1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- P A R _ S C O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Lib; use Lib;
with Lib.Util; use Lib.Util;
with Nlists; use Nlists;
with Output; use Output;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Table;
with GNAT.HTable; use GNAT.HTable;
package body Par_SCO is
---------------
-- SCO_Table --
---------------
-- Internal table used to store recorded SCO values. Table is populated by
-- calls to SCO_Record, and entries may be modified by Set_SCO_Condition.
type SCO_Table_Entry is record
From : Source_Ptr;
To : Source_Ptr;
C1 : Character;
C2 : Character;
Last : Boolean;
end record;
package SCO_Table is new Table.Table (
Table_Component_Type => SCO_Table_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 500,
Table_Increment => 300,
Table_Name => "SCO_Table_Entry");
-- The SCO_Table_Entry values appear as follows:
-- Statements
-- C1 = 'S'
-- C2 = ' '
-- From = starting sloc
-- To = ending sloc
-- Last = unused
-- Entry
-- C1 = 'Y'
-- C2 = ' '
-- From = starting sloc
-- To = ending sloc
-- Last = unused
-- Exit
-- C1 = 'T'
-- C2 = ' '
-- From = starting sloc
-- To = ending sloc
-- Last = unused
-- Simple Decision
-- C1 = 'I', 'E', 'W', 'X' (if/exit/while/expression)
-- C2 = 'c', 't', or 'f'
-- From = starting sloc
-- To = ending sloc
-- Last = True
-- Complex Decision
-- C1 = 'I', 'E', 'W', 'X' (if/exit/while/expression)
-- C2 = ' '
-- From = No_Location
-- To = No_Location
-- Last = False
-- Operator
-- C1 = '!', '^', '&', '|'
-- C2 = ' '
-- From = No_Location
-- To = No_Location
-- Last = False
-- Element
-- C1 = ' '
-- C2 = 'c', 't', or 'f' (condition/true/false)
-- From = starting sloc
-- To = ending sloc
-- Last = False for all but the last entry, True for last entry
-- Note: the sequence starting with a decision, and continuing with
-- operators and elements up to and including the first one labeled with
-- Last=True, indicate the sequence to be output for a complex decision
-- on a single CD decision line.
----------------
-- Unit Table --
----------------
-- This table keeps track of the units and the corresponding starting index
-- in the SCO table. The ending index is either one less than the starting
-- index of the next table entry, or, for the last table entry, it is
-- SCO_Table.Last.
type SCO_Unit_Table_Entry is record
Unit : Unit_Number_Type;
Index : Int;
end record;
package SCO_Unit_Table is new Table.Table (
Table_Component_Type => SCO_Unit_Table_Entry,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "SCO_Unit_Table_Entry");
--------------------------
-- Condition Hash Table --
--------------------------
-- We need to be able to get to conditions quickly for handling the calls
-- to Set_SCO_Condition efficiently. For this purpose we identify the
-- conditions in the table by their starting sloc, and use the following
-- hash table to map from these starting sloc values to SCO_Table indexes.
type Header_Num is new Integer range 0 .. 996;
-- Type for hash table headers
function Hash (F : Source_Ptr) return Header_Num;
-- Function to Hash source pointer value
function Equal (F1, F2 : Source_Ptr) return Boolean;
-- Function to test two keys for equality
package Condition_Hash_Table is new Simple_HTable
(Header_Num, Int, 0, Source_Ptr, Hash, Equal);
-- The actual hash table
--------------------------
-- Internal Subprograms --
--------------------------
function Has_Decision (N : Node_Id) return Boolean;
-- N is the node for a subexpression. Returns True if the subexpression
-- contains a nested decision (i.e. either is a logical operator, or
-- contains a logical operator in its subtree).
function Is_Logical_Operator (N : Node_Id) return Boolean;
-- N is the node for a subexpression. This procedure just tests N to see
-- if it is a logical operator (including short circuit conditions) and
-- returns True if so, False otherwise, it does no other processing.
procedure Process_Decisions (N : Node_Id; T : Character);
-- If N is Empty, has no effect. Otherwise scans the tree for the node N,
-- to output any decisions it contains. T is one of IEWX (for context of
-- expresion: if/while/when-exit/expression). If T is other than X, then
-- the node is always a decision a decision is always present (at the very
-- least a simple decision is present at the top level).
