1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A U X --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
package body Sem_Aux is
----------------------
-- Ancestor_Subtype --
----------------------
function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is
begin
-- If this is first subtype, or is a base type, then there is no
-- ancestor subtype, so we return Empty to indicate this fact.
if Is_First_Subtype (Typ) or else Is_Base_Type (Typ) then
return Empty;
end if;
declare
D : constant Node_Id := Declaration_Node (Typ);
begin
-- If we have a subtype declaration, get the ancestor subtype
if Nkind (D) = N_Subtype_Declaration then
if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
return Entity (Subtype_Mark (Subtype_Indication (D)));
else
return Entity (Subtype_Indication (D));
end if;
-- If not, then no subtype indication is available
else
return Empty;
end if;
end;
end Ancestor_Subtype;
--------------------
-- Available_View --
--------------------
function Available_View (Typ : Entity_Id) return Entity_Id is
begin
if Is_Incomplete_Type (Typ)
and then Present (Non_Limited_View (Typ))
then
-- The non-limited view may itself be an incomplete type, in which
-- case get its full view.
return Get_Full_View (Non_Limited_View (Typ));
elsif Is_Class_Wide_Type (Typ)
and then Is_Incomplete_Type (Etype (Typ))
and then Present (Non_Limited_View (Etype (Typ)))
then
return Class_Wide_Type (Non_Limited_View (Etype (Typ)));
else
return Typ;
end if;
end Available_View;
--------------------
-- Constant_Value --
--------------------
function Constant_Value (Ent : Entity_Id) return Node_Id is
D : constant Node_Id := Declaration_Node (Ent);
Full_D : Node_Id;
begin
-- If we have no declaration node, then return no constant value. Not
-- clear how this can happen, but it does sometimes and this is the
-- safest approach.
if No (D) then
return Empty;
-- Normal case where a declaration node is present
elsif Nkind (D) = N_Object_Renaming_Declaration then
return Renamed_Object (Ent);
-- If this is a component declaration whose entity is a constant, it is
-- a prival within a protected function (and so has no constant value).
elsif Nkind (D) = N_Component_Declaration then
return Empty;
-- If there is an expression, return it
elsif Present (Expression (D)) then
return (Expression (D));
-- For a constant, see if we have a full view
elsif Ekind (Ent) = E_Constant
and then Present (Full_View (Ent))
then
Full_D := Parent (Full_View (Ent));
-- The full view may have been rewritten as an object renaming
if Nkind (Full_D) = N_Object_Renaming_Declaration then
return Name (Full_D);
else
return Expression (Full_D);
end if;
-- Otherwise we have no expression to return
else
return Empty;
end if;
end Constant_Value;
----------------------------------------------
-- Effectively_Has_Constrained_Partial_View --
----------------------------------------------
function Effectively_Has_Constrained_Partial_View
(Typ : Entity_Id;
Scop : Entity_Id) return Boolean
is
begin
return Has_Constrained_Partial_View (Typ)
or else (In_Generic_Body (Scop)
and then Is_Generic_Type (Base_Type (Typ))
and then Is_Private_Type (Base_Type (Typ))
and then not Is_Tagged_Type (Typ)
and then not (Is_Array_Type (Typ)
and then not Is_Constrained (Typ))
and then Has_Discriminants (Typ));
end Effectively_Has_Constrained_Partial_View;
-----------------------------
-- Enclosing_Dynamic_Scope --
-----------------------------
function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
-- The following test is an error defense against some syntax errors
-- that can leave scopes very messed up.
if Ent = Standard_Standard then
return Ent;
end if;
-- Normal case, search enclosing scopes
-- Note: the test for Present (S) should not be required, it defends
-- against an ill-formed tree.
S := Scope (Ent);
loop
-- If we somehow got an empty value for Scope, the tree must be
-- malformed. Rather than blow up we return Standard in this case.
if No (S) then
return Standard_Standard;
-- Quit if we get to standard or a dynamic scope. We must also
-- handle enclosing scopes that have a full view; required to
-- locate enclosing scopes that are synchronized private types
-- whose full view is a task type.
elsif S = Standard_Standard
or else Is_Dynamic_Scope (S)
or else (Is_Private_Type (S)
and then Present (Full_View (S))
and then Is_Dynamic_Scope (Full_View (S)))
then
return S;
-- Otherwise keep climbing
else
S := Scope (S);
end if;
end loop;
end Enclosing_Dynamic_Scope;
------------------------
-- First_Discriminant --
------------------------
function First_Discriminant (Typ : Entity_Id) return Entity_Id is
Ent : Entity_Id;
begin
pragma Assert
(Has_Discriminants (Typ) or else Has_Unknown_Discriminants (Typ));
Ent := First_Entity (Typ);
-- The discriminants are not necessarily contiguous, because access
-- discriminants will generate itypes. They are not the first entities
-- either because the tag must be ahead of them.
