summaryrefslogtreecommitdiff
path: root/gcc/ada/a-tifiio.adb
blob: 9e360386ef952ebc8ea9d9df9bfe8dd99ea0fc5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUNTIME COMPONENTS                          --
--                                                                          --
--                 A D A . T E X T _ I O . F I X E D _ I O                  --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2004 Free Software Foundation, Inc.          --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  Fixed point I/O
--  ---------------

--  The following documents implementation details of the fixed point
--  input/output routines in the GNAT run time. The first part describes
--  general properties of fixed point types as defined by the Ada 95 standard,
--  including the Information Systems Annex.

--  Subsequently these are reduced to implementation constraints and the impact
--  of these constraints on a few possible approaches to I/O are given.
--  Based on this analysis, a specific implementation is selected for use in
--  the GNAT run time. Finally, the chosen algorithm is analyzed numerically in
--  order to provide user-level documentation on limits for range and precision
--  of fixed point types as well as accuracy of input/output conversions.

--  -------------------------------------------
--  - General Properties of Fixed Point Types -
--  -------------------------------------------

--  Operations on fixed point values, other than input and output, are not
--  important for the purposes of this document. Only the set of values that a
--  fixed point type can represent and the input and output operations are
--  significant.

--  Values
--  ------

--  Set set of values of a fixed point type comprise the integral
--  multiples of a number called the small of the type. The small can
--  either be a power of ten, a power of two or (if the implementation
--  allows) an arbitrary strictly positive real value.

--  Implementations need to support fixed-point types with a precision
--  of at least 24 bits, and (in order to comply with the Information
--  Systems Annex) decimal types need to support at least digits 18.
--  For the rest, however, no requirements exist for the minimal small
--  and range that need to be supported.

--  Operations
--  ----------

--  'Image and 'Wide_Image (see RM 3.5(34))

--          These attributes return a decimal real literal best approximating
--          the value (rounded away from zero if halfway between) with a
--          single leading character that is either a minus sign or a space,
--          one or more digits before the decimal point (with no redundant
--          leading zeros), a decimal point, and N digits after the decimal
--          point. For a subtype S, the value of N is S'Aft, the smallest
--          positive integer such that (10**N)*S'Delta is greater or equal to
--          one, see RM 3.5.10(5).

--          For an arbitrary small, this means large number arithmetic needs
--          to be performed.

--  Put (see RM A.10.9(22-26))

--          The requirements for Put add no extra constraints over the image
--          attributes, although it would be nice to be able to output more
--          than S'Aft digits after the decimal point for values of subtype S.

--  'Value and 'Wide_Value attribute (RM 3.5(40-55))

--          Since the input can be given in any base in the range 2..16,
--          accurate conversion to a fixed point number may require
--          arbitrary precision arithmetic if there is no limit on the
--          magnitude of the small of the fixed point type.

--  Get (see RM A.10.9(12-21))

--          The requirements for Get are identical to those of the Value
--          attribute.

--  ------------------------------
--  - Implementation Constraints -
--  ------------------------------

--  The requirements listed above for the input/output operations lead to
--  significant complexity, if no constraints are put on supported smalls.

--  Implementation Strategies
--  -------------------------

--  * Float arithmetic
--  * Arbitrary-precision integer arithmetic
--  * Fixed-precision integer arithmetic

--  Although it seems convenient to convert fixed point numbers to floating-
--  point and then print them, this leads to a number of restrictions.
--  The first one is precision. The widest floating-point type generally
--  available has 53 bits of mantissa. This means that Fine_Delta cannot
--  be less than 2.0**(-53).

--  In GNAT, Fine_Delta is 2.0**(-63), and Duration for example is a
--  64-bit type. It would still be possible to use multi-precision
--  floating-point to perform calculations using longer mantissas,
--  but this is a much harder approach.

--  The base conversions needed for input and output of (non-decimal)
--  fixed point types can be seen as pairs of integer multiplications
--  and divisions.

--  Arbitrary-precision integer arithmetic would be suitable for the job
--  at hand, but has the draw-back that it is very heavy implementation-wise.
--  Especially in embedded systems, where fixed point types are often used,
--  it may not be desirable to require large amounts of storage and time
--  for fixed I/O operations.

