Set all the flags to zero - resetIeeeFlags(); - assert(!ieeeFlags.divByZero); - blockopt(a); // avoid constant propagation by the optimizer - // Perform a division by zero. - a /= 0.0L; - assert(a == real.infinity); - assert(ieeeFlags.divByZero); - blockopt(a); // avoid constant propagation by the optimizer - // Create a NaN - a *= 0.0L; - assert(ieeeFlags.invalid); - assert(isNaN(a)); - - // Check that calling func() has no effect on the - // status flags. - IeeeFlags f = ieeeFlags; - func(); - assert(ieeeFlags == f); -} - -version (IeeeFlagsUnittest) -@system unittest -{ - import std.meta : AliasSeq; - - static struct Test - { - void delegate() action; - bool function() ieeeCheck; - } - - foreach (T; AliasSeq!(float, double, real)) - { - T x; /* Needs to be here to trick -O. It would optimize away the - calculations if x were local to the function literals. */ - auto tests = [ - Test( - () { x = 1; x += 0.1; }, - () => ieeeFlags.inexact - ), - Test( - () { x = T.min_normal; x /= T.max; }, - () => ieeeFlags.underflow - ), - Test( - () { x = T.max; x += T.max; }, - () => ieeeFlags.overflow - ), - Test( - () { x = 1; x /= 0; }, - () => ieeeFlags.divByZero - ), - Test( - () { x = 0; x /= 0; }, - () => ieeeFlags.invalid - ) - ]; - foreach (test; tests) - { - resetIeeeFlags(); - assert(!test.ieeeCheck()); - test.action(); - assert(test.ieeeCheck()); - } - } -} - -/// Set all of the floating-point status flags to false. -void resetIeeeFlags() @nogc { IeeeFlags.resetIeeeFlags(); } - -/// Returns: snapshot of the current state of the floating-point status flags -@property IeeeFlags ieeeFlags() -{ - return IeeeFlags(IeeeFlags.getIeeeFlags()); -} - -} // IeeeFlagsSupport - - -version (FloatingPointControlSupport) -{ - -/** Control the Floating point hardware - - Change the IEEE754 floating-point rounding mode and the floating-point - hardware exceptions. - - By default, the rounding mode is roundToNearest and all hardware exceptions - are disabled. For most applications, debugging is easier if the $(I division - by zero), $(I overflow), and $(I invalid operation) exceptions are enabled. - These three are combined into a $(I severeExceptions) value for convenience. - Note in particular that if $(I invalidException) is enabled, a hardware trap - will be generated whenever an uninitialized floating-point variable is used. - - All changes are temporary. The previous state is restored at the - end of the scope. - - -Example: ----- -{ - FloatingPointControl fpctrl; - - // Enable hardware exceptions for division by zero, overflow to infinity, - // invalid operations, and uninitialized floating-point variables. - fpctrl.enableExceptions(FloatingPointControl.severeExceptions); - - // This will generate a hardware exception, if x is a - // default-initialized floating point variable: - real x; // Add `= 0` or even `= real.nan` to not throw the exception. - real y = x * 3.0; - - // The exception is only thrown for default-uninitialized NaN-s. - // NaN-s with other payload are valid: - real z = y * real.nan; // ok - - // Changing the rounding mode: - fpctrl.rounding = FloatingPointControl.roundUp; - assert(rint(1.1) == 2); - - // The set hardware exceptions will be disabled when leaving this scope. - // The original rounding mode will also be restored. -} - -// Ensure previous values are returned: -assert(!FloatingPointControl.enabledExceptions); -assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest); -assert(rint(1.1) == 1); ----- - - */ -struct FloatingPointControl -{ - alias RoundingMode = uint; /// - - version (StdDdoc) - { - enum : RoundingMode - { - /** IEEE rounding modes. - * The default mode is roundToNearest. - * - * roundingMask = A mask of all rounding modes. - */ - roundToNearest, - roundDown, /// ditto - roundUp, /// ditto - roundToZero, /// ditto - roundingMask, /// ditto - } - } - else version (CRuntime_Microsoft) - { - // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv). - enum : RoundingMode - { - roundToNearest = 0x0000, - roundDown = 0x0400, - roundUp = 0x0800, - roundToZero = 0x0C00, - roundingMask = roundToNearest | roundDown - | roundUp | roundToZero, - } - } - else - { - enum : RoundingMode - { - roundToNearest = core.stdc.fenv.FE_TONEAREST, - roundDown = core.stdc.fenv.FE_DOWNWARD, - roundUp = core.stdc.fenv.FE_UPWARD, - roundToZero = core.stdc.fenv.FE_TOWARDZERO, - roundingMask = roundToNearest | roundDown - | roundUp | roundToZero, - } - } - - //// Change the floating-point hardware rounding mode - @property void rounding(RoundingMode newMode) @nogc - { - initialize(); - setControlState(cast(ushort)((getControlState() & (-1 - roundingMask)) | (newMode & roundingMask))); - } - - /// Returns: the currently active rounding mode - @property static RoundingMode rounding() @nogc - { - return cast(RoundingMode)(getControlState() & roundingMask); - } - - alias ExceptionMask = uint; /// - - version (StdDdoc) - { - enum : ExceptionMask - { - /** IEEE hardware exceptions. - * By default, all exceptions are masked (disabled). - * - * severeExceptions = The overflow, division by zero, and invalid - * exceptions. - */ - subnormalException, - inexactException, /// ditto - underflowException, /// ditto - overflowException, /// ditto - divByZeroException, /// ditto - invalidException, /// ditto - severeExceptions, /// ditto - allExceptions, /// ditto - } - } - else version (ARM_Any) - { - enum : ExceptionMask - { - subnormalException = 0x8000, - inexactException = 0x1000, - underflowException = 0x0800, - overflowException = 0x0400, - divByZeroException = 0x0200, - invalidException = 0x0100, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException | subnormalException, - } - } - else version (PPC_Any) - { - enum : ExceptionMask - { - inexactException = 0x0008, - divByZeroException = 0x0010, - underflowException = 0x0020, - overflowException = 0x0040, - invalidException = 0x0080, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (HPPA) - { - enum : ExceptionMask - { - inexactException = 0x01, - underflowException = 0x02, - overflowException = 0x04, - divByZeroException = 0x08, - invalidException = 0x10, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (MIPS_Any) - { - enum : ExceptionMask - { - inexactException = 0x0080, - divByZeroException = 0x0400, - overflowException = 0x0200, - underflowException = 0x0100, - invalidException = 0x0800, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (SPARC_Any) - { - enum : ExceptionMask - { - inexactException = 0x0800000, - divByZeroException = 0x1000000, - overflowException = 0x4000000, - underflowException = 0x2000000, - invalidException = 0x8000000, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (IBMZ_Any) - { - enum : ExceptionMask - { - inexactException = 0x08000000, - divByZeroException = 0x40000000, - overflowException = 0x20000000, - underflowException = 0x10000000, - invalidException = 0x80000000, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (RISCV_Any) - { - enum : ExceptionMask - { - inexactException = 0x01, - divByZeroException = 0x02, - underflowException = 0x04, - overflowException = 0x08, - invalidException = 0x10, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException, - } - } - else version (X86_Any) - { - enum : ExceptionMask - { - inexactException = 0x20, - underflowException = 0x10, - overflowException = 0x08, - divByZeroException = 0x04, - subnormalException = 0x02, - invalidException = 0x01, - severeExceptions = overflowException | divByZeroException - | invalidException, - allExceptions = severeExceptions | underflowException - | inexactException | subnormalException, - } - } - else - static assert(false, "Not implemented for this architecture"); - -public: - /// Returns: true if the current FPU supports exception trapping - @property static bool hasExceptionTraps() @safe nothrow @nogc - { - version (X86_Any) - return true; - else version (PPC_Any) - return true; - else version (MIPS_Any) - return true; - else version (ARM_Any) - { - auto oldState = getControlState(); - // If exceptions are not supported, we set the bit but read it back as zero - // https://sourceware.org/ml/libc-ports/2012-06/msg00091.html - setControlState(oldState | divByZeroException); - immutable result = (getControlState() & allExceptions) != 0; - setControlState(oldState); - return result; - } - else - assert(0, "Not yet supported"); - } - - /// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together. - void enableExceptions(ExceptionMask exceptions) @nogc - { - assert(hasExceptionTraps); - initialize(); - version (X86_Any) - setControlState(getControlState() & ~(exceptions & allExceptions)); - else - setControlState(getControlState() | (exceptions & allExceptions)); - } - - /// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together. - void disableExceptions(ExceptionMask exceptions) @nogc - { - assert(hasExceptionTraps); - initialize(); - version (X86_Any) - setControlState(getControlState() | (exceptions & allExceptions)); - else - setControlState(getControlState() & ~(exceptions & allExceptions)); - } - - /// Returns: the exceptions which are currently enabled (unmasked) - @property static ExceptionMask enabledExceptions() @nogc - { - assert(hasExceptionTraps); - version (X86_Any) - return (getControlState() & allExceptions) ^ allExceptions; - else - return (getControlState() & allExceptions); - } - - /// Clear all pending exceptions, then restore the original exception state and rounding mode. - ~this() @nogc - { - clearExceptions(); - if (initialized) - setControlState(savedState); - } - -private: - ControlState savedState; - - bool initialized = false; - - version (ARM_Any) - { - alias ControlState = uint; - } - else version (HPPA) - { - alias ControlState = uint; - } - else version (PPC_Any) - { - alias ControlState = uint; - } - else version (MIPS_Any) - { - alias ControlState = uint; - } - else version (SPARC_Any) - { - alias ControlState = ulong; - } - else version (IBMZ_Any) - { - alias ControlState = uint; - } - else version (RISCV_Any) - { - alias ControlState = uint; - } - else version (X86_Any) - { - alias ControlState = ushort; - } - else - static assert(false, "Not implemented for this architecture"); - - void initialize() @nogc - { - // BUG: This works around the absence of this() constructors. - if (initialized) return; - clearExceptions(); - savedState = getControlState(); - initialized = true; - } - - // Clear all pending exceptions - static void clearExceptions() @nogc - { - version (IeeeFlagsSupport) - resetIeeeFlags(); - else - static assert(false, "Not implemented for this architecture"); - } - - // Read from the control register - static ControlState getControlState() @trusted nothrow @nogc - { - version (GNU) - { - version (X86_Any) - { - ControlState cont; - asm pure nothrow @nogc - { - "fstcw %0" : "=m" (cont); - } - return cont; - } - else version (AArch64) - { - ControlState cont; - asm pure nothrow @nogc - { - "mrs %0, FPCR;" : "=r" (cont); - } - return cont; - } - else version (ARM) - { - ControlState cont; - version (ARM_SoftFloat) - cont = 0; - else - { - asm pure nothrow @nogc - { - "vmrs %0, FPSCR" : "=r" (cont); - } - } - return cont; - } - else version (RISCV_Any) - { - version (D_SoftFloat) - return 0; - else - { - ControlState cont; - asm pure nothrow @nogc - { - "frcsr %0" : "=r" (cont); - } - return cont; - } - } - else - assert(0, "Not yet supported"); - } - else - version (D_InlineAsm_X86) - { - short cont; - asm pure nothrow @nogc - { - xor EAX, EAX; - fstcw cont; - } - return cont; - } - else - version (D_InlineAsm_X86_64) - { - short cont; - asm pure nothrow @nogc - { - xor RAX, RAX; - fstcw cont; - } - return cont; - } - else - assert(0, "Not yet supported"); - } - - // Set the control register - static void setControlState(ControlState newState) @trusted nothrow @nogc - { - version (GNU) - { - version (X86_Any) - { - asm nothrow @nogc - { - "fclex; fldcw %0" : : "m" (newState); - } - - // Also update MXCSR, SSE's control register. - if (haveSSE) - { - uint mxcsr; - asm nothrow @nogc - { - "stmxcsr %0" : "=m" (mxcsr); - } - - /* In the FPU control register, rounding mode is in bits 10 and - 11. In MXCSR it's in bits 13 and 14. */ - mxcsr &= ~(roundingMask << 3); // delete old rounding mode - mxcsr |= (newState & roundingMask) << 3; // write new rounding mode - - /* In the FPU control register, masks are bits 0 through 5. - In MXCSR they're 7 through 12. */ - mxcsr &= ~(allExceptions << 7); // delete old masks - mxcsr |= (newState & allExceptions) << 7; // write new exception masks - - asm nothrow @nogc - { - "ldmxcsr %0" : : "m" (mxcsr); - } - } - } - else version (AArch64) - { - asm nothrow @nogc - { - "msr FPCR, %0;" : : "r" (newState); - } - } - else version (ARM) - { - version (ARM_SoftFloat) - return; - else - { - asm nothrow @nogc - { - "vmsr FPSCR, %0" : : "r" (newState); - } - } - } - else version (RISCV_Any) - { - version (D_SoftFloat) - return; - else - { - asm nothrow @nogc - { - "fscsr %0" : : "r" (newState); - } - } - } - else - assert(0, "Not yet supported"); - } - else - version (InlineAsm_X86_Any) - { - asm nothrow @nogc - { - fclex; - fldcw newState; - } - - // Also update MXCSR, SSE's control register. - if (haveSSE) - { - uint mxcsr; - asm nothrow @nogc { stmxcsr mxcsr; } - - /* In the FPU control register, rounding mode is in bits 10 and - 11. In MXCSR it's in bits 13 and 14. */ - mxcsr &= ~(roundingMask << 3); // delete old rounding mode - mxcsr |= (newState & roundingMask) << 3; // write new rounding mode - - /* In the FPU control register, masks are bits 0 through 5. - In MXCSR they're 7 through 12. */ - mxcsr &= ~(allExceptions << 7); // delete old masks - mxcsr |= (newState & allExceptions) << 7; // write new exception masks - - asm nothrow @nogc { ldmxcsr mxcsr; } - } - } - else - assert(0, "Not yet supported"); - } -} - -@system unittest -{ - void ensureDefaults() - { - assert(FloatingPointControl.rounding - == FloatingPointControl.roundToNearest); - if (FloatingPointControl.hasExceptionTraps) - assert(FloatingPointControl.enabledExceptions == 0); - } - - { - FloatingPointControl ctrl; - } - ensureDefaults(); - - { - FloatingPointControl ctrl; - ctrl.rounding = FloatingPointControl.roundDown; - assert(FloatingPointControl.rounding == FloatingPointControl.roundDown); - } - ensureDefaults(); - - if (FloatingPointControl.hasExceptionTraps) - { - FloatingPointControl ctrl; - ctrl.enableExceptions(FloatingPointControl.divByZeroException - | FloatingPointControl.overflowException); - assert(ctrl.enabledExceptions == - (FloatingPointControl.divByZeroException - | FloatingPointControl.overflowException)); - - ctrl.rounding = FloatingPointControl.roundUp; - assert(FloatingPointControl.rounding == FloatingPointControl.roundUp); - } - ensureDefaults(); -} - -version (FloatingPointControlUnittest) -@system unittest // rounding -{ - import std.meta : AliasSeq; - - foreach (T; AliasSeq!(float, double, real)) - { - /* Be careful with changing the rounding mode, it interferes - * with common subexpressions. Changing rounding modes should - * be done with separate functions that are not inlined. - */ - - { - static T addRound(T)(uint rm) - { - pragma(inline, false) static void blockopt(ref T x) {} - pragma(inline, false); - FloatingPointControl fpctrl; - fpctrl.rounding = rm; - T x = 1; - blockopt(x); // avoid constant propagation by the optimizer - x += 0.1; - return x; - } - - T u = addRound!(T)(FloatingPointControl.roundUp); - T d = addRound!(T)(FloatingPointControl.roundDown); - T z = addRound!(T)(FloatingPointControl.roundToZero); - - assert(u > d); - assert(z == d); - } - - { - static T subRound(T)(uint rm) - { - pragma(inline, false) static void blockopt(ref T x) {} - pragma(inline, false); - FloatingPointControl fpctrl; - fpctrl.rounding = rm; - T x = -1; - blockopt(x); // avoid constant propagation by the optimizer - x -= 0.1; - return x; - } - - T u = subRound!(T)(FloatingPointControl.roundUp); - T d = subRound!(T)(FloatingPointControl.roundDown); - T z = subRound!(T)(FloatingPointControl.roundToZero); - - assert(u > d); - assert(z == u); - } - } -} - -} // FloatingPointControlSupport - - -/********************************* - * Determines if $(D_PARAM x) is NaN. - * Params: - * x = a floating point number. - * Returns: - * $(D true) if $(D_PARAM x) is Nan. - */ -bool isNaN(X)(X x) @nogc @trusted pure nothrow -if (isFloatingPoint!(X)) -{ - alias F = floatTraits!(X); - static if (F.realFormat == RealFormat.ieeeSingle) - { - const uint p = *cast(uint *)&x; - return ((p & 0x7F80_0000) == 0x7F80_0000) - && p & 0x007F_FFFF; // not infinity - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - const ulong p = *cast(ulong *)&x; - return ((p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) - && p & 0x000F_FFFF_FFFF_FFFF; // not infinity - } - else static if (F.realFormat == RealFormat.ieeeExtended) - { - const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; - const ulong ps = *cast(ulong *)&x; - return e == F.EXPMASK && - ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; - const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB]; - const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB]; - return e == F.EXPMASK && - (psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0; - } - else - { - return x != x; - } -} - -/// -@safe pure nothrow @nogc unittest -{ - assert( isNaN(float.init)); - assert( isNaN(-double.init)); - assert( isNaN(real.nan)); - assert( isNaN(-real.nan)); - assert(!isNaN(cast(float) 53.6)); - assert(!isNaN(cast(real)-53.6)); -} - -@safe pure nothrow @nogc unittest -{ - import std.meta : AliasSeq; - - foreach (T; AliasSeq!(float, double, real)) - { - // CTFE-able tests - assert(isNaN(T.init)); - assert(isNaN(-T.init)); - assert(isNaN(T.nan)); - assert(isNaN(-T.nan)); - assert(!isNaN(T.infinity)); - assert(!isNaN(-T.infinity)); - assert(!isNaN(cast(T) 53.6)); - assert(!isNaN(cast(T)-53.6)); - - // Runtime tests - shared T f; - f = T.init; - assert(isNaN(f)); - assert(isNaN(-f)); - f = T.nan; - assert(isNaN(f)); - assert(isNaN(-f)); - f = T.infinity; - assert(!isNaN(f)); - assert(!isNaN(-f)); - f = cast(T) 53.6; - assert(!isNaN(f)); - assert(!isNaN(-f)); - } -} - -/********************************* - * Determines if $(D_PARAM x) is finite. - * Params: - * x = a floating point number. - * Returns: - * $(D true) if $(D_PARAM x) is finite. - */ -bool isFinite(X)(X x) @trusted pure nothrow @nogc -{ - alias F = floatTraits!(X); - ushort* pe = cast(ushort *)&x; - return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; -} - -/// -@safe pure nothrow @nogc unittest -{ - assert( isFinite(1.23f)); - assert( isFinite(float.max)); - assert( isFinite(float.min_normal)); - assert(!isFinite(float.nan)); - assert(!isFinite(float.infinity)); -} - -@safe pure nothrow @nogc unittest -{ - assert(isFinite(1.23)); - assert(isFinite(double.max)); - assert(isFinite(double.min_normal)); - assert(!isFinite(double.nan)); - assert(!isFinite(double.infinity)); - - assert(isFinite(1.23L)); - assert(isFinite(real.max)); - assert(isFinite(real.min_normal)); - assert(!isFinite(real.nan)); - assert(!isFinite(real.infinity)); -} - - -/********************************* - * Determines if $(D_PARAM x) is normalized. - * - * A normalized number must not be zero, subnormal, infinite nor $(NAN). - * - * Params: - * x = a floating point number. - * Returns: - * $(D true) if $(D_PARAM x) is normalized. - */ - -/* Need one for each format because subnormal floats might - * be converted to normal reals. - */ -bool isNormal(X)(X x) @trusted pure nothrow @nogc -{ - alias F = floatTraits!(X); - static if (F.realFormat == RealFormat.ibmExtended) - { - // doubledouble is normal if the least significant part is normal. - return isNormal((cast(double*)&x)[MANTISSA_LSB]); - } - else - { - ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; - return (e != F.EXPMASK && e != 0); - } -} - -/// -@safe pure nothrow @nogc unittest -{ - float f = 3; - double d = 500; - real e = 10e+48; - - assert(isNormal(f)); - assert(isNormal(d)); - assert(isNormal(e)); - f = d = e = 0; - assert(!isNormal(f)); - assert(!isNormal(d)); - assert(!isNormal(e)); - assert(!isNormal(real.infinity)); - assert(isNormal(-real.max)); - assert(!isNormal(real.min_normal/4)); - -} - -/********************************* - * Determines if $(D_PARAM x) is subnormal. - * - * Subnormals (also known as "denormal number"), have a 0 exponent - * and a 0 most significant mantissa bit. - * - * Params: - * x = a floating point number. - * Returns: - * $(D true) if $(D_PARAM x) is a denormal number. - */ -bool isSubnormal(X)(X x) @trusted pure nothrow @nogc -{ - /* - Need one for each format because subnormal floats might - be converted to normal reals. - */ - alias F = floatTraits!