if Chars (Ent) = Name_uTag then
Ent := Next_Entity (Ent);
end if;
-- Skip all hidden stored discriminants if any
while Present (Ent) loop
exit when Ekind (Ent) = E_Discriminant
and then not Is_Completely_Hidden (Ent);
Ent := Next_Entity (Ent);
end loop;
pragma Assert (Ekind (Ent) = E_Discriminant);
return Ent;
end First_Discriminant;
-------------------------------
-- First_Stored_Discriminant --
-------------------------------
function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is
Ent : Entity_Id;
function Has_Completely_Hidden_Discriminant
(Typ : Entity_Id) return Boolean;
-- Scans the Discriminants to see whether any are Completely_Hidden
-- (the mechanism for describing non-specified stored discriminants)
----------------------------------------
-- Has_Completely_Hidden_Discriminant --
----------------------------------------
function Has_Completely_Hidden_Discriminant
(Typ : Entity_Id) return Boolean
is
Ent : Entity_Id;
begin
pragma Assert (Ekind (Typ) = E_Discriminant);
Ent := Typ;
while Present (Ent) and then Ekind (Ent) = E_Discriminant loop
if Is_Completely_Hidden (Ent) then
return True;
end if;
Ent := Next_Entity (Ent);
end loop;
return False;
end Has_Completely_Hidden_Discriminant;
-- Start of processing for First_Stored_Discriminant
begin
pragma Assert
(Has_Discriminants (Typ)
or else Has_Unknown_Discriminants (Typ));
Ent := First_Entity (Typ);
if Chars (Ent) = Name_uTag then
Ent := Next_Entity (Ent);
end if;
if Has_Completely_Hidden_Discriminant (Ent) then
while Present (Ent) loop
exit when Is_Completely_Hidden (Ent);
Ent := Next_Entity (Ent);
end loop;
end if;
pragma Assert (Ekind (Ent) = E_Discriminant);
return Ent;
end First_Stored_Discriminant;
-------------------
-- First_Subtype --
-------------------
function First_Subtype (Typ : Entity_Id) return Entity_Id is
B : constant Entity_Id := Base_Type (Typ);
F : constant Node_Id := Freeze_Node (B);
Ent : Entity_Id;
begin
-- If the base type has no freeze node, it is a type in Standard, and
-- always acts as its own first subtype, except where it is one of the
-- predefined integer types. If the type is formal, it is also a first
-- subtype, and its base type has no freeze node. On the other hand, a
-- subtype of a generic formal is not its own first subtype. Its base
-- type, if anonymous, is attached to the formal type decl. from which
-- the first subtype is obtained.
if No (F) then
if B = Base_Type (Standard_Integer) then
return Standard_Integer;
elsif B = Base_Type (Standard_Long_Integer) then
return Standard_Long_Integer;
elsif B = Base_Type (Standard_Short_Short_Integer) then
return Standard_Short_Short_Integer;
elsif B = Base_Type (Standard_Short_Integer) then
return Standard_Short_Integer;
elsif B = Base_Type (Standard_Long_Long_Integer) then
return Standard_Long_Long_Integer;
elsif Is_Generic_Type (Typ) then
if Present (Parent (B)) then
return Defining_Identifier (Parent (B));
else
return Defining_Identifier (Associated_Node_For_Itype (B));
end if;
else
return B;
end if;
-- Otherwise we check the freeze node, if it has a First_Subtype_Link
-- then we use that link, otherwise (happens with some Itypes), we use
-- the base type itself.
else
Ent := First_Subtype_Link (F);
if Present (Ent) then
return Ent;
else
return B;
end if;
end if;
end First_Subtype;
-------------------------
-- First_Tag_Component --
-------------------------
function First_Tag_Component (Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Ctyp : Entity_Id;
begin
Ctyp := Typ;
pragma Assert (Is_Tagged_Type (Ctyp));
if Is_Class_Wide_Type (Ctyp) then
Ctyp := Root_Type (Ctyp);
end if;
if Is_Private_Type (Ctyp) then
Ctyp := Underlying_Type (Ctyp);
-- If the underlying type is missing then the source program has
-- errors and there is nothing else to do (the full-type declaration
-- associated with the private type declaration is missing).
