1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- I N L I N E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Fname.UF; use Fname.UF;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Output; use Output;
with Sem_Aux; use Sem_Aux;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Uname; use Uname;
with Tbuild; use Tbuild;
package body Inline is
Check_Inlining_Restrictions : constant Boolean := True;
-- In the following cases the frontend rejects inlining because they
-- are not handled well by the backend. This variable facilitates
-- disabling these restrictions to evaluate future versions of the
-- GCC backend in which some of the restrictions may be supported.
--
-- - subprograms that have:
-- - nested subprograms
-- - instantiations
-- - package declarations
-- - task or protected object declarations
-- - some of the following statements:
-- - abort
-- - asynchronous-select
-- - conditional-entry-call
-- - delay-relative
-- - delay-until
-- - selective-accept
-- - timed-entry-call
Inlined_Calls : Elist_Id;
-- List of frontend inlined calls
Backend_Calls : Elist_Id;
-- List of inline calls passed to the backend
Backend_Inlined_Subps : Elist_Id;
-- List of subprograms inlined by the backend
Backend_Not_Inlined_Subps : Elist_Id;
-- List of subprograms that cannot be inlined by the backend
--------------------
-- Inlined Bodies --
--------------------
-- Inlined functions are actually placed in line by the backend if the
-- corresponding bodies are available (i.e. compiled). Whenever we find
-- a call to an inlined subprogram, we add the name of the enclosing
-- compilation unit to a worklist. After all compilation, and after
-- expansion of generic bodies, we traverse the list of pending bodies
-- and compile them as well.
package Inlined_Bodies is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Inlined_Bodies_Initial,
Table_Increment => Alloc.Inlined_Bodies_Increment,
Table_Name => "Inlined_Bodies");
-----------------------
-- Inline Processing --
-----------------------
-- For each call to an inlined subprogram, we make entries in a table
-- that stores caller and callee, and indicates the call direction from
-- one to the other. We also record the compilation unit that contains
-- the callee. After analyzing the bodies of all such compilation units,
-- we compute the transitive closure of inlined subprograms called from
-- the main compilation unit and make it available to the code generator
-- in no particular order, thus allowing cycles in the call graph.
Last_Inlined : Entity_Id := Empty;
-- For each entry in the table we keep a list of successors in topological
-- order, i.e. callers of the current subprogram.
type Subp_Index is new Nat;
No_Subp : constant Subp_Index := 0;
-- The subprogram entities are hashed into the Inlined table
Num_Hash_Headers : constant := 512;
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
of Subp_Index;
type Succ_Index is new Nat;
No_Succ : constant Succ_Index := 0;
type Succ_Info is record
Subp : Subp_Index;
Next : Succ_Index;
end record;
-- The following table stores list elements for the successor lists. These
-- lists cannot be chained directly through entries in the Inlined table,
-- because a given subprogram can appear in several such lists.
package Successors is new Table.Table (
Table_Component_Type => Succ_Info,
Table_Index_Type => Succ_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Successors_Initial,
Table_Increment => Alloc.Successors_Increment,
Table_Name => "Successors");
type Subp_Info is record
Name : Entity_Id := Empty;
Next : Subp_Index := No_Subp;
First_Succ : Succ_Index := No_Succ;
Listed : Boolean := False;
Main_Call : Boolean := False;
Processed : Boolean := False;
end record;
package Inlined is new Table.Table (
Table_Component_Type => Subp_Info,
Table_Index_Type => Subp_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Inlined");
-----------------------
-- Local Subprograms --
-----------------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
-- Make two entries in Inlined table, for an inlined subprogram being
-- called, and for the inlined subprogram that contains the call. If
-- the call is in the main compilation unit, Caller is Empty.
procedure Add_Inlined_Subprogram (Index : Subp_Index);
-- Add the subprogram to the list of inlined subprogram for the unit
function Add_Subp (E : Entity_Id) return Subp_Index;
-- Make entry in Inlined table for subprogram E, or return table index
-- that already holds E.
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
pragma Inline (Get_Code_Unit_Entity);
-- Return the entity node for the unit containing E. Always return the spec
-- for a package.
function Has_Initialized_Type (E : Entity_Id) return Boolean;
-- If a candidate for inlining contains type declarations for types with
-- non-trivial initialization procedures, they are not worth inlining.
function Has_Single_Return (N : Node_Id) return Boolean;
-- In general we cannot inline functions that return unconstrained type.
-- However, we can handle such functions if all return statements return a
-- local variable that is the only declaration in the body of the function.
-- In that case the call can be replaced by that local variable as is done
-- for other inlined calls.
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
-- Return True if E is in the main unit or its spec or in a subunit
function Is_Nested (E : Entity_Id) return Boolean;
-- If the function is nested inside some other function, it will always
-- be compiled if that function is, so don't add it to the inline list.
-- We cannot compile a nested function outside the scope of the containing
-- function anyway. This is also the case if the function is defined in a
-- task body or within an entry (for example, an initialization procedure).
procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
-- Remove all aspects and/or pragmas that have no meaning in inlined body
-- Body_Decl. The analysis of these items is performed on the non-inlined
-- body. The items currently removed are:
-- Contract_Cases
-- Global
-- Depends
-- Postcondition
-- Precondition
-- Refined_Global
-- Refined_Depends
-- Refined_Post
-- Test_Case
-- Unmodified
-- Unreferenced
------------------------------
-- Deferred Cleanup Actions --
------------------------------
-- The cleanup actions for scopes that contain instantiations is delayed
-- until after expansion of those instantiations, because they may contain
-- finalizable objects or tasks that affect the cleanup code. A scope
-- that contains instantiations only needs to be finalized once, even
-- if it contains more than one instance. We keep a list of scopes
-- that must still be finalized, and call cleanup_actions after all
-- the instantiations have been completed.
To_Clean : Elist_Id;
procedure Add_Scope_To_Clean (Inst : Entity_Id);
-- Build set of scopes on which cleanup actions must be performed
procedure Cleanup_Scopes;
-- Complete cleanup actions on scopes that need it
--------------
-- Add_Call --
--------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
P1 : constant Subp_Index := Add_Subp (Called);
P2 : Subp_Index;
J : Succ_Index;
begin
if Present (Caller) then
P2 := Add_Subp (Caller);
-- Add P1 to the list of successors of P2, if not already there.
-- Note that P2 may contain more than one call to P1, and only
-- one needs to be recorded.
J := Inlined.Table (P2).First_Succ;
while J /= No_Succ loop
if Successors.Table (J).Subp = P1 then
return;
end if;
J := Successors.Table (J).Next;
end loop;
-- On exit, make a successor entry for P1
Successors.Increment_Last;
Successors.Table (Successors.Last).Subp := P1;
Successors.Table (Successors.Last).Next :=
Inlined.Table (P2).First_Succ;
Inlined.Table (P2).First_Succ := Successors.Last;
else
Inlined.Table (P1).Main_Call := True;
end if;
end Add_Call;
----------------------
-- Add_Inlined_Body --
----------------------
procedure Add_Inlined_Body (E : Entity_Id) is
type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
-- Level of inlining for the call: Dont_Inline means no inlining,
-- Inline_Call means that only the call is considered for inlining,
-- Inline_Package means that the call is considered for inlining and
-- its package compiled and scanned for more inlining opportunities.
function Must_Inline return Inline_Level_Type;
-- Inlining is only done if the call statement N is in the main unit,
-- or within the body of another inlined subprogram.
-----------------
-- Must_Inline --
-----------------
function Must_Inline return Inline_Level_Type is
Scop : Entity_Id;
Comp : Node_Id;
begin
-- Check if call is in main unit
Scop := Current_Scope;
-- Do not try to inline if scope is standard. This could happen, for
-- example, for a call to Add_Global_Declaration, and it causes
-- trouble to try to inline at this level.
if Scop = Standard_Standard then
return Dont_Inline;
end if;
-- Otherwise lookup scope stack to outer scope
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
Scop := Scope (Scop);
end loop;
Comp := Parent (Scop);
while Nkind (Comp) /= N_Compilation_Unit loop
Comp := Parent (Comp);
end loop;
-- If the call is in the main unit, inline the call and compile the
-- package of the subprogram to find more calls to be inlined.
if Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit))
then
Add_Call (E);
return Inline_Package;
end if;
-- The call is not in the main unit. See if it is in some inlined
-- subprogram. If so, inline the call and, if the inlining level is
-- set to 1, stop there; otherwise also compile the package as above.
Scop := Current_Scope;
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
if Is_Overloadable (Scop) and then Is_Inlined (Scop) then
Add_Call (E, Scop);
if Inline_Level = 1 then
return Inline_Call;
else
return Inline_Package;
end if;
end if;
Scop := Scope (Scop);
end loop;
return Dont_Inline;
end Must_Inline;
Level : Inline_Level_Type;
-- Start of processing for Add_Inlined_Body
begin
-- Find unit containing E, and add to list of inlined bodies if needed.
-- If the body is already present, no need to load any other unit. This
-- is the case for an initialization procedure, which appears in the
-- package declaration that contains the type. It is also the case if
-- the body has already been analyzed. Finally, if the unit enclosing
-- E is an instance, the instance body will be analyzed in any case,
-- and there is no need to add the enclosing unit (whose body might not
-- be available).
-- Library-level functions must be handled specially, because there is
-- no enclosing package to retrieve. In this case, it is the body of
-- the function that will have to be loaded.
if Is_Abstract_Subprogram (E)
or else Is_Nested (E)
or else Convention (E) = Convention_Protected
then
return;
end if;
Level := Must_Inline;
if Level /= Dont_Inline then
declare
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
begin
if Pack = E then
-- Library-level inlined function. Add function itself to
-- list of needed units.
Set_Is_Called (E);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
elsif Ekind (Pack) = E_Package then
Set_Is_Called (E);
if Is_Generic_Instance (Pack) then
null;
-- Do not inline the package if the subprogram is an init proc
-- or other internally generated subprogram, because in that
-- case the subprogram body appears in the same unit that
-- declares the type, and that body is visible to the back end.
-- Do not inline it either if it is in the main unit.
elsif Level = Inline_Package
and then not Is_Inlined (Pack)
and then not Is_Internal (E)
and then not In_Main_Unit_Or_Subunit (Pack)
then
Set_Is_Inlined (Pack);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
-- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
-- calls if the back-end takes care of inlining the call.
elsif Level = Inline_Call
and then Has_Pragma_Inline_Always (E)
and then Back_End_Inlining
then
Set_Is_Inlined (Pack);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
end if;
end if;
end;
end if;
end Add_Inlined_Body;
----------------------------
-- Add_Inlined_Subprogram --
----------------------------
procedure Add_Inlined_Subprogram (Index : Subp_Index) is
E : constant Entity_Id := Inlined.Table (Index).Name;
Decl : constant Node_Id := Parent (Declaration_Node (E));
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
-- Append Subp to the list of subprograms inlined by the backend
procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
-- Append Subp to the list of subprograms that cannot be inlined by
-- the backend.
