1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . O S _ P R I M I T I V E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1998-2009, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is the NT version of this package
with System.Win32.Ext;
package body System.OS_Primitives is
use System.Win32;
use System.Win32.Ext;
----------------------------------------
-- Data for the high resolution clock --
----------------------------------------
-- Declare some pointers to access multi-word data above. This is needed
-- to workaround a limitation in the GNU/Linker auto-import feature used
-- to build the GNAT runtime DLLs. In fact the Clock and Monotonic_Clock
-- routines are inlined and they are using some multi-word variables.
-- GNU/Linker will fail to auto-import those variables when building
-- libgnarl.dll. The indirection level introduced here has no measurable
-- penalties.
-- Note that access variables below must not be declared as constant
-- otherwise the compiler optimization will remove this indirect access.
type DA is access all Duration;
-- Use to have indirect access to multi-word variables
type LIA is access all LARGE_INTEGER;
-- Use to have indirect access to multi-word variables
type LLIA is access all Long_Long_Integer;
-- Use to have indirect access to multi-word variables
Tick_Frequency : aliased LARGE_INTEGER;
TFA : constant LIA := Tick_Frequency'Access;
-- Holds frequency of high-performance counter used by Clock
-- Windows NT uses a 1_193_182 Hz counter on PCs.
Base_Ticks : aliased LARGE_INTEGER;
BTA : constant LIA := Base_Ticks'Access;
-- Holds the Tick count for the base time
Base_Monotonic_Ticks : aliased LARGE_INTEGER;
BMTA : constant LIA := Base_Monotonic_Ticks'Access;
-- Holds the Tick count for the base monotonic time
Base_Clock : aliased Duration;
BCA : constant DA := Base_Clock'Access;
-- Holds the current clock for the standard clock's base time
Base_Monotonic_Clock : aliased Duration;
BMCA : constant DA := Base_Monotonic_Clock'Access;
-- Holds the current clock for monotonic clock's base time
Base_Time : aliased Long_Long_Integer;
BTiA : constant LLIA := Base_Time'Access;
-- Holds the base time used to check for system time change, used with
-- the standard clock.
procedure Get_Base_Time;
-- Retrieve the base time and base ticks. These values will be used by
-- clock to compute the current time by adding to it a fraction of the
-- performance counter. This is for the implementation of a
-- high-resolution clock. Note that this routine does not change the base
-- monotonic values used by the monotonic clock.
-----------
-- Clock --
-----------
-- This implementation of clock provides high resolution timer values
-- using QueryPerformanceCounter. This call return a 64 bits values (based
-- on the 8253 16 bits counter). This counter is updated every 1/1_193_182
-- times per seconds. The call to QueryPerformanceCounter takes 6
-- microsecs to complete.
function Clock return Duration is
Max_Shift : constant Duration := 2.0;
Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
Current_Ticks : aliased LARGE_INTEGER;
Elap_Secs_Tick : Duration;
Elap_Secs_Sys : Duration;
Now : aliased Long_Long_Integer;
begin
if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
return 0.0;
end if;
GetSystemTimeAsFileTime (Now'Access);
Elap_Secs_Sys :=
Duration (Long_Long_Float (abs (Now - BTiA.all)) /
Hundreds_Nano_In_Sec);
Elap_Secs_Tick :=
Duration (Long_Long_Float (Current_Ticks - BTA.all) /
Long_Long_Float (TFA.all));
-- If we have a shift of more than Max_Shift seconds we resynchronize
-- the Clock. This is probably due to a manual Clock adjustment, an
-- DST adjustment or an NTP synchronisation. And we want to adjust the
-- time for this system (non-monotonic) clock.
if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
Get_Base_Time;
Elap_Secs_Tick :=
Duration (Long_Long_Float (Current_Ticks - BTA.all) /
Long_Long_Float (TFA.all));
end if;
return BCA.all + Elap_Secs_Tick;
end Clock;
-------------------
-- Get_Base_Time --
-------------------
procedure Get_Base_Time is
-- The resolution for GetSystemTime is 1 millisecond
-- The time to get both base times should take less than 1 millisecond.
-- Therefore, the elapsed time reported by GetSystemTime between both
-- actions should be null.
epoch_1970 : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
system_time_ns : constant := 100; -- 100 ns per tick
Sec_Unit : constant := 10#1#E9;
Max_Elapsed : constant LARGE_INTEGER :=
LARGE_INTEGER (Tick_Frequency / 100_000);
-- Look for a precision of 0.01 ms
Loc_Ticks, Ctrl_Ticks : aliased LARGE_INTEGER;
Loc_Time, Ctrl_Time : aliased Long_Long_Integer;
Elapsed : LARGE_INTEGER;
Current_Max : LARGE_INTEGER := LARGE_INTEGER'Last;
begin
-- Here we must be sure that both of these calls are done in a short
-- amount of time. Both are base time and should in theory be taken
-- at the very same time.
