1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- P A R _ S C O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2009-2011, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Lib; use Lib;
with Lib.Util; use Lib.Util;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Put_SCOs;
with SCOs; use SCOs;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Table;
with GNAT.HTable; use GNAT.HTable;
with GNAT.Heap_Sort_G;
package body Par_SCO is
-----------------------
-- Unit Number Table --
-----------------------
-- This table parallels the SCO_Unit_Table, keeping track of the unit
-- numbers corresponding to the entries made in this table, so that before
-- writing out the SCO information to the ALI file, we can fill in the
-- proper dependency numbers and file names.
-- Note that the zero'th entry is here for convenience in sorting the
-- table, the real lower bound is 1.
package SCO_Unit_Number_Table is new Table.Table (
Table_Component_Type => Unit_Number_Type,
Table_Index_Type => SCO_Unit_Index,
Table_Low_Bound => 0, -- see note above on sort
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "SCO_Unit_Number_Entry");
---------------------------------
-- Condition/Pragma Hash Table --
---------------------------------
-- We need to be able to get to conditions quickly for handling the calls
-- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
-- handle calls to Set_SCO_Pragma_Enabled. For this purpose we identify the
-- conditions and pragmas in the table by their starting sloc, and use this
-- hash table to map from these starting sloc values to SCO_Table indexes.
type Header_Num is new Integer range 0 .. 996;
-- Type for hash table headers
function Hash (F : Source_Ptr) return Header_Num;
-- Function to Hash source pointer value
function Equal (F1, F2 : Source_Ptr) return Boolean;
-- Function to test two keys for equality
package Condition_Pragma_Hash_Table is new Simple_HTable
(Header_Num, Int, 0, Source_Ptr, Hash, Equal);
-- The actual hash table
--------------------------
-- Internal Subprograms --
--------------------------
function Has_Decision (N : Node_Id) return Boolean;
-- N is the node for a subexpression. Returns True if the subexpression
-- contains a nested decision (i.e. either is a logical operator, or
-- contains a logical operator in its subtree).
function Is_Logical_Operator (N : Node_Id) return Boolean;
-- N is the node for a subexpression. This procedure just tests N to see
-- if it is a logical operator (including short circuit conditions, but
-- excluding OR and AND) and returns True if so, False otherwise, it does
-- no other processing.
procedure Process_Decisions (N : Node_Id; T : Character);
-- If N is Empty, has no effect. Otherwise scans the tree for the node N,
-- to output any decisions it contains. T is one of IEGPWX (for context of
-- expression: if/exit when/entry guard/pragma/while/expression). If T is
-- other than X, the node N is the conditional expression involved, and a
-- decision is always present (at the very least a simple decision is
-- present at the top level).
procedure Process_Decisions (L : List_Id; T : Character);
-- Calls above procedure for each element of the list L
procedure Set_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location);
-- Append an entry to SCO_Table with fields set as per arguments
procedure Traverse_Declarations_Or_Statements (L : List_Id);
procedure Traverse_Generic_Instantiation (N : Node_Id);
procedure Traverse_Generic_Package_Declaration (N : Node_Id);
procedure Traverse_Handled_Statement_Sequence (N : Node_Id);
procedure Traverse_Package_Body (N : Node_Id);
procedure Traverse_Package_Declaration (N : Node_Id);
procedure Traverse_Protected_Body (N : Node_Id);
procedure Traverse_Subprogram_Or_Task_Body (N : Node_Id);
procedure Traverse_Subprogram_Declaration (N : Node_Id);
-- Traverse the corresponding construct, generating SCO table entries
procedure Write_SCOs_To_ALI_File is new Put_SCOs;
-- Write SCO information to the ALI file using routines in Lib.Util
----------
-- dsco --
----------
procedure dsco is
begin
-- Dump SCO unit table
Write_Line ("SCO Unit Table");
Write_Line ("--------------");
for Index in 1 .. SCO_Unit_Table.Last loop
declare
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
begin
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (". Dep_Num = ");
Write_Int (Int (UTE.Dep_Num));
Write_Str (" From = ");
Write_Int (Int (UTE.From));
Write_Str (" To = ");
Write_Int (Int (UTE.To));
Write_Str (" File_Name = """);
if UTE.File_Name /= null then
Write_Str (UTE.File_Name.all);
end if;
Write_Char ('"');
Write_Eol;
end;
end loop;
-- Dump SCO Unit number table if it contains any entries
if SCO_Unit_Number_Table.Last >= 1 then
