summaryrefslogtreecommitdiff
path: root/gcc/ada/a-ciormu.adb
blob: b7dd81a752abb5f3178b1d2f461f8d3c55dc423c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--               ADA.CONTAINERS.INDEFINITE_ORDERED_MULTISETS                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2012, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with Ada.Unchecked_Deallocation;

with Ada.Containers.Red_Black_Trees.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);

with Ada.Containers.Red_Black_Trees.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);

with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);

with System; use type System.Address;

package body Ada.Containers.Indefinite_Ordered_Multisets is

   type Iterator is new Limited_Controlled and
     Set_Iterator_Interfaces.Reversible_Iterator with
   record
      Container : Set_Access;
      Node      : Node_Access;
   end record;

   overriding procedure Finalize (Object : in out Iterator);

   overriding function First (Object : Iterator) return Cursor;
   overriding function Last  (Object : Iterator) return Cursor;

   overriding function Next
     (Object   : Iterator;
      Position : Cursor) return Cursor;

   overriding function Previous
     (Object   : Iterator;
      Position : Cursor) return Cursor;

   -----------------------------
   -- Node Access Subprograms --
   -----------------------------

   --  These subprograms provide a functional interface to access fields
   --  of a node, and a procedural interface for modifying these values.

   function Color (Node : Node_Access) return Color_Type;
   pragma Inline (Color);

   function Left (Node : Node_Access) return Node_Access;
   pragma Inline (Left);

   function Parent (Node : Node_Access) return Node_Access;
   pragma Inline (Parent);

   function Right (Node : Node_Access) return Node_Access;
   pragma Inline (Right);

   procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
   pragma Inline (Set_Parent);

   procedure Set_Left (Node : Node_Access; Left : Node_Access);
   pragma Inline (Set_Left);

   procedure Set_Right (Node : Node_Access; Right : Node_Access);
   pragma Inline (Set_Right);

   procedure Set_Color (Node : Node_Access; Color : Color_Type);
   pragma Inline (Set_Color);

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Copy_Node (Source : Node_Access) return Node_Access;
   pragma Inline (Copy_Node);

   procedure Free (X : in out Node_Access);

   procedure Insert_Sans_Hint
     (Tree     : in out Tree_Type;
      New_Item : Element_Type;
      Node     : out Node_Access);

   procedure Insert_With_Hint
     (Dst_Tree : in out Tree_Type;
      Dst_Hint : Node_Access;
      Src_Node : Node_Access;
      Dst_Node : out Node_Access);

   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
   pragma Inline (Is_Equal_Node_Node);

   function Is_Greater_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean;
   pragma Inline (Is_Greater_Element_Node);

   function Is_Less_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean;
   pragma Inline (Is_Less_Element_Node);

   function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
   pragma Inline (Is_Less_Node_Node);

   procedure Replace_Element
     (Tree : in out Tree_Type;
      Node : Node_Access;
      Item : Element_Type);

   --------------------------
   -- Local Instantiations --
   --------------------------

   package Tree_Operations is
     new Red_Black_Trees.Generic_Operations (Tree_Types);

   procedure Delete_Tree is
     new Tree_Operations.Generic_Delete_Tree (Free);

   function Copy_Tree is
     new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);

   use Tree_Operations;

   procedure Free_Element is
     new Ada.Unchecked_Deallocation (Element_Type, Element_Access);

   function Is_Equal is
     new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);

   package Set_Ops is
     new Generic_Set_Operations
       (Tree_Operations  => Tree_Operations,
        Insert_With_Hint => Insert_With_Hint,
        Copy_Tree        => Copy_Tree,
        Delete_Tree      => Delete_Tree,
        Is_Less          => Is_Less_Node_Node,
        Free             => Free);

   package Element_Keys is
     new Red_Black_Trees.Generic_Keys
       (Tree_Operations     => Tree_Operations,
        Key_Type            => Element_Type,
        Is_Less_Key_Node    => Is_Less_Element_Node,
        Is_Greater_Key_Node => Is_Greater_Element_Node);

   ---------
   -- "<" --
   ---------

   function "<" (Left, Right : Cursor) return Boolean is
   begin
      if Left.Node = null then
         raise Constraint_Error with "Left cursor equals No_Element";
      end if;

      if Right.Node = null then
         raise Constraint_Error with "Right cursor equals No_Element";
      end if;

      if Left.Node.Element = null then
         raise Program_Error with "Left cursor is bad";
      end if;

      if Right.Node.Element = null then
         raise Program_Error with "Right cursor is bad";
      end if;

      pragma Assert (Vet (Left.Container.Tree, Left.Node),
                     "bad Left cursor in ""<""");

      pragma Assert (Vet (Right.Container.Tree, Right.Node),
                     "bad Right cursor in ""<""");

      return Left.Node.Element.all < Right.Node.Element.all;
   end "<";

   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
   begin
      if Left.Node = null then
         raise Constraint_Error with "Left cursor equals No_Element";
      end if;

      if Left.Node.Element = null then
         raise Program_Error with "Left cursor is bad";
      end if;

      pragma Assert (Vet (Left.Container.Tree, Left.Node),
                     "bad Left cursor in ""<""");

      return Left.Node.Element.all < Right;
   end "<";

   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
   begin
      if Right.Node = null then
         raise Constraint_Error with "Right cursor equals No_Element";
      end if;

      if Right.Node.Element = null then
         raise Program_Error with "Right cursor is bad";
      end if;

      pragma Assert (Vet (Right.Container.Tree, Right.Node),
                     "bad Right cursor in ""<""");

      return Left < Right.Node.Element.all;
   end "<";