-----------------------------------------
-- Register_Backend_Inlined_Subprogram --
-----------------------------------------
procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
begin
Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
end Register_Backend_Inlined_Subprogram;
---------------------------------------------
-- Register_Backend_Not_Inlined_Subprogram --
---------------------------------------------
procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
begin
Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
end Register_Backend_Not_Inlined_Subprogram;
-- Start of processing for Add_Inlined_Subprogram
begin
-- If the subprogram is to be inlined, and if its unit is known to be
-- inlined or is an instance whose body will be analyzed anyway or the
-- subprogram was generated as a body by the compiler (for example an
-- initialization procedure) or its declaration was provided along with
-- the body (for example an expression function), and if it is declared
-- at the library level not in the main unit, and if it can be inlined
-- by the back-end, then insert it in the list of inlined subprograms.
if Is_Inlined (E)
and then (Is_Inlined (Pack)
or else Is_Generic_Instance (Pack)
or else Nkind (Decl) = N_Subprogram_Body
or else Present (Corresponding_Body (Decl)))
and then not In_Main_Unit_Or_Subunit (E)
and then not Is_Nested (E)
and then not Has_Initialized_Type (E)
then
Register_Backend_Inlined_Subprogram (E);
if No (Last_Inlined) then
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
else
Set_Next_Inlined_Subprogram (Last_Inlined, E);
end if;
Last_Inlined := E;
else
Register_Backend_Not_Inlined_Subprogram (E);
end if;
Inlined.Table (Index).Listed := True;
end Add_Inlined_Subprogram;
------------------------
-- Add_Scope_To_Clean --
------------------------
procedure Add_Scope_To_Clean (Inst : Entity_Id) is
Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
Elmt : Elmt_Id;
begin
-- If the instance appears in a library-level package declaration,
-- all finalization is global, and nothing needs doing here.
if Scop = Standard_Standard then
return;
end if;
-- If the instance is within a generic unit, no finalization code
-- can be generated. Note that at this point all bodies have been
-- analyzed, and the scope stack itself is not present, and the flag
-- Inside_A_Generic is not set.
declare
S : Entity_Id;
begin
S := Scope (Inst);
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Unit (S) then
return;
end if;
S := Scope (S);
end loop;
end;
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
if Node (Elmt) = Scop then
return;
end if;
Elmt := Next_Elmt (Elmt);
end loop;
Append_Elmt (Scop, To_Clean);
end Add_Scope_To_Clean;
--------------
-- Add_Subp --
--------------
function Add_Subp (E : Entity_Id) return Subp_Index is
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
J : Subp_Index;
procedure New_Entry;
-- Initialize entry in Inlined table
procedure New_Entry is
begin
Inlined.Increment_Last;
Inlined.Table (Inlined.Last).Name := E;
Inlined.Table (Inlined.Last).Next := No_Subp;
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
Inlined.Table (Inlined.Last).Listed := False;
Inlined.Table (Inlined.Last).Main_Call := False;
Inlined.Table (Inlined.Last).Processed := False;
end New_Entry;
-- Start of processing for Add_Subp
begin
if Hash_Headers (Index) = No_Subp then
New_Entry;
Hash_Headers (Index) := Inlined.Last;
return Inlined.Last;
else
J := Hash_Headers (Index);
while J /= No_Subp loop
if Inlined.Table (J).Name = E then
return J;
else
Index := J;
J := Inlined.Table (J).Next;
end if;
end loop;
-- On exit, subprogram was not found. Enter in table. Index is
-- the current last entry on the hash chain.
New_Entry;
Inlined.Table (Index).Next := Inlined.Last;
return Inlined.Last;
end if;
end Add_Subp;
----------------------------
-- Analyze_Inlined_Bodies --
----------------------------
procedure Analyze_Inlined_Bodies is
Comp_Unit : Node_Id;
J : Int;
Pack : Entity_Id;
Subp : Subp_Index;
S : Succ_Index;
type Pending_Index is new Nat;
package Pending_Inlined is new Table.Table (
Table_Component_Type => Subp_Index,
Table_Index_Type => Pending_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Pending_Inlined");
-- The workpile used to compute the transitive closure
function Is_Ancestor_Of_Main
(U_Name : Entity_Id;
Nam : Node_Id) return Boolean;
-- Determine whether the unit whose body is loaded is an ancestor of
-- the main unit, and has a with_clause on it. The body is not
-- analyzed yet, so the check is purely lexical: the name of the with
-- clause is a selected component, and names of ancestors must match.
-------------------------
-- Is_Ancestor_Of_Main --
-------------------------
function Is_Ancestor_Of_Main
(U_Name : Entity_Id;
Nam : Node_Id) return Boolean
is
Pref : Node_Id;
begin
if Nkind (Nam) /= N_Selected_Component then
return False;
else
if Chars (Selector_Name (Nam)) /=
Chars (Cunit_Entity (Main_Unit))
then
return False;
end if;
Pref := Prefix (Nam);
if Nkind (Pref) = N_Identifier then
-- Par is an ancestor of Par.Child.
return Chars (Pref) = Chars (U_Name);
elsif Nkind (Pref) = N_Selected_Component
and then Chars (Selector_Name (Pref)) = Chars (U_Name)
then
-- Par.Child is an ancestor of Par.Child.Grand.
return True; -- should check that ancestor match
else
-- A is an ancestor of A.B.C if it is an ancestor of A.B
return Is_Ancestor_Of_Main (U_Name, Pref);
end if;
end if;
end Is_Ancestor_Of_Main;
-- Start of processing for Analyze_Inlined_Bodies
begin
if Serious_Errors_Detected = 0 then
Push_Scope (Standard_Standard);
J := 0;
while J <= Inlined_Bodies.Last
and then Serious_Errors_Detected = 0
loop
Pack := Inlined_Bodies.Table (J);
while Present (Pack)
and then Scope (Pack) /= Standard_Standard
and then not Is_Child_Unit (Pack)
loop
Pack := Scope (Pack);
end loop;
Comp_Unit := Parent (Pack);
while Present (Comp_Unit)
and then Nkind (Comp_Unit) /= N_Compilation_Unit
loop
Comp_Unit := Parent (Comp_Unit);
end loop;
-- Load the body, unless it is the main unit, or is an instance
-- whose body has already been analyzed.
if Present (Comp_Unit)
and then Comp_Unit /= Cunit (Main_Unit)
and then Body_Required (Comp_Unit)
and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
or else No (Corresponding_Body (Unit (Comp_Unit))))
then
declare
Bname : constant Unit_Name_Type :=
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
OK : Boolean;
begin
if not Is_Loaded (Bname) then
Style_Check := False;
Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
if not OK then
-- Warn that a body was not available for inlining
-- by the back-end.
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("one or more inlined subprograms accessed in $!??",
Comp_Unit);
Error_Msg_File_1 :=
Get_File_Name (Bname, Subunit => False);
Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
else
-- If the package to be inlined is an ancestor unit of
-- the main unit, and it has a semantic dependence on
-- it, the inlining cannot take place to prevent an
-- elaboration circularity. The desired body is not
-- analyzed yet, to prevent the completion of Taft
-- amendment types that would lead to elaboration
-- circularities in gigi.
declare
U_Id : constant Entity_Id :=
Defining_Entity (Unit (Comp_Unit));
Body_Unit : constant Node_Id :=
Library_Unit (Comp_Unit);
Item : Node_Id;
begin
Item := First (Context_Items (Body_Unit));
while Present (Item) loop
if Nkind (Item) = N_With_Clause
and then
Is_Ancestor_Of_Main (U_Id, Name (Item))
then
Set_Is_Inlined (U_Id, False);
exit;
end if;
Next (Item);
end loop;
-- If no suspicious with_clauses, analyze the body.
if Is_Inlined (U_Id) then
Semantics (Body_Unit);
end if;
end;
end if;
end if;
end;
end if;
J := J + 1;
if J > Inlined_Bodies.Last then
-- The analysis of required bodies may have produced additional
-- generic instantiations. To obtain further inlining, we need
-- to perform another round of generic body instantiations.
Instantiate_Bodies;
-- Symmetrically, the instantiation of required generic bodies
-- may have caused additional bodies to be inlined. To obtain
-- further inlining, we keep looping over the inlined bodies.
end if;
end loop;
-- The list of inlined subprograms is an overestimate, because it
-- includes inlined functions called from functions that are compiled
-- as part of an inlined package, but are not themselves called. An
-- accurate computation of just those subprograms that are needed
-- requires that we perform a transitive closure over the call graph,
-- starting from calls in the main program.
for Index in Inlined.First .. Inlined.Last loop
if not Is_Called (Inlined.Table (Index).Name) then
-- This means that Add_Inlined_Body added the subprogram to the
-- table but wasn't able to handle its code unit. Do nothing.
Inlined.Table (Index).Processed := True;
elsif Inlined.Table (Index).Main_Call then
Pending_Inlined.Increment_Last;
Pending_Inlined.Table (Pending_Inlined.Last) := Index;
Inlined.Table (Index).Processed := True;
else
Set_Is_Called (Inlined.Table (Index).Name, False);
end if;
end loop;
-- Iterate over the workpile until it is emptied, propagating the
-- Is_Called flag to the successors of the processed subprogram.
while Pending_Inlined.Last >= Pending_Inlined.First loop
Subp := Pending_Inlined.Table (Pending_Inlined.Last);
Pending_Inlined.Decrement_Last;
S := Inlined.Table (Subp).First_Succ;
while S /= No_Succ loop
Subp := Successors.Table (S).Subp;
if not Inlined.Table (Subp).Processed then
Set_Is_Called (Inlined.Table (Subp).Name);
Pending_Inlined.Increment_Last;
Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
Inlined.Table (Subp).Processed := True;
end if;
S := Successors.Table (S).Next;
end loop;
end loop;
-- Finally add the called subprograms to the list of inlined
-- subprograms for the unit.
for Index in Inlined.First .. Inlined.Last loop
if Is_Called (Inlined.Table (Index).Name)
and then not Inlined.Table (Index).Listed
then
Add_Inlined_Subprogram (Index);
end if;
end loop;
Pop_Scope;
end if;
end Analyze_Inlined_Bodies;
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Analysis_Status : constant Boolean := Full_Analysis;
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
Max_Size : constant := 10;
function Has_Pending_Instantiation return Boolean;
-- If some enclosing body contains instantiations that appear before
-- the corresponding generic body, the enclosing body has a freeze node
-- so that it can be elaborated after the generic itself. This might
-- conflict with subsequent inlinings, so that it is unsafe to try to
-- inline in such a case.
function Has_Single_Return_In_GNATprove_Mode return Boolean;
-- This function is called only in GNATprove mode, and it returns
-- True if the subprogram has no return statement or a single return
-- statement as last statement. It returns False for subprogram with
-- a single return as last statement inside one or more blocks, as
-- inlining would generate gotos in that case as well (although the
-- goto is useless in that case).
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
-- If the body of the subprogram includes a call that returns an
-- unconstrained type, the secondary stack is involved, and it
-- is not worth inlining.