Write_Eol;
Write_Line ("SCO Unit Number Table");
Write_Line ("---------------------");
for Index in 1 .. SCO_Unit_Number_Table.Last loop
Write_Str (" ");
Write_Int (Int (Index));
Write_Str (". Unit_Number = ");
Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
Write_Eol;
end loop;
end if;
-- Dump SCO table itself
Write_Eol;
Write_Line ("SCO Table");
Write_Line ("---------");
for Index in 1 .. SCO_Table.Last loop
declare
T : SCO_Table_Entry renames SCO_Table.Table (Index);
begin
Write_Str (" ");
Write_Int (Index);
Write_Char ('.');
if T.C1 /= ' ' then
Write_Str (" C1 = '");
Write_Char (T.C1);
Write_Char (''');
end if;
if T.C2 /= ' ' then
Write_Str (" C2 = '");
Write_Char (T.C2);
Write_Char (''');
end if;
if T.From /= No_Source_Location then
Write_Str (" From = ");
Write_Int (Int (T.From.Line));
Write_Char (':');
Write_Int (Int (T.From.Col));
end if;
if T.To /= No_Source_Location then
Write_Str (" To = ");
Write_Int (Int (T.To.Line));
Write_Char (':');
Write_Int (Int (T.To.Col));
end if;
if T.Last then
Write_Str (" True");
else
Write_Str (" False");
end if;
Write_Eol;
end;
end loop;
end dsco;
-----------
-- Equal --
-----------
function Equal (F1, F2 : Source_Ptr) return Boolean is
begin
return F1 = F2;
end Equal;
------------------
-- Has_Decision --
------------------
function Has_Decision (N : Node_Id) return Boolean is
function Check_Node (N : Node_Id) return Traverse_Result;
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
begin
if Is_Logical_Operator (N) then
return Abandon;
else
return OK;
end if;
end Check_Node;
function Traverse is new Traverse_Func (Check_Node);
-- Start of processing for Has_Decision
begin
return Traverse (N) = Abandon;
end Has_Decision;
----------
-- Hash --
----------
function Hash (F : Source_Ptr) return Header_Num is
begin
return Header_Num (Nat (F) mod 997);
end Hash;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
SCO_Unit_Number_Table.Init;
-- Set dummy 0'th entry in place for sort
SCO_Unit_Number_Table.Increment_Last;
end Initialize;
-------------------------
-- Is_Logical_Operator --
-------------------------
function Is_Logical_Operator (N : Node_Id) return Boolean is
begin
return Nkind_In (N, N_Op_Not,
N_And_Then,
N_Or_Else);
end Is_Logical_Operator;
-----------------------
-- Process_Decisions --
-----------------------
-- Version taking a list
procedure Process_Decisions (L : List_Id; T : Character) is
N : Node_Id;
begin
if L /= No_List then
N := First (L);
while Present (N) loop
Process_Decisions (N, T);
Next (N);
end loop;
end if;
end Process_Decisions;
-- Version taking a node
Pragma_Sloc : Source_Ptr := No_Location;
-- While processing decisions within a pragma Assert/Debug/PPC, this is set
-- to the sloc of the pragma.
procedure Process_Decisions (N : Node_Id; T : Character) is
Mark : Nat;
-- This is used to mark the location of a decision sequence in the SCO
-- table. We use it for backing out a simple decision in an expression
-- context that contains only NOT operators.
X_Not_Decision : Boolean;
-- This flag keeps track of whether a decision sequence in the SCO table
-- contains only NOT operators, and is for an expression context (T=X).
-- The flag will be set False if T is other than X, or if an operator
-- other than NOT is in the sequence.
function Process_Node (N : Node_Id) return Traverse_Result;
-- Processes one node in the traversal, looking for logical operators,
-- and if one is found, outputs the appropriate table entries.
procedure Output_Decision_Operand (N : Node_Id);
-- The node N is the top level logical operator of a decision, or it is
-- one of the operands of a logical operator belonging to a single
-- complex decision. This routine outputs the sequence of table entries
-- corresponding to the node. Note that we do not process the sub-
-- operands to look for further decisions, that processing is done in
-- Process_Decision_Operand, because we can't get decisions mixed up in
-- the global table. Call has no effect if N is Empty.
procedure Output_Element (N : Node_Id);
-- Node N is an operand of a logical operator that is not itself a
-- logical operator, or it is a simple decision. This routine outputs
-- the table entry for the element, with C1 set to ' '. Last is set
-- False, and an entry is made in the condition hash table.
procedure Output_Header (T : Character);
-- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
-- PRAGMA, and 'X' for the expression case.
procedure Process_Decision_Operand (N : Node_Id);
-- This is called on node N, the top level node of a decision, or on one
-- of its operands or suboperands after generating the full output for
-- the complex decision. It process the suboperands of the decision
-- looking for nested decisions.