   ---------
   -- "=" --
   ---------

   function "=" (Left, Right : Set) return Boolean is
   begin
      return Is_Equal (Left.Tree, Right.Tree);
   end "=";

   ---------
   -- ">" --
   ---------

   function ">" (Left, Right : Cursor) return Boolean is
   begin
      if Left.Node = null then
         raise Constraint_Error with "Left cursor equals No_Element";
      end if;

      if Right.Node = null then
         raise Constraint_Error with "Right cursor equals No_Element";
      end if;

      if Left.Node.Element = null then
         raise Program_Error with "Left cursor is bad";
      end if;

      if Right.Node.Element = null then
         raise Program_Error with "Right cursor is bad";
      end if;

      pragma Assert (Vet (Left.Container.Tree, Left.Node),
                     "bad Left cursor in "">""");

      pragma Assert (Vet (Right.Container.Tree, Right.Node),
                     "bad Right cursor in "">""");

      --  L > R same as R < L

      return Right.Node.Element.all < Left.Node.Element.all;
   end ">";

   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
   begin
      if Left.Node = null then
         raise Constraint_Error with "Left cursor equals No_Element";
      end if;

      if Left.Node.Element = null then
         raise Program_Error with "Left cursor is bad";
      end if;

      pragma Assert (Vet (Left.Container.Tree, Left.Node),
                     "bad Left cursor in "">""");

      return Right < Left.Node.Element.all;
   end ">";

   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
   begin
      if Right.Node = null then
         raise Constraint_Error with "Right cursor equals No_Element";
      end if;

      if Right.Node.Element = null then
         raise Program_Error with "Right cursor is bad";
      end if;

      pragma Assert (Vet (Right.Container.Tree, Right.Node),
                     "bad Right cursor in "">""");

      return Right.Node.Element.all < Left;
   end ">";

   ------------
   -- Adjust --
   ------------

   procedure Adjust is
      new Tree_Operations.Generic_Adjust (Copy_Tree);

   procedure Adjust (Container : in out Set) is
   begin
      Adjust (Container.Tree);
   end Adjust;

   ------------
   -- Assign --
   ------------

   procedure Assign (Target : in out Set; Source : Set) is
   begin
      if Target'Address = Source'Address then
         return;
      end if;

      Target.Clear;
      Target.Union (Source);
   end Assign;

   -------------
   -- Ceiling --
   -------------

   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Ceiling (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Node);
   end Ceiling;

   -----------
   -- Clear --
   -----------

   procedure Clear is
      new Tree_Operations.Generic_Clear (Delete_Tree);

   procedure Clear (Container : in out Set) is
   begin
      Clear (Container.Tree);
   end Clear;

   -----------
   -- Color --
   -----------

   function Color (Node : Node_Access) return Color_Type is
   begin
      return Node.Color;
   end Color;

   --------------
   -- Contains --
   --------------

   function Contains (Container : Set; Item : Element_Type) return Boolean is
   begin
      return Find (Container, Item) /= No_Element;
   end Contains;

   ----------
   -- Copy --
   ----------

   function Copy (Source : Set) return Set is
   begin
      return Target : Set do
         Target.Assign (Source);
      end return;
   end Copy;

   ---------------
   -- Copy_Node --
   ---------------

   function Copy_Node (Source : Node_Access) return Node_Access is
      X : Element_Access := new Element_Type'(Source.Element.all);

   begin
      return new Node_Type'(Parent  => null,
                            Left    => null,
                            Right   => null,
                            Color   => Source.Color,
                            Element => X);

   exception
      when others =>
         Free_Element (X);
         raise;
   end Copy_Node;

   ------------
   -- Delete --
   ------------

   procedure Delete (Container : in out Set; Item : Element_Type) is
      Tree : Tree_Type renames Container.Tree;
      Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
      Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
      X    : Node_Access;

   begin
      if Node = Done then
         raise Constraint_Error with "attempt to delete element not in set";
      end if;

      loop
         X := Node;
         Node := Tree_Operations.Next (Node);
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
         Free (X);

         exit when Node = Done;
      end loop;
   end Delete;

   procedure Delete (Container : in out Set; Position : in out Cursor) is
   begin
      if Position.Node = null then
         raise Constraint_Error with "Position cursor equals No_Element";
      end if;

      if Position.Node.Element = null then
         raise Program_Error with "Position cursor is bad";
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor designates wrong set";
      end if;

      pragma Assert (Vet (Container.Tree, Position.Node),
                     "bad cursor in Delete");

      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
      Free (Position.Node);

      Position.Container := null;
   end Delete;

   ------------------
   -- Delete_First --
   ------------------

   procedure Delete_First (Container : in out Set) is
      Tree : Tree_Type renames Container.Tree;
      X    : Node_Access := Tree.First;

   begin
      if X = null then
         return;
      end if;

      Tree_Operations.Delete_Node_Sans_Free (Tree, X);
      Free (X);
   end Delete_First;

   -----------------
   -- Delete_Last --
   -----------------

   procedure Delete_Last (Container : in out Set) is
      Tree : Tree_Type renames Container.Tree;
      X    : Node_Access := Tree.Last;

   begin
      if X = null then
         return;
      end if;

      Tree_Operations.Delete_Node_Sans_Free (Tree, X);
      Free (X);
   end Delete_Last;