-------------------------------
-- Has_Pending_Instantiation --
-------------------------------
function Has_Pending_Instantiation return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Compilation_Unit (S)
or else Is_Child_Unit (S)
then
return False;
elsif Ekind (S) = E_Package
and then Has_Forward_Instantiation (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end Has_Pending_Instantiation;
-----------------------------------------
-- Has_Single_Return_In_GNATprove_Mode --
-----------------------------------------
function Has_Single_Return_In_GNATprove_Mode return Boolean is
Last_Statement : Node_Id := Empty;
function Check_Return (N : Node_Id) return Traverse_Result;
-- Returns OK on node N if this is not a return statement different
-- from the last statement in the subprogram.
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind_In (N, N_Simple_Return_Statement,
N_Extended_Return_Statement)
then
if N = Last_Statement then
return OK;
else
return Abandon;
end if;
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Single_Return_In_GNATprove_Mode
begin
-- Retrieve the last statement
Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
-- Check that the last statement is the only possible return
-- statement in the subprogram.
return Check_All_Returns (N) = OK;
end Has_Single_Return_In_GNATprove_Mode;
--------------------------
-- Uses_Secondary_Stack --
--------------------------
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
function Check_Call (N : Node_Id) return Traverse_Result;
-- Look for function calls that return an unconstrained type
----------------
-- Check_Call --
----------------
function Check_Call (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
and then Is_Composite_Type (Etype (Entity (Name (N))))
and then not Is_Constrained (Etype (Entity (Name (N))))
then
Cannot_Inline
("cannot inline & (call returns unconstrained type)?",
N, Spec_Id);
return Abandon;
else
return OK;
end if;
end Check_Call;
function Check_Calls is new Traverse_Func (Check_Call);
begin
return Check_Calls (Bod) = Abandon;
end Uses_Secondary_Stack;
-- Start of processing for Build_Body_To_Inline
begin
-- Return immediately if done already
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Body_To_Inline (Decl))
then
return;
-- Subprograms that have return statements in the middle of the body are
-- inlined with gotos. GNATprove does not currently support gotos, so
-- we prevent such inlining.
elsif GNATprove_Mode
and then not Has_Single_Return_In_GNATprove_Mode
then
Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
return;
-- Functions that return unconstrained composite types require
-- secondary stack handling, and cannot currently be inlined, unless
-- all return statements return a local variable that is the first
-- local declaration in the body.
elsif Ekind (Spec_Id) = E_Function
and then not Is_Scalar_Type (Etype (Spec_Id))
and then not Is_Access_Type (Etype (Spec_Id))
and then not Is_Constrained (Etype (Spec_Id))
then
if not Has_Single_Return (N) then
Cannot_Inline
("cannot inline & (unconstrained return type)?", N, Spec_Id);
return;
end if;
-- Ditto for functions that return controlled types, where controlled
-- actions interfere in complex ways with inlining.
elsif Ekind (Spec_Id) = E_Function
and then Needs_Finalization (Etype (Spec_Id))
then
Cannot_Inline
("cannot inline & (controlled return type)?", N, Spec_Id);
return;
end if;
if Present (Declarations (N))
and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
then
return;
end if;
if Present (Handled_Statement_Sequence (N)) then
if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (N))),
Spec_Id);
return;
elsif Has_Excluded_Statement
(Spec_Id, Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
end if;
-- We do not inline a subprogram that is too large, unless it is marked
-- Inline_Always or we are in GNATprove mode. This pragma does not
-- suppress the other checks on inlining (forbidden declarations,
-- handlers, etc).
if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
and then List_Length
(Statements (Handled_Statement_Sequence (N))) > Max_Size
then
Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
return;
end if;
if Has_Pending_Instantiation then
Cannot_Inline
("cannot inline& (forward instance within enclosing body)?",
N, Spec_Id);
return;
end if;
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
-- Note that we do not do this at the library level, because it is not
-- needed, and furthermore this causes trouble if front end inlining
-- is activated (-gnatN).
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
Original_Body := Copy_Generic_Node (N, Empty, True);
else
Original_Body := Copy_Separate_Tree (N);
end if;
-- We need to capture references to the formals in order to substitute
-- the actuals at the point of inlining, i.e. instantiation. To treat
-- the formals as globals to the body to inline, we nest it within a
-- dummy parameterless subprogram, declared within the real one. To
-- avoid generating an internal name (which is never public, and which
-- affects serial numbers of other generated names), we use an internal
-- symbol that cannot conflict with user declarations.
Set_Parameter_Specifications (Specification (Original_Body), No_List);
Set_Defining_Unit_Name
(Specification (Original_Body),
Make_Defining_Identifier (Sloc (N), Name_uParent));
Set_Corresponding_Spec (Original_Body, Empty);
-- Remove all aspects/pragmas that have no meaining in an inlined body
Remove_Aspects_And_Pragmas (Original_Body);
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-- Set return type of function, which is also global and does not need
-- to be resolved.
if Ekind (Spec_Id) = E_Function then
Set_Result_Definition
(Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append (Body_To_Analyze, Declarations (N));
end if;
-- The body to inline is pre-analyzed. In GNATprove mode we must disable
-- full analysis as well so that light expansion does not take place
-- either, and name resolution is unaffected.
Expander_Mode_Save_And_Set (False);
Full_Analysis := False;
Analyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
Expander_Mode_Restore;
Full_Analysis := Analysis_Status;
-- Restore environment if previously saved
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Restore_Env;
end if;
-- If secondary stack is used, there is no point in inlining. We have
-- already issued the warning in this case, so nothing to do.
if Uses_Secondary_Stack (Body_To_Analyze) then
return;
end if;
Set_Body_To_Inline (Decl, Original_Body);
Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
Set_Is_Inlined (Spec_Id);
end Build_Body_To_Inline;
-------------------
-- Cannot_Inline --
-------------------
procedure Cannot_Inline
(Msg : String;
N : Node_Id;
Subp : Entity_Id;
Is_Serious : Boolean := False)
is
begin
-- In GNATprove mode, inlining is the technical means by which the
-- higher-level goal of contextual analysis is reached, so issue
-- messages about failure to apply contextual analysis to a
-- subprogram, rather than failure to inline it.
if GNATprove_Mode
and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
then
declare
Len1 : constant Positive :=
String (String'("cannot inline"))'Length;
Len2 : constant Positive :=
String (String'("info: no contextual analysis of"))'Length;
New_Msg : String (1 .. Msg'Length + Len2 - Len1);
begin
New_Msg (1 .. Len2) := "info: no contextual analysis of";
New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
Msg (Msg'First + Len1 .. Msg'Last);
Cannot_Inline (New_Msg, N, Subp, Is_Serious);
return;
end;
end if;
pragma Assert (Msg (Msg'Last) = '?');
-- Legacy front end inlining model
if not Back_End_Inlining then
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. With validity checks enabled, some predefined
-- subprograms may contain nested subprograms and become ineligible
-- for inlining.
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
-- In GNATprove mode, issue a warning, and indicate that the
-- subprogram is not always inlined by setting flag Is_Inlined_Always
-- to False.
elsif GNATprove_Mode then
Set_Is_Inlined_Always (Subp, False);
Error_Msg_NE (Msg & "p?", N, Subp);
elsif Has_Pragma_Inline_Always (Subp) then
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
elsif Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
-- New semantics relying on back end inlining
elsif Is_Serious then
-- Remove last character (question mark) to make this into an error.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
-- In GNATprove mode, issue a warning, and indicate that the subprogram
-- is not always inlined by setting flag Is_Inlined_Always to False.
elsif GNATprove_Mode then
Set_Is_Inlined_Always (Subp, False);
Error_Msg_NE (Msg & "p?", N, Subp);
else
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. This behavior is currently provided for backward
-- compatibility but it will be removed when we enforce the
-- strictness of the new rules.
if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
elsif Has_Pragma_Inline_Always (Subp) then
-- Emit a warning if this is a call to a runtime subprogram
-- which is located inside a generic. Previously this call
-- was silently skipped.
if Is_Generic_Instance (Subp) then
declare
Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
begin
if Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Gen_P)))
then
Set_Is_Inlined (Subp, False);
Error_Msg_NE (Msg & "p?", N, Subp);
return;
end if;
end;
end if;
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
else
Set_Is_Inlined (Subp, False);
if Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
end if;
end if;
end Cannot_Inline;
--------------------------------------
-- Can_Be_Inlined_In_GNATprove_Mode --
--------------------------------------
function Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id : Entity_Id;
Body_Id : Entity_Id) return Boolean
is
function Has_Some_Contract (Id : Entity_Id) return Boolean;
-- Returns True if subprogram Id has any contract (Pre, Post, Global,
-- Depends, etc.)
function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
-- Returns True if subprogram Id defines a compilation unit
-- Shouldn't this be in Sem_Aux???
function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
-- Returns True if subprogram Id is defined in the visible part of a
-- package specification.
function Is_Expression_Function (Id : Entity_Id) return Boolean;
-- Returns True if subprogram Id was defined originally as an expression
-- function.
-----------------------
-- Has_Some_Contract --
-----------------------
function Has_Some_Contract (Id : Entity_Id) return Boolean is
Items : Node_Id;
begin
-- A call to an expression function may precede the actual body which
-- is inserted at the end of the enclosing declarations. Ensure that
-- the related entity is decorated before inspecting the contract.
if Is_Subprogram_Or_Generic_Subprogram (Id) then
Items := Contract (Id);
return Present (Items)
and then (Present (Pre_Post_Conditions (Items)) or else
Present (Contract_Test_Cases (Items)) or else
Present (Classifications (Items)));
end if;
return False;
end Has_Some_Contract;
-----------------------------
-- In_Package_Visible_Spec --
-----------------------------
function In_Package_Visible_Spec (Id : Node_Id) return Boolean is
Decl : Node_Id := Parent (Parent (Id));
P : Node_Id;
begin
if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
Decl := Parent (Decl);
end if;
P := Parent (Decl);
return Nkind (P) = N_Package_Specification
and then List_Containing (Decl) = Visible_Declarations (P);
end In_Package_Visible_Spec;
----------------------------
-- Is_Expression_Function --
----------------------------
function Is_Expression_Function (Id : Entity_Id) return Boolean is
Decl : Node_Id := Parent (Parent (Id));
begin
if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
Decl := Parent (Decl);
end if;
return Nkind (Original_Node (Decl)) = N_Expression_Function;
end Is_Expression_Function;
------------------------
-- Is_Unit_Subprogram --
------------------------
function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
Decl : Node_Id := Parent (Parent (Id));
begin
if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
Decl := Parent (Decl);
end if;
return Nkind (Parent (Decl)) = N_Compilation_Unit;
end Is_Unit_Subprogram;
-- Local declarations
Id : Entity_Id; -- Procedure or function entity for the subprogram
-- Start of Can_Be_Inlined_In_GNATprove_Mode
begin
pragma Assert (Present (Spec_Id) or else Present (Body_Id));
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
-- Only local subprograms without contracts are inlined in GNATprove
-- mode, as these are the subprograms which a user is not interested in
-- analyzing in isolation, but rather in the context of their call. This
-- is a convenient convention, that could be changed for an explicit
-- pragma/aspect one day.