-----------------------------
-- Output_Decision_Operand --
-----------------------------
procedure Output_Decision_Operand (N : Node_Id) is
C : Character;
L : Node_Id;
begin
if No (N) then
return;
-- Logical operator
elsif Is_Logical_Operator (N) then
if Nkind (N) = N_Op_Not then
C := '!';
L := Empty;
else
L := Left_Opnd (N);
if Nkind_In (N, N_Op_Or, N_Or_Else) then
C := '|';
else
C := '&';
end if;
end if;
Set_Table_Entry
(C1 => C,
C2 => ' ',
From => Sloc (N),
To => No_Location,
Last => False);
Output_Decision_Operand (L);
Output_Decision_Operand (Right_Opnd (N));
-- Not a logical operator
else
Output_Element (N);
end if;
end Output_Decision_Operand;
--------------------
-- Output_Element --
--------------------
procedure Output_Element (N : Node_Id) is
FSloc : Source_Ptr;
LSloc : Source_Ptr;
begin
Sloc_Range (N, FSloc, LSloc);
Set_Table_Entry
(C1 => ' ',
C2 => 'c',
From => FSloc,
To => LSloc,
Last => False);
Condition_Pragma_Hash_Table.Set (FSloc, SCO_Table.Last);
end Output_Element;
-------------------
-- Output_Header --
-------------------
procedure Output_Header (T : Character) is
Loc : Source_Ptr := No_Location;
-- Node whose sloc is used for the decision
begin
case T is
when 'I' | 'E' | 'W' =>
-- For IF, EXIT, WHILE, the token SLOC can be found from
-- the SLOC of the parent of the expression.
Loc := Sloc (Parent (N));
when 'G' | 'P' =>
-- For entry, the token sloc is from the N_Entry_Body. For
-- PRAGMA, we must get the location from the pragma node.
-- Argument N is the pragma argument, and we have to go up two
-- levels (through the pragma argument association) to get to
-- the pragma node itself.
Loc := Sloc (Parent (Parent (N)));
if T = 'P' then
-- Record sloc of pragma (pragmas don't nest)
pragma Assert (Pragma_Sloc = No_Location);
Pragma_Sloc := Loc;
end if;
when 'X' =>
-- For an expression, no Sloc
null;
-- No other possibilities
when others =>
raise Program_Error;
end case;
Set_Table_Entry
(C1 => T,
C2 => ' ',
From => Loc,
To => No_Location,
Last => False,
Pragma_Sloc => Pragma_Sloc);
if T = 'P' then
-- For pragmas we also must make an entry in the hash table for
-- later access by Set_SCO_Pragma_Enabled. We set the pragma as
-- disabled now, the call will change C2 to 'e' to enable the
-- pragma header entry.
SCO_Table.Table (SCO_Table.Last).C2 := 'd';
Condition_Pragma_Hash_Table.Set (Loc, SCO_Table.Last);
end if;
end Output_Header;
------------------------------
-- Process_Decision_Operand --
------------------------------
procedure Process_Decision_Operand (N : Node_Id) is
begin
if Is_Logical_Operator (N) then
if Nkind (N) /= N_Op_Not then
Process_Decision_Operand (Left_Opnd (N));
X_Not_Decision := False;
end if;
Process_Decision_Operand (Right_Opnd (N));
else
Process_Decisions (N, 'X');
end if;
end Process_Decision_Operand;
------------------
-- Process_Node --
------------------
function Process_Node (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
-- Logical operators, output table entries and then process
-- operands recursively to deal with nested conditions.
when N_And_Then |
N_Or_Else |
N_Op_Not =>
declare
T : Character;
begin
-- If outer level, then type comes from call, otherwise it
-- is more deeply nested and counts as X for expression.
if N = Process_Decisions.N then
T := Process_Decisions.T;
else
T := 'X';
end if;
-- Output header for sequence
X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
Mark := SCO_Table.Last;
Output_Header (T);
-- Output the decision
Output_Decision_Operand (N);
-- If the decision was in an expression context (T = 'X')
-- and contained only NOT operators, then we don't output
-- it, so delete it.
if X_Not_Decision then
SCO_Table.Set_Last (Mark);
-- Otherwise, set Last in last table entry to mark end
else
SCO_Table.Table (SCO_Table.Last).Last := True;
end if;
-- Process any embedded decisions
Process_Decision_Operand (N);
return Skip;
end;
-- Case expression
when N_Case_Expression =>
return OK; -- ???
-- Conditional expression, processed like an if statement
when N_Conditional_Expression =>
declare
Cond : constant Node_Id := First (Expressions (N));
Thnx : constant Node_Id := Next (Cond);
Elsx : constant Node_Id := Next (Thnx);
begin
Process_Decisions (Cond, 'I');
Process_Decisions (Thnx, 'X');
Process_Decisions (Elsx, 'X');
return Skip;
end;
-- All other cases, continue scan
when others =>
return OK;
end case;
end Process_Node;
procedure Traverse is new Traverse_Proc (Process_Node);
-- Start of processing for Process_Decisions
begin
if No (N) then
return;
end if;
-- See if we have simple decision at outer level and if so then
-- generate the decision entry for this simple decision. A simple
-- decision is a boolean expression (which is not a logical operator
-- or short circuit form) appearing as the operand of an IF, WHILE,
-- EXIT WHEN, or special PRAGMA construct.
if T /= 'X' and then not Is_Logical_Operator (N) then
Output_Header (T);
Output_Element (N);
-- Change Last in last table entry to True to mark end of
-- sequence, which is this case is only one element long.