   ----------------
   -- Difference --
   ----------------

   procedure Difference (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Difference (Target.Tree, Source.Tree);
   end Difference;

   function Difference (Left, Right : Set) return Set is
      Tree : constant Tree_Type :=
               Set_Ops.Difference (Left.Tree, Right.Tree);
   begin
      return Set'(Controlled with Tree);
   end Difference;

   -------------
   -- Element --
   -------------

   function Element (Position : Cursor) return Element_Type is
   begin
      if Position.Node = null then
         raise Constraint_Error with "Position cursor equals No_Element";
      end if;

      if Position.Node.Element = null then
         raise Program_Error with "Position cursor is bad";
      end if;

      pragma Assert (Vet (Position.Container.Tree, Position.Node),
                     "bad cursor in Element");

      return Position.Node.Element.all;
   end Element;

   -------------------------
   -- Equivalent_Elements --
   -------------------------

   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
   begin
      if Left < Right
        or else Right < Left
      then
         return False;
      else
         return True;
      end if;
   end Equivalent_Elements;

   ---------------------
   -- Equivalent_Sets --
   ---------------------

   function Equivalent_Sets (Left, Right : Set) return Boolean is

      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
      pragma Inline (Is_Equivalent_Node_Node);

      function Is_Equivalent is
         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);

      -----------------------------
      -- Is_Equivalent_Node_Node --
      -----------------------------

      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
      begin
         if L.Element.all < R.Element.all then
            return False;
         elsif R.Element.all < L.Element.all then
            return False;
         else
            return True;
         end if;
      end Is_Equivalent_Node_Node;

   --  Start of processing for Equivalent_Sets

   begin
      return Is_Equivalent (Left.Tree, Right.Tree);
   end Equivalent_Sets;

   -------------
   -- Exclude --
   -------------

   procedure Exclude (Container : in out Set; Item : Element_Type) is
      Tree : Tree_Type renames Container.Tree;
      Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
      Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
      X    : Node_Access;

   begin
      while Node /= Done loop
         X := Node;
         Node := Tree_Operations.Next (Node);
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
         Free (X);
      end loop;
   end Exclude;

   ----------
   -- Find --
   ----------

   function Find (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Find (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Node);
   end Find;

   --------------
   -- Finalize --
   --------------

   procedure Finalize (Object : in out Iterator) is
      B : Natural renames Object.Container.Tree.Busy;
      pragma Assert (B > 0);
   begin
      B := B - 1;
   end Finalize;

   -----------
   -- First --
   -----------

   function First (Container : Set) return Cursor is
   begin
      if Container.Tree.First = null then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Container.Tree.First);
   end First;

   function First (Object : Iterator) return Cursor is
   begin
      --  The value of the iterator object's Node component influences the
      --  behavior of the First (and Last) selector function.

      --  When the Node component is null, this means the iterator object was
      --  constructed without a start expression, in which case the (forward)
      --  iteration starts from the (logical) beginning of the entire sequence
      --  of items (corresponding to Container.First, for a forward iterator).

      --  Otherwise, this is iteration over a partial sequence of items. When
      --  the Node component is non-null, the iterator object was constructed
      --  with a start expression, that specifies the position from which the
      --  (forward) partial iteration begins.

      if Object.Node = null then
         return Object.Container.First;
      else
         return Cursor'(Object.Container, Object.Node);
      end if;
   end First;

   -------------------
   -- First_Element --
   -------------------

   function First_Element (Container : Set) return Element_Type is
   begin
      if Container.Tree.First = null then
         raise Constraint_Error with "set is empty";
      end if;

      pragma Assert (Container.Tree.First.Element /= null);
      return Container.Tree.First.Element.all;
   end First_Element;

   -----------
   -- Floor --
   -----------

   function Floor (Container : Set; Item : Element_Type) return Cursor is
      Node : constant Node_Access :=
               Element_Keys.Floor (Container.Tree, Item);

   begin
      if Node = null then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Node);
   end Floor;

   ----------
   -- Free --
   ----------

   procedure Free (X : in out Node_Access) is
      procedure Deallocate is
        new Ada.Unchecked_Deallocation (Node_Type, Node_Access);

   begin
      if X = null then
         return;
      end if;

      X.Parent := X;
      X.Left := X;
      X.Right := X;

      begin
         Free_Element (X.Element);
      exception
         when others =>
            X.Element := null;
            Deallocate (X);
            raise;
      end;

      Deallocate (X);
   end Free;

   ------------------
   -- Generic_Keys --
   ------------------

   package body Generic_Keys is

      -----------------------
      -- Local Subprograms --
      -----------------------

      function Is_Less_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean;
      pragma Inline (Is_Less_Key_Node);

      function Is_Greater_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean;
      pragma Inline (Is_Greater_Key_Node);

      --------------------------
      -- Local Instantiations --
      --------------------------

      package Key_Keys is
        new Red_Black_Trees.Generic_Keys
          (Tree_Operations     => Tree_Operations,
           Key_Type            => Key_Type,
           Is_Less_Key_Node    => Is_Less_Key_Node,
           Is_Greater_Key_Node => Is_Greater_Key_Node);

      -------------
      -- Ceiling --
      -------------

      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access :=
                  Key_Keys.Ceiling (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Container'Unrestricted_Access, Node);
      end Ceiling;

      --------------
      -- Contains --
      --------------

      function Contains (Container : Set; Key : Key_Type) return Boolean is
      begin
         return Find (Container, Key) /= No_Element;
      end Contains;