(X); - static if (F.realFormat == RealFormat.ieeeSingle) - { - uint *p = cast(uint *)&x; - return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT; - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - uint *p = cast(uint *)&x; - return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0 - && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT); - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; - long* ps = cast(long *)&x; - return (e == 0 && - ((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0)); - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - ushort* pe = cast(ushort *)&x; - long* ps = cast(long *)&x; - - return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; - } - else static if (F.realFormat == RealFormat.ibmExtended) - { - return isSubnormal((cast(double*)&x)[MANTISSA_MSB]); - } - else - { - static assert(false, "Not implemented for this architecture"); - } -} - -/// -@safe pure nothrow @nogc unittest -{ - import std.meta : AliasSeq; - - foreach (T; AliasSeq!(float, double, real)) - { - T f; - for (f = 1.0; !isSubnormal(f); f /= 2) - assert(f != 0); - } -} - -/********************************* - * Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN). - * Params: - * x = a floating point number. - * Returns: - * $(D true) if $(D_PARAM x) is $(PLUSMN)$(INFIN). - */ -bool isInfinity(X)(X x) @nogc @trusted pure nothrow -if (isFloatingPoint!(X)) -{ - alias F = floatTraits!(X); - static if (F.realFormat == RealFormat.ieeeSingle) - { - return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000; - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) - == 0x7FF0_0000_0000_0000; - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); - const ulong ps = *cast(ulong *)&x; - - // On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1. - return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0; - } - else static if (F.realFormat == RealFormat.ibmExtended) - { - return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) - == 0x7FF8_0000_0000_0000; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - const long psLsb = (cast(long *)&x)[MANTISSA_LSB]; - const long psMsb = (cast(long *)&x)[MANTISSA_MSB]; - return (psLsb == 0) - && (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; - } - else - { - return (x < -X.max) || (X.max < x); - } -} - -/// -@nogc @safe pure nothrow unittest -{ - assert(!isInfinity(float.init)); - assert(!isInfinity(-float.init)); - assert(!isInfinity(float.nan)); - assert(!isInfinity(-float.nan)); - assert(isInfinity(float.infinity)); - assert(isInfinity(-float.infinity)); - assert(isInfinity(-1.0f / 0.0f)); -} - -@safe pure nothrow @nogc unittest -{ - // CTFE-able tests - assert(!isInfinity(double.init)); - assert(!isInfinity(-double.init)); - assert(!isInfinity(double.nan)); - assert(!isInfinity(-double.nan)); - assert(isInfinity(double.infinity)); - assert(isInfinity(-double.infinity)); - assert(isInfinity(-1.0 / 0.0)); - - assert(!isInfinity(real.init)); - assert(!isInfinity(-real.init)); - assert(!isInfinity(real.nan)); - assert(!isInfinity(-real.nan)); - assert(isInfinity(real.infinity)); - assert(isInfinity(-real.infinity)); - assert(isInfinity(-1.0L / 0.0L)); - - // Runtime tests - shared float f; - f = float.init; - assert(!isInfinity(f)); - assert(!isInfinity(-f)); - f = float.nan; - assert(!isInfinity(f)); - assert(!isInfinity(-f)); - f = float.infinity; - assert(isInfinity(f)); - assert(isInfinity(-f)); - f = (-1.0f / 0.0f); - assert(isInfinity(f)); - - shared double d; - d = double.init; - assert(!isInfinity(d)); - assert(!isInfinity(-d)); - d = double.nan; - assert(!isInfinity(d)); - assert(!isInfinity(-d)); - d = double.infinity; - assert(isInfinity(d)); - assert(isInfinity(-d)); - d = (-1.0 / 0.0); - assert(isInfinity(d)); - - shared real e; - e = real.init; - assert(!isInfinity(e)); - assert(!isInfinity(-e)); - e = real.nan; - assert(!isInfinity(e)); - assert(!isInfinity(-e)); - e = real.infinity; - assert(isInfinity(e)); - assert(isInfinity(-e)); - e = (-1.0L / 0.0L); - assert(isInfinity(e)); -} - -/********************************* - * Is the binary representation of x identical to y? - * - * Same as ==, except that positive and negative zero are not identical, - * and two $(NAN)s are identical if they have the same 'payload'. - */ -bool isIdentical(real x, real y) @trusted pure nothrow @nogc -{ - // We're doing a bitwise comparison so the endianness is irrelevant. - long* pxs = cast(long *)&x; - long* pys = cast(long *)&y; - alias F = floatTraits!(real); - static if (F.realFormat == RealFormat.ieeeDouble) - { - return pxs[0] == pys[0]; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple - || F.realFormat == RealFormat.ibmExtended) - { - return pxs[0] == pys[0] && pxs[1] == pys[1]; - } - else - { - ushort* pxe = cast(ushort *)&x; - ushort* pye = cast(ushort *)&y; - return pxe[4] == pye[4] && pxs[0] == pys[0]; - } -} - -/********************************* - * Return 1 if sign bit of e is set, 0 if not. - */ -int signbit(X)(X x) @nogc @trusted pure nothrow -{ - alias F = floatTraits!(X); - return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0; -} - -/// -@nogc @safe pure nothrow unittest -{ - assert(!signbit(float.nan)); - assert(signbit(-float.nan)); - assert(!signbit(168.1234f)); - assert(signbit(-168.1234f)); - assert(!signbit(0.0f)); - assert(signbit(-0.0f)); - assert(signbit(-float.max)); - assert(!signbit(float.max)); - - assert(!signbit(double.nan)); - assert(signbit(-double.nan)); - assert(!signbit(168.1234)); - assert(signbit(-168.1234)); - assert(!signbit(0.0)); - assert(signbit(-0.0)); - assert(signbit(-double.max)); - assert(!signbit(double.max)); - - assert(!signbit(real.nan)); - assert(signbit(-real.nan)); - assert(!signbit(168.1234L)); - assert(signbit(-168.1234L)); - assert(!signbit(0.0L)); - assert(signbit(-0.0L)); - assert(signbit(-real.max)); - assert(!signbit(real.max)); -} - - -/********************************* - * Return a value composed of to with from's sign bit. - */ -R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc -if (isFloatingPoint!(R) && isFloatingPoint!(X)) -{ - ubyte* pto = cast(ubyte *)&to; - const ubyte* pfrom = cast(ubyte *)&from; - - alias T = floatTraits!(R); - alias F = floatTraits!(X); - pto[T.SIGNPOS_BYTE] &= 0x7F; - pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; - return to; -} - -// ditto -R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc -if (isIntegral!(X) && isFloatingPoint!(R)) -{ - return copysign(cast(R) to, from); -} - -@safe pure nothrow @nogc unittest -{ - import std.meta : AliasSeq; - - foreach (X; AliasSeq!(float, double, real, int, long)) - { - foreach (Y; AliasSeq!(float, double, real)) - (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396 - X x = 21; - Y y = 23.8; - Y e = void; - - e = copysign(x, y); - assert(e == 21.0); - - e = copysign(-x, y); - assert(e == 21.0); - - e = copysign(x, -y); - assert(e == -21.0); - - e = copysign(-x, -y); - assert(e == -21.0); - - static if (isFloatingPoint!X) - { - e = copysign(X.nan, y); - assert(isNaN(e) && !signbit(e)); - - e = copysign(X.nan, -y); - assert(isNaN(e) && signbit(e)); - } - }(); - } -} - -/********************************* -Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if -$(D x > 0), and $(NAN) if x==$(NAN). - */ -F sgn(F)(F x) @safe pure nothrow @nogc -{ - // @@@TODO@@@: make this faster - return x > 0 ? 1 : x < 0 ? -1 : x; -} - -/// -@safe pure nothrow @nogc unittest -{ - assert(sgn(168.1234) == 1); - assert(sgn(-168.1234) == -1); - assert(sgn(0.0) == 0); - assert(sgn(-0.0) == 0); -} - -// Functions for NaN payloads -/* - * A 'payload' can be stored in the significand of a $(NAN). One bit is required - * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits - * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; - * and 111 bits for a 128-bit quad. -*/ -/** - * Create a quiet $(NAN), storing an integer inside the payload. - * - * For floats, the largest possible payload is 0x3F_FFFF. - * For doubles, it is 0x3_FFFF_FFFF_FFFF. - * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. - */ -real NaN(ulong payload) @trusted pure nothrow @nogc -{ - alias F = floatTraits!(real); - static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - // real80 (in x86 real format, the implied bit is actually - // not implied but a real bit which is stored in the real) - ulong v = 3; // implied bit = 1, quiet bit = 1 - } - else - { - ulong v = 1; // no implied bit. quiet bit = 1 - } - - ulong a = payload; - - // 22 Float bits - ulong w = a & 0x3F_FFFF; - a -= w; - - v <<=22; - v |= w; - a >>=22; - - // 29 Double bits - v <<=29; - w = a & 0xFFF_FFFF; - v |= w; - a -= w; - a >>=29; - - static if (F.realFormat == RealFormat.ieeeDouble) - { - v |= 0x7FF0_0000_0000_0000; - real x; - * cast(ulong *)(&x) = v; - return x; - } - else - { - v <<=11; - a &= 0x7FF; - v |= a; - real x = real.nan; - - // Extended real bits - static if (F.realFormat == RealFormat.ieeeQuadruple) - { - v <<= 1; // there's no implicit bit - - version (LittleEndian) - { - *cast(ulong*)(6+cast(ubyte*)(&x)) = v; - } - else - { - *cast(ulong*)(2+cast(ubyte*)(&x)) = v; - } - } - else - { - *cast(ulong *)(&x) = v; - } - return x; - } -} - -@system pure nothrow @nogc unittest // not @safe because taking address of local. -{ - static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) - { - auto x = NaN(1); - auto xl = *cast(ulong*)&x; - assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52 - assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set - } -} - -/** - * Extract an integral payload from a $(NAN). - * - * Returns: - * the integer payload as a ulong. - * - * For floats, the largest possible payload is 0x3F_FFFF. - * For doubles, it is 0x3_FFFF_FFFF_FFFF. - * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. - */ -ulong getNaNPayload(real x) @trusted pure nothrow @nogc -{ - // assert(isNaN(x)); - alias F = floatTraits!