--  Fixed-precision integer arithmetic has the advantage of simplicity and
--  speed. For the most common fixed point types this would be a perfect
--  solution. The downside however may be a too limited set of acceptable
--  fixed point types.

--  Extra Precision
--  ---------------

--  Using a scaled divide which truncates and returns a remainder R,
--  another E trailing digits can be calculated by computing the value
--  (R * (10.0**E)) / Z using another scaled divide. This procedure
--  can be repeated to compute an arbitrary number of digits in linear
--  time and storage. The last scaled divide should be rounded, with
--  a possible carry propagating to the more significant digits, to
--  ensure correct rounding of the unit in the last place.

--  An extension of this technique is to limit the value of Q to 9 decimal
--  digits, since 32-bit integers can be much more efficient than 64-bit
--  integers to output.

with Interfaces;                        use Interfaces;
with System.Arith_64;                   use System.Arith_64;
with System.Img_Real;                   use System.Img_Real;
with Ada.Text_IO;                       use Ada.Text_IO;
with Ada.Text_IO.Float_Aux;
with Ada.Text_IO.Generic_Aux;

package body Ada.Text_IO.Fixed_IO is

   --  Note: we still use the floating-point I/O routines for input of
   --  ordinary fixed-point and output using exponent format. This will
   --  result in inaccuracies for fixed point types with a small that is
   --  not a power of two, and for types that require more precision than
   --  is available in Long_Long_Float.

   package Aux renames Ada.Text_IO.Float_Aux;

   Extra_Layout_Space : constant Field := 5 + Num'Fore;
   --  Extra space that may be needed for output of sign, decimal point,
   --  exponent indication and mandatory decimals after and before the
   --  decimal point. A string with length

   --    Fore + Aft + Exp + Extra_Layout_Space

   --  is always long enough for formatting any fixed point number.

   --  Implementation of Put routines

   --  The following section describes a specific implementation choice for
   --  performing base conversions needed for output of values of a fixed
   --  point type T with small T'Small. The goal is to be able to output
   --  all values of types with a precision of 64 bits and a delta of at
   --  least 2.0**(-63), as these are current GNAT limitations already.

   --  The chosen algorithm uses fixed precision integer arithmetic for
   --  reasons of simplicity and efficiency. It is important to understand
   --  in what ways the most simple and accurate approach to fixed point I/O
   --  is limiting, before considering more complicated schemes.

   --  Without loss of generality assume T has a range (-2.0**63) * T'Small
   --  .. (2.0**63 - 1) * T'Small, and is output with Aft digits after the
   --  decimal point and T'Fore - 1 before. If T'Small is integer, or
   --  1.0 / T'Small is integer, let S = T'Small and E = 0. For other T'Small,
   --  let S and E be integers such that S / 10**E best approximates T'Small
   --  and S is in the range 10**17 .. 10**18 - 1. The extra decimal scaling
   --  factor 10**E can be trivially handled during final output, by adjusting
   --  the decimal point or exponent.

   --  Convert a value X * S of type T to a 64-bit integer value Q equal
   --  to 10.0**D * (X * S) rounded to the nearest integer.
   --  This conversion is a scaled integer divide of the form

   --     Q := (X * Y) / Z,

   --  where all variables are 64-bit signed integers using 2's complement,
   --  and both the multiplication and division are done using full
   --  intermediate precision. The final decimal value to be output is

   --     Q * 10**(E-D)

   --  This value can be written to the output file or to the result string
   --  according to the format described in RM A.3.10. The details of this
   --  operation are omitted here.

   --  A 64-bit value can contain all integers with 18 decimal digits, but
   --  not all with 19 decimal digits. If the total number of requested output
   --  digits (Fore - 1) + Aft is greater than 18, for purposes of the
   --  conversion Aft is adjusted to 18 - (Fore - 1). In that case, or
   --  when Fore > 19, trailing zeros can complete the output after writing
   --  the first 18 significant digits, or the technique described in the
   --  next section can be used.

   --  The final expression for D is

   --     D :=  Integer'Max (-18, Integer'Min (Aft, 18 - (Fore - 1)));

   --  For Y and Z the following expressions can be derived:

   --     Q / (10.0**D) = X * S

   --     Q = X * S * (10.0**D) = (X * Y) / Z

   --     S * 10.0**D = Y / Z;

   --  If S is an integer greater than or equal to one, then Fore must be at
   --  least 20 in order to print T'First, which is at most -2.0**63.
   --  This means D < 0, so use

   --    (1)   Y = -S and Z = -10**(-D).