SCO_Table.Table (SCO_Table.Last).Last := True;
end if;
Traverse (N);
-- Reset Pragma_Sloc after full subtree traversal
if T = 'P' then
Pragma_Sloc := No_Location;
end if;
end Process_Decisions;
-----------
-- pscos --
-----------
procedure pscos is
procedure Write_Info_Char (C : Character) renames Write_Char;
-- Write one character;
procedure Write_Info_Initiate (Key : Character) renames Write_Char;
-- Start new one and write one character;
procedure Write_Info_Nat (N : Nat);
-- Write value of N
procedure Write_Info_Terminate renames Write_Eol;
-- Terminate current line
--------------------
-- Write_Info_Nat --
--------------------
procedure Write_Info_Nat (N : Nat) is
begin
Write_Int (N);
end Write_Info_Nat;
procedure Debug_Put_SCOs is new Put_SCOs;
-- Start of processing for pscos
begin
Debug_Put_SCOs;
end pscos;
----------------
-- SCO_Output --
----------------
procedure SCO_Output is
begin
if Debug_Flag_Dot_OO then
dsco;
end if;
-- Sort the unit tables based on dependency numbers
Unit_Table_Sort : declare
function Lt (Op1, Op2 : Natural) return Boolean;
-- Comparison routine for sort call
procedure Move (From : Natural; To : Natural);
-- Move routine for sort call
--------
-- Lt --
--------
function Lt (Op1, Op2 : Natural) return Boolean is
begin
return
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
<
Dependency_Num
(SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Table.Table (SCO_Unit_Index (From));
SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
end Move;
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-- Start of processing for Unit_Table_Sort
begin
Sorting.Sort (Integer (SCO_Unit_Table.Last));
end Unit_Table_Sort;
-- Loop through entries in the unit table to set file name and
-- dependency number entries.
for J in 1 .. SCO_Unit_Table.Last loop
declare
U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
begin
Get_Name_String (Reference_Name (Source_Index (U)));
UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
UTE.Dep_Num := Dependency_Num (U);
end;
end loop;
-- Now the tables are all setup for output to the ALI file
Write_SCOs_To_ALI_File;
end SCO_Output;
-------------------------
-- SCO_Pragma_Disabled --
-------------------------
function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
Index : Nat;
begin
if Loc = No_Location then
return False;
end if;
Index := Condition_Pragma_Hash_Table.Get (Loc);
-- The test here for zero is to deal with possible previous errors
if Index /= 0 then
pragma Assert (SCO_Table.Table (Index).C1 = 'P');
return SCO_Table.Table (Index).C2 = 'd';
else
return False;
end if;
end SCO_Pragma_Disabled;
----------------
-- SCO_Record --
----------------
procedure SCO_Record (U : Unit_Number_Type) is
Lu : Node_Id;
From : Nat;
begin
-- Ignore call if not generating code and generating SCO's
if not (Generate_SCO and then Operating_Mode = Generate_Code) then
return;
end if;
-- Ignore call if this unit already recorded
for J in 1 .. SCO_Unit_Number_Table.Last loop
if U = SCO_Unit_Number_Table.Table (J) then
return;
end if;
end loop;
-- Otherwise record starting entry
From := SCO_Table.Last + 1;
-- Get Unit (checking case of subunit)
Lu := Unit (Cunit (U));
if Nkind (Lu) = N_Subunit then
Lu := Proper_Body (Lu);
end if;
-- Traverse the unit
case Nkind (Lu) is
when N_Protected_Body =>
Traverse_Protected_Body (Lu);
when N_Subprogram_Body | N_Task_Body =>
Traverse_Subprogram_Or_Task_Body (Lu);
when N_Subprogram_Declaration =>
Traverse_Subprogram_Declaration (Lu);
when N_Package_Declaration =>
Traverse_Package_Declaration (Lu);
when N_Package_Body =>
Traverse_Package_Body (Lu);
when N_Generic_Package_Declaration =>
Traverse_Generic_Package_Declaration (Lu);
when N_Generic_Instantiation =>
Traverse_Generic_Instantiation (Lu);
when others =>
-- All other cases of compilation units (e.g. renamings), generate
-- no SCO information.
null;
end case;
-- Make entry for new unit in unit tables, we will fill in the file
-- name and dependency numbers later.