(real); - static if (F.realFormat == RealFormat.ieeeDouble) - { - ulong m = *cast(ulong *)(&x); - // Make it look like an 80-bit significand. - // Skip exponent, and quiet bit - m &= 0x0007_FFFF_FFFF_FFFF; - m <<= 11; - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - version (LittleEndian) - { - ulong m = *cast(ulong*)(6+cast(ubyte*)(&x)); - } - else - { - ulong m = *cast(ulong*)(2+cast(ubyte*)(&x)); - } - - m >>= 1; // there's no implicit bit - } - else - { - ulong m = *cast(ulong *)(&x); - } - - // ignore implicit bit and quiet bit - - const ulong f = m & 0x3FFF_FF00_0000_0000L; - - ulong w = f >>> 40; - w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); - w |= (m & 0x7FF) << 51; - return w; -} - -debug(UnitTest) -{ - @safe pure nothrow @nogc unittest - { - real nan4 = NaN(0x789_ABCD_EF12_3456); - static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended - || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) - { - assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); - } - else - { - assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); - } - double nan5 = nan4; - assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); - float nan6 = nan4; - assert(getNaNPayload(nan6) == 0x12_3456); - nan4 = NaN(0xFABCD); - assert(getNaNPayload(nan4) == 0xFABCD); - nan6 = nan4; - assert(getNaNPayload(nan6) == 0xFABCD); - nan5 = NaN(0x100_0000_0000_3456); - assert(getNaNPayload(nan5) == 0x0000_0000_3456); - } -} - -/** - * Calculate the next largest floating point value after x. - * - * Return the least number greater than x that is representable as a real; - * thus, it gives the next point on the IEEE number line. - * - * $(TABLE_SV - * $(SVH x, nextUp(x) ) - * $(SV -$(INFIN), -real.max ) - * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) - * $(SV real.max, $(INFIN) ) - * $(SV $(INFIN), $(INFIN) ) - * $(SV $(NAN), $(NAN) ) - * ) - */ -real nextUp(real x) @trusted pure nothrow @nogc -{ - alias F = floatTraits!(real); - static if (F.realFormat == RealFormat.ieeeDouble) - { - return nextUp(cast(double) x); - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; - if (e == F.EXPMASK) - { - // NaN or Infinity - if (x == -real.infinity) return -real.max; - return x; // +Inf and NaN are unchanged. - } - - auto ps = cast(ulong *)&x; - if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000) - { - // Negative number - if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) - { - // it was negative zero, change to smallest subnormal - ps[MANTISSA_LSB] = 1; - ps[MANTISSA_MSB] = 0; - return x; - } - if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB]; - --ps[MANTISSA_LSB]; - } - else - { - // Positive number - ++ps[MANTISSA_LSB]; - if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB]; - } - return x; - } - else static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - // For 80-bit reals, the "implied bit" is a nuisance... - ushort *pe = cast(ushort *)&x; - ulong *ps = cast(ulong *)&x; - // EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals. - enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig); - - if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) - { - // First, deal with NANs and infinity - if (x == -real.infinity) return -real.max; - return x; // +Inf and NaN are unchanged. - } - if (pe[F.EXPPOS_SHORT] & 0x8000) - { - // Negative number -- need to decrease the significand - *ps -= EPSILON; - // Need to mask with 0x7FFF... so subnormals are treated correctly. - if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) - { - if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero - { - *ps = 1; - pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. - return x; - } - - --pe[F.EXPPOS_SHORT]; - - if (pe[F.EXPPOS_SHORT] == 0x8000) - return x; // it's become a subnormal, implied bit stays low. - - *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit - return x; - } - return x; - } - else - { - // Positive number -- need to increase the significand. - // Works automatically for positive zero. - *ps += EPSILON; - if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) - { - // change in exponent - ++pe[F.EXPPOS_SHORT]; - *ps = 0x8000_0000_0000_0000; // set the high bit - } - } - return x; - } - else // static if (F.realFormat == RealFormat.ibmExtended) - { - assert(0, "nextUp not implemented"); - } -} - -/** ditto */ -double nextUp(double x) @trusted pure nothrow @nogc -{ - ulong *ps = cast(ulong *)&x; - - if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) - { - // First, deal with NANs and infinity - if (x == -x.infinity) return -x.max; - return x; // +INF and NAN are unchanged. - } - if (*ps & 0x8000_0000_0000_0000) // Negative number - { - if (*ps == 0x8000_0000_0000_0000) // it was negative zero - { - *ps = 0x0000_0000_0000_0001; // change to smallest subnormal - return x; - } - --*ps; - } - else - { // Positive number - ++*ps; - } - return x; -} - -/** ditto */ -float nextUp(float x) @trusted pure nothrow @nogc -{ - uint *ps = cast(uint *)&x; - - if ((*ps & 0x7F80_0000) == 0x7F80_0000) - { - // First, deal with NANs and infinity - if (x == -x.infinity) return -x.max; - - return x; // +INF and NAN are unchanged. - } - if (*ps & 0x8000_0000) // Negative number - { - if (*ps == 0x8000_0000) // it was negative zero - { - *ps = 0x0000_0001; // change to smallest subnormal - return x; - } - - --*ps; - } - else - { - // Positive number - ++*ps; - } - return x; -} - -/** - * Calculate the next smallest floating point value before x. - * - * Return the greatest number less than x that is representable as a real; - * thus, it gives the previous point on the IEEE number line. - * - * $(TABLE_SV - * $(SVH x, nextDown(x) ) - * $(SV $(INFIN), real.max ) - * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) - * $(SV -real.max, -$(INFIN) ) - * $(SV -$(INFIN), -$(INFIN) ) - * $(SV $(NAN), $(NAN) ) - * ) - */ -real nextDown(real x) @safe pure nothrow @nogc -{ - return -nextUp(-x); -} - -/** ditto */ -double nextDown(double x) @safe pure nothrow @nogc -{ - return -nextUp(-x); -} - -/** ditto */ -float nextDown(float x) @safe pure nothrow @nogc -{ - return -nextUp(-x); -} - -/// -@safe pure nothrow @nogc unittest -{ - assert( nextDown(1.0 + real.epsilon) == 1.0); -} - -@safe pure nothrow @nogc unittest -{ - static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) - { - - // Tests for 80-bit reals - assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); - // negative numbers - assert( nextUp(-real.infinity) == -real.max ); - assert( nextUp(-1.0L-real.epsilon) == -1.0 ); - assert( nextUp(-2.0L) == -2.0 + real.epsilon); - // subnormals and zero - assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); - assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); - assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); - assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); - assert( nextUp(0.0L) == real.min_normal*real.epsilon ); - assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); - assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); - // positive numbers - assert( nextUp(1.0L) == 1.0 + real.epsilon ); - assert( nextUp(2.0L-real.epsilon) == 2.0 ); - assert( nextUp(real.max) == real.infinity ); - assert( nextUp(real.infinity)==real.infinity ); - } - - double n = NaN(0xABC); - assert(isIdentical(nextUp(n), n)); - // negative numbers - assert( nextUp(-double.infinity) == -double.max ); - assert( nextUp(-1-double.epsilon) == -1.0 ); - assert( nextUp(-2.0) == -2.0 + double.epsilon); - // subnormals and zero - - assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); - assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); - assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); - assert( nextUp(0.0) == double.min_normal*double.epsilon ); - assert( nextUp(-0.0) == double.min_normal*double.epsilon ); - assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); - assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); - // positive numbers - assert( nextUp(1.0) == 1.0 + double.epsilon ); - assert( nextUp(2.0-double.epsilon) == 2.0 ); - assert( nextUp(double.max) == double.infinity ); - - float fn = NaN(0xABC); - assert(isIdentical(nextUp(fn), fn)); - float f = -float.min_normal*(1-float.epsilon); - float f1 = -float.min_normal; - assert( nextUp(f1) == f); - f = 1.0f+float.epsilon; - f1 = 1.0f; - assert( nextUp(f1) == f ); - f1 = -0.0f; - assert( nextUp(f1) == float.min_normal*float.epsilon); - assert( nextUp(float.infinity)==float.infinity ); - - assert(nextDown(1.0L+real.epsilon)==1.0); - assert(nextDown(1.0+double.epsilon)==1.0); - f = 1.0f+float.epsilon; - assert(nextDown(f)==1.0); - assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); -} - - - -/****************************************** - * Calculates the next representable value after x in the direction of y. - * - * If y > x, the result will be the next largest floating-point value; - * if y < x, the result will be the next smallest value. - * If x == y, the result is y. - * - * Remarks: - * This function is not generally very useful; it's almost always better to use - * the faster functions nextUp() or nextDown() instead. - * - * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and - * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW - * exceptions will be raised if the function value is subnormal, and x is - * not equal to y. - */ -T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc -{ - if (x == y) return y; - return ((y>x) ? nextUp(x) : nextDown(x)); -} - -/// -@safe pure nothrow @nogc unittest -{ - float a = 1; - assert(is(typeof(nextafter(a, a)) == float)); - assert(nextafter(a, a.infinity) > a); - - double b = 2; - assert(is(typeof(nextafter(b, b)) == double)); - assert(nextafter(b, b.infinity) > b); - - real c = 3; - assert(is(typeof(nextafter(c, c)) == real)); - assert(nextafter(c, c.infinity) > c); -} - -//real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } - -/******************************************* - * Returns the positive difference between x and y. - * Returns: - * $(TABLE_SV - * $(TR $(TH x, y) $(TH fdim(x, y))) - * $(TR $(TD x $(GT) y) $(TD x - y)) - * $(TR $(TD x $(LT)= y) $(TD +0.0)) - * ) - */ -real fdim(real x, real y) @safe pure nothrow @nogc { return (x > y) ? x - y : +0.0; } - -/**************************************** - * Returns the larger of x and y. - */ -real fmax(real x, real y) @safe pure nothrow @nogc { return x > y ? x : y; } - -/**************************************** - * Returns the smaller of x and y. - */ -real fmin(real x, real y) @safe pure nothrow @nogc { return x < y ? x : y; } - -/************************************** - * Returns (x * y) + z, rounding only once according to the - * current rounding mode. - * - * BUGS: Not currently implemented - rounds twice. - */ -real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; } - -/******************************************************************* - * Compute the value of x $(SUPERSCRIPT n), where n is an integer - */ -Unqual!F pow(F, G)(F x, G n) @nogc @trusted pure nothrow -if (isFloatingPoint!(F) && isIntegral!(G)) -{ - import std.traits : Unsigned; - real p = 1.0, v = void; - Unsigned!