procedure Set_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean);
-- Append an entry to SCO_Table with fields set as per arguments
procedure Traverse_Declarations_Or_Statements (L : List_Id);
procedure Traverse_Handled_Statement_Sequence (N : Node_Id);
procedure Traverse_Package_Body (N : Node_Id);
procedure Traverse_Package_Declaration (N : Node_Id);
procedure Traverse_Subprogram_Body (N : Node_Id);
-- Traverse the corresponding construct, generating SCO table entries
procedure dsco;
-- Debug routine to dump SCO table
----------
-- dsco --
----------
procedure dsco is
begin
Write_Line ("SCO Unit Table");
Write_Line ("--------------");
for Index in SCO_Unit_Table.First .. SCO_Unit_Table.Last loop
Write_Str (" ");
Write_Int (Index);
Write_Str (". Unit = ");
Write_Int (Int (SCO_Unit_Table.Table (Index).Unit));
Write_Str (" Index = ");
Write_Int (Int (SCO_Unit_Table.Table (Index).Index));
Write_Eol;
end loop;
Write_Eol;
Write_Line ("SCO Table");
Write_Line ("---------");
for Index in SCO_Table.First .. SCO_Table.Last loop
declare
T : SCO_Table_Entry renames SCO_Table.Table (Index);
begin
Write_Str (" ");
Write_Int (Index);
Write_Str (". C1 = '");
Write_Char (T.C1);
Write_Str ("' C2 = '");
Write_Char (T.C2);
Write_Str ("' From = ");
Write_Location (T.From);
Write_Str (" To = ");
Write_Location (T.To);
Write_Str (" Last = ");
if T.Last then
Write_Str (" True");
else
Write_Str (" False");
end if;
Write_Eol;
end;
end loop;
end dsco;
-----------
-- Equal --
-----------
function Equal (F1, F2 : Source_Ptr) return Boolean is
begin
return F1 = F2;
end Equal;
------------------
-- Has_Decision --
------------------
function Has_Decision (N : Node_Id) return Boolean is
function Check_Node (N : Node_Id) return Traverse_Result;
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
begin
if Is_Logical_Operator (N) then
return Abandon;
else
return OK;
end if;
end Check_Node;
function Traverse is new Traverse_Func (Check_Node);
-- Start of processing for Has_Decision
begin
return Traverse (N) = Abandon;
end Has_Decision;
----------
-- Hash --
----------
function Hash (F : Source_Ptr) return Header_Num is
begin
return Header_Num (Nat (F) mod 997);
end Hash;
----------
-- Init --
----------
procedure Init is
begin
null;
end Init;
-------------------------
-- Is_Logical_Operator --
-------------------------
function Is_Logical_Operator (N : Node_Id) return Boolean is
begin
return Nkind_In (N, N_Op_And,
N_Op_Or,
N_Op_Xor,
N_Op_Not,
N_And_Then,
N_Or_Else);
end Is_Logical_Operator;
-----------------------
-- Process_Decisions --
-----------------------
procedure Process_Decisions
(N : Node_Id;
T : Character)
is
function Process_Node (N : Node_Id) return Traverse_Result;
-- Processes one node in the traversal, looking for logical operators,
-- and if one is found, outputs the appropriate table entries.
procedure Output_Decision_Operand (N : Node_Id);
-- The node N is the top level logical operator of a decision, or it is
-- one of the operands of a logical operator belonging to a single
-- complex decision. This routine outputs the sequence of table entries
-- corresponding to the node. Note that we do not process the sub-
-- operands to look for further decisions, that processing is done in
-- Process_Decision_Operand, because we can't get decisions mixed up in
-- the global table. Call has no effect if N is Empty.
procedure Output_Element (N : Node_Id; T : Character);
-- Node N is an operand of a logical operator that is not itself a
-- logical operator, or it is a simple decision. This routine outputs
-- the table entry for the element, with C1 set to T (' ' for one of
-- the elements of a complex decision, or 'I'/'W'/'E' for a simple
-- decision (from an IF, WHILE, or EXIT WHEN). Last is set to False,
-- and an entry is made in the condition hash table.
procedure Process_Decision_Operand (N : Node_Id);
-- This is called on node N, the top level node of a decision, or on one
-- of its operands or suboperands after generating the full output for
-- the complex decision. It process the suboperands of the decision
-- looking for nested decisions.