      ------------
      -- Delete --
      ------------

      procedure Delete (Container : in out Set; Key : Key_Type) is
         Tree : Tree_Type renames Container.Tree;
         Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
         Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
         X    : Node_Access;

      begin
         if Node = Done then
            raise Constraint_Error with "attempt to delete key not in set";
         end if;

         loop
            X := Node;
            Node := Tree_Operations.Next (Node);
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
            Free (X);

            exit when Node = Done;
         end loop;
      end Delete;

      -------------
      -- Element --
      -------------

      function Element (Container : Set; Key : Key_Type) return Element_Type is
         Node : constant Node_Access :=
                  Key_Keys.Find (Container.Tree, Key);

      begin
         if Node = null then
            raise Constraint_Error with "key not in set";
         end if;

         return Node.Element.all;
      end Element;

      ---------------------
      -- Equivalent_Keys --
      ---------------------

      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
      begin
         if Left < Right
           or else Right < Left
         then
            return False;
         else
            return True;
         end if;
      end Equivalent_Keys;

      -------------
      -- Exclude --
      -------------

      procedure Exclude (Container : in out Set; Key : Key_Type) is
         Tree : Tree_Type renames Container.Tree;
         Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
         Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
         X    : Node_Access;

      begin
         while Node /= Done loop
            X := Node;
            Node := Tree_Operations.Next (Node);
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
            Free (X);
         end loop;
      end Exclude;

      ----------
      -- Find --
      ----------

      function Find (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Container'Unrestricted_Access, Node);
      end Find;

      -----------
      -- Floor --
      -----------

      function Floor (Container : Set; Key : Key_Type) return Cursor is
         Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Container'Unrestricted_Access, Node);
      end Floor;

      -------------------------
      -- Is_Greater_Key_Node --
      -------------------------

      function Is_Greater_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean
      is
      begin
         return Key (Right.Element.all) < Left;
      end Is_Greater_Key_Node;

      ----------------------
      -- Is_Less_Key_Node --
      ----------------------

      function Is_Less_Key_Node
        (Left  : Key_Type;
         Right : Node_Access) return Boolean
      is
      begin
         return Left < Key (Right.Element.all);
      end Is_Less_Key_Node;

      -------------
      -- Iterate --
      -------------

      procedure Iterate
        (Container : Set;
         Key       : Key_Type;
         Process   : not null access procedure (Position : Cursor))
      is
         procedure Process_Node (Node : Node_Access);
         pragma Inline (Process_Node);

         procedure Local_Iterate is
           new Key_Keys.Generic_Iteration (Process_Node);

         ------------------
         -- Process_Node --
         ------------------

         procedure Process_Node (Node : Node_Access) is
         begin
            Process (Cursor'(Container'Unrestricted_Access, Node));
         end Process_Node;

         T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
         B : Natural renames T.Busy;

      --  Start of processing for Iterate

      begin
         B := B + 1;

         begin
            Local_Iterate (T, Key);
         exception
            when others =>
               B := B - 1;
               raise;
         end;

         B := B - 1;
      end Iterate;

      ---------
      -- Key --
      ---------

      function Key (Position : Cursor) return Key_Type is
      begin
         if Position.Node = null then
            raise Constraint_Error with
              "Position cursor equals No_Element";
         end if;

         if Position.Node.Element = null then
            raise Program_Error with
              "Position cursor is bad";
         end if;

         pragma Assert (Vet (Position.Container.Tree, Position.Node),
                        "bad cursor in Key");

         return Key (Position.Node.Element.all);
      end Key;

      ---------------------
      -- Reverse_Iterate --
      ---------------------

      procedure Reverse_Iterate
        (Container : Set;
         Key       : Key_Type;
         Process   : not null access procedure (Position : Cursor))
      is
         procedure Process_Node (Node : Node_Access);
         pragma Inline (Process_Node);

         -------------
         -- Iterate --
         -------------

         procedure Local_Reverse_Iterate is
            new Key_Keys.Generic_Reverse_Iteration (Process_Node);

         ------------------
         -- Process_Node --
         ------------------

         procedure Process_Node (Node : Node_Access) is
         begin
            Process (Cursor'(Container'Unrestricted_Access, Node));
         end Process_Node;

         T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
         B : Natural renames T.Busy;

      --  Start of processing for Reverse_Iterate

      begin
         B := B + 1;

         begin
            Local_Reverse_Iterate (T, Key);
         exception
            when others =>
               B := B - 1;
               raise;
         end;

         B := B - 1;
      end Reverse_Iterate;

      --------------------
      -- Update_Element --
      --------------------

      procedure Update_Element
        (Container : in out Set;
         Position  : Cursor;
         Process   : not null access procedure (Element : in out Element_Type))
      is
         Tree : Tree_Type renames Container.Tree;
         Node : constant Node_Access := Position.Node;

      begin
         if Node = null then
            raise Constraint_Error with "Position cursor equals No_Element";
         end if;

         if Node.Element = null then
            raise Program_Error with "Position cursor is bad";
         end if;

         if Position.Container /= Container'Unrestricted_Access then
            raise Program_Error with "Position cursor designates wrong set";
         end if;

         pragma Assert (Vet (Tree, Node),
                        "bad cursor in Update_Element");

         declare
            E : Element_Type renames Node.Element.all;
            K : constant Key_Type := Key (E);

            B : Natural renames Tree.Busy;
            L : Natural renames Tree.Lock;

         begin
            B := B + 1;
            L := L + 1;

            begin
               Process (E);
            exception
               when others =>
                  L := L - 1;
                  B := B - 1;
                  raise;
            end;

            L := L - 1;
            B := B - 1;

            if Equivalent_Keys (Left => K, Right => Key (E)) then
               return;
            end if;
         end;