-- The goal of the following loop is to synchronize the system time
-- with the Win32 performance counter by getting a base offset for both.
-- Using these offsets it is then possible to compute actual time using
-- a performance counter which has a better precision than the Win32
-- time API.
-- Try at most 10th times to reach the best synchronisation (below 1
-- millisecond) otherwise the runtime will use the best value reached
-- during the runs.
for K in 1 .. 10 loop
if QueryPerformanceCounter (Loc_Ticks'Access) = Win32.FALSE then
pragma Assert
(Standard.False,
"Could not query high performance counter in Clock");
null;
end if;
GetSystemTimeAsFileTime (Ctrl_Time'Access);
-- Scan for clock tick, will take upto 16ms/1ms depending on PC.
-- This cannot be an infinite loop or the system hardware is badly
-- dammaged.
loop
GetSystemTimeAsFileTime (Loc_Time'Access);
if QueryPerformanceCounter (Ctrl_Ticks'Access) = Win32.FALSE then
pragma Assert
(Standard.False,
"Could not query high performance counter in Clock");
null;
end if;
exit when Loc_Time /= Ctrl_Time;
Loc_Ticks := Ctrl_Ticks;
end loop;
-- Check elapsed Performance Counter between samples
-- to choose the best one.
Elapsed := Ctrl_Ticks - Loc_Ticks;
if Elapsed < Current_Max then
Base_Time := Loc_Time;
Base_Ticks := Loc_Ticks;
Current_Max := Elapsed;
-- Exit the loop when we have reached the expected precision
exit when Elapsed <= Max_Elapsed;
end if;
end loop;
Base_Clock := Duration
(Long_Long_Float ((Base_Time - epoch_1970) * system_time_ns) /
Long_Long_Float (Sec_Unit));
end Get_Base_Time;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
Current_Ticks : aliased LARGE_INTEGER;
Elap_Secs_Tick : Duration;
begin
if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
return 0.0;
else
Elap_Secs_Tick :=
Duration (Long_Long_Float (Current_Ticks - BMTA.all) /
Long_Long_Float (TFA.all));
return BMCA.all + Elap_Secs_Tick;
end if;
end Monotonic_Clock;
-----------------
-- Timed_Delay --
-----------------
procedure Timed_Delay (Time : Duration; Mode : Integer) is
function Mode_Clock return Duration;
pragma Inline (Mode_Clock);
-- Return the current clock value using either the monotonic clock or
-- standard clock depending on the Mode value.
----------------
-- Mode_Clock --
----------------
function Mode_Clock return Duration is
begin
case Mode is
when Absolute_RT =>
return Monotonic_Clock;
when others =>
return Clock;
end case;
end Mode_Clock;
-- Local Variables
Base_Time : constant Duration := Mode_Clock;
-- Base_Time is used to detect clock set backward, in this case we
-- cannot ensure the delay accuracy.
Rel_Time : Duration;
Abs_Time : Duration;
Check_Time : Duration := Base_Time;
-- Start of processing for Timed Delay
begin
if Mode = Relative then
Rel_Time := Time;
Abs_Time := Time + Check_Time;
else
Rel_Time := Time - Check_Time;
Abs_Time := Time;
end if;
if Rel_Time > 0.0 then
loop
Sleep (DWORD (Rel_Time * 1000.0));
Check_Time := Mode_Clock;
exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
Rel_Time := Abs_Time - Check_Time;
end loop;
end if;
end Timed_Delay;
----------------
-- Initialize --
----------------
Initialized : Boolean := False;
procedure Initialize is
begin
if Initialized then
return;
end if;
Initialized := True;
-- Get starting time as base
if QueryPerformanceFrequency (Tick_Frequency'Access) = Win32.FALSE then
raise Program_Error with
"cannot get high performance counter frequency";
end if;
Get_Base_Time;
-- Keep base clock and ticks for the monotonic clock. These values
-- should never be changed to ensure proper behavior of the monotonic
-- clock.
Base_Monotonic_Clock := Base_Clock;
Base_Monotonic_Ticks := Base_Ticks;
end Initialize;
end System.OS_Primitives;
|