(Unqual!G) m = n; - if (n < 0) - { - switch (n) - { - case -1: - return 1 / x; - case -2: - return 1 / (x * x); - default: - } - - m = cast(typeof(m))(0 - n); - v = p / x; - } - else - { - switch (n) - { - case 0: - return 1.0; - case 1: - return x; - case 2: - return x * x; - default: - } - - v = x; - } - - while (1) - { - if (m & 1) - p *= v; - m >>= 1; - if (!m) - break; - v *= v; - } - return p; -} - -@safe pure nothrow @nogc unittest -{ - // Make sure it instantiates and works properly on immutable values and - // with various integer and float types. - immutable real x = 46; - immutable float xf = x; - immutable double xd = x; - immutable uint one = 1; - immutable ushort two = 2; - immutable ubyte three = 3; - immutable ulong eight = 8; - - immutable int neg1 = -1; - immutable short neg2 = -2; - immutable byte neg3 = -3; - immutable long neg8 = -8; - - - assert(pow(x,0) == 1.0); - assert(pow(xd,one) == x); - assert(pow(xf,two) == x * x); - assert(pow(x,three) == x * x * x); - assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x)); - - assert(pow(x, neg1) == 1 / x); - - // Test disabled on most targets. - // See https://issues.dlang.org/show_bug.cgi?id=5628 - version (X86_64) enum BUG5628 = false; - else version (ARM) enum BUG5628 = false; - else version (GNU) enum BUG5628 = false; - else enum BUG5628 = true; - - static if (BUG5628) - { - assert(pow(xd, neg2) == 1 / (x * x)); - assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x))); - } - - assert(feqrel(pow(x, neg3), 1 / (x * x * x)) >= real.mant_dig - 1); -} - -@system unittest -{ - assert(equalsDigit(pow(2.0L, 10.0L), 1024, 19)); -} - -/** Compute the value of an integer x, raised to the power of a positive - * integer n. - * - * If both x and n are 0, the result is 1. - * If n is negative, an integer divide error will occur at runtime, - * regardless of the value of x. - */ -typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @nogc @trusted pure nothrow -if (isIntegral!(F) && isIntegral!(G)) -{ - if (n<0) return x/0; // Only support positive powers - typeof(return) p, v = void; - Unqual!G m = n; - - switch (m) - { - case 0: - p = 1; - break; - - case 1: - p = x; - break; - - case 2: - p = x * x; - break; - - default: - v = x; - p = 1; - while (1) - { - if (m & 1) - p *= v; - m >>= 1; - if (!m) - break; - v *= v; - } - break; - } - return p; -} - -/// -@safe pure nothrow @nogc unittest -{ - immutable int one = 1; - immutable byte two = 2; - immutable ubyte three = 3; - immutable short four = 4; - immutable long ten = 10; - - assert(pow(two, three) == 8); - assert(pow(two, ten) == 1024); - assert(pow(one, ten) == 1); - assert(pow(ten, four) == 10_000); - assert(pow(four, 10) == 1_048_576); - assert(pow(three, four) == 81); - -} - -/**Computes integer to floating point powers.*/ -real pow(I, F)(I x, F y) @nogc @trusted pure nothrow -if (isIntegral!I && isFloatingPoint!F) -{ - return pow(cast(real) x, cast(Unqual!F) y); -} - -/********************************************* - * Calculates x$(SUPERSCRIPT y). - * - * $(TABLE_SV - * $(TR $(TH x) $(TH y) $(TH pow(x, y)) - * $(TH div 0) $(TH invalid?)) - * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) - * $(TD no) $(TD no) ) - * $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) - * $(TD no) $(TD no) ) - * $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) - * $(TD no) $(TD no) ) - * $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) - * $(TD no) $(TD no) ) - * $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) - * $(TD no) $(TD no) ) - * $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) - * $(TD no) $(TD no)) - * $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) - * $(TD no) $(TD yes) ) - * $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) - * $(TD no) $(TD yes)) - * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) - * $(TD yes) $(TD no) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) - * $(TD yes) $(TD no)) - * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) - * $(TD no) $(TD no) ) - * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) - * $(TD no) $(TD no) ) - * ) - */ -Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @nogc @trusted pure nothrow -if (isFloatingPoint!(F) && isFloatingPoint!(G)) -{ - alias Float = typeof(return); - - static real impl(real x, real y) @nogc pure nothrow - { - // Special cases. - if (isNaN(y)) - return y; - if (isNaN(x) && y != 0.0) - return x; - - // Even if x is NaN. - if (y == 0.0) - return 1.0; - if (y == 1.0) - return x; - - if (isInfinity(y)) - { - if (fabs(x) > 1) - { - if (signbit(y)) - return +0.0; - else - return F.infinity; - } - else if (fabs(x) == 1) - { - return y * 0; // generate NaN. - } - else // < 1 - { - if (signbit(y)) - return F.infinity; - else - return +0.0; - } - } - if (isInfinity(x)) - { - if (signbit(x)) - { - long i = cast(long) y; - if (y > 0.0) - { - if (i == y && i & 1) - return -F.infinity; - else - return F.infinity; - } - else if (y < 0.0) - { - if (i == y && i & 1) - return -0.0; - else - return +0.0; - } - } - else - { - if (y > 0.0) - return F.infinity; - else if (y < 0.0) - return +0.0; - } - } - - if (x == 0.0) - { - if (signbit(x)) - { - long i = cast(long) y; - if (y > 0.0) - { - if (i == y && i & 1) - return -0.0; - else - return +0.0; - } - else if (y < 0.0) - { - if (i == y && i & 1) - return -F.infinity; - else - return F.infinity; - } - } - else - { - if (y > 0.0) - return +0.0; - else if (y < 0.0) - return F.infinity; - } - } - if (x == 1.0) - return 1.0; - - if (y >= F.max) - { - if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0)) - return 0.0; - if (x > 1.0 || x < -1.0) - return F.infinity; - } - if (y <= -F.max) - { - if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0)) - return F.infinity; - if (x > 1.0 || x < -1.0) - return 0.0; - } - - if (x >= F.max) - { - if (y > 0.0) - return F.infinity; - else - return 0.0; - } - if (x <= -F.max) - { - long i = cast(long) y; - if (y > 0.0) - { - if (i == y && i & 1) - return -F.infinity; - else - return F.infinity; - } - else if (y < 0.0) - { - if (i == y && i & 1) - return -0.0; - else - return +0.0; - } - } - - // Integer power of x. - long iy = cast(long) y; - if (iy == y && fabs(y) < 32_768.0) - return pow(x, iy); - - real sign = 1.0; - if (x < 0) - { - // Result is real only if y is an integer - // Check for a non-zero fractional part - enum maxOdd = pow(2.0L, real.mant_dig) - 1.0L; - static if (maxOdd > ulong.max) - { - // Generic method, for any FP type - if (floor(y) != y) - return sqrt(x); // Complex result -- create a NaN - - const hy = ldexp(y, -1); - if (floor(hy) != hy) - sign = -1.0; - } - else - { - // Much faster, if ulong has enough precision - const absY = fabs(y); - if (absY <= maxOdd) - { - const uy = cast(ulong) absY; - if (uy != absY) - return sqrt(x); // Complex result -- create a NaN - - if (uy & 1) - sign = -1.0; - } - } - x = -x; - } - version (INLINE_YL2X) - { - // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) - // TODO: This is not accurate in practice. A fast and accurate - // (though complicated) method is described in: - // "An efficient rounding boundary test for pow(x, y) - // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). - return sign * exp2( core.math.yl2x(x, y) ); - } - else - { - // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) - // TODO: This is not accurate in practice. A fast and accurate - // (though complicated) method is described in: - // "An efficient rounding boundary test for pow(x, y) - // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). - Float w = exp2(y * log2(x)); - return sign * w; - } - } - return impl(x, y); -} - -@safe pure nothrow @nogc unittest -{ - // Test all the special values. These unittests can be run on Windows - // by temporarily changing the version (linux) to version (all). - immutable float zero = 0; - immutable real one = 1; - immutable double two = 2; - immutable float three = 3; - immutable float fnan = float.nan; - immutable double dnan = double.nan; - immutable real rnan = real.nan; - immutable dinf = double.infinity; - immutable rninf = -real.infinity; - - assert(pow(fnan, zero) == 1); - assert(pow(dnan, zero) == 1); - assert(pow(rnan, zero) == 1); - - assert(pow(two, dinf) == double.infinity); - assert(isIdentical(pow(0.2f, dinf), +0.0)); - assert(pow(0.99999999L, rninf) == real.infinity); - assert(isIdentical(pow(1.000000001, rninf), +0.0)); - assert(pow(dinf, 0.001) == dinf); - assert(isIdentical(pow(dinf, -0.001), +0.0)); - assert(pow(rninf, 3.0L) == rninf); - assert(pow(rninf, 2.0L) == real.infinity); - assert(isIdentical(pow(rninf, -3.0), -0.0)); - assert(isIdentical(pow(rninf, -2.0), +0.0)); - - // @@@BUG@@@ somewhere - version (OSX) {} else assert(isNaN(pow(one, dinf))); - version (OSX) {} else assert(isNaN(pow(-one, dinf))); - assert(isNaN(pow(-0.2, PI))); - // boundary cases. Note that epsilon == 2^^-n for some n, - // so 1/epsilon == 2^^n is always even. - assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L); - assert(pow(-1.0L, 1/real.epsilon) == 1.0L); - assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L))); - assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L))); - - assert(pow(0.0, -3.0) == double.infinity); - assert(pow(-0.0, -3.0) == -double.infinity); - assert(pow(0.0, -PI) == double.infinity); - assert(pow(-0.0, -PI) == double.infinity); - assert(isIdentical(pow(0.0, 5.0), 0.0)); - assert(isIdentical(pow(-0.0, 5.0), -0.0)); - assert(isIdentical(pow(0.0, 6.0), 0.0)); - assert(isIdentical(pow(-0.0, 6.0), 0.0)); - - // Issue #14786 fixed - immutable real maxOdd = pow(2.0L, real.mant_dig) - 1.0L; - assert(pow(-1.0L, maxOdd) == -1.0L); - assert(pow(-1.0L, -maxOdd) == -1.0L); - assert(pow(-1.0L, maxOdd + 1.0L) == 1.0L); - assert(pow(-1.0L, -maxOdd + 1.0L) == 1.0L); - assert(pow(-1.0L, maxOdd - 1.0L) == 1.0L); - assert(pow(-1.0L, -maxOdd - 1.0L) == 1.0L); - - // Now, actual numbers. - assert(approxEqual(pow(two, three), 8.0)); - assert(approxEqual(pow(two, -2.5), 0.1767767)); - - // Test integer to float power. - immutable uint twoI = 2; - assert(approxEqual(pow(twoI, three), 8.0)); -} - -/************************************** - * To what precision is x equal to y? - * - * Returns: the number of mantissa bits which are equal in x and y. - * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. - * - * $(TABLE_SV - * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) - * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) - * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) - * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) - * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) - * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) - * ) - */ -int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc -if (isFloatingPoint!