-- In a number of special cases, inlining is not desirable or not
-- possible, see below.
-- Do not inline unit-level subprograms
if Is_Unit_Subprogram (Id) then
return False;
-- Do not inline subprograms declared in the visible part of a package
elsif In_Package_Visible_Spec (Id) then
return False;
-- Do not inline subprograms that have a contract on the spec or the
-- body. Use the contract(s) instead in GNATprove.
elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
or else
(Present (Body_Id) and then Has_Some_Contract (Body_Id))
then
return False;
-- Do not inline expression functions, which are directly inlined at the
-- prover level.
elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
or else
(Present (Body_Id) and then Is_Expression_Function (Body_Id))
then
return False;
-- Do not inline generic subprogram instances. The visibility rules of
-- generic instances plays badly with inlining.
elsif Is_Generic_Instance (Spec_Id) then
return False;
-- Only inline subprograms whose spec is marked SPARK_Mode On. For
-- the subprogram body, a similar check is performed after the body
-- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
elsif Present (Spec_Id)
and then
(No (SPARK_Pragma (Spec_Id))
or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
then
return False;
-- Subprograms in generic instances are currently not inlined, to avoid
-- problems with inlining of standard library subprograms.
elsif Instantiation_Location (Sloc (Id)) /= No_Location then
return False;
-- Don't inline predicate functions (treated specially by GNATprove)
elsif Is_Predicate_Function (Id) then
return False;
-- Otherwise, this is a subprogram declared inside the private part of a
-- package, or inside a package body, or locally in a subprogram, and it
-- does not have any contract. Inline it.
else
return True;
end if;
end Can_Be_Inlined_In_GNATprove_Mode;
--------------------------------------------
-- Check_And_Split_Unconstrained_Function --
--------------------------------------------
procedure Check_And_Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id)
is
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
-- Use generic machinery to build an unexpanded body for the subprogram.
-- This body is subsequently used for inline expansions at call sites.
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
-- Return true if we generate code for the function body N, the function
-- body N has no local declarations and its unique statement is a single
-- extended return statement with a handled statements sequence.
procedure Generate_Subprogram_Body
(N : Node_Id;
Body_To_Inline : out Node_Id);
-- Generate a parameterless duplicate of subprogram body N. Occurrences
-- of pragmas referencing the formals are removed since they have no
-- meaning when the body is inlined and the formals are rewritten (the
-- analysis of the non-inlined body will handle these pragmas properly).
-- A new internal name is associated with Body_To_Inline.
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id);
-- N is an inlined function body that returns an unconstrained type and
-- has a single extended return statement. Split N in two subprograms:
-- a procedure P' and a function F'. The formals of P' duplicate the
-- formals of N plus an extra formal which is used return a value;
-- its body is composed by the declarations and list of statements
-- of the extended return statement of N.
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
begin
pragma Assert (Current_Scope = Spec_Id);
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved. We
-- do not do this at the library level, because it is not needed, and
-- furthermore this causes trouble if front end inlining is activated
-- (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
end if;
-- We need to capture references to the formals in order
-- to substitute the actuals at the point of inlining, i.e.
-- instantiation. To treat the formals as globals to the body to
-- inline, we nest it within a dummy parameterless subprogram,
-- declared within the real one.
Generate_Subprogram_Body (N, Original_Body);
Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-- Set return type of function, which is also global and does not
-- need to be resolved.
if Ekind (Spec_Id) = E_Function then
Set_Result_Definition (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append_To (Declarations (N), Body_To_Analyze);
end if;
Preanalyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
-- Restore environment if previously saved
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Restore_Env;
end if;
pragma Assert (No (Body_To_Inline (Decl)));
Set_Body_To_Inline (Decl, Original_Body);
Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
end Build_Body_To_Inline;
--------------------------------------
-- Can_Split_Unconstrained_Function --
--------------------------------------
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
is
Ret_Node : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
D : Node_Id;
begin
-- No user defined declarations allowed in the function except inside
-- the unique return statement; implicit labels are the only allowed
-- declarations.
if not Is_Empty_List (Declarations (N)) then
D := First (Declarations (N));
while Present (D) loop
if Nkind (D) /= N_Implicit_Label_Declaration then
return False;
end if;
Next (D);
end loop;
end if;
-- We only split the inlined function when we are generating the code
-- of its body; otherwise we leave duplicated split subprograms in
-- the tree which (if referenced) generate wrong references at link
-- time.
return In_Extended_Main_Code_Unit (N)
and then Present (Ret_Node)
and then Nkind (Ret_Node) = N_Extended_Return_Statement
and then No (Next (Ret_Node))
and then Present (Handled_Statement_Sequence (Ret_Node));
end Can_Split_Unconstrained_Function;
-----------------------------
-- Generate_Body_To_Inline --
-----------------------------
procedure Generate_Subprogram_Body
(N : Node_Id;
Body_To_Inline : out Node_Id)
is
begin
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
-- Note that we do not do this at the library level, because it
-- is not needed, and furthermore this causes trouble if front
-- end inlining is activated (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Body_To_Inline := Copy_Generic_Node (N, Empty, True);
else
Body_To_Inline := Copy_Separate_Tree (N);
end if;
-- Remove all aspects/pragmas that have no meaning in an inlined body
Remove_Aspects_And_Pragmas (Body_To_Inline);
-- We need to capture references to the formals in order
-- to substitute the actuals at the point of inlining, i.e.
-- instantiation. To treat the formals as globals to the body to
-- inline, we nest it within a dummy parameterless subprogram,
-- declared within the real one.
Set_Parameter_Specifications
(Specification (Body_To_Inline), No_List);
-- A new internal name is associated with Body_To_Inline to avoid
-- conflicts when the non-inlined body N is analyzed.
Set_Defining_Unit_Name (Specification (Body_To_Inline),
Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
Set_Corresponding_Spec (Body_To_Inline, Empty);
end Generate_Subprogram_Body;
----------------------------------
-- Split_Unconstrained_Function --
----------------------------------
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Ret_Node : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
Ret_Obj : constant Node_Id :=
First (Return_Object_Declarations (Ret_Node));
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id);
-- Build a procedure containing the statements found in the extended
-- return statement of the unconstrained function body N.
---------------------
-- Build_Procedure --
---------------------
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id)
is
Formal : Entity_Id;
Formal_List : constant List_Id := New_List;
Proc_Spec : Node_Id;
Proc_Body : Node_Id;
Subp_Name : constant Name_Id := New_Internal_Name ('F');
Body_Decl_List : List_Id := No_List;
Param_Type : Node_Id;
begin
if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
Param_Type :=
New_Copy (Object_Definition (Ret_Obj));
else
Param_Type :=
New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
end if;
Append_To (Formal_List,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Ret_Obj))),
In_Present => False,
Out_Present => True,
Null_Exclusion_Present => False,
Parameter_Type => Param_Type));
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Append_To (Formal_List,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Null_Exclusion_Present =>
Null_Exclusion_Present (Parent (Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression =>
Copy_Separate_Tree (Expression (Parent (Formal)))));
Next_Formal (Formal);
end loop;
Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
Proc_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Formal_List);
Decl_List := New_List;
Append_To (Decl_List,
Make_Subprogram_Declaration (Loc, Proc_Spec));
-- Can_Convert_Unconstrained_Function checked that the function
-- has no local declarations except implicit label declarations.
-- Copy these declarations to the built procedure.
if Present (Declarations (N)) then
Body_Decl_List := New_List;
declare
D : Node_Id;
New_D : Node_Id;
begin
D := First (Declarations (N));
while Present (D) loop
pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
New_D :=
Make_Implicit_Label_Declaration (Loc,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (D))),
Label_Construct => Empty);
Append_To (Body_Decl_List, New_D);
Next (D);
end loop;
end;
end if;
pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification => Copy_Separate_Tree (Proc_Spec),
Declarations => Body_Decl_List,
Handled_Statement_Sequence =>
Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
Set_Defining_Unit_Name (Specification (Proc_Body),
Make_Defining_Identifier (Loc, Subp_Name));
Append_To (Decl_List, Proc_Body);
end Build_Procedure;
-- Local variables
New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
Blk_Stmt : Node_Id;
Proc_Id : Entity_Id;
Proc_Call : Node_Id;
-- Start of processing for Split_Unconstrained_Function
begin
-- Build the associated procedure, analyze it and insert it before
-- the function body N.
declare
Scope : constant Entity_Id := Current_Scope;
Decl_List : List_Id;
begin
Pop_Scope;
Build_Procedure (Proc_Id, Decl_List);
Insert_Actions (N, Decl_List);
Push_Scope (Scope);
end;
-- Build the call to the generated procedure
declare
Actual_List : constant List_Id := New_List;
Formal : Entity_Id;
begin
Append_To (Actual_List,
New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
-- Avoid spurious warning on unreferenced formals
Set_Referenced (Formal);
Next_Formal (Formal);
end loop;
Proc_Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => Actual_List);
end;
-- Generate
-- declare
-- New_Obj : ...
-- begin
-- main_1__F1b (New_Obj, ...);
-- return Obj;
-- end B10b;
Blk_Stmt :=
Make_Block_Statement (Loc,
Declarations => New_List (New_Obj),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Proc_Call,
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of
(Defining_Identifier (New_Obj), Loc)))));
Rewrite (Ret_Node, Blk_Stmt);
end Split_Unconstrained_Function;
-- Local variables
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
-- Start of processing for Check_And_Split_Unconstrained_Function
begin
pragma Assert (Back_End_Inlining
and then Ekind (Spec_Id) = E_Function
and then Returns_Unconstrained_Type (Spec_Id)
and then Comes_From_Source (Body_Id)
and then (Has_Pragma_Inline_Always (Spec_Id)
or else Optimization_Level > 0));
-- This routine must not be used in GNATprove mode since GNATprove
-- relies on frontend inlining
pragma Assert (not GNATprove_Mode);
-- No need to split the function if we cannot generate the code
if Serious_Errors_Detected /= 0 then
return;
end if;
-- No action needed in stubs since the attribute Body_To_Inline
-- is not available
if Nkind (Decl) = N_Subprogram_Body_Stub then
return;
-- Cannot build the body to inline if the attribute is already set.
