1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
* Copyright 1996 by Silicon Graphics. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
/*
* Note that this defines a large number of tuning hooks, which can
* safely be ignored in nearly all cases. For normal use it suffices
* to call only GC_MALLOC and perhaps GC_REALLOC.
* For better performance, also look at GC_MALLOC_ATOMIC, and
* GC_enable_incremental. If you need an action to be performed
* immediately before an object is collected, look at GC_register_finalizer.
* If you are using Solaris threads, look at the end of this file.
* Everything else is best ignored unless you encounter performance
* problems.
*/
#ifndef _GC_H
# define _GC_H
# define __GC
# include <stddef.h>
#if defined(__CYGWIN32__) && defined(GC_USE_DLL)
#include "libgc_globals.h"
#endif
#if defined(_MSC_VER) && defined(_DLL)
#ifdef GC_BUILD
#define GC_API __declspec(dllexport)
#else
#define GC_API __declspec(dllimport)
#endif
#endif
#ifndef GC_API
#define GC_API extern
#endif
# if defined(__STDC__) || defined(__cplusplus)
# define GC_PROTO(args) args
typedef void * GC_PTR;
# else
# define GC_PROTO(args) ()
typedef char * GC_PTR;
# endif
# ifdef __cplusplus
extern "C" {
# endif
/* Define word and signed_word to be unsigned and signed types of the */
/* size as char * or void *. There seems to be no way to do this */
/* even semi-portably. The following is probably no better/worse */
/* than almost anything else. */
/* The ANSI standard suggests that size_t and ptr_diff_t might be */
/* better choices. But those appear to have incorrect definitions */
/* on may systems. Notably "typedef int size_t" seems to be both */
/* frequent and WRONG. */
typedef unsigned long GC_word;
typedef long GC_signed_word;
/* Public read-only variables */
GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
/* Includes empty GCs at startup. */
/* Public R/W variables */
GC_API GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested));
/* When there is insufficient memory to satisfy */
/* an allocation request, we return */
/* (*GC_oom_fn)(). By default this just */
/* returns 0. */
/* If it returns, it must return 0 or a valid */
/* pointer to a previously allocated heap */
/* object. */
GC_API int GC_quiet; /* Disable statistics output. Only matters if */
/* collector has been compiled with statistics */
/* enabled. This involves a performance cost, */
/* and is thus not the default. */
GC_API int GC_dont_gc; /* Dont collect unless explicitly requested, e.g. */
/* because it's not safe. */
GC_API int GC_dont_expand;
/* Dont expand heap unless explicitly requested */
/* or forced to. */
GC_API int GC_full_freq; /* Number of partial collections between */
/* full collections. Matters only if */
/* GC_incremental is set. */
GC_API GC_word GC_non_gc_bytes;
/* Bytes not considered candidates for collection. */
/* Used only to control scheduling of collections. */
GC_API GC_word GC_free_space_divisor;
/* We try to make sure that we allocate at */
/* least N/GC_free_space_divisor bytes between */
/* collections, where N is the heap size plus */
/* a rough estimate of the root set size. */
/* Initially, GC_free_space_divisor = 4. */
/* Increasing its value will use less space */
/* but more collection time. Decreasing it */
/* will appreciably decrease collection time */
/* at the expense of space. */
/* GC_free_space_divisor = 1 will effectively */
/* disable collections. */
GC_API GC_word GC_max_retries;
/* The maximum number of GCs attempted before */
/* reporting out of memory after heap */
/* expansion fails. Initially 0. */
/* Public procedures */
/*
* general purpose allocation routines, with roughly malloc calling conv.
* The atomic versions promise that no relevant pointers are contained
* in the object. The nonatomic versions guarantee that the new object
* is cleared. GC_malloc_stubborn promises that no changes to the object
* will occur after GC_end_stubborn_change has been called on the
* result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
* that is scanned for pointers to collectable objects, but is not itself
* collectable. GC_malloc_uncollectable and GC_free called on the resulting
* object implicitly update GC_non_gc_bytes appropriately.