(X)) -{ - /* Public Domain. Author: Don Clugston, 18 Aug 2005. - */ - alias F = floatTraits!(X); - static if (F.realFormat == RealFormat.ibmExtended) - { - if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) - { - return double.mant_dig - + feqrel(cast(double*)(&x)[MANTISSA_LSB], - cast(double*)(&y)[MANTISSA_LSB]); - } - else - { - return feqrel(cast(double*)(&x)[MANTISSA_MSB], - cast(double*)(&y)[MANTISSA_MSB]); - } - } - else - { - static assert(F.realFormat == RealFormat.ieeeSingle - || F.realFormat == RealFormat.ieeeDouble - || F.realFormat == RealFormat.ieeeExtended - || F.realFormat == RealFormat.ieeeExtended53 - || F.realFormat == RealFormat.ieeeQuadruple); - - if (x == y) - return X.mant_dig; // ensure diff != 0, cope with INF. - - Unqual!X diff = fabs(x - y); - - ushort *pa = cast(ushort *)(&x); - ushort *pb = cast(ushort *)(&y); - ushort *pd = cast(ushort *)(&diff); - - - // The difference in abs(exponent) between x or y and abs(x-y) - // is equal to the number of significand bits of x which are - // equal to y. If negative, x and y have different exponents. - // If positive, x and y are equal to 'bitsdiff' bits. - // AND with 0x7FFF to form the absolute value. - // To avoid out-by-1 errors, we subtract 1 so it rounds down - // if the exponents were different. This means 'bitsdiff' is - // always 1 lower than we want, except that if bitsdiff == 0, - // they could have 0 or 1 bits in common. - - int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK) - + (pb[F.EXPPOS_SHORT] & F.EXPMASK) - - (1 << F.EXPSHIFT)) >> 1) - - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT; - if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0) - { // Difference is subnormal - // For subnormals, we need to add the number of zeros that - // lie at the start of diff's significand. - // We do this by multiplying by 2^^real.mant_dig - diff *= F.RECIP_EPSILON; - return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT); - } - - if (bitsdiff > 0) - return bitsdiff + 1; // add the 1 we subtracted before - - // Avoid out-by-1 errors when factor is almost 2. - if (bitsdiff == 0 - && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0) - { - return 1; - } else return 0; - } -} - -@safe pure nothrow @nogc unittest -{ - void testFeqrel(F)() - { - // Exact equality - assert(feqrel(F.max, F.max) == F.mant_dig); - assert(feqrel!(F)(0.0, 0.0) == F.mant_dig); - assert(feqrel(F.infinity, F.infinity) == F.mant_dig); - - // a few bits away from exact equality - F w=1; - for (int i = 1; i < F.mant_dig - 1; ++i) - { - assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i); - assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i); - assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1); - w*=2; - } - - assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1); - assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1); - assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2); - - - // Numbers that are close - assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5); - assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2); - assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2); - assert(feqrel!(F)(1.5, 1.0) == 1); - assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); - - // Factors of 2 - assert(feqrel(F.max, F.infinity) == 0); - assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); - assert(feqrel!(F)(1.0, 2.0) == 0); - assert(feqrel!(F)(4.0, 1.0) == 0); - - // Extreme inequality - assert(feqrel(F.nan, F.nan) == 0); - assert(feqrel!(F)(0.0L, -F.nan) == 0); - assert(feqrel(F.nan, F.infinity) == 0); - assert(feqrel(F.infinity, -F.infinity) == 0); - assert(feqrel(F.max, -F.max) == 0); - - assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3); - - const F Const = 2; - immutable F Immutable = 2; - auto Compiles = feqrel(Const, Immutable); - } - - assert(feqrel(7.1824L, 7.1824L) == real.mant_dig); - - testFeqrel!(real)(); - testFeqrel!(double)(); - testFeqrel!(float)(); -} - -package: // Not public yet -/* Return the value that lies halfway between x and y on the IEEE number line. - * - * Formally, the result is the arithmetic mean of the binary significands of x - * and y, multiplied by the geometric mean of the binary exponents of x and y. - * x and y must have the same sign, and must not be NaN. - * Note: this function is useful for ensuring O(log n) behaviour in algorithms - * involving a 'binary chop'. - * - * Special cases: - * If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value - * is the arithmetic mean (x + y) / 2. - * If x and y are even powers of 2, the return value is the geometric mean, - * ieeeMean(x, y) = sqrt(x * y). - * - */ -T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc -in -{ - // both x and y must have the same sign, and must not be NaN. - assert(signbit(x) == signbit(y)); - assert(x == x && y == y); -} -body -{ - // Runtime behaviour for contract violation: - // If signs are opposite, or one is a NaN, return 0. - if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0; - - // The implementation is simple: cast x and y to integers, - // average them (avoiding overflow), and cast the result back to a floating-point number. - - alias F = floatTraits!(T); - T u; - static if (F.realFormat == RealFormat.ieeeExtended || - F.realFormat == RealFormat.ieeeExtended53) - { - // There's slight additional complexity because they are actually - // 79-bit reals... - ushort *ue = cast(ushort *)&u; - ulong *ul = cast(ulong *)&u; - ushort *xe = cast(ushort *)&x; - ulong *xl = cast(ulong *)&x; - ushort *ye = cast(ushort *)&y; - ulong *yl = cast(ulong *)&y; - - // Ignore the useless implicit bit. (Bonus: this prevents overflows) - ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); - - // @@@ BUG? @@@ - // Cast shouldn't be here - ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK) - + (ye[F.EXPPOS_SHORT] & F.EXPMASK)); - if (m & 0x8000_0000_0000_0000L) - { - ++e; - m &= 0x7FFF_FFFF_FFFF_FFFFL; - } - // Now do a multi-byte right shift - const uint c = e & 1; // carry - e >>= 1; - m >>>= 1; - if (c) - m |= 0x4000_0000_0000_0000L; // shift carry into significand - if (e) - *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... - else - *ul = m; // ... unless exponent is 0 (subnormal or zero). - - ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit - } - else static if (F.realFormat == RealFormat.ieeeQuadruple) - { - // This would be trivial if 'ucent' were implemented... - ulong *ul = cast(ulong *)&u; - ulong *xl = cast(ulong *)&x; - ulong *yl = cast(ulong *)&y; - - // Multi-byte add, then multi-byte right shift. - import core.checkedint : addu; - bool carry; - ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry); - - ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) + - (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL); - - ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); - ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63; - } - else static if (F.realFormat == RealFormat.ieeeDouble) - { - ulong *ul = cast(ulong *)&u; - ulong *xl = cast(ulong *)&x; - ulong *yl = cast(ulong *)&y; - ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) - + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; - m |= ((*xl) & 0x8000_0000_0000_0000L); - *ul = m; - } - else static if (F.realFormat == RealFormat.ieeeSingle) - { - uint *ul = cast(uint *)&u; - uint *xl = cast(uint *)&x; - uint *yl = cast(uint *)&y; - uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; - m |= ((*xl) & 0x8000_0000); - *ul = m; - } - else - { - assert(0, "Not implemented"); - } - return u; -} - -@safe pure nothrow @nogc unittest -{ - assert(ieeeMean(-0.0,-1e-20)<0); - assert(ieeeMean(0.0,1e-20)>0); - - assert(ieeeMean(1.0L,4.0L)==2L); - assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); - assert(ieeeMean(-1.0L,-4.0L)==-2L); - assert(ieeeMean(-1.0,-4.0)==-2); - assert(ieeeMean(-1.0f,-4.0f)==-2f); - assert(ieeeMean(-1.0,-2.0)==-1.5); - assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) - ==-1.5*(1+5*real.epsilon)); - assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); - - static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) - { - assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); - assert(ieeeMean(0.0L,real.infinity)==1.5); - } - assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal) - == 0.5*real.min_normal*(1-2*real.epsilon)); -} - -public: - - -/*********************************** - * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) - * + $(SUB a,3)$(POWER x,3); ... - * - * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) - * + x($(SUB a, 3) + ...))) - * Params: - * x = the value to evaluate. - * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. - */ -Unqual!(CommonType!(T1, T2)) poly(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc -if (isFloatingPoint!T1 && isFloatingPoint!T2) -in -{ - assert(A.length > 0); -} -body -{ - static if (is(Unqual!T2 == real)) - { - return polyImpl(x, A); - } - else - { - return polyImplBase(x, A); - } -} - -/// -@safe nothrow @nogc unittest -{ - real x = 3.1; - static real[] pp = [56.1, 32.7, 6]; - - assert(poly(x, pp) == (56.1L + (32.7L + 6.0L * x) * x)); -} - -@safe nothrow @nogc unittest -{ - double x = 3.1; - static double[] pp = [56.1, 32.7, 6]; - double y = x; - y *= 6.0; - y += 32.7; - y *= x; - y += 56.1; - assert(poly(x, pp) == y); -} - -@safe unittest -{ - static assert(poly(3.0, [1.0, 2.0, 3.0]) == 34); -} - -private Unqual!(CommonType!