-- This attribute may have been set if this is a subprogram renaming
-- declarations (see Freeze.Build_Renamed_Body).
elsif Present (Body_To_Inline (Decl)) then
return;
-- Check excluded declarations
elsif Present (Declarations (N))
and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
then
return;
-- Check excluded statements. There is no need to protect us against
-- exception handlers since they are supported by the GCC backend.
elsif Present (Handled_Statement_Sequence (N))
and then Has_Excluded_Statement
(Spec_Id, Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
-- Build the body to inline only if really needed
if Can_Split_Unconstrained_Function (N) then
Split_Unconstrained_Function (N, Spec_Id);
Build_Body_To_Inline (N, Spec_Id);
Set_Is_Inlined (Spec_Id);
end if;
end Check_And_Split_Unconstrained_Function;
-------------------------------------
-- Check_Package_Body_For_Inlining --
-------------------------------------
procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
Bname : Unit_Name_Type;
E : Entity_Id;
OK : Boolean;
begin
-- Legacy implementation (relying on frontend inlining)
if not Back_End_Inlining
and then Is_Compilation_Unit (P)
and then not Is_Generic_Instance (P)
then
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
E := First_Entity (P);
while Present (E) loop
if Has_Pragma_Inline_Always (E)
or else (Has_Pragma_Inline (E) and Front_End_Inlining)
then
if not Is_Loaded (Bname) then
Load_Needed_Body (N, OK);
if OK then
-- Check we are not trying to inline a parent whose body
-- depends on a child, when we are compiling the body of
-- the child. Otherwise we have a potential elaboration
-- circularity with inlined subprograms and with
-- Taft-Amendment types.
declare
Comp : Node_Id; -- Body just compiled
Child_Spec : Entity_Id; -- Spec of main unit
Ent : Entity_Id; -- For iteration
With_Clause : Node_Id; -- Context of body.
begin
if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
and then Present (Body_Entity (P))
then
Child_Spec :=
Defining_Entity
((Unit (Library_Unit (Cunit (Main_Unit)))));
Comp :=
Parent (Unit_Declaration_Node (Body_Entity (P)));
-- Check whether the context of the body just
-- compiled includes a child of itself, and that
-- child is the spec of the main compilation.
With_Clause := First (Context_Items (Comp));
while Present (With_Clause) loop
if Nkind (With_Clause) = N_With_Clause
and then
Scope (Entity (Name (With_Clause))) = P
and then
Entity (Name (With_Clause)) = Child_Spec
then
Error_Msg_Node_2 := Child_Spec;
Error_Msg_NE
("body of & depends on child unit&??",
With_Clause, P);
Error_Msg_N
("\subprograms in body cannot be inlined??",
With_Clause);
-- Disable further inlining from this unit,
-- and keep Taft-amendment types incomplete.
Ent := First_Entity (P);
while Present (Ent) loop
if Is_Type (Ent)
and then Has_Completion_In_Body (Ent)
then
Set_Full_View (Ent, Empty);
elsif Is_Subprogram (Ent) then
Set_Is_Inlined (Ent, False);
end if;
Next_Entity (Ent);
end loop;
return;
end if;
Next (With_Clause);
end loop;
end if;
end;
elsif Ineffective_Inline_Warnings then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("unable to inline subprograms defined in $??", P);
Error_Msg_N ("\body not found??", P);
return;
end if;
end if;
return;
end if;
Next_Entity (E);
end loop;
end if;
end Check_Package_Body_For_Inlining;
--------------------
-- Cleanup_Scopes --
--------------------
procedure Cleanup_Scopes is
Elmt : Elmt_Id;
Decl : Node_Id;
Scop : Entity_Id;
begin
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
Scop := Node (Elmt);
if Ekind (Scop) = E_Entry then
Scop := Protected_Body_Subprogram (Scop);
elsif Is_Subprogram (Scop)
and then Is_Protected_Type (Scope (Scop))
and then Present (Protected_Body_Subprogram (Scop))
then
-- If a protected operation contains an instance, its cleanup
-- operations have been delayed, and the subprogram has been
-- rewritten in the expansion of the enclosing protected body. It
-- is the corresponding subprogram that may require the cleanup
-- operations, so propagate the information that triggers cleanup
-- activity.
Set_Uses_Sec_Stack
(Protected_Body_Subprogram (Scop),
Uses_Sec_Stack (Scop));
Scop := Protected_Body_Subprogram (Scop);
end if;
if Ekind (Scop) = E_Block then
Decl := Parent (Block_Node (Scop));
else
Decl := Unit_Declaration_Node (Scop);
if Nkind_In (Decl, N_Subprogram_Declaration,
N_Task_Type_Declaration,
N_Subprogram_Body_Stub)
then
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
end if;
end if;
Push_Scope (Scop);
Expand_Cleanup_Actions (Decl);
End_Scope;
Elmt := Next_Elmt (Elmt);
end loop;
end Cleanup_Scopes;
-------------------------
-- Expand_Inlined_Call --
-------------------------
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Is_Predef : constant Boolean :=
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Subp)));
Orig_Bod : constant Node_Id :=
Body_To_Inline (Unit_Declaration_Node (Subp));
Blk : Node_Id;
Decl : Node_Id;
Decls : constant List_Id := New_List;
Exit_Lab : Entity_Id := Empty;
F : Entity_Id;
A : Node_Id;
Lab_Decl : Node_Id;
Lab_Id : Node_Id;
New_A : Node_Id;
Num_Ret : Int := 0;
Ret_Type : Entity_Id;
Targ : Node_Id;
-- The target of the call. If context is an assignment statement then
-- this is the left-hand side of the assignment, else it is a temporary
-- to which the return value is assigned prior to rewriting the call.
Targ1 : Node_Id;
-- A separate target used when the return type is unconstrained
Temp : Entity_Id;
Temp_Typ : Entity_Id;
Return_Object : Entity_Id := Empty;
-- Entity in declaration in an extended_return_statement
Is_Unc : Boolean;
Is_Unc_Decl : Boolean;
-- If the type returned by the function is unconstrained and the call
-- can be inlined, special processing is required.
procedure Make_Exit_Label;
-- Build declaration for exit label to be used in Return statements,
-- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
-- declaration). Does nothing if Exit_Lab already set.
function Process_Formals (N : Node_Id) return Traverse_Result;
-- Replace occurrence of a formal with the corresponding actual, or the
-- thunk generated for it. Replace a return statement with an assignment
-- to the target of the call, with appropriate conversions if needed.
function Process_Sloc (Nod : Node_Id) return Traverse_Result;
-- If the call being expanded is that of an internal subprogram, set the
-- sloc of the generated block to that of the call itself, so that the
-- expansion is skipped by the "next" command in gdb. Same processing
-- for a subprogram in a predefined file, e.g. Ada.Tags. If
-- Debug_Generated_Code is true, suppress this change to simplify our
-- own development. Same in GNATprove mode, to ensure that warnings and
-- diagnostics point to the proper location.
procedure Reset_Dispatching_Calls (N : Node_Id);
-- In subtree N search for occurrences of dispatching calls that use the
-- Ada 2005 Object.Operation notation and the object is a formal of the
-- inlined subprogram. Reset the entity associated with Operation in all
-- the found occurrences.
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
-- If the function body is a single expression, replace call with
-- expression, else insert block appropriately.
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
-- If procedure body has no local variables, inline body without
-- creating block, otherwise rewrite call with block.
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
-- Determine whether a formal parameter is used only once in Orig_Bod
---------------------
-- Make_Exit_Label --
---------------------
procedure Make_Exit_Label is
Lab_Ent : Entity_Id;
begin
if No (Exit_Lab) then
Lab_Ent := Make_Temporary (Loc, 'L');
Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
Exit_Lab := Make_Label (Loc, Lab_Id);
Lab_Decl :=
Make_Implicit_Label_Declaration (Loc,
Defining_Identifier => Lab_Ent,
Label_Construct => Exit_Lab);
end if;
end Make_Exit_Label;
---------------------
-- Process_Formals --
---------------------
function Process_Formals (N : Node_Id) return Traverse_Result is
A : Entity_Id;
E : Entity_Id;
Ret : Node_Id;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
E := Entity (N);
if Is_Formal (E) and then Scope (E) = Subp then
A := Renamed_Object (E);
-- Rewrite the occurrence of the formal into an occurrence of
-- the actual. Also establish visibility on the proper view of
-- the actual's subtype for the body's context (if the actual's
-- subtype is private at the call point but its full view is
-- visible to the body, then the inlined tree here must be
-- analyzed with the full view).
if Is_Entity_Name (A) then
Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
Check_Private_View (N);
elsif Nkind (A) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (A, Loc));
Check_Private_View (N);
-- Numeric literal
else
Rewrite (N, New_Copy (A));
end if;
end if;
return Skip;
elsif Is_Entity_Name (N)
and then Present (Return_Object)
and then Chars (N) = Chars (Return_Object)
then
-- Occurrence within an extended return statement. The return
-- object is local to the body been inlined, and thus the generic
-- copy is not analyzed yet, so we match by name, and replace it
-- with target of call.
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (Targ, Loc));
else
Rewrite (N, New_Copy_Tree (Targ));
end if;
return Skip;
elsif Nkind (N) = N_Simple_Return_Statement then
if No (Expression (N)) then
Make_Exit_Label;
Rewrite (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
else
if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
then
-- Function body is a single expression. No need for
-- exit label.
null;
else
Num_Ret := Num_Ret + 1;
Make_Exit_Label;
end if;
-- Because of the presence of private types, the views of the
-- expression and the context may be different, so place an
-- unchecked conversion to the context type to avoid spurious
-- errors, e.g. when the expression is a numeric literal and
-- the context is private. If the expression is an aggregate,
-- use a qualified expression, because an aggregate is not a
-- legal argument of a conversion. Ditto for numeric literals,
-- which must be resolved to a specific type.
if Nkind_In (Expression (N), N_Aggregate,
N_Null,
N_Real_Literal,
N_Integer_Literal)
then
Ret :=
Make_Qualified_Expression (Sloc (N),
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
Expression => Relocate_Node (Expression (N)));
else
Ret :=
Unchecked_Convert_To
(Ret_Type, Relocate_Node (Expression (N)));
end if;
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Ret));
else
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Ret));
end if;
Set_Assignment_OK (Name (N));
if Present (Exit_Lab) then
Insert_After (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
end if;
end if;
return OK;
-- An extended return becomes a block whose first statement is the
-- assignment of the initial expression of the return object to the
-- target of the call itself.
elsif Nkind (N) = N_Extended_Return_Statement then
declare
Return_Decl : constant Entity_Id :=
First (Return_Object_Declarations (N));
Assign : Node_Id;
begin
Return_Object := Defining_Identifier (Return_Decl);
if Present (Expression (Return_Decl)) then
if Nkind (Targ) = N_Defining_Identifier then
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Expression (Return_Decl));
else
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Expression (Return_Decl));
end if;
Set_Assignment_OK (Name (Assign));
if No (Handled_Statement_Sequence (N)) then
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List));
end if;
Prepend (Assign,
Statements (Handled_Statement_Sequence (N)));
end if;
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Handled_Statement_Sequence (N)));
return OK;
end;
-- Remove pragma Unreferenced since it may refer to formals that
-- are not visible in the inlined body, and in any case we will
-- not be posting warnings on the inlined body so it is unneeded.
elsif Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Unreferenced
then
Rewrite (N, Make_Null_Statement (Sloc (N)));
return OK;
else
return OK;
end if;
end Process_Formals;
procedure Replace_Formals is new Traverse_Proc (Process_Formals);
------------------
-- Process_Sloc --
------------------
function Process_Sloc (Nod : Node_Id) return Traverse_Result is
begin
if not Debug_Generated_Code then
Set_Sloc (Nod, Sloc (N));
Set_Comes_From_Source (Nod, False);
end if;
return OK;
end Process_Sloc;
procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
------------------------------
-- Reset_Dispatching_Calls --
------------------------------
procedure Reset_Dispatching_Calls (N : Node_Id) is
function Do_Reset (N : Node_Id) return Traverse_Result;
-- Comment required ???