         --  Delete_Node checks busy-bit

         Tree_Operations.Delete_Node_Sans_Free (Tree, Node);

         Insert_New_Item : declare
            function New_Node return Node_Access;
            pragma Inline (New_Node);

            procedure Insert_Post is
               new Element_Keys.Generic_Insert_Post (New_Node);

            procedure Unconditional_Insert is
               new Element_Keys.Generic_Unconditional_Insert (Insert_Post);

            --------------
            -- New_Node --
            --------------

            function New_Node return Node_Access is
            begin
               Node.Color := Red_Black_Trees.Red;
               Node.Parent := null;
               Node.Left := null;
               Node.Right := null;

               return Node;
            end New_Node;

            Result : Node_Access;

         --  Start of processing for Insert_New_Item

         begin
            Unconditional_Insert
              (Tree => Tree,
               Key  => Node.Element.all,
               Node => Result);

            pragma Assert (Result = Node);
         end Insert_New_Item;
      end Update_Element;

   end Generic_Keys;

   -----------------
   -- Has_Element --
   -----------------

   function Has_Element (Position : Cursor) return Boolean is
   begin
      return Position /= No_Element;
   end Has_Element;

   ------------
   -- Insert --
   ------------

   procedure Insert (Container : in out Set; New_Item : Element_Type) is
      Position : Cursor;
      pragma Unreferenced (Position);
   begin
      Insert (Container, New_Item, Position);
   end Insert;

   procedure Insert
     (Container : in out Set;
      New_Item  : Element_Type;
      Position  : out Cursor)
   is
   begin
      Insert_Sans_Hint (Container.Tree, New_Item, Position.Node);
      Position.Container := Container'Unrestricted_Access;
   end Insert;

   ----------------------
   -- Insert_Sans_Hint --
   ----------------------

   procedure Insert_Sans_Hint
     (Tree     : in out Tree_Type;
      New_Item : Element_Type;
      Node     : out Node_Access)
   is
      function New_Node return Node_Access;
      pragma Inline (New_Node);

      procedure Insert_Post is
        new Element_Keys.Generic_Insert_Post (New_Node);

      procedure Unconditional_Insert is
        new Element_Keys.Generic_Unconditional_Insert (Insert_Post);

      --------------
      -- New_Node --
      --------------

      function New_Node return Node_Access is
         pragma Unsuppress (Accessibility_Check);
         --  The element allocator may need an accessibility check in the case
         --  the actual type is class-wide or has access discriminants (see
         --  RM 4.8(10.1) and AI12-0035).

         Element : Element_Access := new Element_Type'(New_Item);

      begin
         return new Node_Type'(Parent  => null,
                               Left    => null,
                               Right   => null,
                               Color   => Red_Black_Trees.Red,
                               Element => Element);
      exception
         when others =>
            Free_Element (Element);
            raise;
      end New_Node;

   --  Start of processing for Insert_Sans_Hint

   begin
      Unconditional_Insert (Tree, New_Item, Node);
   end Insert_Sans_Hint;

   ----------------------
   -- Insert_With_Hint --
   ----------------------

   procedure Insert_With_Hint
     (Dst_Tree : in out Tree_Type;
      Dst_Hint : Node_Access;
      Src_Node : Node_Access;
      Dst_Node : out Node_Access)
   is
      function New_Node return Node_Access;
      pragma Inline (New_Node);

      procedure Insert_Post is
        new Element_Keys.Generic_Insert_Post (New_Node);

      procedure Insert_Sans_Hint is
        new Element_Keys.Generic_Unconditional_Insert (Insert_Post);

      procedure Local_Insert_With_Hint is
        new Element_Keys.Generic_Unconditional_Insert_With_Hint
          (Insert_Post,
           Insert_Sans_Hint);

      --------------
      -- New_Node --
      --------------

      function New_Node return Node_Access is
         X : Element_Access := new Element_Type'(Src_Node.Element.all);

      begin
         return new Node_Type'(Parent  => null,
                               Left    => null,
                               Right   => null,
                               Color   => Red,
                               Element => X);

      exception
         when others =>
            Free_Element (X);
            raise;
      end New_Node;

   --  Start of processing for Insert_With_Hint

   begin
      Local_Insert_With_Hint
        (Dst_Tree,
         Dst_Hint,
         Src_Node.Element.all,
         Dst_Node);
   end Insert_With_Hint;

   ------------------
   -- Intersection --
   ------------------

   procedure Intersection (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Intersection (Target.Tree, Source.Tree);
   end Intersection;

   function Intersection (Left, Right : Set) return Set is
      Tree : constant Tree_Type :=
               Set_Ops.Intersection (Left.Tree, Right.Tree);
   begin
      return Set'(Controlled with Tree);
   end Intersection;

   --------------
   -- Is_Empty --
   --------------

   function Is_Empty (Container : Set) return Boolean is
   begin
      return Container.Tree.Length = 0;
   end Is_Empty;

   ------------------------
   -- Is_Equal_Node_Node --
   ------------------------

   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
   begin
      return L.Element.all = R.Element.all;
   end Is_Equal_Node_Node;

   -----------------------------
   -- Is_Greater_Element_Node --
   -----------------------------

   function Is_Greater_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean
   is
   begin
      --  e > node same as node < e

      return Right.Element.all < Left;
   end Is_Greater_Element_Node;

   --------------------------
   -- Is_Less_Element_Node --
   --------------------------

   function Is_Less_Element_Node
     (Left  : Element_Type;
      Right : Node_Access) return Boolean
   is
   begin
      return Left < Right.Element.all;
   end Is_Less_Element_Node;