*/
GC_API GC_PTR GC_malloc GC_PROTO((size_t size_in_bytes));
GC_API GC_PTR GC_malloc_atomic GC_PROTO((size_t size_in_bytes));
GC_API GC_PTR GC_malloc_uncollectable GC_PROTO((size_t size_in_bytes));
GC_API GC_PTR GC_malloc_stubborn GC_PROTO((size_t size_in_bytes));
/* The following is only defined if the library has been suitably */
/* compiled: */
GC_API GC_PTR GC_malloc_atomic_uncollectable GC_PROTO((size_t size_in_bytes));
/* Explicitly deallocate an object. Dangerous if used incorrectly. */
/* Requires a pointer to the base of an object. */
/* If the argument is stubborn, it should not be changeable when freed. */
/* An object should not be enable for finalization when it is */
/* explicitly deallocated. */
/* GC_free(0) is a no-op, as required by ANSI C for free. */
GC_API void GC_free GC_PROTO((GC_PTR object_addr));
/*
* Stubborn objects may be changed only if the collector is explicitly informed.
* The collector is implicitly informed of coming change when such
* an object is first allocated. The following routines inform the
* collector that an object will no longer be changed, or that it will
* once again be changed. Only nonNIL pointer stores into the object
* are considered to be changes. The argument to GC_end_stubborn_change
* must be exacly the value returned by GC_malloc_stubborn or passed to
* GC_change_stubborn. (In the second case it may be an interior pointer
* within 512 bytes of the beginning of the objects.)
* There is a performance penalty for allowing more than
* one stubborn object to be changed at once, but it is acceptable to
* do so. The same applies to dropping stubborn objects that are still
* changeable.
*/
GC_API void GC_change_stubborn GC_PROTO((GC_PTR));
GC_API void GC_end_stubborn_change GC_PROTO((GC_PTR));
/* Return a pointer to the base (lowest address) of an object given */
/* a pointer to a location within the object. */
/* Return 0 if displaced_pointer doesn't point to within a valid */
/* object. */
GC_API GC_PTR GC_base GC_PROTO((GC_PTR displaced_pointer));
/* Given a pointer to the base of an object, return its size in bytes. */
/* The returned size may be slightly larger than what was originally */
/* requested. */
GC_API size_t GC_size GC_PROTO((GC_PTR object_addr));
/* For compatibility with C library. This is occasionally faster than */
/* a malloc followed by a bcopy. But if you rely on that, either here */
/* or with the standard C library, your code is broken. In my */
/* opinion, it shouldn't have been invented, but now we're stuck. -HB */
/* The resulting object has the same kind as the original. */
/* If the argument is stubborn, the result will have changes enabled. */
/* It is an error to have changes enabled for the original object. */
/* Follows ANSI comventions for NULL old_object. */
GC_API GC_PTR GC_realloc GC_PROTO((GC_PTR old_object,
size_t new_size_in_bytes));
/* Explicitly increase the heap size. */
/* Returns 0 on failure, 1 on success. */
GC_API int GC_expand_hp GC_PROTO((size_t number_of_bytes));
/* Limit the heap size to n bytes. Useful when you're debugging, */
/* especially on systems that don't handle running out of memory well. */
/* n == 0 ==> unbounded. This is the default. */
GC_API void GC_set_max_heap_size GC_PROTO((GC_word n));
/* Inform the collector that a certain section of statically allocated */
/* memory contains no pointers to garbage collected memory. Thus it */
/* need not be scanned. This is sometimes important if the application */
/* maps large read/write files into the address space, which could be */
/* mistaken for dynamic library data segments on some systems. */
GC_API void GC_exclude_static_roots GC_PROTO((GC_PTR start, GC_PTR finish));
/* Clear the set of root segments. Wizards only. */
GC_API void GC_clear_roots GC_PROTO((void));
/* Add a root segment. Wizards only. */
GC_API void GC_add_roots GC_PROTO((char * low_address,
char * high_address_plus_1));
/* Add a displacement to the set of those considered valid by the */
/* collector. GC_register_displacement(n) means that if p was returned */