-----------------------------
-- Output_Decision_Operand --
-----------------------------
procedure Output_Decision_Operand (N : Node_Id) is
C : Character;
L : Node_Id;
FSloc : Source_Ptr;
LSloc : Source_Ptr;
begin
if No (N) then
return;
-- Logical operator
elsif Is_Logical_Operator (N) then
if Nkind (N) = N_Op_Not then
C := '!';
L := Empty;
else
L := Left_Opnd (N);
if Nkind (N) = N_Op_Xor then
C := '^';
elsif Nkind_In (N, N_Op_Or, N_Or_Else) then
C := '|';
else
C := '&';
end if;
end if;
Sloc_Range (N, FSloc, LSloc);
Set_Table_Entry (C, ' ', FSloc, LSloc, False);
Output_Decision_Operand (L);
Output_Decision_Operand (Right_Opnd (N));
-- Not a logical operator
else
Output_Element (N, ' ');
end if;
end Output_Decision_Operand;
--------------------
-- Output_Element --
--------------------
procedure Output_Element (N : Node_Id; T : Character) is
FSloc : Source_Ptr;
LSloc : Source_Ptr;
begin
Sloc_Range (N, FSloc, LSloc);
Set_Table_Entry (T, 'c', FSloc, LSloc, False);
Condition_Hash_Table.Set (FSloc, SCO_Table.Last);
end Output_Element;
------------------------------
-- Process_Decision_Operand --
------------------------------
procedure Process_Decision_Operand (N : Node_Id) is
begin
if Is_Logical_Operator (N) then
if Nkind (N) /= N_Op_Not then
Process_Decision_Operand (Left_Opnd (N));
end if;
Process_Decision_Operand (Right_Opnd (N));
else
Process_Decisions (N, 'X');
end if;
end Process_Decision_Operand;
------------------
-- Process_Node --
------------------
function Process_Node (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
-- Logical operators and short circuit forms, output table
-- entries and then process operands recursively to deal with
-- nested conditions.
when N_And_Then |
N_Or_Else |
N_Op_And |
N_Op_Or |
N_Op_Xor |
N_Op_Not =>
declare
T : Character;
begin
-- If outer level, then type comes from call, otherwise it
-- is more deeply nested and counts as X for expression.
if N = Process_Decisions.N then
T := Process_Decisions.T;
else
T := 'X';
end if;
-- Output header for sequence
Set_Table_Entry (T, ' ', No_Location, No_Location, False);
-- Output the decision
Output_Decision_Operand (N);
-- Change Last in last table entry to True to mark end
SCO_Table.Table (SCO_Table.Last).Last := True;
-- Process any embedded decisions
Process_Decision_Operand (N);
return Skip;
end;
-- Conditional expression, processed like an if statement
when N_Conditional_Expression =>
declare
Cond : constant Node_Id := First (Expressions (N));
Thnx : constant Node_Id := Next (Cond);
Elsx : constant Node_Id := Next (Thnx);
begin
Process_Decisions (Cond, 'I');
Process_Decisions (Thnx, 'X');
Process_Decisions (Elsx, 'X');
return Skip;
end;
-- All other cases, continue scan
when others =>
return OK;
end case;
end Process_Node;
procedure Traverse is new Traverse_Proc (Process_Node);
-- Start of processing for Process_Decisions
begin
if No (N) then
return;
end if;
-- See if we have simple decision at outer level and if so then
-- generate the decision entry for this simple decision. A simple
-- decision is a boolean expression (which is not a logical operator
-- or short circuit form) appearing as the operand of an IF, WHILE
-- or EXIT WHEN construct.
if T /= 'X' and then not Is_Logical_Operator (N) then
Output_Element (N, T);
-- Change Last in last table entry to True to mark end of
-- sequence, which is this case is only one element long.
SCO_Table.Table (SCO_Table.Last).Last := True;
end if;
Traverse (N);
end Process_Decisions;
----------------
-- SCO_Output --
----------------
procedure SCO_Output is
Start : Nat;
Stop : Nat;
U : Unit_Number_Type;
procedure Output_Range (From : Source_Ptr; To : Source_Ptr);
-- Outputs Sloc range in line:col-line:col format (for now we do not
-- worry about generic instantiations???)