   -----------------------
   -- Is_Less_Node_Node --
   -----------------------

   function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
   begin
      return L.Element.all < R.Element.all;
   end Is_Less_Node_Node;

   ---------------
   -- Is_Subset --
   ---------------

   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
   begin
      return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
   end Is_Subset;

   -------------
   -- Iterate --
   -------------

   procedure Iterate
     (Container : Set;
      Item      : Element_Type;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Iterate is
        new Element_Keys.Generic_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
         Process (Cursor'(Container'Unrestricted_Access, Node));
      end Process_Node;

      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

   --  Start of processing for Iterate

   begin
      B := B + 1;

      begin
         Local_Iterate (T, Item);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Iterate;

   procedure Iterate
     (Container : Set;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Iterate is
        new Tree_Operations.Generic_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
         Process (Cursor'(Container'Unrestricted_Access, Node));
      end Process_Node;

      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

   --  Start of processing for Iterate

   begin
      B := B + 1;

      begin
         Local_Iterate (T);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Iterate;

   function Iterate (Container : Set)
     return Set_Iterator_Interfaces.Reversible_Iterator'Class
   is
      S : constant Set_Access := Container'Unrestricted_Access;
      B : Natural renames S.Tree.Busy;

   begin
      --  The value of the Node component influences the behavior of the First
      --  and Last selector functions of the iterator object. When the Node
      --  component is null (as is the case here), this means the iterator
      --  object was constructed without a start expression. This is a complete
      --  iterator, meaning that the iteration starts from the (logical)
      --  beginning of the sequence of items.

      --  Note: For a forward iterator, Container.First is the beginning, and
      --  for a reverse iterator, Container.Last is the beginning.

      return It : constant Iterator := (Limited_Controlled with S, null) do
         B := B + 1;
      end return;
   end Iterate;

   function Iterate (Container : Set; Start : Cursor)
     return Set_Iterator_Interfaces.Reversible_Iterator'Class
   is
      S : constant Set_Access := Container'Unrestricted_Access;
      B : Natural renames S.Tree.Busy;

   begin
      --  It was formerly the case that when Start = No_Element, the partial
      --  iterator was defined to behave the same as for a complete iterator,
      --  and iterate over the entire sequence of items. However, those
      --  semantics were unintuitive and arguably error-prone (it is too easy
      --  to accidentally create an endless loop), and so they were changed,
      --  per the ARG meeting in Denver on 2011/11. However, there was no
      --  consensus about what positive meaning this corner case should have,
      --  and so it was decided to simply raise an exception. This does imply,
      --  however, that it is not possible to use a partial iterator to specify
      --  an empty sequence of items.

      if Start = No_Element then
         raise Constraint_Error with
           "Start position for iterator equals No_Element";
      end if;

      if Start.Container /= Container'Unrestricted_Access then
         raise Program_Error with
           "Start cursor of Iterate designates wrong set";
      end if;

      pragma Assert (Vet (Container.Tree, Start.Node),
                     "Start cursor of Iterate is bad");

      --  The value of the Node component influences the behavior of the First
      --  and Last selector functions of the iterator object. When the Node
      --  component is non-null (as is the case here), it means that this is a
      --  partial iteration, over a subset of the complete sequence of
      --  items. The iterator object was constructed with a start expression,
      --  indicating the position from which the iteration begins. Note that
      --  the start position has the same value irrespective of whether this is
      --  a forward or reverse iteration.

      return It : constant Iterator :=
                    (Limited_Controlled with S, Start.Node)
      do
         B := B + 1;
      end return;
   end Iterate;

   ----------
   -- Last --
   ----------

   function Last (Container : Set) return Cursor is
   begin
      if Container.Tree.Last = null then
         return No_Element;
      end if;

      return Cursor'(Container'Unrestricted_Access, Container.Tree.Last);
   end Last;

   function Last (Object : Iterator) return Cursor is
   begin
      --  The value of the iterator object's Node component influences the
      --  behavior of the Last (and First) selector function.

      --  When the Node component is null, this means the iterator object was
      --  constructed without a start expression, in which case the (reverse)
      --  iteration starts from the (logical) beginning of the entire sequence
      --  (corresponding to Container.Last, for a reverse iterator).

      --  Otherwise, this is iteration over a partial sequence of items. When
      --  the Node component is non-null, the iterator object was constructed
      --  with a start expression, that specifies the position from which the
      --  (reverse) partial iteration begins.

      if Object.Node = null then
         return Object.Container.Last;
      else
         return Cursor'(Object.Container, Object.Node);
      end if;
   end Last;

   ------------------
   -- Last_Element --
   ------------------

   function Last_Element (Container : Set) return Element_Type is
   begin
      if Container.Tree.Last = null then
         raise Constraint_Error with "set is empty";
      end if;

      pragma Assert (Container.Tree.Last.Element /= null);
      return Container.Tree.Last.Element.all;
   end Last_Element;

   ----------
   -- Left --
   ----------

   function Left (Node : Node_Access) return Node_Access is
   begin
      return Node.Left;
   end Left;

   ------------
   -- Length --
   ------------

   function Length (Container : Set) return Count_Type is
   begin
      return Container.Tree.Length;
   end Length;

   ----------
   -- Move --
   ----------

   procedure Move is
      new Tree_Operations.Generic_Move (Clear);

   procedure Move (Target : in out Set; Source : in out Set) is
   begin
      Move (Target => Target.Tree, Source => Source.Tree);
   end Move;