/* by GC_malloc, then (char *)p + n will be considered to be a valid */
/* pointer to n. N must be small and less than the size of p. */
/* (All pointers to the interior of objects from the stack are */
/* considered valid in any case. This applies to heap objects and */
/* static data.) */
/* Preferably, this should be called before any other GC procedures. */
/* Calling it later adds to the probability of excess memory */
/* retention. */
/* This is a no-op if the collector was compiled with recognition of */
/* arbitrary interior pointers enabled, which is now the default. */
GC_API void GC_register_displacement GC_PROTO((GC_word n));
/* The following version should be used if any debugging allocation is */
/* being done. */
GC_API void GC_debug_register_displacement GC_PROTO((GC_word n));
/* Explicitly trigger a full, world-stop collection. */
GC_API void GC_gcollect GC_PROTO((void));
/* Trigger a full world-stopped collection. Abort the collection if */
/* and when stop_func returns a nonzero value. Stop_func will be */
/* called frequently, and should be reasonably fast. This works even */
/* if virtual dirty bits, and hence incremental collection is not */
/* available for this architecture. Collections can be aborted faster */
/* than normal pause times for incremental collection. However, */
/* aborted collections do no useful work; the next collection needs */
/* to start from the beginning. */
typedef int (* GC_stop_func) GC_PROTO((void));
GC_API int GC_try_to_collect GC_PROTO((GC_stop_func stop_func));
/* Return the number of bytes in the heap. Excludes collector private */
/* data structures. Includes empty blocks and fragmentation loss. */
/* Includes some pages that were allocated but never written. */
GC_API size_t GC_get_heap_size GC_PROTO((void));
/* Return the number of bytes allocated since the last collection. */
GC_API size_t GC_get_bytes_since_gc GC_PROTO((void));
/* Enable incremental/generational collection. */
/* Not advisable unless dirty bits are */
/* available or most heap objects are */
/* pointerfree(atomic) or immutable. */
/* Don't use in leak finding mode. */
/* Ignored if GC_dont_gc is true. */
GC_API void GC_enable_incremental GC_PROTO((void));
/* Perform some garbage collection work, if appropriate. */
/* Return 0 if there is no more work to be done. */
/* Typically performs an amount of work corresponding roughly */
/* to marking from one page. May do more work if further */
/* progress requires it, e.g. if incremental collection is */
/* disabled. It is reasonable to call this in a wait loop */
/* until it returns 0. */
GC_API int GC_collect_a_little GC_PROTO((void));
/* Allocate an object of size lb bytes. The client guarantees that */
/* as long as the object is live, it will be referenced by a pointer */
/* that points to somewhere within the first 256 bytes of the object. */
/* (This should normally be declared volatile to prevent the compiler */
/* from invalidating this assertion.) This routine is only useful */
/* if a large array is being allocated. It reduces the chance of */
/* accidentally retaining such an array as a result of scanning an */
/* integer that happens to be an address inside the array. (Actually, */
/* it reduces the chance of the allocator not finding space for such */
/* an array, since it will try hard to avoid introducing such a false */
/* reference.) On a SunOS 4.X or MS Windows system this is recommended */
/* for arrays likely to be larger than 100K or so. For other systems, */
/* or if the collector is not configured to recognize all interior */
/* pointers, the threshold is normally much higher. */
GC_API GC_PTR GC_malloc_ignore_off_page GC_PROTO((size_t lb));
GC_API GC_PTR GC_malloc_atomic_ignore_off_page GC_PROTO((size_t lb));
#if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
# define GC_ADD_CALLER
# define GC_RETURN_ADDR (GC_word)__return_address
#endif
#ifdef GC_ADD_CALLER
# define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
# define GC_EXTRA_PARAMS GC_word ra, char * descr_string, int descr_int
#else
# define GC_EXTRAS __FILE__, __LINE__
# define GC_EXTRA_PARAMS char * descr_string, int descr_int
#endif
