summaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-dourea.adb
blob: a6cf2a1ca0be421721d0dd691d45681fa24e0bf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                    S Y S T E M . D O U B L E _ R E A L                   --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 2021-2022, Free Software Foundation, Inc.       --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

package body System.Double_Real is

   function Is_NaN (N : Num) return Boolean is (N /= N);
   --  Return True if N is a NaN

   function Is_Infinity (N : Num) return Boolean is (Is_NaN (N - N));
   --  Return True if N is an infinity. Used to avoid propagating meaningless
   --  errors when the result of a product is an infinity.

   function Is_Zero (N : Num) return Boolean is (N = -N);
   --  Return True if N is a Zero. Used to preserve the sign when the result of
   --  a product is a zero.

   package Product is
      function Two_Prod (A, B : Num) return Double_T;
      function Two_Sqr (A : Num) return Double_T;
   end Product;
   --  The low-level implementation of multiplicative operations

   package body Product is separate;
   --  This is a separate body because the implementation depends on whether a
   --  Fused Multiply-Add instruction is available on the target.

   -------------------
   -- Quick_Two_Sum --
   -------------------

   function Quick_Two_Sum (A, B : Num) return Double_T is
      S : constant Num := A + B;
      V : constant Num := S - A;
      E : constant Num := B - V;

   begin
      return (S, E);
   end Quick_Two_Sum;

   -------------
   -- Two_Sum --
   -------------

   function Two_Sum (A, B : Num) return Double_T is
      S : constant Num := A + B;
      V : constant Num := S - A;
      E : constant Num := (A - (S - V)) + (B - V);

   begin
      return (S, E);
   end Two_Sum;

   --------------
   -- Two_Diff --
   --------------

   function Two_Diff (A, B : Num) return Double_T is
      S : constant Num := A - B;
      V : constant Num := S - A;
      E : constant Num := (A - (S - V)) - (B + V);

   begin
      return (S, E);
   end Two_Diff;

   --------------
   -- Two_Prod --
   --------------

   function Two_Prod (A, B : Num) return Double_T renames Product.Two_Prod;

   -------------
   -- Two_Sqr --
   -------------

   function Two_Sqr (A : Num) return Double_T renames Product.Two_Sqr;

   ---------
   -- "+" --
   ---------

   function "+" (A : Double_T; B : Num) return Double_T is
      S : constant Double_T := Two_Sum (A.Hi, B);

   begin
      return Quick_Two_Sum (S.Hi, S.Lo + A.Lo);
   end "+";

   function "+" (A, B : Double_T) return Double_T is
      S1 : constant Double_T := Two_Sum (A.Hi, B.Hi);
      S2 : constant Double_T := Two_Sum (A.Lo, B.Lo);
      S3 : constant Double_T := Quick_Two_Sum (S1.Hi, S1.Lo + S2.Hi);

   begin
      return Quick_Two_Sum (S3.Hi, S3.Lo + S2.Lo);
   end "+";

   ---------
   -- "-" --
   ---------

   function "-" (A : Double_T; B : Num) return Double_T is
      D : constant Double_T := Two_Diff (A.Hi, B);

   begin
      return Quick_Two_Sum (D.Hi, D.Lo + A.Lo);
   end "-";

   function "-" (A, B : Double_T) return Double_T is
      D1 : constant Double_T := Two_Diff (A.Hi, B.Hi);
      D2 : constant Double_T := Two_Diff (A.Lo, B.Lo);
      D3 : constant Double_T := Quick_Two_Sum (D1.Hi, D1.Lo + D2.Hi);

   begin
      return Quick_Two_Sum (D3.Hi, D3.Lo + D2.Lo);
   end "-";

   ---------
   -- "*" --
   ---------

   function "*" (A : Double_T; B : Num) return Double_T is
      P : constant Double_T := Two_Prod (A.Hi, B);

   begin
      if Is_Infinity (P.Hi) or else Is_Zero (P.Hi) then
         return (P.Hi, 0.0);
      else
         return Quick_Two_Sum (P.Hi, P.Lo + A.Lo * B);
      end if;
   end "*";

   function "*" (A, B : Double_T) return Double_T is
      P : constant Double_T := Two_Prod (A.Hi, B.Hi);

   begin
      if Is_Infinity (P.Hi) or else Is_Zero (P.Hi) then
         return (P.Hi, 0.0);
      else
         return Quick_Two_Sum (P.Hi, P.Lo + A.Hi * B.Lo + A.Lo * B.Hi);
      end if;
   end "*";

   ---------
   -- "/" --
   ---------

   function "/" (A : Double_T; B : Num) return Double_T is
      Q1, Q2 : Num;
      P, R   : Double_T;

   begin
      Q1 := A.Hi / B;

      --  Compute R = A - B * Q1

      P := Two_Prod (B, Q1);
      R := Two_Diff (A.Hi, P.Hi);
      R.Lo := (R.Lo + A.Lo) - P.Lo;

      Q2 := (R.Hi + R.Lo) / B;

      return Quick_Two_Sum (Q1, Q2);
   end "/";

   function "/" (A, B : Double_T) return Double_T is
      Q1, Q2, Q3 : Num;
      R, S       : Double_T;

   begin
      Q1 := A.Hi / B.Hi;
      R := A - B * Q1;

      Q2 := R.Hi / B.Hi;
      R := R - B * Q2;

      Q3 := R.Hi / B.Hi;

      S := Quick_Two_Sum (Q1, Q2);
      return Quick_Two_Sum (S.Hi, S.Lo + Q3);
   end "/";

   ---------
   -- Sqr --
   ---------

   function Sqr (A : Double_T) return Double_T is
      Q : constant Double_T := Two_Sqr (A.Hi);

   begin
      if Is_Infinity (Q.Hi) or else Is_Zero (Q.Hi) then
         return (Q.Hi, 0.0);
      else
         return Quick_Two_Sum (Q.Hi, Q.Lo + 2.0 * A.Hi * A.Lo + A.Lo * A.Lo);
      end if;
   end Sqr;

   -------------------
   -- From_Unsigned --
   -------------------

   function From_Unsigned (U : Uns) return Double_T is
   begin
      return To_Double (Num (U));
   end From_Unsigned;

   -----------------
   -- To_Unsigned --
   -----------------

   function To_Unsigned (D : Double_T) return Uns is
      Hi : constant Num := Num'Truncation (D.Hi);

   begin
      --  If the high part is already an integer, add Floor of the low part,
      --  which means subtract Ceiling of its opposite if it is negative.

      if Hi = D.Hi then
         if D.Lo < 0.0 then
            return Uns (Hi) - Uns (Num'Ceiling (-D.Lo));
         else
            return Uns (Hi) + Uns (Num'Floor (D.Lo));
         end if;

      else
         return Uns (Hi);
      end if;
   end To_Unsigned;

end System.Double_Real;