--------------
-- Do_Reset --
--------------
function Do_Reset (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Procedure_Call_Statement
and then Nkind (Name (N)) = N_Selected_Component
and then Nkind (Prefix (Name (N))) = N_Identifier
and then Is_Formal (Entity (Prefix (Name (N))))
and then Is_Dispatching_Operation
(Entity (Selector_Name (Name (N))))
then
Set_Entity (Selector_Name (Name (N)), Empty);
end if;
return OK;
end Do_Reset;
function Do_Reset_Calls is new Traverse_Func (Do_Reset);
-- Local variables
Dummy : constant Traverse_Result := Do_Reset_Calls (N);
pragma Unreferenced (Dummy);
-- Start of processing for Reset_Dispatching_Calls
begin
null;
end Reset_Dispatching_Calls;
---------------------------
-- Rewrite_Function_Call --
---------------------------
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
Fst : constant Node_Id := First (Statements (HSS));
begin
-- Optimize simple case: function body is a single return statement,
-- which has been expanded into an assignment.
if Is_Empty_List (Declarations (Blk))
and then Nkind (Fst) = N_Assignment_Statement
and then No (Next (Fst))
then
-- The function call may have been rewritten as the temporary
-- that holds the result of the call, in which case remove the
-- now useless declaration.
if Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
end if;
Rewrite (N, Expression (Fst));
elsif Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
-- The block assigns the result of the call to the temporary
Insert_After (Parent (Entity (N)), Blk);
-- If the context is an assignment, and the left-hand side is free of
-- side-effects, the replacement is also safe.
-- Can this be generalized further???
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then
(Is_Entity_Name (Name (Parent (N)))
or else
(Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N)))))
or else
(Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))))
then
-- Replace assignment with the block
declare
Original_Assignment : constant Node_Id := Parent (N);
begin
-- Preserve the original assignment node to keep the complete
-- assignment subtree consistent enough for Analyze_Assignment
-- to proceed (specifically, the original Lhs node must still
-- have an assignment statement as its parent).
-- We cannot rely on Original_Node to go back from the block
-- node to the assignment node, because the assignment might
-- already be a rewrite substitution.
Discard_Node (Relocate_Node (Original_Assignment));
Rewrite (Original_Assignment, Blk);
end;
elsif Nkind (Parent (N)) = N_Object_Declaration then
-- A call to a function which returns an unconstrained type
-- found in the expression initializing an object-declaration is
-- expanded into a procedure call which must be added after the
-- object declaration.
if Is_Unc_Decl and Back_End_Inlining then
Insert_Action_After (Parent (N), Blk);
else
Set_Expression (Parent (N), Empty);
Insert_After (Parent (N), Blk);
end if;
elsif Is_Unc and then not Back_End_Inlining then
Insert_Before (Parent (N), Blk);
end if;
end Rewrite_Function_Call;
----------------------------
-- Rewrite_Procedure_Call --
----------------------------
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
begin
-- If there is a transient scope for N, this will be the scope of the
-- actions for N, and the statements in Blk need to be within this
-- scope. For example, they need to have visibility on the constant
-- declarations created for the formals.
-- If N needs no transient scope, and if there are no declarations in
-- the inlined body, we can do a little optimization and insert the
-- statements for the body directly after N, and rewrite N to a
-- null statement, instead of rewriting N into a full-blown block
-- statement.
if not Scope_Is_Transient
and then Is_Empty_List (Declarations (Blk))
then
Insert_List_After (N, Statements (HSS));
Rewrite (N, Make_Null_Statement (Loc));
else
Rewrite (N, Blk);
end if;
end Rewrite_Procedure_Call;
-------------------------
-- Formal_Is_Used_Once --
-------------------------
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
Use_Counter : Int := 0;
function Count_Uses (N : Node_Id) return Traverse_Result;
-- Traverse the tree and count the uses of the formal parameter.
-- In this case, for optimization purposes, we do not need to
-- continue the traversal once more than one use is encountered.
----------------
-- Count_Uses --
----------------
function Count_Uses (N : Node_Id) return Traverse_Result is
begin
-- The original node is an identifier
if Nkind (N) = N_Identifier
and then Present (Entity (N))
-- Original node's entity points to the one in the copied body
and then Nkind (Entity (N)) = N_Identifier
and then Present (Entity (Entity (N)))
-- The entity of the copied node is the formal parameter
and then Entity (Entity (N)) = Formal
then
Use_Counter := Use_Counter + 1;
if Use_Counter > 1 then
-- Denote more than one use and abandon the traversal
Use_Counter := 2;
return Abandon;
end if;
end if;
return OK;
end Count_Uses;
procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
-- Start of processing for Formal_Is_Used_Once
begin
Count_Formal_Uses (Orig_Bod);
return Use_Counter = 1;
end Formal_Is_Used_Once;
-- Start of processing for Expand_Inlined_Call
begin
-- Initializations for old/new semantics
if not Back_End_Inlining then
Is_Unc := Is_Array_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
Is_Unc_Decl := False;
else
Is_Unc := Returns_Unconstrained_Type (Subp)
and then Optimization_Level > 0;
Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc;
end if;
-- Check for an illegal attempt to inline a recursive procedure. If the
-- subprogram has parameters this is detected when trying to supply a
-- binding for parameters that already have one. For parameterless
-- subprograms this must be done explicitly.
if In_Open_Scopes (Subp) then
Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
Set_Is_Inlined (Subp, False);
-- In GNATprove mode, issue a warning, and indicate that the
-- subprogram is not always inlined by setting flag Is_Inlined_Always
-- to False.
if GNATprove_Mode then
Set_Is_Inlined_Always (Subp, False);
end if;
return;
-- Skip inlining if this is not a true inlining since the attribute
-- Body_To_Inline is also set for renamings (see sinfo.ads)
elsif Nkind (Orig_Bod) in N_Entity then
if not Has_Pragma_Inline (Subp) then
return;
end if;
-- Skip inlining if the function returns an unconstrained type using
-- an extended return statement since this part of the new inlining
-- model which is not yet supported by the current implementation. ???
elsif Is_Unc
and then
Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
= N_Extended_Return_Statement
and then not Back_End_Inlining
then
return;
end if;
if Nkind (Orig_Bod) = N_Defining_Identifier
or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
then
-- Subprogram is renaming_as_body. Calls occurring after the renaming
-- can be replaced with calls to the renamed entity directly, because
-- the subprograms are subtype conformant. If the renamed subprogram
-- is an inherited operation, we must redo the expansion because
-- implicit conversions may be needed. Similarly, if the renamed
-- entity is inlined, expand the call for further optimizations.
Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
Expand_Call (N);
end if;
return;
end if;
-- Register the call in the list of inlined calls
Append_New_Elmt (N, To => Inlined_Calls);
-- Use generic machinery to copy body of inlined subprogram, as if it
-- were an instantiation, resetting source locations appropriately, so
-- that nested inlined calls appear in the main unit.
Save_Env (Subp, Empty);
Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
-- Old semantics
if not Back_End_Inlining then
declare
Bod : Node_Id;
begin
Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
-- For the unconstrained case, capture the name of the local
-- variable that holds the result. This must be the first
-- declaration in the block, because its bounds cannot depend
-- on local variables. Otherwise there is no way to declare the
-- result outside of the block. Needless to say, in general the
-- bounds will depend on the actuals in the call.
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand side
-- provides bounds even if the return type is unconstrained.
if Is_Unc then
declare
First_Decl : Node_Id;
begin
First_Decl := First (Declarations (Blk));
if Nkind (First_Decl) /= N_Object_Declaration then
return;
end if;
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First_Decl);
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
end;
-- New semantics
else
declare
Bod : Node_Id;
begin
-- General case
if not Is_Unc then
Bod :=
Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
-- Inline a call to a function that returns an unconstrained type.
-- The semantic analyzer checked that frontend-inlined functions
-- returning unconstrained types have no declarations and have
-- a single extended return statement. As part of its processing
-- the function was split in two subprograms: a procedure P and
-- a function F that has a block with a call to procedure P (see
-- Split_Unconstrained_Function).
else
pragma Assert
(Nkind
(First
(Statements (Handled_Statement_Sequence (Orig_Bod)))) =
N_Block_Statement);
declare
Blk_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (Orig_Bod)));
First_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
Second_Stmt : constant Node_Id := Next (First_Stmt);
begin
pragma Assert
(Nkind (First_Stmt) = N_Procedure_Call_Statement
and then Nkind (Second_Stmt) = N_Simple_Return_Statement
and then No (Next (Second_Stmt)));
Bod :=
Copy_Generic_Node
(First
(Statements (Handled_Statement_Sequence (Orig_Bod))),
Empty, Instantiating => True);
Blk := Bod;
-- Capture the name of the local variable that holds the
-- result. This must be the first declaration in the block,
-- because its bounds cannot depend on local variables.
-- Otherwise there is no way to declare the result outside
-- of the block. Needless to say, in general the bounds will
-- depend on the actuals in the call.
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First (Declarations (Blk)));
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand
-- side provides bounds even if the return type is
-- unconstrained.
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
end;
end if;
-- If this is a derived function, establish the proper return type
if Present (Orig_Subp) and then Orig_Subp /= Subp then
Ret_Type := Etype (Orig_Subp);
else
Ret_Type := Etype (Subp);
end if;
-- Create temporaries for the actuals that are expressions, or that are
-- scalars and require copying to preserve semantics.
F := First_Formal (Subp);
A := First_Actual (N);
while Present (F) loop
if Present (Renamed_Object (F)) then
-- If expander is active, it is an error to try to inline a
-- recursive program. In GNATprove mode, just indicate that the
-- inlining will not happen, and mark the subprogram as not always
-- inlined.
if GNATprove_Mode then
Cannot_Inline
("cannot inline call to recursive subprogram?", N, Subp);
Set_Is_Inlined_Always (Subp, False);
else
Error_Msg_N
("cannot inline call to recursive subprogram", N);
end if;
return;
end if;
-- Reset Last_Assignment for any parameters of mode out or in out, to
-- prevent spurious warnings about overwriting for assignments to the
-- formal in the inlined code.
if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
Set_Last_Assignment (Entity (A), Empty);
end if;
-- If the argument may be a controlling argument in a call within
-- the inlined body, we must preserve its classwide nature to insure
-- that dynamic dispatching take place subsequently. If the formal
-- has a constraint it must be preserved to retain the semantics of
-- the body.
if Is_Class_Wide_Type (Etype (F))
or else (Is_Access_Type (Etype (F))
and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
then
Temp_Typ := Etype (F);
elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
and then Etype (F) /= Base_Type (Etype (F))
then
Temp_Typ := Etype (F);
else
Temp_Typ := Etype (A);
end if;
-- If the actual is a simple name or a literal, no need to
-- create a temporary, object can be used directly.