/* Debugging (annotated) allocation. GC_gcollect will check */
/* objects allocated in this way for overwrites, etc. */
GC_API GC_PTR GC_debug_malloc
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
GC_API GC_PTR GC_debug_malloc_atomic
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
GC_API GC_PTR GC_debug_malloc_uncollectable
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
GC_API GC_PTR GC_debug_malloc_stubborn
GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
GC_API void GC_debug_free GC_PROTO((GC_PTR object_addr));
GC_API GC_PTR GC_debug_realloc
GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes,
GC_EXTRA_PARAMS));
GC_API void GC_debug_change_stubborn GC_PROTO((GC_PTR));
GC_API void GC_debug_end_stubborn_change GC_PROTO((GC_PTR));
# ifdef GC_DEBUG
# define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
# define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
# define GC_MALLOC_UNCOLLECTABLE(sz) GC_debug_malloc_uncollectable(sz, \
GC_EXTRAS)
# define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
# define GC_FREE(p) GC_debug_free(p)
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
GC_debug_register_finalizer(p, f, d, of, od)
# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
# define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
# define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
# define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
GC_general_register_disappearing_link(link, GC_base(obj))
# define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
# else
# define GC_MALLOC(sz) GC_malloc(sz)
# define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
# define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
# define GC_REALLOC(old, sz) GC_realloc(old, sz)
# define GC_FREE(p) GC_free(p)
# define GC_REGISTER_FINALIZER(p, f, d, of, od) \
GC_register_finalizer(p, f, d, of, od)
# define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
GC_register_finalizer_ignore_self(p, f, d, of, od)
# define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
# define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
# define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
# define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
GC_general_register_disappearing_link(link, obj)
# define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
# endif
/* The following are included because they are often convenient, and */
/* reduce the chance for a misspecifed size argument. But calls may */
/* expand to something syntactically incorrect if t is a complicated */
/* type expression. */
# define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
# define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
# define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
# define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
/* Finalization. Some of these primitives are grossly unsafe. */
/* The idea is to make them both cheap, and sufficient to build */
/* a safer layer, closer to PCedar finalization. */
/* The interface represents my conclusions from a long discussion */
/* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
/* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
/* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
typedef void (*GC_finalization_proc)
GC_PROTO((GC_PTR obj, GC_PTR client_data));
GC_API void GC_register_finalizer
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
GC_finalization_proc *ofn, GC_PTR *ocd));
GC_API void GC_debug_register_finalizer
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
GC_finalization_proc *ofn, GC_PTR *ocd));
/* When obj is no longer accessible, invoke */
/* (*fn)(obj, cd). If a and b are inaccessible, and */
/* a points to b (after disappearing links have been */
/* made to disappear), then only a will be */
/* finalized. (If this does not create any new */
/* pointers to b, then b will be finalized after the */
/* next collection.) Any finalizable object that */
/* is reachable from itself by following one or more */