   --  If 1.0 / S is an integer greater than one, use

   --    (2)   Y = -10**D and Z = -(1.0 / S), for D >= 0

   --  or

   --    (3)   Y = 1 and Z = (1.0 / S) * 10**(-D), for D < 0

   --  Negative values are used for nominator Y and denominator Z, so that S
   --  can have a maximum value of 2.0**63 and a minimum of 2.0**(-63).
   --  For Z in -1 .. -9, Fore will still be 20, and D will be negative, as
   --  (-2.0**63) / -9 is greater than 10**18. In these cases there is room
   --  in the denominator for the extra decimal scaling required, so case (3)
   --  will not overflow.

   pragma Assert (System.Fine_Delta >= 2.0**(-63));
   pragma Assert (Num'Small in 2.0**(-63) .. 2.0**63);
   pragma Assert (Num'Fore <= 37);
   --  These assertions need to be relaxed to allow for a Small of
   --  2.0**(-64) at least, since there is an ACATS test for this ???

   Max_Digits : constant := 18;
   --  Maximum number of decimal digits that can be represented in a
   --  64-bit signed number, see above

   --  The constants E0 .. E5 implement a binary search for the appropriate
   --  power of ten to scale the small so that it has one digit before the
   --  decimal point.

   subtype Int is Integer;
   E0 : constant Int := -20 * Boolean'Pos (Num'Small >= 1.0E1);
   E1 : constant Int := E0 + 10 * Boolean'Pos (Num'Small * 10.0**E0 < 1.0E-10);
   E2 : constant Int := E1 +  5 * Boolean'Pos (Num'Small * 10.0**E1 < 1.0E-5);
   E3 : constant Int := E2 +  3 * Boolean'Pos (Num'Small * 10.0**E2 < 1.0E-3);
   E4 : constant Int := E3 +  2 * Boolean'Pos (Num'Small * 10.0**E3 < 1.0E-1);
   E5 : constant Int := E4 +  1 * Boolean'Pos (Num'Small * 10.0**E4 < 1.0E-0);

   Scale : constant Integer := E5;

   pragma Assert (Num'Small * 10.0**Scale >= 1.0
                   and then Num'Small * 10.0**Scale < 10.0);

   Exact : constant Boolean :=
                Float'Floor (Num'Small) = Float'Ceiling (Num'Small)
            or Float'Floor (1.0 / Num'Small) = Float'Ceiling (1.0 / Num'Small)
            or Num'Small >= 10.0**Max_Digits;
   --  True iff a numerator and denominator can be calculated such that
   --  their ratio exactly represents the small of Num

   --  Local Subprograms

   procedure Put
     (To   : out String;
      Last : out Natural;
      Item : Num;
      Fore : Field;
      Aft  : Field;
      Exp  : Field);
   --  Actual output function, used internally by all other Put routines

   ---------
   -- Get --
   ---------

   procedure Get
     (File  : in File_Type;
      Item  : out Num;
      Width : in Field := 0)
   is
      pragma Unsuppress (Range_Check);

   begin
      Aux.Get (File, Long_Long_Float (Item), Width);

   exception
      when Constraint_Error => raise Data_Error;
   end Get;

   procedure Get
     (Item  : out Num;
      Width : in Field := 0)
   is
      pragma Unsuppress (Range_Check);

   begin
      Aux.Get (Current_In, Long_Long_Float (Item), Width);

   exception
      when Constraint_Error => raise Data_Error;
   end Get;

   procedure Get
     (From : in String;
      Item : out Num;
      Last : out Positive)
   is
      pragma Unsuppress (Range_Check);

   begin
      Aux.Gets (From, Long_Long_Float (Item), Last);

   exception
      when Constraint_Error => raise Data_Error;
   end Get;