-- If the actual is a literal and the formal has its address taken,
-- we cannot pass the literal itself as an argument, so its value
-- must be captured in a temporary.
if (Is_Entity_Name (A)
and then
(not Is_Scalar_Type (Etype (A))
or else Ekind (Entity (A)) = E_Enumeration_Literal))
-- When the actual is an identifier and the corresponding formal is
-- used only once in the original body, the formal can be substituted
-- directly with the actual parameter.
or else (Nkind (A) = N_Identifier
and then Formal_Is_Used_Once (F))
or else
(Nkind_In (A, N_Real_Literal,
N_Integer_Literal,
N_Character_Literal)
and then not Address_Taken (F))
then
if Etype (F) /= Etype (A) then
Set_Renamed_Object
(F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
else
Set_Renamed_Object (F, A);
end if;
else
Temp := Make_Temporary (Loc, 'C');
-- If the actual for an in/in-out parameter is a view conversion,
-- make it into an unchecked conversion, given that an untagged
-- type conversion is not a proper object for a renaming.
-- In-out conversions that involve real conversions have already
-- been transformed in Expand_Actuals.
if Nkind (A) = N_Type_Conversion
and then Ekind (F) /= E_In_Parameter
then
New_A :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
Expression => Relocate_Node (Expression (A)));
elsif Etype (F) /= Etype (A) then
New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
Temp_Typ := Etype (F);
else
New_A := Relocate_Node (A);
end if;
Set_Sloc (New_A, Sloc (N));
-- If the actual has a by-reference type, it cannot be copied,
-- so its value is captured in a renaming declaration. Otherwise
-- declare a local constant initialized with the actual.
-- We also use a renaming declaration for expressions of an array
-- type that is not bit-packed, both for efficiency reasons and to
-- respect the semantics of the call: in most cases the original
-- call will pass the parameter by reference, and thus the inlined
-- code will have the same semantics.
-- Finally, we need a renaming declaration in the case of limited
-- types for which initialization cannot be by copy either.
if Ekind (F) = E_In_Parameter
and then not Is_By_Reference_Type (Etype (A))
and then not Is_Limited_Type (Etype (A))
and then
(not Is_Array_Type (Etype (A))
or else not Is_Object_Reference (A)
or else Is_Bit_Packed_Array (Etype (A)))
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Expression => New_A);
else
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
Name => New_A);
end if;
Append (Decl, Decls);
Set_Renamed_Object (F, Temp);
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
-- Establish target of function call. If context is not assignment or
-- declaration, create a temporary as a target. The declaration for the
-- temporary may be subsequently optimized away if the body is a single
-- expression, or if the left-hand side of the assignment is simple
-- enough, i.e. an entity or an explicit dereference of one.
if Ekind (Subp) = E_Function then
if Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (N)))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := New_Copy_Tree (Name (Parent (N)));
elsif Nkind (Parent (N)) = N_Object_Declaration
and then Is_Limited_Type (Etype (Subp))
then
Targ := Defining_Identifier (Parent (N));
-- New semantics: In an object declaration avoid an extra copy
-- of the result of a call to an inlined function that returns
-- an unconstrained type
elsif Back_End_Inlining
and then Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc
then
Targ := Defining_Identifier (Parent (N));
else
-- Replace call with temporary and create its declaration
Temp := Make_Temporary (Loc, 'C');
Set_Is_Internal (Temp);
-- For the unconstrained case, the generated temporary has the
-- same constrained declaration as the result variable. It may
-- eventually be possible to remove that temporary and use the
-- result variable directly.
if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
else
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
Set_Etype (Temp, Ret_Type);
end if;
Set_No_Initialization (Decl);
Append (Decl, Decls);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Targ := Temp;
end if;
end if;
Insert_Actions (N, Decls);
if Is_Unc_Decl then
-- Special management for inlining a call to a function that returns
-- an unconstrained type and initializes an object declaration: we
-- avoid generating undesired extra calls and goto statements.
-- Given:
-- function Func (...) return ...
-- begin
-- declare
-- Result : String (1 .. 4);
-- begin
-- Proc (Result, ...);
-- return Result;
-- end;
-- end F;
-- Result : String := Func (...);
-- Replace this object declaration by:
-- Result : String (1 .. 4);
-- Proc (Result, ...);
Remove_Homonym (Targ);
Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => Targ,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
Rewrite (Parent (N), Decl);
Analyze (Parent (N));
-- Avoid spurious warnings since we know that this declaration is
-- referenced by the procedure call.
Set_Never_Set_In_Source (Targ, False);
-- Remove the local declaration of the extended return stmt from the
-- inlined code
Remove (Parent (Targ1));
-- Update the reference to the result (since we have rewriten the
-- object declaration)
declare
Blk_Call_Stmt : Node_Id;
begin
-- Capture the call to the procedure
Blk_Call_Stmt :=
First (Statements (Handled_Statement_Sequence (Blk)));
pragma Assert
(Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
Remove (First (Parameter_Associations (Blk_Call_Stmt)));
Prepend_To (Parameter_Associations (Blk_Call_Stmt),
New_Occurrence_Of (Targ, Loc));
end;
-- Remove the return statement
pragma Assert
(Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Simple_Return_Statement);
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
end if;
-- Traverse the tree and replace formals with actuals or their thunks.
-- Attach block to tree before analysis and rewriting.
Replace_Formals (Blk);
Set_Parent (Blk, N);
if GNATprove_Mode then
null;
elsif not Comes_From_Source (Subp) or else Is_Predef then
Reset_Slocs (Blk);
end if;
if Is_Unc_Decl then
-- No action needed since return statement has been already removed
null;
elsif Present (Exit_Lab) then
-- If the body was a single expression, the single return statement
-- and the corresponding label are useless.
if Num_Ret = 1
and then
Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Goto_Statement
then
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
else
Append (Lab_Decl, (Declarations (Blk)));
Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
end if;
end if;
-- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
-- on conflicting private views that Gigi would ignore. If this is a
-- predefined unit, analyze with checks off, as is done in the non-
-- inlined run-time units.
declare
I_Flag : constant Boolean := In_Inlined_Body;
begin
In_Inlined_Body := True;
if Is_Predef then
declare
Style : constant Boolean := Style_Check;
begin
Style_Check := False;
-- Search for dispatching calls that use the Object.Operation
-- notation using an Object that is a parameter of the inlined
-- function. We reset the decoration of Operation to force
-- the reanalysis of the inlined dispatching call because
-- the actual object has been inlined.
Reset_Dispatching_Calls (Blk);
Analyze (Blk, Suppress => All_Checks);
Style_Check := Style;
end;
else
Analyze (Blk);
end if;
In_Inlined_Body := I_Flag;
end;
if Ekind (Subp) = E_Procedure then
Rewrite_Procedure_Call (N, Blk);
else
Rewrite_Function_Call (N, Blk);
if Is_Unc_Decl then
null;
-- For the unconstrained case, the replacement of the call has been
-- made prior to the complete analysis of the generated declarations.
-- Propagate the proper type now.
elsif Is_Unc then
if Nkind (N) = N_Identifier then
Set_Etype (N, Etype (Entity (N)));
else
Set_Etype (N, Etype (Targ1));
end if;
end if;
end if;
Restore_Env;
-- Cleanup mapping between formals and actuals for other expansions
F := First_Formal (Subp);
while Present (F) loop
Set_Renamed_Object (F, Empty);
Next_Formal (F);
end loop;
end Expand_Inlined_Call;
--------------------------
-- Get_Code_Unit_Entity --
--------------------------
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
begin
if Ekind (Unit) = E_Package_Body then
Unit := Spec_Entity (Unit);
end if;
return Unit;
end Get_Code_Unit_Entity;
------------------------------
-- Has_Excluded_Declaration --
------------------------------
function Has_Excluded_Declaration
(Subp : Entity_Id;
Decls : List_Id) return Boolean
is
D : Node_Id;
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
-- Nested subprograms make a given body ineligible for inlining, but
-- we make an exception for instantiations of unchecked conversion.
-- The body has not been analyzed yet, so check the name, and verify
-- that the visible entity with that name is the predefined unit.