/* pointers will not be finalized (or collected). */
/* Thus cycles involving finalizable objects should */
/* be avoided, or broken by disappearing links. */
/* All but the last finalizer registered for an object */
/* is ignored. */
/* Finalization may be removed by passing 0 as fn. */
/* Finalizers are implicitly unregistered just before */
/* they are invoked. */
/* The old finalizer and client data are stored in */
/* *ofn and *ocd. */
/* Fn is never invoked on an accessible object, */
/* provided hidden pointers are converted to real */
/* pointers only if the allocation lock is held, and */
/* such conversions are not performed by finalization */
/* routines. */
/* If GC_register_finalizer is aborted as a result of */
/* a signal, the object may be left with no */
/* finalization, even if neither the old nor new */
/* finalizer were NULL. */
/* Obj should be the nonNULL starting address of an */
/* object allocated by GC_malloc or friends. */
/* Note that any garbage collectable object referenced */
/* by cd will be considered accessible until the */
/* finalizer is invoked. */
/* Another versions of the above follow. It ignores */
/* self-cycles, i.e. pointers from a finalizable object to */
/* itself. There is a stylistic argument that this is wrong, */
/* but it's unavoidable for C++, since the compiler may */
/* silently introduce these. It's also benign in that specific */
/* case. */
GC_API void GC_register_finalizer_ignore_self
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
GC_finalization_proc *ofn, GC_PTR *ocd));
GC_API void GC_debug_register_finalizer_ignore_self
GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
GC_finalization_proc *ofn, GC_PTR *ocd));
/* The following routine may be used to break cycles between */
/* finalizable objects, thus causing cyclic finalizable */
/* objects to be finalized in the correct order. Standard */
/* use involves calling GC_register_disappearing_link(&p), */
/* where p is a pointer that is not followed by finalization */
/* code, and should not be considered in determining */
/* finalization order. */
GC_API int GC_register_disappearing_link GC_PROTO((GC_PTR * /* link */));
/* Link should point to a field of a heap allocated */
/* object obj. *link will be cleared when obj is */
/* found to be inaccessible. This happens BEFORE any */
/* finalization code is invoked, and BEFORE any */
/* decisions about finalization order are made. */
/* This is useful in telling the finalizer that */
/* some pointers are not essential for proper */
/* finalization. This may avoid finalization cycles. */
/* Note that obj may be resurrected by another */
/* finalizer, and thus the clearing of *link may */
/* be visible to non-finalization code. */
/* There's an argument that an arbitrary action should */
/* be allowed here, instead of just clearing a pointer. */
/* But this causes problems if that action alters, or */
/* examines connectivity. */
/* Returns 1 if link was already registered, 0 */
/* otherwise. */
/* Only exists for backward compatibility. See below: */
GC_API int GC_general_register_disappearing_link
GC_PROTO((GC_PTR * /* link */, GC_PTR obj));
/* A slight generalization of the above. *link is */
/* cleared when obj first becomes inaccessible. This */
/* can be used to implement weak pointers easily and */
/* safely. Typically link will point to a location */
/* holding a disguised pointer to obj. (A pointer */
/* inside an "atomic" object is effectively */
/* disguised.) In this way soft */
/* pointers are broken before any object */
/* reachable from them are finalized. Each link */
/* May be registered only once, i.e. with one obj */
/* value. This was added after a long email discussion */
/* with John Ellis. */
/* Obj must be a pointer to the first word of an object */
/* we allocated. It is unsafe to explicitly deallocate */
/* the object containing link. Explicitly deallocating */
/* obj may or may not cause link to eventually be */
/* cleared. */
GC_API int GC_unregister_disappearing_link GC_PROTO((GC_PTR * /* link */));
/* Returns 0 if link was not actually registered. */