SCO_Unit_Table.Append (
(Dep_Num => 0,
File_Name => null,
From => From,
To => SCO_Table.Last));
SCO_Unit_Number_Table.Append (U);
end SCO_Record;
-----------------------
-- Set_SCO_Condition --
-----------------------
procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
Orig : constant Node_Id := Original_Node (Cond);
Index : Nat;
Start : Source_Ptr;
Dummy : Source_Ptr;
Constant_Condition_Code : constant array (Boolean) of Character :=
(False => 'f', True => 't');
begin
Sloc_Range (Orig, Start, Dummy);
Index := Condition_Pragma_Hash_Table.Get (Start);
-- The test here for zero is to deal with possible previous errors
if Index /= 0 then
pragma Assert (SCO_Table.Table (Index).C1 = ' ');
SCO_Table.Table (Index).C2 := Constant_Condition_Code (Val);
end if;
end Set_SCO_Condition;
----------------------------
-- Set_SCO_Pragma_Enabled --
----------------------------
procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
Index : Nat;
begin
-- Note: the reason we use the Sloc value as the key is that in the
-- generic case, the call to this procedure is made on a copy of the
-- original node, so we can't use the Node_Id value.
Index := Condition_Pragma_Hash_Table.Get (Loc);
-- The test here for zero is to deal with possible previous errors
if Index /= 0 then
pragma Assert (SCO_Table.Table (Index).C1 = 'P');
SCO_Table.Table (Index).C2 := 'e';
end if;
end Set_SCO_Pragma_Enabled;
---------------------
-- Set_Table_Entry --
---------------------
procedure Set_Table_Entry
(C1 : Character;
C2 : Character;
From : Source_Ptr;
To : Source_Ptr;
Last : Boolean;
Pragma_Sloc : Source_Ptr := No_Location)
is
function To_Source_Location (S : Source_Ptr) return Source_Location;
-- Converts Source_Ptr value to Source_Location (line/col) format
------------------------
-- To_Source_Location --
------------------------
function To_Source_Location (S : Source_Ptr) return Source_Location is
begin
if S = No_Location then
return No_Source_Location;
else
return
(Line => Get_Logical_Line_Number (S),
Col => Get_Column_Number (S));
end if;
end To_Source_Location;
-- Start of processing for Set_Table_Entry
begin
Add_SCO
(C1 => C1,
C2 => C2,
From => To_Source_Location (From),
To => To_Source_Location (To),
Last => Last,
Pragma_Sloc => Pragma_Sloc);
end Set_Table_Entry;
-----------------------------------------
-- Traverse_Declarations_Or_Statements --
-----------------------------------------
-- Tables used by Traverse_Declarations_Or_Statements for temporarily
-- holding statement and decision entries. These are declared globally
-- since they are shared by recursive calls to this procedure.
type SC_Entry is record
From : Source_Ptr;
To : Source_Ptr;
Typ : Character;
end record;
-- Used to store a single entry in the following table, From:To represents
-- the range of entries in the CS line entry, and typ is the type, with
-- space meaning that no type letter will accompany the entry.
package SC is new Table.Table (
Table_Component_Type => SC_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SC");
-- Used to store statement components for a CS entry to be output
-- as a result of the call to this procedure. SC.Last is the last
-- entry stored, so the current statement sequence is represented
-- by SC_Array (SC_First .. SC.Last), where SC_First is saved on
-- entry to each recursive call to the routine.
--
-- Extend_Statement_Sequence adds an entry to this array, and then
-- Set_Statement_Entry clears the entries starting with SC_First,
-- copying these entries to the main SCO output table. The reason that
-- we do the temporary caching of results in this array is that we want
-- the SCO table entries for a given CS line to be contiguous, and the
-- processing may output intermediate entries such as decision entries.
type SD_Entry is record
Nod : Node_Id;
Lst : List_Id;
Typ : Character;
end record;
-- Used to store a single entry in the following table. Nod is the node to
-- be searched for decisions for the case of Process_Decisions_Defer with a
-- node argument (with Lst set to No_List. Lst is the list to be searched
-- for decisions for the case of Process_Decisions_Defer with a List
-- argument (in which case Nod is set to Empty).
package SD is new Table.Table (
Table_Component_Type => SD_Entry,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => 1000,
Table_Increment => 200,
Table_Name => "SCO_SD");
-- Used to store possible decision information. Instead of calling the
-- Process_Decisions procedures directly, we call Process_Decisions_Defer,
-- which simply stores the arguments in this table. Then when we clear
-- out a statement sequence using Set_Statement_Entry, after generating
-- the CS lines for the statements, the entries in this table result in
-- calls to Process_Decision. The reason for doing things this way is to
-- ensure that decisions are output after the CS line for the statements
-- in which the decisions occur.
procedure Traverse_Declarations_Or_Statements (L : List_Id) is
N : Node_Id;
Dummy : Source_Ptr;
SC_First : constant Nat := SC.Last + 1;
SD_First : constant Nat := SD.Last + 1;
-- Record first entries used in SC/SD at this recursive level
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
-- Extend the current statement sequence to encompass the node N. Typ
-- is the letter that identifies the type of statement/declaration that
-- is being added to the sequence.
procedure Extend_Statement_Sequence
(From : Node_Id;
To : Node_Id;
Typ : Character);
-- This version extends the current statement sequence with an entry
-- that starts with the first token of From, and ends with the last
-- token of To. It is used for example in a CASE statement to cover
-- the range from the CASE token to the last token of the expression.
procedure Set_Statement_Entry;
-- If Start is No_Location, does nothing, otherwise outputs a SCO_Table
-- statement entry for the range Start-Stop and then sets both Start
-- and Stop to No_Location.