   ---------
   -- Put --
   ---------

   procedure Put
     (File : in File_Type;
      Item : in Num;
      Fore : in Field := Default_Fore;
      Aft  : in Field := Default_Aft;
      Exp  : in Field := Default_Exp)
   is
      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
      Last : Natural;
   begin
      Put (S, Last, Item, Fore, Aft, Exp);
      Generic_Aux.Put_Item (File, S (1 .. Last));
   end Put;

   procedure Put
     (Item : in Num;
      Fore : in Field := Default_Fore;
      Aft  : in Field := Default_Aft;
      Exp  : in Field := Default_Exp)
   is
      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
      Last : Natural;
   begin
      Put (S, Last, Item, Fore, Aft, Exp);
      Generic_Aux.Put_Item (Text_IO.Current_Out, S (1 .. Last));
   end Put;

   procedure Put
     (To   : out String;
      Item : in Num;
      Aft  : in Field := Default_Aft;
      Exp  : in Field := Default_Exp)
   is
      Fore : constant Integer := To'Length
                                - 1                      -- Decimal point
                                - Field'Max (1, Aft)     -- Decimal part
                                - Boolean'Pos (Exp /= 0) -- Exponent indicator
                                - Exp;                   -- Exponent
      Last : Natural;

   begin
      if Fore not in Field'Range then
         raise Layout_Error;
      end if;

      Put (To, Last, Item, Fore, Aft, Exp);

      if Last /= To'Last then
         raise Layout_Error;
      end if;
   end Put;

   procedure Put
     (To   : out String;
      Last : out Natural;
      Item : Num;
      Fore : Field;
      Aft  : Field;
      Exp  : Field)
   is
      subtype Digit is Int64 range 0 .. 9;
      X     : constant Int64   := Int64'Integer_Value (Item);
      A     : constant Field   := Field'Max (Aft, 1);
      Neg   : constant Boolean := (Item < 0.0);
      Pos   : Integer;  -- Next digit X has value X * 10.0**Pos;

      Y, Z : Int64;
      E : constant Integer := Boolean'Pos (not Exact)
                                *  (Max_Digits - 1 + Scale);
      D : constant Integer := Boolean'Pos (Exact)
                                * Integer'Min (A, Max_Digits - (Num'Fore - 1))
                            + Boolean'Pos (not Exact)
                                * (Scale - 1);

      procedure Put_Character (C : Character);
      pragma Inline (Put_Character);
      --  Add C to the output string To, updating Last

      procedure Put_Digit (X : Digit);
      --  Add digit X to the output string (going from left to right),
      --  updating Last and Pos, and inserting the sign, leading zeroes
      --  or a decimal point when necessary. After outputting the first
      --  digit, Pos must not be changed outside Put_Digit anymore

      procedure Put_Int64 (X : Int64; Scale : Integer);
      --  Output the decimal number X * 10**Scale

      procedure Put_Scaled
        (X, Y, Z : Int64;
         A       : Field;
         E       : Integer);
      --  Output the decimal number (X * Y / Z) * 10**E, producing A digits
      --  after the decimal point and rounding the final digit. The value
      --  X * Y / Z is computed with full precision, but must be in the
      --  range of Int64.

      -------------------
      -- Put_Character --
      -------------------

      procedure Put_Character (C : Character) is
      begin
         Last := Last + 1;
         To (Last) := C;
      end Put_Character;

      ---------------
      -- Put_Digit --
      ---------------

      procedure Put_Digit (X : Digit) is
         Digs : constant array (Digit) of Character := "0123456789";
      begin
         if Last = 0 then
            if X /= 0 or Pos <= 0 then
               --  Before outputting first digit, include leading space,
               --  posible minus sign and, if the first digit is fractional,
               --  decimal seperator and leading zeros.

               --  The Fore part has Pos + 1 + Boolean'Pos (Neg) characters,
               --  if Pos >= 0 and otherwise has a single zero digit plus minus
               --  sign if negative. Add leading space if necessary.

               for J in Integer'Max (0, Pos) + 2 + Boolean'Pos (Neg) .. Fore
               loop
                  Put_Character (' ');
               end loop;

               --  Output minus sign, if number is negative

               if Neg then
                  Put_Character ('-');
               end if;

               --  If starting with fractional digit, output leading zeros

               if Pos < 0 then
                  Put_Character ('0');
                  Put_Character ('.');

                  for J in Pos .. -2 loop
                     Put_Character ('0');
                  end loop;
               end if;

               Put_Character (Digs (X));
            end if;

         else
            --  This is not the first digit to be output, so the only
            --  special handling is that for the decimal point

            if Pos = -1 then
               Put_Character ('.');
            end if;

            Put_Character (Digs (X));
         end if;