-----------------------------
-- Is_Unchecked_Conversion --
-----------------------------
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
Id : constant Node_Id := Name (D);
Conv : Entity_Id;
begin
if Nkind (Id) = N_Identifier
and then Chars (Id) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Id);
elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Selector_Name (Id));
else
return False;
end if;
return Present (Conv)
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Conv)))
and then Is_Intrinsic_Subprogram (Conv);
end Is_Unchecked_Conversion;
-- Start of processing for Has_Excluded_Declaration
begin
-- No action needed if the check is not needed
if not Check_Inlining_Restrictions then
return False;
end if;
D := First (Decls);
while Present (D) loop
-- First declarations universally excluded
if Nkind (D) = N_Package_Declaration then
Cannot_Inline
("cannot inline & (nested package declaration)?",
D, Subp);
return True;
elsif Nkind (D) = N_Package_Instantiation then
Cannot_Inline
("cannot inline & (nested package instantiation)?",
D, Subp);
return True;
end if;
-- Then declarations excluded only for front end inlining
if Back_End_Inlining then
null;
elsif Nkind (D) = N_Task_Type_Declaration
or else Nkind (D) = N_Single_Task_Declaration
then
Cannot_Inline
("cannot inline & (nested task type declaration)?",
D, Subp);
return True;
elsif Nkind (D) = N_Protected_Type_Declaration
or else Nkind (D) = N_Single_Protected_Declaration
then
Cannot_Inline
("cannot inline & (nested protected type declaration)?",
D, Subp);
return True;
elsif Nkind (D) = N_Subprogram_Body then
Cannot_Inline
("cannot inline & (nested subprogram)?",
D, Subp);
return True;
elsif Nkind (D) = N_Function_Instantiation
and then not Is_Unchecked_Conversion (D)
then
Cannot_Inline
("cannot inline & (nested function instantiation)?",
D, Subp);
return True;
elsif Nkind (D) = N_Procedure_Instantiation then
Cannot_Inline
("cannot inline & (nested procedure instantiation)?",
D, Subp);
return True;
end if;
Next (D);
end loop;
return False;
end Has_Excluded_Declaration;
----------------------------
-- Has_Excluded_Statement --
----------------------------
function Has_Excluded_Statement
(Subp : Entity_Id;
Stats : List_Id) return Boolean
is
S : Node_Id;
E : Node_Id;
begin
-- No action needed if the check is not needed
if not Check_Inlining_Restrictions then
return False;
end if;
S := First (Stats);
while Present (S) loop
if Nkind_In (S, N_Abort_Statement,
N_Asynchronous_Select,
N_Conditional_Entry_Call,
N_Delay_Relative_Statement,
N_Delay_Until_Statement,
N_Selective_Accept,
N_Timed_Entry_Call)
then
Cannot_Inline
("cannot inline & (non-allowed statement)?", S, Subp);
return True;
elsif Nkind (S) = N_Block_Statement then
if Present (Declarations (S))
and then Has_Excluded_Declaration (Subp, Declarations (S))
then
return True;
elsif Present (Handled_Statement_Sequence (S)) then
if not Back_End_Inlining
and then
Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers
(Handled_Statement_Sequence (S))),
Subp);
return True;
elsif Has_Excluded_Statement
(Subp, Statements (Handled_Statement_Sequence (S)))
then
return True;
end if;
end if;
elsif Nkind (S) = N_Case_Statement then
E := First (Alternatives (S));
while Present (E) loop
if Has_Excluded_Statement (Subp, Statements (E)) then
return True;
end if;
Next (E);
end loop;
elsif Nkind (S) = N_If_Statement then
if Has_Excluded_Statement (Subp, Then_Statements (S)) then
return True;
end if;
if Present (Elsif_Parts (S)) then
E := First (Elsif_Parts (S));
while Present (E) loop
if Has_Excluded_Statement (Subp, Then_Statements (E)) then
return True;
end if;
Next (E);
end loop;
end if;
if Present (Else_Statements (S))
and then Has_Excluded_Statement (Subp, Else_Statements (S))
then
return True;
end if;
elsif Nkind (S) = N_Loop_Statement
and then Has_Excluded_Statement (Subp, Statements (S))
then
return True;
elsif Nkind (S) = N_Extended_Return_Statement then
if Present (Handled_Statement_Sequence (S))
and then
Has_Excluded_Statement
(Subp, Statements (Handled_Statement_Sequence (S)))
then
return True;
elsif not Back_End_Inlining
and then Present (Handled_Statement_Sequence (S))
and then
Present (Exception_Handlers
(Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (S))),
Subp);
return True;
end if;
end if;
Next (S);
end loop;
return False;
end Has_Excluded_Statement;
--------------------------
-- Has_Initialized_Type --
--------------------------
function Has_Initialized_Type (E : Entity_Id) return Boolean is
E_Body : constant Node_Id := Get_Subprogram_Body (E);
Decl : Node_Id;
begin
if No (E_Body) then -- imported subprogram
return False;
else
Decl := First (Declarations (E_Body));
while Present (Decl) loop
if Nkind (Decl) = N_Full_Type_Declaration
and then Present (Init_Proc (Defining_Identifier (Decl)))
then
return True;
end if;
Next (Decl);
end loop;
end if;
return False;
end Has_Initialized_Type;
-----------------------
-- Has_Single_Return --
-----------------------
function Has_Single_Return (N : Node_Id) return Boolean is
Return_Statement : Node_Id := Empty;
function Check_Return (N : Node_Id) return Traverse_Result;
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Simple_Return_Statement then
if Present (Expression (N))
and then Is_Entity_Name (Expression (N))
then
if No (Return_Statement) then
Return_Statement := N;
return OK;
elsif Chars (Expression (N)) =
Chars (Expression (Return_Statement))
then
return OK;
else
return Abandon;
end if;
-- A return statement within an extended return is a noop
-- after inlining.
elsif No (Expression (N))
and then
Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
then
return OK;
else
-- Expression has wrong form
return Abandon;
end if;
-- We can only inline a build-in-place function if it has a single
-- extended return.
elsif Nkind (N) = N_Extended_Return_Statement then
if No (Return_Statement) then
Return_Statement := N;
return OK;
else
return Abandon;
end if;
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Single_Return
begin
if Check_All_Returns (N) /= OK then
return False;
elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
return True;
else
return Present (Declarations (N))
and then Present (First (Declarations (N)))
and then Chars (Expression (Return_Statement)) =
Chars (Defining_Identifier (First (Declarations (N))));
end if;
end Has_Single_Return;
-----------------------------
-- In_Main_Unit_Or_Subunit --
-----------------------------
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
Comp : Node_Id := Cunit (Get_Code_Unit (E));
begin
-- Check whether the subprogram or package to inline is within the main
-- unit or its spec or within a subunit. In either case there are no
-- additional bodies to process. If the subprogram appears in a parent
-- of the current unit, the check on whether inlining is possible is
-- done in Analyze_Inlined_Bodies.
while Nkind (Unit (Comp)) = N_Subunit loop
Comp := Library_Unit (Comp);
end loop;
return Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit));
end In_Main_Unit_Or_Subunit;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Pending_Descriptor.Init;
Pending_Instantiations.Init;
Inlined_Bodies.Init;
Successors.Init;
Inlined.Init;
for J in Hash_Headers'Range loop
Hash_Headers (J) := No_Subp;
end loop;
Inlined_Calls := No_Elist;
Backend_Calls := No_Elist;
Backend_Inlined_Subps := No_Elist;
Backend_Not_Inlined_Subps := No_Elist;
end Initialize;
------------------------
-- Instantiate_Bodies --
------------------------
-- Generic bodies contain all the non-local references, so an
-- instantiation does not need any more context than Standard
-- itself, even if the instantiation appears in an inner scope.
-- Generic associations have verified that the contract model is
-- satisfied, so that any error that may occur in the analysis of
-- the body is an internal error.
procedure Instantiate_Bodies is
J : Int;
Info : Pending_Body_Info;
begin
if Serious_Errors_Detected = 0 then
Expander_Active := (Operating_Mode = Opt.Generate_Code);
Push_Scope (Standard_Standard);
To_Clean := New_Elmt_List;
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
Start_Generic;
end if;
-- A body instantiation may generate additional instantiations, so
-- the following loop must scan to the end of a possibly expanding
-- set (that's why we can't simply use a FOR loop here).
J := 0;
while J <= Pending_Instantiations.Last
and then Serious_Errors_Detected = 0
loop
Info := Pending_Instantiations.Table (J);
-- If the instantiation node is absent, it has been removed
-- as part of unreachable code.
if No (Info.Inst_Node) then
null;
elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
Instantiate_Package_Body (Info);
Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
else
Instantiate_Subprogram_Body (Info);
end if;
J := J + 1;
end loop;
-- Reset the table of instantiations. Additional instantiations
-- may be added through inlining, when additional bodies are
-- analyzed.
Pending_Instantiations.Init;
-- We can now complete the cleanup actions of scopes that contain
-- pending instantiations (skipped for generic units, since we
-- never need any cleanups in generic units).
-- pending instantiations.
if Expander_Active
and then not Is_Generic_Unit (Main_Unit_Entity)
then
Cleanup_Scopes;
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
End_Generic;
end if;
Pop_Scope;
end if;
end Instantiate_Bodies;
---------------
-- Is_Nested --
---------------
function Is_Nested (E : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope (E);
while Scop /= Standard_Standard loop
if Ekind (Scop) in Subprogram_Kind then
return True;
elsif Ekind (Scop) = E_Task_Type
or else Ekind (Scop) = E_Entry
or else Ekind (Scop) = E_Entry_Family
then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Is_Nested;
------------------------
-- List_Inlining_Info --
------------------------
procedure List_Inlining_Info is
Elmt : Elmt_Id;
Nod : Node_Id;
Count : Nat;
begin
if not Debug_Flag_Dot_J then
return;
end if;
-- Generate listing of calls inlined by the frontend
if Present (Inlined_Calls) then
Count := 0;
Elmt := First_Elmt (Inlined_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if In_Extended_Main_Code_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("List of calls inlined by the frontend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Write_Str (":");
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of calls passed to the backend
if Present (Backend_Calls) then
Count := 0;
Elmt := First_Elmt (Backend_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if In_Extended_Main_Code_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("List of inlined calls passed to the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of subprograms passed to the backend
if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
Count := 0;
Elmt := First_Elmt (Backend_Inlined_Subps);
while Present (Elmt) loop
Nod := Node (Elmt);
Count := Count + 1;
if Count = 1 then
Write_Str
("List of inlined subprograms passed to the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Name (Chars (Nod));
Write_Str (" (");
Write_Location (Sloc (Nod));
Write_Str (")");
Output.Write_Eol;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of subprograms that cannot be inlined by the backend
if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
Count := 0;
Elmt := First_Elmt (Backend_Not_Inlined_Subps);
while Present (Elmt) loop
Nod := Node (Elmt);
Count := Count + 1;
if Count = 1 then
Write_Str
("List of subprograms that cannot be inlined by the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Name (Chars (Nod));
Write_Str (" (");
Write_Location (Sloc (Nod));
Write_Str (")");
Output.Write_Eol;
Next_Elmt (Elmt);
end loop;
end if;
end List_Inlining_Info;
----------
-- Lock --
----------
procedure Lock is
begin
Pending_Instantiations.Locked := True;
Inlined_Bodies.Locked := True;
Successors.Locked := True;
Inlined.Locked := True;
Pending_Instantiations.Release;
Inlined_Bodies.Release;
Successors.Release;
Inlined.Release;
end Lock;
---------------------------
-- Register_Backend_Call --
---------------------------
procedure Register_Backend_Call (N : Node_Id) is
begin
Append_New_Elmt (N, To => Backend_Calls);
end Register_Backend_Call;
--------------------------------
-- Remove_Aspects_And_Pragmas --
--------------------------------
procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
procedure Remove_Items (List : List_Id);
-- Remove all useless aspects/pragmas from a particular list
------------------
-- Remove_Items --
------------------
procedure Remove_Items (List : List_Id) is
Item : Node_Id;
Item_Id : Node_Id;
Next_Item : Node_Id;
begin
-- Traverse the list looking for an aspect specification or a pragma
Item := First (List);
while Present (Item) loop
Next_Item := Next (Item);
if Nkind (Item) = N_Aspect_Specification then
Item_Id := Identifier (Item);
elsif Nkind (Item) = N_Pragma then
Item_Id := Pragma_Identifier (Item);
else
Item_Id := Empty;
end if;
if Present (Item_Id)
and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
Name_Global,
Name_Depends,
Name_Postcondition,
Name_Precondition,
Name_Refined_Global,
Name_Refined_Depends,
Name_Refined_Post,
Name_Test_Case,
Name_Unmodified,
Name_Unreferenced)
then
Remove (Item);
end if;
Item := Next_Item;
end loop;
end Remove_Items;
-- Start of processing for Remove_Aspects_And_Pragmas
begin
Remove_Items (Aspect_Specifications (Body_Decl));
Remove_Items (Declarations (Body_Decl));
end Remove_Aspects_And_Pragmas;
--------------------------
-- Remove_Dead_Instance --
--------------------------
procedure Remove_Dead_Instance (N : Node_Id) is
J : Int;
begin
J := 0;
while J <= Pending_Instantiations.Last loop
if Pending_Instantiations.Table (J).Inst_Node = N then
Pending_Instantiations.Table (J).Inst_Node := Empty;
return;
end if;
J := J + 1;
end loop;
end Remove_Dead_Instance;
end Inline;
|