------------------
-- Output_Range --
------------------
procedure Output_Range (From : Source_Ptr; To : Source_Ptr) is
begin
Write_Info_Nat (Int (Get_Logical_Line_Number (From)));
Write_Info_Char (':');
Write_Info_Nat (Int (Get_Column_Number (From)));
Write_Info_Char ('-');
Write_Info_Nat (Int (Get_Logical_Line_Number (To)));
Write_Info_Char (':');
Write_Info_Nat (Int (Get_Column_Number (To)));
end Output_Range;
-- Start of processing for SCO_Output
begin
if Debug_Flag_Dot_OO then
dsco;
end if;
-- Loop through entries in the unit table
for J in SCO_Unit_Table.First .. SCO_Unit_Table.Last loop
U := SCO_Unit_Table.Table (J).Unit;
if In_Extended_Main_Source_Unit (Cunit_Entity (U)) then
Write_Info_Initiate ('C');
Write_Info_Char (' ');
Write_Info_Nat (Dependency_Num (U));
Write_Info_Char (' ');
Write_Info_Name (Reference_Name (Source_Index (U)));
Write_Info_Terminate;
Start := SCO_Unit_Table.Table (J).Index;
if J = SCO_Unit_Table.Last then
Stop := SCO_Table.Last;
else
Stop := SCO_Unit_Table.Table (J + 1).Index - 1;
end if;
-- Loop through relevant entries in SCO table, outputting C lines
while Start <= Stop loop
declare
T : SCO_Table_Entry renames SCO_Table.Table (Start);
begin
Write_Info_Initiate ('C');
Write_Info_Char (T.C1);
case T.C1 is
-- Statements, entry, exit
when 'S' | 'Y' | 'T' =>
Write_Info_Char (' ');
Output_Range (T.From, T.To);
-- Decision
when 'I' | 'E' | 'W' | 'X' =>
if T.C2 = ' ' then
Start := Start + 1;
end if;
-- Loop through table entries for this decision
loop
declare
T : SCO_Table_Entry renames SCO_Table.Table (Start);
begin
Write_Info_Char (' ');
if T.C1 = '!' or else
T.C1 = '^' or else
T.C1 = '&' or else
T.C1 = '|'
then
Write_Info_Char (T.C1);
else
Write_Info_Char (T.C2);
Output_Range (T.From, T.To);
end if;
exit when T.Last;
Start := Start + 1;
end;
end loop;
when others =>
raise Program_Error;
end case;
Write_Info_Terminate;
end;
exit when Start = Stop;
Start := Start + 1;
pragma Assert (Start <= Stop);
end loop;
end if;
end loop;
end SCO_Output;
----------------
-- SCO_Record --
----------------
procedure SCO_Record (U : Unit_Number_Type) is
Cu : constant Node_Id := Cunit (U);
Lu : constant Node_Id := Unit (Cu);
begin
SCO_Unit_Table.Append ((Unit => U, Index => SCO_Table.Last + 1));
-- Traverse the unit
if Nkind (Lu) = N_Subprogram_Body then
Traverse_Subprogram_Body (Lu);
elsif Nkind (Lu) = N_Package_Declaration then
Traverse_Package_Declaration (Lu);
elsif Nkind (Lu) = N_Package_Body then
Traverse_Package_Body (Lu);
-- Ignore subprogram specifications, since nothing to cover.
-- Also ignore instantiations, since again, nothing to cover.
-- Also for now, ignore generic declarations ???
else
null;
end if;
end SCO_Record;
-----------------------
-- Set_SCO_Condition --
-----------------------
procedure Set_SCO_Condition (First_Loc : Source_Ptr; Typ : Character) is
Index : constant Nat := Condition_Hash_Table.Get (First_Loc);
begin
if Index /= 0 then
SCO_Table.Table (Index).C2 := Typ;
end if;
end Set_SCO_Condition;
---------------------
-- Set_Table_Entry --
---------------------
procedure Set_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean)
is
begin
SCO_Table.Append ((C1 => C1,
C2 => C2,
From => From,
To => To,
Last => Last));
end Set_Table_Entry;
-----------------------------------------
-- Traverse_Declarations_Or_Statements --
-----------------------------------------
procedure Traverse_Declarations_Or_Statements (L : List_Id) is
N : Node_Id;
Start : Source_Ptr;
Dummy : Source_Ptr;
Stop : Source_Ptr;
From : Source_Ptr;
To : Source_Ptr;
Term : Boolean;
-- Set False if current entity terminates statement list
procedure Set_Statement_Entry;
-- If Start is No_Location, does nothing, otherwise outputs a SCO_Table
-- statement entry for the range Start-Stop and then sets both Start
-- and Stop to No_Location. Unconditionally sets Term to True. This is
-- called when we find a statement or declaration that generates its
-- own table entry, so that we must end the current statement sequence.