         Pos := Pos - 1;
      end Put_Digit;

      ---------------
      -- Put_Int64 --
      ---------------

      procedure Put_Int64 (X : Int64; Scale : Integer) is
      begin
         if X = 0 then
            return;
         end if;

         Pos := Scale;

         if X not in -9 .. 9 then
            Put_Int64 (X / 10, Scale + 1);
         end if;

         Put_Digit (abs (X rem 10));
      end Put_Int64;

      ----------------
      -- Put_Scaled --
      ----------------

      procedure Put_Scaled
        (X, Y, Z : Int64;
         A       : Field;
         E       : Integer)
      is
         N  : constant Natural := (A + Max_Digits - 1) / Max_Digits + 1;
         Q  : array (1 .. N) of Int64 := (others => 0);

         XX : Int64 := X;
         YY : Int64 := Y;
         AA : Field := A;

      begin
         for J in Q'Range loop
            exit when XX = 0;

            Scaled_Divide (XX, YY, Z, Q (J), XX, Round => AA = 0);

            --  As the last block of digits is rounded, a carry may have to
            --  be propagated to the more significant digits. Since the last
            --  block may have less than Max_Digits, the test for this block
            --  is specialized.

            --  The absolute value of the left-most digit block may equal
            --  10*Max_Digits, as no carry can be propagated from there.
            --  The final output routines need to be prepared to handle
            --  this specific case.

            if (Q (J) = YY or -Q (J) = YY) and then J > Q'First then
               if Q (J) < 0 then
                  Q (J - 1) := Q (J - 1) + 1;
               else
                  Q (J - 1) := Q (J - 1) - 1;
               end if;

               Q (J) := 0;

               Propagate_Carry :
               for J in reverse Q'First + 1 .. Q'Last loop
                  if Q (J) >= 10**Max_Digits then
                     Q (J - 1) := Q (J - 1) + 1;
                     Q (J) := Q (J) - 10**Max_Digits;

                  elsif Q (J) <= -10**Max_Digits then
                     Q (J - 1) := Q (J - 1) - 1;
                     Q (J) := Q (J) + 10**Max_Digits;
                  end if;
               end loop Propagate_Carry;
            end if;

            YY := -10**Integer'Min (Max_Digits, AA);
            AA := AA - Integer'Min (Max_Digits, AA);
         end loop;

         for J in Q'First .. Q'Last - 1 loop
            Put_Int64 (Q (J), E - (J - Q'First) * Max_Digits);
         end loop;

         Put_Int64 (Q (Q'Last), E - A);
      end Put_Scaled;

   --  Start of processing for Put

   begin
      Last := To'First - 1;

      if Exp /= 0 then

         --  With the Exp format, it is not known how many output digits to
         --  generate, as leading zeros must be ignored. Computing too many
         --  digits and then truncating the output will not give the closest
         --  output, it is necessary to round at the correct digit.

         --  The general approach is as follows: as long as no digits have
         --  been generated, compute the Aft next digits (without rounding).
         --  Once a non-zero digit is generated, determine the exact number
         --  of digits remaining and compute them with rounding.
         --  Since a large number of iterations might be necessary in case
         --  of Aft = 1, the following optimization would be desirable.
         --  Count the number Z of leading zero bits in the integer
         --  representation of X, and start with producing
         --  Aft + Z * 1000 / 3322 digits in the first scaled division.

         --  However, the floating-point routines are still used now ???

         System.Img_Real.Set_Image_Real (Long_Long_Float (Item), To, Last,
            Fore, Aft, Exp);
         return;
      end if;

      if Exact then
         Y := Int64'Min (Int64 (-Num'Small), -1) * 10**Integer'Max (0, D);
         Z := Int64'Min (Int64 (-1.0 / Num'Small), -1)
                                                 * 10**Integer'Max (0, -D);
      else
         Y := Int64 (-Num'Small * 10.0**E);
         Z := -10**Max_Digits;
      end if;

      Put_Scaled (X, Y, Z, A - D, -D);

      --  If only zero digits encountered, unit digit has not been output yet

      if Last < To'First then
         Pos := 0;
      end if;

      --  Always output digits up to the first one after the decimal point

      while Pos >= -A loop
         Put_Digit (0);
      end loop;
   end Put;

end Ada.Text_IO.Fixed_IO;