-- What are Start and Stop??? This comment seems completely unrelated
-- to the implementation!???
-- Unconditionally sets Term to True. What is Term???
-- This is called when we find a statement or declaration that generates
-- its own table entry, so that we must end the current statement
-- sequence.
procedure Process_Decisions_Defer (N : Node_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- This routine is logically the same as Process_Decisions, except that
-- the arguments are saved in the SD table, for later processing when
-- Set_Statement_Entry is called, which goes through the saved entries
-- making the corresponding calls to Process_Decision.
procedure Process_Decisions_Defer (L : List_Id; T : Character);
pragma Inline (Process_Decisions_Defer);
-- Same case for list arguments, deferred call to Process_Decisions
-------------------------
-- Set_Statement_Entry --
-------------------------
procedure Set_Statement_Entry is
C1 : Character;
SC_Last : constant Int := SC.Last;
SD_Last : constant Int := SD.Last;
begin
-- Output statement entries from saved entries in SC table
for J in SC_First .. SC_Last loop
if J = SC_First then
C1 := 'S';
else
C1 := 's';
end if;
declare
SCE : SC_Entry renames SC.Table (J);
begin
Set_Table_Entry
(C1 => C1,
C2 => SCE.Typ,
From => SCE.From,
To => SCE.To,
Last => (J = SC_Last));
end;
end loop;
-- Clear out used section of SC table
SC.Set_Last (SC_First - 1);
-- Output any embedded decisions
for J in SD_First .. SD_Last loop
declare
SDE : SD_Entry renames SD.Table (J);
begin
if Present (SDE.Nod) then
Process_Decisions (SDE.Nod, SDE.Typ);
else
Process_Decisions (SDE.Lst, SDE.Typ);
end if;
end;
end loop;
-- Clear out used section of SD table
SD.Set_Last (SD_First - 1);
end Set_Statement_Entry;
-------------------------------
-- Extend_Statement_Sequence --
-------------------------------
procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
F : Source_Ptr;
T : Source_Ptr;
begin
Sloc_Range (N, F, T);
SC.Append ((F, T, Typ));
end Extend_Statement_Sequence;
procedure Extend_Statement_Sequence
(From : Node_Id;
To : Node_Id;
Typ : Character)
is
F : Source_Ptr;
T : Source_Ptr;
begin
Sloc_Range (From, F, Dummy);
Sloc_Range (To, Dummy, T);
SC.Append ((F, T, Typ));
end Extend_Statement_Sequence;
-----------------------------
-- Process_Decisions_Defer --
-----------------------------
procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
begin
SD.Append ((N, No_List, T));
end Process_Decisions_Defer;
procedure Process_Decisions_Defer (L : List_Id; T : Character) is
begin
SD.Append ((Empty, L, T));
end Process_Decisions_Defer;
-- Start of processing for Traverse_Declarations_Or_Statements
begin
if Is_Non_Empty_List (L) then
-- Loop through statements or declarations
N := First (L);
while Present (N) loop
-- Initialize or extend current statement sequence. Note that for
-- special cases such as IF and Case statements we will modify
-- the range to exclude internal statements that should not be
-- counted as part of the current statement sequence.
case Nkind (N) is
-- Package declaration
when N_Package_Declaration =>
Set_Statement_Entry;
Traverse_Package_Declaration (N);
-- Generic package declaration
when N_Generic_Package_Declaration =>
Set_Statement_Entry;
Traverse_Generic_Package_Declaration (N);
-- Package body
when N_Package_Body =>
Set_Statement_Entry;
Traverse_Package_Body (N);
-- Subprogram declaration
when N_Subprogram_Declaration =>
Process_Decisions_Defer
(Parameter_Specifications (Specification (N)), 'X');
Set_Statement_Entry;
-- Generic subprogram declaration
when N_Generic_Subprogram_Declaration =>
Process_Decisions_Defer
(Generic_Formal_Declarations (N), 'X');
Process_Decisions_Defer
(Parameter_Specifications (Specification (N)), 'X');
Set_Statement_Entry;
-- Task or subprogram body
when N_Task_Body | N_Subprogram_Body =>
Set_Statement_Entry;
Traverse_Subprogram_Or_Task_Body (N);
-- Entry body
when N_Entry_Body =>
declare
Cond : constant Node_Id :=
Condition (Entry_Body_Formal_Part (N));
begin
Set_Statement_Entry;
if Present (Cond) then
Process_Decisions_Defer (Cond, 'G');
end if;
Traverse_Subprogram_Or_Task_Body (N);
end;
-- Protected body
when N_Protected_Body =>
Set_Statement_Entry;
Traverse_Protected_Body (N);
-- Exit statement, which is an exit statement in the SCO sense,
-- so it is included in the current statement sequence, but
-- then it terminates this sequence. We also have to process
-- any decisions in the exit statement expression.