   ----------
   -- Next --
   ----------

   function Next (Position : Cursor) return Cursor is
   begin
      if Position = No_Element then
         return No_Element;
      end if;

      pragma Assert (Vet (Position.Container.Tree, Position.Node),
                     "bad cursor in Next");

      declare
         Node : constant Node_Access :=
                  Tree_Operations.Next (Position.Node);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Position.Container, Node);
      end;
   end Next;

   procedure Next (Position : in out Cursor) is
   begin
      Position := Next (Position);
   end Next;

   function Next (Object : Iterator; Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      end if;

      if Position.Container /= Object.Container then
         raise Program_Error with
           "Position cursor of Next designates wrong set";
      end if;

      return Next (Position);
   end Next;

   -------------
   -- Overlap --
   -------------

   function Overlap (Left, Right : Set) return Boolean is
   begin
      return Set_Ops.Overlap (Left.Tree, Right.Tree);
   end Overlap;

   ------------
   -- Parent --
   ------------

   function Parent (Node : Node_Access) return Node_Access is
   begin
      return Node.Parent;
   end Parent;

   --------------
   -- Previous --
   --------------

   function Previous (Position : Cursor) return Cursor is
   begin
      if Position = No_Element then
         return No_Element;
      end if;

      pragma Assert (Vet (Position.Container.Tree, Position.Node),
                     "bad cursor in Previous");

      declare
         Node : constant Node_Access :=
                  Tree_Operations.Previous (Position.Node);

      begin
         if Node = null then
            return No_Element;
         end if;

         return Cursor'(Position.Container, Node);
      end;
   end Previous;

   procedure Previous (Position : in out Cursor) is
   begin
      Position := Previous (Position);
   end Previous;

   function Previous (Object : Iterator; Position : Cursor) return Cursor is
   begin
      if Position.Container = null then
         return No_Element;
      end if;

      if Position.Container /= Object.Container then
         raise Program_Error with
           "Position cursor of Previous designates wrong set";
      end if;

      return Previous (Position);
   end Previous;

   -------------------
   -- Query_Element --
   -------------------

   procedure Query_Element
     (Position : Cursor;
      Process  : not null access procedure (Element : Element_Type))
   is
   begin
      if Position.Node = null then
         raise Constraint_Error with "Position cursor equals No_Element";
      end if;

      if Position.Node.Element = null then
         raise Program_Error with "Position cursor is bad";
      end if;

      pragma Assert (Vet (Position.Container.Tree, Position.Node),
                     "bad cursor in Query_Element");

      declare
         T : Tree_Type renames Position.Container.Tree;

         B : Natural renames T.Busy;
         L : Natural renames T.Lock;

      begin
         B := B + 1;
         L := L + 1;

         begin
            Process (Position.Node.Element.all);
         exception
            when others =>
               L := L - 1;
               B := B - 1;
               raise;
         end;

         L := L - 1;
         B := B - 1;
      end;
   end Query_Element;

   ----------
   -- Read --
   ----------

   procedure Read
     (Stream    : not null access Root_Stream_Type'Class;
      Container : out Set)
   is
      function Read_Node
        (Stream : not null access Root_Stream_Type'Class) return Node_Access;
      pragma Inline (Read_Node);

      procedure Read is
         new Tree_Operations.Generic_Read (Clear, Read_Node);

      ---------------
      -- Read_Node --
      ---------------

      function Read_Node
        (Stream : not null access Root_Stream_Type'Class) return Node_Access
      is
         Node : Node_Access := new Node_Type;
      begin
         Node.Element := new Element_Type'(Element_Type'Input (Stream));
         return Node;
      exception
         when others =>
            Free (Node);  --  Note that Free deallocates elem too
            raise;
      end Read_Node;

   --  Start of processing for Read

   begin
      Read (Stream, Container.Tree);
   end Read;

   procedure Read
     (Stream : not null access Root_Stream_Type'Class;
      Item   : out Cursor)
   is
   begin
      raise Program_Error with "attempt to stream set cursor";
   end Read;

   ---------------------
   -- Replace_Element --
   ---------------------

   procedure Replace_Element
     (Tree : in out Tree_Type;
      Node : Node_Access;
      Item : Element_Type)
   is
   begin
      if Item < Node.Element.all
        or else Node.Element.all < Item
      then
         null;
      else
         if Tree.Lock > 0 then
            raise Program_Error with
              "attempt to tamper with elements (set is locked)";
         end if;

         declare
            X : Element_Access := Node.Element;

            pragma Unsuppress (Accessibility_Check);
            --  The element allocator may need an accessibility check in the
            --  case the actual type is class-wide or has access discriminants
            --  (see RM 4.8(10.1) and AI12-0035).
         begin
            Node.Element := new Element_Type'(Item);
            Free_Element (X);
         end;

         return;
      end if;

      Tree_Operations.Delete_Node_Sans_Free (Tree, Node);  -- Checks busy-bit

      Insert_New_Item : declare
         function New_Node return Node_Access;
         pragma Inline (New_Node);

         procedure Insert_Post is
            new Element_Keys.Generic_Insert_Post (New_Node);

         procedure Unconditional_Insert is
            new Element_Keys.Generic_Unconditional_Insert (Insert_Post);

         --------------
         -- New_Node --
         --------------

         function New_Node return Node_Access is
            pragma Unsuppress (Accessibility_Check);
            --  The element allocator may need an accessibility check in the
            --  case the actual type is class-wide or has access discriminants
            --  (see RM 4.8(10.1) and AI12-0035).
         begin
            Node.Element := new Element_Type'(Item);  -- OK if fails
            Node.Color := Red_Black_Trees.Red;
            Node.Parent := null;
            Node.Left := null;
            Node.Right := null;

            return Node;
         end New_Node;