/* Undoes a registration by either of the above two */
/* routines. */
/* Auxiliary fns to make finalization work correctly with displaced */
/* pointers introduced by the debugging allocators. */
GC_API GC_PTR GC_make_closure GC_PROTO((GC_finalization_proc fn, GC_PTR data));
GC_API void GC_debug_invoke_finalizer GC_PROTO((GC_PTR obj, GC_PTR data));
GC_API int GC_invoke_finalizers GC_PROTO((void));
/* Run finalizers for all objects that are ready to */
/* be finalized. Return the number of finalizers */
/* that were run. Normally this is also called */
/* implicitly during some allocations. If */
/* FINALIZE_ON_DEMAND is defined, it must be called */
/* explicitly. */
/* GC_set_warn_proc can be used to redirect or filter warning messages. */
/* p may not be a NULL pointer. */
typedef void (*GC_warn_proc) GC_PROTO((char *msg, GC_word arg));
GC_API GC_warn_proc GC_set_warn_proc GC_PROTO((GC_warn_proc p));
/* Returns old warning procedure. */
/* The following is intended to be used by a higher level */
/* (e.g. cedar-like) finalization facility. It is expected */
/* that finalization code will arrange for hidden pointers to */
/* disappear. Otherwise objects can be accessed after they */
/* have been collected. */
/* Note that putting pointers in atomic objects or in */
/* nonpointer slots of "typed" objects is equivalent to */
/* disguising them in this way, and may have other advantages. */
# if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
typedef GC_word GC_hidden_pointer;
# define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
# define REVEAL_POINTER(p) ((GC_PTR)(HIDE_POINTER(p)))
/* Converting a hidden pointer to a real pointer requires verifying */
/* that the object still exists. This involves acquiring the */
/* allocator lock to avoid a race with the collector. */
# endif /* I_HIDE_POINTERS */
typedef GC_PTR (*GC_fn_type) GC_PROTO((GC_PTR client_data));
GC_API GC_PTR GC_call_with_alloc_lock
GC_PROTO((GC_fn_type fn, GC_PTR client_data));
/* Check that p and q point to the same object. */
/* Fail conspicuously if they don't. */
/* Returns the first argument. */
/* Succeeds if neither p nor q points to the heap. */
/* May succeed if both p and q point to between heap objects. */
GC_API GC_PTR GC_same_obj GC_PROTO((GC_PTR p, GC_PTR q));
/* Checked pointer pre- and post- increment operations. Note that */
/* the second argument is in units of bytes, not multiples of the */
/* object size. This should either be invoked from a macro, or the */
/* call should be automatically generated. */
GC_API GC_PTR GC_pre_incr GC_PROTO((GC_PTR *p, size_t how_much));
GC_API GC_PTR GC_post_incr GC_PROTO((GC_PTR *p, size_t how_much));
/* Check that p is visible */
/* to the collector as a possibly pointer containing location. */
/* If it isn't fail conspicuously. */
/* Returns the argument in all cases. May erroneously succeed */
/* in hard cases. (This is intended for debugging use with */
/* untyped allocations. The idea is that it should be possible, though */
/* slow, to add such a call to all indirect pointer stores.) */
/* Currently useless for multithreaded worlds. */
GC_API GC_PTR GC_is_visible GC_PROTO((GC_PTR p));
/* Check that if p is a pointer to a heap page, then it points to */
/* a valid displacement within a heap object. */
/* Fail conspicuously if this property does not hold. */
/* Uninteresting with ALL_INTERIOR_POINTERS. */
/* Always returns its argument. */
GC_API GC_PTR GC_is_valid_displacement GC_PROTO((GC_PTR p));
/* Safer, but slow, pointer addition. Probably useful mainly with */
/* a preprocessor. Useful only for heap pointers. */
#ifdef GC_DEBUG
# define GC_PTR_ADD3(x, n, type_of_result) \
((type_of_result)GC_same_obj((x)+(n), (x)))
# define GC_PRE_INCR3(x, n, type_of_result) \
((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
# define GC_POST_INCR2(x, type_of_result) \
((type_of_result)GC_post_incr(&(x), sizeof(*x))
# ifdef __GNUC__
# define GC_PTR_ADD(x, n) \
GC_PTR_ADD3(x, n, typeof(x))
# define GC_PRE_INCR(x, n) \
GC_PRE_INCR3(x, n, typeof(x))
# define GC_POST_INCR(x, n) \
GC_POST_INCR3(x, typeof(x))