when N_Exit_Statement =>
Extend_Statement_Sequence (N, ' ');
Process_Decisions_Defer (Condition (N), 'E');
Set_Statement_Entry;
-- Label, which breaks the current statement sequence, but the
-- label itself is not included in the next statement sequence,
-- since it generates no code.
when N_Label =>
Set_Statement_Entry;
-- Block statement, which breaks the current statement sequence
when N_Block_Statement =>
Set_Statement_Entry;
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N));
-- If statement, which breaks the current statement sequence,
-- but we include the condition in the current sequence.
when N_If_Statement =>
Extend_Statement_Sequence (N, Condition (N), 'I');
Process_Decisions_Defer (Condition (N), 'I');
Set_Statement_Entry;
-- Now we traverse the statements in the THEN part
Traverse_Declarations_Or_Statements (Then_Statements (N));
-- Loop through ELSIF parts if present
if Present (Elsif_Parts (N)) then
declare
Elif : Node_Id := First (Elsif_Parts (N));
begin
while Present (Elif) loop
-- We generate a statement sequence for the
-- construct "ELSIF condition", so that we have
-- a statement for the resulting decisions.
Extend_Statement_Sequence
(Elif, Condition (Elif), 'I');
Process_Decisions_Defer (Condition (Elif), 'I');
Set_Statement_Entry;
-- Traverse the statements in the ELSIF
Traverse_Declarations_Or_Statements
(Then_Statements (Elif));
Next (Elif);
end loop;
end;
end if;
-- Finally traverse the ELSE statements if present
Traverse_Declarations_Or_Statements (Else_Statements (N));
-- Case statement, which breaks the current statement sequence,
-- but we include the expression in the current sequence.
when N_Case_Statement =>
Extend_Statement_Sequence (N, Expression (N), 'C');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
-- Process case branches
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Traverse_Declarations_Or_Statements (Statements (Alt));
Next (Alt);
end loop;
end;
-- Unconditional exit points, which are included in the current
-- statement sequence, but then terminate it
when N_Requeue_Statement |
N_Goto_Statement |
N_Raise_Statement =>
Extend_Statement_Sequence (N, ' ');
Set_Statement_Entry;
-- Simple return statement. which is an exit point, but we
-- have to process the return expression for decisions.
when N_Simple_Return_Statement =>
Extend_Statement_Sequence (N, ' ');
Process_Decisions_Defer (Expression (N), 'X');
Set_Statement_Entry;
-- Extended return statement
when N_Extended_Return_Statement =>
Extend_Statement_Sequence
(N, Last (Return_Object_Declarations (N)), 'R');
Process_Decisions_Defer
(Return_Object_Declarations (N), 'X');
Set_Statement_Entry;
Traverse_Handled_Statement_Sequence
(Handled_Statement_Sequence (N));
-- Loop ends the current statement sequence, but we include
-- the iteration scheme if present in the current sequence.
-- But the body of the loop starts a new sequence, since it
-- may not be executed as part of the current sequence.
when N_Loop_Statement =>
if Present (Iteration_Scheme (N)) then
-- If iteration scheme present, extend the current
-- statement sequence to include the iteration scheme
-- and process any decisions it contains.
declare
ISC : constant Node_Id := Iteration_Scheme (N);
begin
-- While statement
if Present (Condition (ISC)) then
Extend_Statement_Sequence (N, ISC, 'W');
Process_Decisions_Defer (Condition (ISC), 'W');
-- For statement
else
Extend_Statement_Sequence (N, ISC, 'F');
Process_Decisions_Defer
(Loop_Parameter_Specification (ISC), 'X');
end if;
end;
end if;
Set_Statement_Entry;
Traverse_Declarations_Or_Statements (Statements (N));
-- Pragma
when N_Pragma =>
Extend_Statement_Sequence (N, 'P');
-- Processing depends on the kind of pragma
case Pragma_Name (N) is
when Name_Assert |
Name_Check |
Name_Precondition |
Name_Postcondition =>
-- For Assert/Check/Precondition/Postcondition, we
-- must generate a P entry for the decision. Note that
-- this is done unconditionally at this stage. Output
-- for disabled pragmas is suppressed later on, when
-- we output the decision line in Put_SCOs.