         Result : Node_Access;

         X : Element_Access := Node.Element;

      --  Start of processing for Insert_New_Item

      begin
         Unconditional_Insert
           (Tree => Tree,
            Key  => Item,
            Node => Result);
         pragma Assert (Result = Node);

         Free_Element (X);  -- OK if fails
      end Insert_New_Item;
   end Replace_Element;

   procedure Replace_Element
    (Container : in out Set;
     Position  : Cursor;
     New_Item  : Element_Type)
   is
   begin
      if Position.Node = null then
         raise Constraint_Error with "Position cursor equals No_Element";
      end if;

      if Position.Node.Element = null then
         raise Program_Error with "Position cursor is bad";
      end if;

      if Position.Container /= Container'Unrestricted_Access then
         raise Program_Error with "Position cursor designates wrong set";
      end if;

      pragma Assert (Vet (Container.Tree, Position.Node),
                     "bad cursor in Replace_Element");

      Replace_Element (Container.Tree, Position.Node, New_Item);
   end Replace_Element;

   ---------------------
   -- Reverse_Iterate --
   ---------------------

   procedure Reverse_Iterate
     (Container : Set;
      Item      : Element_Type;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Reverse_Iterate is
        new Element_Keys.Generic_Reverse_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
         Process (Cursor'(Container'Unrestricted_Access, Node));
      end Process_Node;

      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

   --  Start of processing for Reverse_Iterate

   begin
      B := B + 1;

      begin
         Local_Reverse_Iterate (T, Item);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Reverse_Iterate;

   procedure Reverse_Iterate
     (Container : Set;
      Process   : not null access procedure (Position : Cursor))
   is
      procedure Process_Node (Node : Node_Access);
      pragma Inline (Process_Node);

      procedure Local_Reverse_Iterate is
        new Tree_Operations.Generic_Reverse_Iteration (Process_Node);

      ------------------
      -- Process_Node --
      ------------------

      procedure Process_Node (Node : Node_Access) is
      begin
         Process (Cursor'(Container'Unrestricted_Access, Node));
      end Process_Node;

      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
      B : Natural renames T.Busy;

   --  Start of processing for Reverse_Iterate

   begin
      B := B + 1;

      begin
         Local_Reverse_Iterate (T);
      exception
         when others =>
            B := B - 1;
            raise;
      end;

      B := B - 1;
   end Reverse_Iterate;

   -----------
   -- Right --
   -----------

   function Right (Node : Node_Access) return Node_Access is
   begin
      return Node.Right;
   end Right;

   ---------------
   -- Set_Color --
   ---------------

   procedure Set_Color (Node : Node_Access; Color : Color_Type) is
   begin
      Node.Color := Color;
   end Set_Color;

   --------------
   -- Set_Left --
   --------------

   procedure Set_Left (Node : Node_Access; Left : Node_Access) is
   begin
      Node.Left := Left;
   end Set_Left;

   ----------------
   -- Set_Parent --
   ----------------

   procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
   begin
      Node.Parent := Parent;
   end Set_Parent;

   ---------------
   -- Set_Right --
   ---------------

   procedure Set_Right (Node : Node_Access; Right : Node_Access) is
   begin
      Node.Right := Right;
   end Set_Right;

   --------------------------
   -- Symmetric_Difference --
   --------------------------

   procedure Symmetric_Difference (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
   end Symmetric_Difference;

   function Symmetric_Difference (Left, Right : Set) return Set is
      Tree : constant Tree_Type :=
               Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
   begin
      return Set'(Controlled with Tree);
   end Symmetric_Difference;

   ------------
   -- To_Set --
   ------------

   function To_Set (New_Item : Element_Type) return Set is
      Tree : Tree_Type;
      Node : Node_Access;
      pragma Unreferenced (Node);
   begin
      Insert_Sans_Hint (Tree, New_Item, Node);
      return Set'(Controlled with Tree);
   end To_Set;

   -----------
   -- Union --
   -----------

   procedure Union (Target : in out Set; Source : Set) is
   begin
      Set_Ops.Union (Target.Tree, Source.Tree);
   end Union;

   function Union (Left, Right : Set) return Set is
      Tree : constant Tree_Type :=
               Set_Ops.Union (Left.Tree, Right.Tree);
   begin
      return Set'(Controlled with Tree);
   end Union;

   -----------
   -- Write --
   -----------

   procedure Write
     (Stream    : not null access Root_Stream_Type'Class;
      Container : Set)
   is
      procedure Write_Node
        (Stream : not null access Root_Stream_Type'Class;
         Node   : Node_Access);
      pragma Inline (Write_Node);

      procedure Write is
         new Tree_Operations.Generic_Write (Write_Node);

      ----------------
      -- Write_Node --
      ----------------

      procedure Write_Node
        (Stream : not null access Root_Stream_Type'Class;
         Node   : Node_Access)
      is
      begin
         Element_Type'Output (Stream, Node.Element.all);
      end Write_Node;

   --  Start of processing for Write

   begin
      Write (Stream, Container.Tree);
   end Write;

   procedure Write
     (Stream : not null access Root_Stream_Type'Class;
      Item   : Cursor)
   is
   begin
      raise Program_Error with "attempt to stream set cursor";
   end Write;

end Ada.Containers.Indefinite_Ordered_Multisets;