-------------------------
-- Set_Statement_Entry --
-------------------------
procedure Set_Statement_Entry is
begin
Term := True;
if Start /= No_Location then
Set_Table_Entry ('S', ' ', Start, Stop, False);
Start := No_Location;
Stop := No_Location;
end if;
end Set_Statement_Entry;
-- Start of processing for Traverse_Declarations_Or_Statements
begin
if Is_Non_Empty_List (L) then
N := First (L);
Start := No_Location;
-- Loop through statements or declarations
while Present (N) loop
Term := False;
case Nkind (N) is
-- Package declaration
when N_Package_Declaration =>
Set_Statement_Entry;
Traverse_Package_Declaration (N);
-- Package body
when N_Package_Body =>
Set_Statement_Entry;
Traverse_Package_Body (N);
-- Subprogram_Body
when N_Subprogram_Body =>
Set_Statement_Entry;
Traverse_Subprogram_Body (N);
-- Exit statement
when N_Exit_Statement =>
Set_Statement_Entry;
Process_Decisions (Condition (N), 'E');
-- This is an exit point
Sloc_Range (N, From, To);
Set_Table_Entry ('T', ' ', From, To, False);
-- Block statement
when N_Block_Statement =>
Set_Statement_Entry;
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N));
-- If statement
when N_If_Statement =>
Set_Statement_Entry;
Process_Decisions (Condition (N), 'I');
Traverse_Declarations_Or_Statements (Then_Statements (N));
if Present (Elsif_Parts (N)) then
declare
Elif : Node_Id := First (Elsif_Parts (N));
begin
while Present (Elif) loop
Process_Decisions (Condition (Elif), 'I');
Traverse_Declarations_Or_Statements
(Then_Statements (Elif));
Next (Elif);
end loop;
end;
end if;
Traverse_Declarations_Or_Statements (Else_Statements (N));
-- Unconditional exit points
when N_Requeue_Statement |
N_Goto_Statement |
N_Raise_Statement =>
Set_Statement_Entry;
Sloc_Range (N, From, To);
Set_Table_Entry ('T', ' ', From, To, False);
-- Simple return statement
when N_Simple_Return_Statement =>
Set_Statement_Entry;
-- Process possible return expression
Process_Decisions (Expression (N), 'X');
-- Return is an exit point
Sloc_Range (N, From, To);
Set_Table_Entry ('T', ' ', From, To, False);
-- Extended return statement
when N_Extended_Return_Statement =>
Set_Statement_Entry;
Traverse_Declarations_Or_Statements
(Return_Object_Declarations (N));
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N));
-- Return is an exit point
Sloc_Range (N, From, To);
Set_Table_Entry ('T', ' ', From, To, False);
-- Loop
when N_Loop_Statement =>
-- Even if not a while loop, we want a new statement seq
Set_Statement_Entry;
if Present (Iteration_Scheme (N)) then
Process_Decisions
(Condition (Iteration_Scheme (N)), 'W');
end if;
Traverse_Declarations_Or_Statements (Statements (N));
-- All other cases
when others =>
if Has_Decision (N) then
Set_Statement_Entry;
Process_Decisions (N, 'X');
end if;
end case;
-- If that element did not terminate the current sequence of
-- statements, then establish or extend this sequence.
if not Term then
if Start = No_Location then
Sloc_Range (N, Start, Stop);
else
Sloc_Range (N, Dummy, Stop);
end if;
end if;
Next (N);
end loop;
Set_Statement_Entry;
end if;
end Traverse_Declarations_Or_Statements;
-----------------------------------------
-- Traverse_Handled_Statement_Sequence --
-----------------------------------------
procedure Traverse_Handled_Statement_Sequence (N : Node_Id) is
Handler : Node_Id;
begin
if Present (N) then
Traverse_Declarations_Or_Statements (Statements (N));
if Present (Exception_Handlers (N)) then
Handler := First (Exception_Handlers (N));
while Present (Handler) loop
Traverse_Declarations_Or_Statements (Statements (Handler));
Next (Handler);
end loop;
end if;
end if;
end Traverse_Handled_Statement_Sequence;
---------------------------
-- Traverse_Package_Body --
---------------------------
procedure Traverse_Package_Body (N : Node_Id) is
begin
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N));
end Traverse_Package_Body;
----------------------------------
-- Traverse_Package_Declaration --
----------------------------------
procedure Traverse_Package_Declaration (N : Node_Id) is
Spec : constant Node_Id := Specification (N);
begin
Traverse_Declarations_Or_Statements (Visible_Declarations (Spec));
Traverse_Declarations_Or_Statements (Private_Declarations (Spec));
end Traverse_Package_Declaration;
------------------------------
-- Traverse_Subprogram_Body --
------------------------------
procedure Traverse_Subprogram_Body (N : Node_Id) is
begin
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N));
end Traverse_Subprogram_Body;
end Par_SCO;
|