# else
/* We can't do this right without typeof, which ANSI */
/* decided was not sufficiently useful. Repeatedly */
/* mentioning the arguments seems too dangerous to be */
/* useful. So does not casting the result. */
# define GC_PTR_ADD(x, n) ((x)+(n))
# endif
#else /* !GC_DEBUG */
# define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
# define GC_PTR_ADD(x, n) ((x)+(n))
# define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
# define GC_PRE_INCR(x, n) ((x) += (n))
# define GC_POST_INCR2(x, n, type_of_result) ((x)++)
# define GC_POST_INCR(x, n) ((x)++)
#endif
/* Safer assignment of a pointer to a nonstack location. */
#ifdef GC_DEBUG
# ifdef __STDC__
# define GC_PTR_STORE(p, q) \
(*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
# else
# define GC_PTR_STORE(p, q) \
(*(char **)GC_is_visible(p) = GC_is_valid_displacement(q))
# endif
#else /* !GC_DEBUG */
# define GC_PTR_STORE(p, q) *((p) = (q))
#endif
/* Fynctions called to report pointer checking errors */
GC_API void (*GC_same_obj_print_proc) GC_PROTO((GC_PTR p, GC_PTR q));
GC_API void (*GC_is_valid_displacement_print_proc)
GC_PROTO((GC_PTR p));
GC_API void (*GC_is_visible_print_proc)
GC_PROTO((GC_PTR p));
#ifdef SOLARIS_THREADS
/* We need to intercept calls to many of the threads primitives, so */
/* that we can locate thread stacks and stop the world. */
/* Note also that the collector cannot see thread specific data. */
/* Thread specific data should generally consist of pointers to */
/* uncollectable objects, which are deallocated using the destructor */
/* facility in thr_keycreate. */
# include <thread.h>
# include <signal.h>
int GC_thr_create(void *stack_base, size_t stack_size,
void *(*start_routine)(void *), void *arg, long flags,
thread_t *new_thread);
int GC_thr_join(thread_t wait_for, thread_t *departed, void **status);
int GC_thr_suspend(thread_t target_thread);
int GC_thr_continue(thread_t target_thread);
void * GC_dlopen(const char *path, int mode);
# ifdef _SOLARIS_PTHREADS
# include <pthread.h>
extern int GC_pthread_create(pthread_t *new_thread,
const pthread_attr_t *attr,
void * (*thread_execp)(void *), void *arg);
extern int GC_pthread_join(pthread_t wait_for, void **status);
# undef thread_t
# define pthread_join GC_pthread_join
# define pthread_create GC_pthread_create
#endif
# define thr_create GC_thr_create
# define thr_join GC_thr_join
# define thr_suspend GC_thr_suspend
# define thr_continue GC_thr_continue
# define dlopen GC_dlopen
# endif /* SOLARIS_THREADS */
#if defined(IRIX_THREADS) || defined(LINUX_THREADS)
/* We treat these similarly. */
# include <pthread.h>
# include <signal.h>
int GC_pthread_create(pthread_t *new_thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);
int GC_pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);
int GC_pthread_join(pthread_t thread, void **retval);
# define pthread_create GC_pthread_create
# define pthread_sigmask GC_pthread_sigmask
# define pthread_join GC_pthread_join
#endif /* IRIX_THREADS || LINUX_THREADS */
#if defined(THREADS) && !defined(SRC_M3)
/* This returns a list of objects, linked through their first */
/* word. Its use can greatly reduce lock contention problems, since */
/* the allocation lock can be acquired and released many fewer times. */
GC_PTR GC_malloc_many(size_t lb);
#define GC_NEXT(p) (*(GC_PTR *)(p)) /* Retrieve the next element */
/* in returned list. */
extern void GC_thr_init(); /* Needed for Solaris/X86 */
#endif /* THREADS && !SRC_M3 */
/*
* If you are planning on putting
* the collector in a SunOS 5 dynamic library, you need to call GC_INIT()
* from the statically loaded program section.
* This circumvents a Solaris 2.X (X<=4) linker bug.
*/
#if defined(sparc) || defined(__sparc)
# define GC_INIT() { extern end, etext; \
GC_noop(&end, &etext); }
#else
# if defined(__CYGWIN32__) && defined(GC_USE_DLL)
/*
* Similarly gnu-win32 DLLs need explicit initialization
*/
# define GC_INIT() { GC_add_roots(DATASTART, DATAEND); }
# else
# define GC_INIT()
# endif
#endif
#ifdef __cplusplus
} /* end of extern "C" */
#endif
#endif /* _GC_H */
|