declare
Nam : constant Name_Id :=
Chars (Pragma_Identifier (N));
Arg : Node_Id :=
First (Pragma_Argument_Associations (N));
begin
if Nam = Name_Check then
Next (Arg);
end if;
Process_Decisions_Defer (Expression (Arg), 'P');
end;
-- For all other pragmas, we generate decision entries
-- for any embedded expressions.
when others =>
Process_Decisions_Defer (N, 'X');
end case;
-- Object declaration. Ignored if Prev_Ids is set, since the
-- parser generates multiple instances of the whole declaration
-- if there is more than one identifier declared, and we only
-- want one entry in the SCO's, so we take the first, for which
-- Prev_Ids is False.
when N_Object_Declaration =>
if not Prev_Ids (N) then
Extend_Statement_Sequence (N, 'o');
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end if;
-- All other cases, which extend the current statement sequence
-- but do not terminate it, even if they have nested decisions.
when others =>
-- Determine required type character code
declare
Typ : Character;
begin
case Nkind (N) is
when N_Full_Type_Declaration |
N_Incomplete_Type_Declaration |
N_Private_Type_Declaration |
N_Private_Extension_Declaration =>
Typ := 't';
when N_Subtype_Declaration =>
Typ := 's';
when N_Renaming_Declaration =>
Typ := 'r';
when N_Generic_Instantiation =>
Typ := 'i';
when others =>
Typ := ' ';
end case;
Extend_Statement_Sequence (N, Typ);
end;
-- Process any embedded decisions
if Has_Decision (N) then
Process_Decisions_Defer (N, 'X');
end if;
end case;
Next (N);
end loop;
Set_Statement_Entry;
end if;
end Traverse_Declarations_Or_Statements;
------------------------------------
-- Traverse_Generic_Instantiation --
------------------------------------
procedure Traverse_Generic_Instantiation (N : Node_Id) is
First : Source_Ptr;
Last : Source_Ptr;
begin
-- First we need a statement entry to cover the instantiation
Sloc_Range (N, First, Last);
Set_Table_Entry
(C1 => 'S',
C2 => ' ',
From => First,
To => Last,
Last => True);
-- Now output any embedded decisions
Process_Decisions (N, 'X');
end Traverse_Generic_Instantiation;
------------------------------------------
-- Traverse_Generic_Package_Declaration --
------------------------------------------
procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
begin
Process_Decisions (Generic_Formal_Declarations (N), 'X');
Traverse_Package_Declaration (N);
end Traverse_Generic_Package_Declaration;
-----------------------------------------
-- Traverse_Handled_Statement_Sequence --
-----------------------------------------
procedure Traverse_Handled_Statement_Sequence (N : Node_Id) is
Handler : Node_Id;
begin
-- For package bodies without a statement part, the parser adds an empty
-- one, to normalize the representation. The null statement therein,
-- which does not come from source, does not get a SCO.
if Present (N) and then Comes_From_Source (N) then
Traverse_Declarations_Or_Statements (Statements (N));
if Present (Exception_Handlers (N)) then
Handler := First (Exception_Handlers (N));
while Present (Handler) loop
Traverse_Declarations_Or_Statements (Statements (Handler));
Next (Handler);
end loop;
end if;
end if;
end Traverse_Handled_Statement_Sequence;
---------------------------
-- Traverse_Package_Body --
---------------------------
procedure Traverse_Package_Body (N : Node_Id) is
begin
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N));
end Traverse_Package_Body;
----------------------------------
-- Traverse_Package_Declaration --
----------------------------------
procedure Traverse_Package_Declaration (N : Node_Id) is
Spec : constant Node_Id := Specification (N);
begin
Traverse_Declarations_Or_Statements (Visible_Declarations (Spec));
Traverse_Declarations_Or_Statements (Private_Declarations (Spec));
end Traverse_Package_Declaration;
-----------------------------
-- Traverse_Protected_Body --
-----------------------------
procedure Traverse_Protected_Body (N : Node_Id) is
begin
Traverse_Declarations_Or_Statements (Declarations (N));
end Traverse_Protected_Body;
--------------------------------------
-- Traverse_Subprogram_Or_Task_Body --
--------------------------------------
procedure Traverse_Subprogram_Or_Task_Body (N : Node_Id) is
begin
Traverse_Declarations_Or_Statements (Declarations (N));
Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N));
end Traverse_Subprogram_Or_Task_Body;
-------------------------------------
-- Traverse_Subprogram_Declaration --
-------------------------------------
procedure Traverse_Subprogram_Declaration (N : Node_Id) is
ADN : constant Node_Id := Aux_Decls_Node (Parent (N));
begin
Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
Traverse_Declarations_Or_Statements (Declarations (ADN));
Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
end Traverse_Subprogram_Declaration;
end Par_SCO;
|