(T1, T2)) polyImplBase(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc -if (isFloatingPoint!T1 && isFloatingPoint!T2) -{ - ptrdiff_t i = A.length - 1; - typeof(return) r = A[i]; - while (--i >= 0) - { - r *= x; - r += A[i]; - } - return r; -} - -private real polyImpl(real x, in real[] A) @trusted pure nothrow @nogc -{ - version (D_InlineAsm_X86) - { - if (__ctfe) - { - return polyImplBase(x, A); - } - version (Windows) - { - // BUG: This code assumes a frame pointer in EBP. - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX][ECX*8] ; - add EDX,ECX ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -10[EDX] ; - sub EDX,10 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else version (linux) - { - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX*8] ; - lea EDX,[EDX][ECX*4] ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -12[EDX] ; - sub EDX,12 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else version (OSX) - { - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX*8] ; - add EDX,EDX ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -16[EDX] ; - sub EDX,16 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else version (FreeBSD) - { - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX*8] ; - lea EDX,[EDX][ECX*4] ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -12[EDX] ; - sub EDX,12 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else version (Solaris) - { - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX*8] ; - lea EDX,[EDX][ECX*4] ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -12[EDX] ; - sub EDX,12 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else version (DragonFlyBSD) - { - asm pure nothrow @nogc // assembler by W. Bright - { - // EDX = (A.length - 1) * real.sizeof - mov ECX,A[EBP] ; // ECX = A.length - dec ECX ; - lea EDX,[ECX*8] ; - lea EDX,[EDX][ECX*4] ; - add EDX,A+4[EBP] ; - fld real ptr [EDX] ; // ST0 = coeff[ECX] - jecxz return_ST ; - fld x[EBP] ; // ST0 = x - fxch ST(1) ; // ST1 = x, ST0 = r - align 4 ; - L2: fmul ST,ST(1) ; // r *= x - fld real ptr -12[EDX] ; - sub EDX,12 ; // deg-- - faddp ST(1),ST ; - dec ECX ; - jne L2 ; - fxch ST(1) ; // ST1 = r, ST0 = x - fstp ST(0) ; // dump x - align 4 ; - return_ST: ; - ; - } - } - else - { - static assert(0); - } - } - else - { - return polyImplBase(x, A); - } -} - - -/** - Computes whether two values are approximately equal, admitting a maximum - relative difference, and a maximum absolute difference. - - Params: - lhs = First item to compare. - rhs = Second item to compare. - maxRelDiff = Maximum allowable difference relative to `rhs`. - maxAbsDiff = Maximum absolute difference. - - Returns: - `true` if the two items are approximately equal under either criterium. - If one item is a range, and the other is a single value, then the result - is the logical and-ing of calling `approxEqual` on each element of the - ranged item against the single item. If both items are ranges, then - `approxEqual` returns `true` if and only if the ranges have the same - number of elements and if `approxEqual` evaluates to `true` for each - pair of elements. - */ -bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5) -{ - import std.range.primitives : empty, front, isInputRange, popFront; - static if (isInputRange!T) - { - static if (isInputRange!U) - { - // Two ranges - for (;; lhs.popFront(), rhs.popFront()) - { - if (lhs.empty) return rhs.empty; - if (rhs.empty) return lhs.empty; - if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) - return false; - } - } - else static if (isIntegral!U) - { - // convert rhs to real - return approxEqual(lhs, real(rhs), maxRelDiff, maxAbsDiff); - } - else - { - // lhs is range, rhs is number - for (; !lhs.empty; lhs.popFront()) - { - if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff)) - return false; - } - return true; - } - } - else - { - static if (isInputRange!U) - { - // lhs is number, rhs is range - for (; !rhs.empty; rhs.popFront()) - { - if (!approxEqual(lhs, rhs.front, maxRelDiff, maxAbsDiff)) - return false; - } - return true; - } - else static if (isIntegral!T || isIntegral!U) - { - // convert both lhs and rhs to real - return approxEqual(real(lhs), real(rhs), maxRelDiff, maxAbsDiff); - } - else - { - // two numbers - //static assert(is(T : real) && is(U : real)); - if (rhs == 0) - { - return fabs(lhs) <= maxAbsDiff; - } - static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity))) - { - if (lhs == lhs.infinity && rhs == rhs.infinity || - lhs == -lhs.infinity && rhs == -rhs.infinity) return true; - } - return fabs((lhs - rhs) / rhs) <= maxRelDiff - || maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff; - } - } -} - -/** - Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)). - */ -bool approxEqual(T, U)(T lhs, U rhs) -{ - return approxEqual(lhs, rhs, 1e-2, 1e-5); -} - -/// -@safe pure nothrow unittest -{ - assert(approxEqual(1.0, 1.0099)); - assert(!approxEqual(1.0, 1.011)); - float[] arr1 = [ 1.0, 2.0, 3.0 ]; - double[] arr2 = [ 1.001, 1.999, 3 ]; - assert(approxEqual(arr1, arr2)); - - real num = real.infinity; - assert(num == real.infinity); // Passes. - assert(approxEqual(num, real.infinity)); // Fails. - num = -real.infinity; - assert(num == -real.infinity); // Passes. - assert(approxEqual(num, -real.infinity)); // Fails. - - assert(!approxEqual(3, 0)); - assert(approxEqual(3, 3)); - assert(approxEqual(3.0, 3)); - assert(approxEqual([3, 3, 3], 3.0)); - assert(approxEqual([3.0, 3.0, 3.0], 3)); - int a = 10; - assert(approxEqual(10, a)); -} - -@safe pure nothrow @nogc unittest -{ - real num = real.infinity; - assert(num == real.infinity); // Passes. - assert(approxEqual(num, real.infinity)); // Fails. -} - - -@safe pure nothrow @nogc unittest -{ - float f = sqrt(2.0f); - assert(fabs(f * f - 2.0f) < .00001); - - double d = sqrt(2.0); - assert(fabs(d * d - 2.0) < .00001); - - real r = sqrt(2.0L); - assert(fabs(r * r - 2.0) < .00001); -} - -@safe pure nothrow @nogc unittest -{ - float f = fabs(-2.0f); - assert(f == 2); - - double d = fabs(-2.0); - assert(d == 2); - - real r = fabs(-2.0L); - assert(r == 2); -} - -@safe pure nothrow @nogc unittest -{ - float f = sin(-2.0f); - assert(fabs(f - -0.909297f) < .00001); - - double d = sin(-2.0); - assert(fabs(d - -0.909297f) < .00001); - - real r = sin(-2.0L); - assert(fabs(r - -0.909297f) < .00001); -} - -@safe pure nothrow @nogc unittest -{ - float f = cos(-2.0f); - assert(fabs(f - -0.416147f) < .00001); - - double d = cos(-2.0); - assert(fabs(d - -0.416147f) < .00001); - - real r = cos(-2.0L); - assert(fabs(r - -0.416147f) < .00001); -} - -@safe pure nothrow @nogc unittest -{ - float f = tan(-2.0f); - assert(fabs(f - 2.18504f) < .00001); - - double d = tan(-2.0); - assert(fabs(d - 2.18504f) < .00001); - - real r = tan(-2.0L); - assert(fabs(r - 2.18504f) < .00001); - - // Verify correct behavior for large inputs - assert(!isNaN(tan(0x1p63))); - assert(!isNaN(tan(0x1p300L))); - assert(!isNaN(tan(-0x1p63))); - assert(!isNaN(tan(-0x1p300L))); -} - -@safe pure nothrow unittest -{ - // issue 6381: floor/ceil should be usable in pure function. - auto x = floor(1.2); - auto y = ceil(1.2); -} - -@safe pure nothrow unittest -{ - // relative comparison depends on rhs, make sure proper side is used when - // comparing range to single value. Based on bugzilla issue 15763 - auto a = [2e-3 - 1e-5]; - auto b = 2e-3 + 1e-5; - assert(a[0].approxEqual(b)); - assert(!b.approxEqual(a[0])); - assert(a.approxEqual(b)); - assert(!b.approxEqual(a)); -} - -/*********************************** - * Defines a total order on all floating-point numbers. - * - * The order is defined as follows: - * $(UL - * $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered - * the same way as by built-in comparison, with the exception of - * -0.0, which is less than +0.0;) - * $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less - * than any number; if the sign bit is not set (it is 'positive'), - * $(NAN) is greater than any number;) - * $(LI $(NAN)s of the same sign are ordered by the payload ('negative' - * ones - in reverse order).) - * ) - * - * Returns: - * negative value if $(D x) precedes $(D y) in the order specified above; - * 0 if $(D x) and $(D y) are identical, and positive value otherwise. - * - * See_Also: - * $(MYREF isIdentical) - * Standards: Conforms to IEEE 754-2008 - */ -int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow -if (isFloatingPoint!T) -{ - alias F = floatTraits!T; - - static if (F.realFormat == RealFormat.ieeeSingle - || F.realFormat == RealFormat.ieeeDouble) - { - static if (T.sizeof == 4) - alias UInt = uint; - else - alias UInt = ulong; - - union Repainter - { - T number; - UInt bits; - } - - enum msb = ~(UInt.max >>> 1); - - import std.typecons : Tuple; - Tuple!(Repainter, Repainter) vars = void; - vars[0].number = x; - vars[1].number = y; - - foreach (ref var; vars) - if (var.bits & msb) - var.bits = ~var.bits; - else - var.bits |= msb; - - if (vars[0].bits < vars[1].bits) - return -1; - else if (vars[0].bits > vars[1].bits) - return 1; - else - return 0; - } - else static if (F.realFormat == RealFormat.ieeeExtended53 - || F.realFormat == RealFormat.ieeeExtended - || F.realFormat == RealFormat.ieeeQuadruple) - { - static if (F.realFormat == RealFormat.ieeeQuadruple) - alias RemT = ulong; - else - alias RemT = ushort; - - struct Bits - { - ulong bulk; - RemT rem; - } - - union Repainter - { - T number; - Bits bits; - ubyte[T.sizeof] bytes; - } - - import std.typecons : Tuple; - Tuple!(Repainter, Repainter) vars = void; - vars[0].number = x; - vars[1].number = y; - - foreach (ref var; vars) - if (var.bytes[F.SIGNPOS_BYTE] & 0x80) - { - var.bits.bulk = ~var.bits.bulk; - var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem - } - else - { - var.bytes[F.SIGNPOS_BYTE] |= 0x80; - } - - version (LittleEndian) - { - if (vars[0].bits.rem < vars[1].bits.rem) - return -1; - else if (vars[0].bits.rem > vars[1].bits.rem) - return 1; - else if (vars[0].bits.bulk < vars[1].bits.bulk) - return -1; - else if (vars[0].bits.bulk > vars[1].bits.bulk) - return 1; - else - return 0; - } - else - { - if (vars[0].bits.bulk < vars[1].bits.bulk) - return -1; - else if (vars[0].bits.bulk > vars[1].bits.bulk) - return 1; - else if (vars[0].bits.rem < vars[1].bits.rem) - return -1; - else if (vars[0].bits.rem > vars[1].bits.rem) - return 1; - else - return 0; - } - } - else - { - // IBM Extended doubledouble does not follow the general - // sign-exponent-significand layout, so has to be handled generically - - const int xSign = signbit(x), - ySign = signbit(y); - - if (xSign == 1 && ySign == 1) - return cmp(-y, -x); - else if (xSign == 1) - return -1; - else if (ySign == 1) - return 1; - else if (x < y) - return -1; - else if (x == y) - return 0; - else if (x > y) - return 1; - else if (isNaN(x) && !isNaN(y)) - return 1; - else if (isNaN(y) && !isNaN(x)) - return -1; - else if (getNaNPayload(x) < getNaNPayload(y)) - return -1; - else if (getNaNPayload(x) > getNaNPayload(y)) - return 1; - else - return 0; - } -} - -/// Most numbers are ordered naturally. -@safe unittest -{ - assert(cmp(-double.infinity, -double.max) < 0); - assert(cmp(-double.max, -100.0) < 0); - assert(cmp(-100.0, -0.5) < 0); - assert(cmp(-0.5, 0.0) < 0); - assert(cmp(0.0, 0.5) < 0); - assert(cmp(0.5, 100.0) < 0); - assert(cmp(100.0, double.max) < 0); - assert(cmp(double.max, double.infinity) < 0); - - assert(cmp(1.0, 1.0) == 0); -} - -/// Positive and negative zeroes are distinct. -@safe unittest -{ - assert(cmp(-0.0, +0.0) < 0); - assert(cmp(+0.0, -0.0) > 0); -} - -/// Depending on the sign, $(NAN)s go to either end of the spectrum. -@safe unittest -{ - assert(cmp(-double.nan, -double.infinity) < 0); - assert(cmp(double.infinity, double.nan) < 0); - assert(cmp(-double.nan, double.nan) < 0); -} - -/// $(NAN)s of the same sign are ordered by the payload. -@safe unittest -{ - assert(cmp(NaN(10), NaN(20)) < 0); - assert(cmp(-NaN(20), -NaN(10)) < 0); -} - -@safe unittest -{ - import std.meta : AliasSeq; - foreach (T; AliasSeq!(float, double, real)) - { - T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity, - -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown, - T(-1.0), T(-1.0).nextUp, - T(-0.5), -T.min_normal, (-T.min_normal).nextUp, - -2 * T.min_normal * T.epsilon, - -T.min_normal * T.epsilon, - T(-0.0), T(0.0), - T.min_normal * T.epsilon, - 2 * T.min_normal * T.epsilon, - T.min_normal.nextDown, T.min_normal, T(0.5), - T(1.0).nextDown, T(1.0), - T(1.0).nextUp, T(16.0), T.max / 2, T.max, - T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)]; - - foreach (i, x; values) - { - foreach (y; values[i + 1 .. $]) - { - assert(cmp(x, y) < 0); - assert(cmp(y, x) > 0); - } - assert(cmp(x, x) == 0); - } - } -} - -private enum PowType -{ - floor, - ceil -} - -pragma(inline, true) -private T powIntegralImpl(PowType type, T)(T val) -{ - import core.bitop : bsr; - - if (val == 0 || (type == PowType.ceil && (val > T.max / 2 || val == T.min))) - return 0; - else - { - static if (isSigned!T) - return cast(Unqual!T) (val < 0 ? -(T(1) << bsr(0 - val) + type) : T(1) << bsr(val) + type); - else - return cast(Unqual!T) (T(1) << bsr(val) + type); - } -} - -private T powFloatingPointImpl(PowType type, T)(T x) -{ - if (!x.isFinite) - return x; - - if (!x) - return x; - - int exp; - auto y = frexp(x, exp); - - static if (type == PowType.ceil) - y = ldexp(cast(T) 0.5, exp + 1); - else - y = ldexp(cast(T) 0.5, exp); - - if (!y.isFinite) - return cast(T) 0.0; - - y = copysign(y, x); - - return y; -} - -/** - * Gives the next power of two after $(D val). `T` can be any built-in - * numerical type. - * - * If the operation would lead to an over/underflow, this function will - * return `0`. - * - * Params: - * val = any number - * - * Returns: - * the next power of two after $(D val) - */ -T nextPow2(T)(const T val) -if (isIntegral!T) -{ - return powIntegralImpl!(PowType.ceil)(val); -} - -/// ditto -T nextPow2(T)(const T val) -if (isFloatingPoint!T) -{ - return powFloatingPointImpl!(PowType.ceil)(val); -} - -/// -@safe @nogc pure nothrow unittest -{ - assert(nextPow2(2) == 4); - assert(nextPow2(10) == 16); - assert(nextPow2(4000) == 4096); - - assert(nextPow2(-2) == -4); - assert(nextPow2(-10) == -16); - - assert(nextPow2(uint.max) == 0); - assert(nextPow2(uint.min) == 0); - assert(nextPow2(size_t.max) == 0); - assert(nextPow2(size_t.min) == 0); - - assert(nextPow2(int.max) == 0); - assert(nextPow2(int.min) == 0); - assert(nextPow2(long.max) == 0); - assert(nextPow2(long.min) == 0); -} - -/// -@safe @nogc pure nothrow unittest -{ - assert(nextPow2(2.1) == 4.0); - assert(nextPow2(-2.0) == -4.0); - assert(nextPow2(0.25) == 0.5); - assert(nextPow2(-4.0) == -8.0); - - assert(nextPow2(double.max) == 0.0); - assert(nextPow2(double.infinity) == double.infinity); -} - -@safe @nogc pure nothrow unittest -{ - assert(nextPow2(ubyte(2)) == 4); - assert(nextPow2(ubyte(10)) == 16); - - assert(nextPow2(byte(2)) == 4); - assert(nextPow2(byte(10)) == 16); - - assert(nextPow2(short(2)) == 4); - assert(nextPow2(short(10)) == 16); - assert(nextPow2(short(4000)) == 4096); - - assert(nextPow2(ushort(2)) == 4); - assert(nextPow2(ushort(10)) == 16); - assert(nextPow2(ushort(4000)) == 4096); -} - -@safe @nogc pure nothrow unittest -{ - foreach (ulong i; 1 .. 62) - { - assert(nextPow2(1UL << i) == 2UL << i); - assert(nextPow2((1UL << i) - 1) == 1UL << i); - assert(nextPow2((1UL << i) + 1) == 2UL << i); - assert(nextPow2((1UL << i) + (1UL<<(i-1))) == 2UL << i); - } -} - -@safe @nogc pure nothrow unittest -{ - import std.meta : AliasSeq; - - foreach (T; AliasSeq!(float, double, real)) - { - enum T subNormal = T.min_normal / 2; - - static if (subNormal) assert(nextPow2(subNormal) == T.min_normal); - - assert(nextPow2(T(0.0)) == 0.0); - - assert(nextPow2(T(2.0)) == 4.0); - assert(nextPow2(T(2.1)) == 4.0); - assert(nextPow2(T(3.1)) == 4.0); - assert(nextPow2(T(4.0)) == 8.0); - assert(nextPow2(T(0.25)) == 0.5); - - assert(nextPow2(T(-2.0)) == -4.0); - assert(nextPow2(T(-2.1)) == -4.0); - assert(nextPow2(T(-3.1)) == -4.0); - assert(nextPow2(T(-4.0)) == -8.0); - assert(nextPow2(T(-0.25)) == -0.5); - - assert(nextPow2(T.max) == 0); - assert(nextPow2(-T.max) == 0); - - assert(nextPow2(T.infinity) == T.infinity); - assert(nextPow2(T.init).isNaN); - } -} - -@safe @nogc pure nothrow unittest // Issue 15973 -{ - assert(nextPow2(uint.max / 2) == uint.max / 2 + 1); - assert(nextPow2(uint.max / 2 + 2) == 0); - assert(nextPow2(int.max / 2) == int.max / 2 + 1); - assert(nextPow2(int.max / 2 + 2) == 0); - assert(nextPow2(int.min + 1) == int.min); -} - -/** - * Gives the last power of two before $(D val). $(T) can be any built-in - * numerical type. - * - * Params: - * val = any number - * - * Returns: - * the last power of two before $(D val) - */ -T truncPow2(T)(const T val) -if (isIntegral!T) -{ - return powIntegralImpl!(PowType.floor)(val); -} - -/// ditto -T truncPow2(T)(const T val) -if (isFloatingPoint!T) -{ - return powFloatingPointImpl!(PowType.floor)(val); -} - -/// -@safe @nogc pure nothrow unittest -{ - assert(truncPow2(3) == 2); - assert(truncPow2(4) == 4); - assert(truncPow2(10) == 8); - assert(truncPow2(4000) == 2048); - - assert(truncPow2(-5) == -4); - assert(truncPow2(-20) == -16); - - assert(truncPow2(uint.max) == int.max + 1); - assert(truncPow2(uint.min) == 0); - assert(truncPow2(ulong.max) == long.max + 1); - assert(truncPow2(ulong.min) == 0); - - assert(truncPow2(int.max) == (int.max / 2) + 1); - assert(truncPow2(int.min) == int.min); - assert(truncPow2(long.max) == (long.max / 2) + 1); - assert(truncPow2(long.min) == long.min); -} - -/// -@safe @nogc pure nothrow unittest -{ - assert(truncPow2(2.1) == 2.0); - assert(truncPow2(7.0) == 4.0); - assert(truncPow2(-1.9) == -1.0); - assert(truncPow2(0.24) == 0.125); - assert(truncPow2(-7.0) == -4.0); - - assert(truncPow2(double.infinity) == double.infinity); -} - -@safe @nogc pure nothrow unittest -{ - assert(truncPow2(ubyte(3)) == 2); - assert(truncPow2(ubyte(4)) == 4); - assert(truncPow2(ubyte(10)) == 8); - - assert(truncPow2(byte(3)) == 2); - assert(truncPow2(byte(4)) == 4); - assert(truncPow2(byte(10)) == 8); - - assert(truncPow2(ushort(3)) == 2); - assert(truncPow2(ushort(4)) == 4); - assert(truncPow2(ushort(10)) == 8); - assert(truncPow2(ushort(4000)) == 2048); - - assert(truncPow2(short(3)) == 2); - assert(truncPow2(short(4)) == 4); - assert(truncPow2(short(10)) == 8); - assert(truncPow2(short(4000)) == 2048); -} - -@safe @nogc pure nothrow unittest -{ - foreach (ulong i; 1 .. 62) - { - assert(truncPow2(2UL << i) == 2UL << i); - assert(truncPow2((2UL << i) + 1) == 2UL << i); - assert(truncPow2((2UL << i) - 1) == 1UL << i); - assert(truncPow2((2UL << i) - (2UL<<(i-1))) == 1UL << i); - } -} - -@safe @nogc pure nothrow unittest -{ - import std.meta : AliasSeq; - - foreach (T; AliasSeq!(float, double, real)) - { - assert(truncPow2(T(0.0)) == 0.0); - - assert(truncPow2(T(4.0)) == 4.0); - assert(truncPow2(T(2.1)) == 2.0); - assert(truncPow2(T(3.5)) == 2.0); - assert(truncPow2(T(7.0)) == 4.0); - assert(truncPow2(T(0.24)) == 0.125); - - assert(truncPow2(T(-2.0)) == -2.0); - assert(truncPow2(T(-2.1)) == -2.0); - assert(truncPow2(T(-3.1)) == -2.0); - assert(truncPow2(T(-7.0)) == -4.0); - assert(truncPow2(T(-0.24)) == -0.125); - - assert(truncPow2(T.infinity) == T.infinity); - assert(truncPow2(T.init).isNaN); - } -} - -/** -Check whether a number is an integer power of two. - -Note that only positive numbers can be integer powers of two. This -function always return `false` if `x` is negative or zero. - -Params: - x = the number to test - -Returns: - `true` if `x` is an integer power of two. -*/ -bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc -if (isNumeric!X) -{ - static if (isFloatingPoint!X) - { - int exp; - const X sig = frexp(x, exp); - - return (exp != int.min) && (sig is cast(X) 0.5L); - } - else - { - static if (isSigned!X) - { - auto y = cast(typeof(x + 0))x; - return y > 0 && !(y & (y - 1)); - } - else - { - auto y = cast(typeof(x + 0u))x; - return (y & -y) > (y - 1); - } - } -} -/// -@safe unittest -{ - assert( isPowerOf2(1.0L)); - assert( isPowerOf2(2.0L)); - assert( isPowerOf2(0.5L)); - assert( isPowerOf2(pow(2.0L, 96))); - assert( isPowerOf2(pow(2.0L, -77))); - - assert(!isPowerOf2(-2.0L)); - assert(!isPowerOf2(-0.5L)); - assert(!isPowerOf2(0.0L)); - assert(!isPowerOf2(4.315)); - assert(!isPowerOf2(1.0L / 3.0L)); - - assert(!isPowerOf2(real.nan)); - assert(!isPowerOf2(real.infinity)); -} -/// -@safe unittest -{ - assert( isPowerOf2(1)); - assert( isPowerOf2(2)); - assert( isPowerOf2(1uL << 63)); - - assert(!isPowerOf2(-4)); - assert(!isPowerOf2(0)); - assert(!isPowerOf2(1337u)); -} - -@safe unittest -{ - import std.meta : AliasSeq; - - immutable smallP2 = pow(2.0L, -62); - immutable bigP2 = pow(2.0L, 50); - immutable smallP7 = pow(7.0L, -35); - immutable bigP7 = pow(7.0L, 30); - - foreach (X; AliasSeq!(float, double, real)) - { - immutable min_sub = X.min_normal * X.epsilon; - - foreach (x; AliasSeq!(smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L, - 2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2)) - { - assert( isPowerOf2(cast(X) x)); - assert(!isPowerOf2(cast(X)-x)); - } - - foreach (x; AliasSeq!(0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity)) - { - assert(!isPowerOf2(cast(X) x)); - assert(!isPowerOf2(cast(X)-x)); - } - } - - foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong)) - { - foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1]) - { - assert( isPowerOf2(cast(X) x)); - static if (isSigned!X) - assert(!isPowerOf2(cast(X)-x)); - } - - foreach (x; [0, 3, 5, 13, 77, X.min, X.max]) - assert(!isPowerOf2(cast(X) x)); - } -} |