if No (Ctyp) then
return Empty;
end if;
end if;
Comp := First_Entity (Ctyp);
while Present (Comp) loop
if Is_Tag (Comp) then
return Comp;
end if;
Comp := Next_Entity (Comp);
end loop;
-- No tag component found
return Empty;
end First_Tag_Component;
------------------
-- Get_Rep_Item --
------------------
function Get_Rep_Item
(E : Entity_Id;
Nam : Name_Id;
Check_Parents : Boolean := True) return Node_Id
is
N : Node_Id;
begin
N := First_Rep_Item (E);
while Present (N) loop
if Nkind (N) = N_Pragma
and then
(Pragma_Name (N) = Nam
or else (Nam = Name_Priority
and then Pragma_Name (N) = Name_Interrupt_Priority))
then
if Check_Parents then
return N;
-- If Check_Parents is False, return N if the pragma doesn't
-- appear in the Rep_Item chain of the parent.
else
declare
Par : constant Entity_Id := Nearest_Ancestor (E);
-- This node represents the parent type of type E (if any)
begin
if No (Par) then
return N;
elsif not Present_In_Rep_Item (Par, N) then
return N;
end if;
end;
end if;
elsif Nkind (N) = N_Attribute_Definition_Clause
and then
(Chars (N) = Nam
or else (Nam = Name_Priority
and then Chars (N) = Name_Interrupt_Priority))
then
if Check_Parents or else Entity (N) = E then
return N;
end if;
elsif Nkind (N) = N_Aspect_Specification
and then
(Chars (Identifier (N)) = Nam
or else (Nam = Name_Priority
and then Chars (Identifier (N)) =
Name_Interrupt_Priority))
then
if Check_Parents then
return N;
elsif Entity (N) = E then
return N;
end if;
end if;
Next_Rep_Item (N);
end loop;
return Empty;
end Get_Rep_Item;
--------------------
-- Get_Rep_Pragma --
--------------------
function Get_Rep_Pragma
(E : Entity_Id;
Nam : Name_Id;
Check_Parents : Boolean := True) return Node_Id
is
N : Node_Id;
begin
N := First_Rep_Item (E);
while Present (N) loop
if Nkind (N) = N_Pragma
and then
(Pragma_Name (N) = Nam
or else (Nam = Name_Interrupt_Priority
and then Pragma_Name (N) = Name_Priority))
then
if Check_Parents then
return N;
-- If Check_Parents is False, return N if the pragma doesn't
-- appear in the Rep_Item chain of the parent.
else
declare
Par : constant Entity_Id := Nearest_Ancestor (E);
-- This node represents the parent type of type E (if any)
begin
if No (Par) or else not Present_In_Rep_Item (Par, N) then
return N;
end if;
end;
end if;
end if;
Next_Rep_Item (N);
end loop;
return Empty;
end Get_Rep_Pragma;
------------------
-- Has_Rep_Item --
------------------
function Has_Rep_Item
(E : Entity_Id;
Nam : Name_Id;
Check_Parents : Boolean := True) return Boolean
is
begin
return Present (Get_Rep_Item (E, Nam, Check_Parents));
end Has_Rep_Item;
--------------------
-- Has_Rep_Pragma --
--------------------
function Has_Rep_Pragma
(E : Entity_Id;
Nam : Name_Id;
Check_Parents : Boolean := True) return Boolean
is
begin
return Present (Get_Rep_Pragma (E, Nam, Check_Parents));
end Has_Rep_Pragma;
-------------------------------
-- Initialization_Suppressed --
-------------------------------
function Initialization_Suppressed (Typ : Entity_Id) return Boolean is
begin
return Suppress_Initialization (Typ)
or else Suppress_Initialization (Base_Type (Typ));
end Initialization_Suppressed;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Obsolescent_Warnings.Init;
end Initialize;
---------------------
-- In_Generic_Body --
---------------------
function In_Generic_Body (Id : Entity_Id) return Boolean is
S : Entity_Id;
begin
-- Climb scopes looking for generic body
S := Id;
while Present (S) and then S /= Standard_Standard loop
-- Generic package body
if Ekind (S) = E_Generic_Package
and then In_Package_Body (S)
then
return True;
-- Generic subprogram body
elsif Is_Subprogram (S)
and then Nkind (Unit_Declaration_Node (S))
= N_Generic_Subprogram_Declaration
then
return True;
end if;
S := Scope (S);
end loop;
-- False if top of scope stack without finding a generic body
return False;
end In_Generic_Body;
---------------------
-- Is_By_Copy_Type --
---------------------
function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is
begin
-- If Id is a private type whose full declaration has not been seen,
-- we assume for now that it is not a By_Copy type. Clearly this
-- attribute should not be used before the type is frozen, but it is
-- needed to build the associated record of a protected type. Another
-- place where some lookahead for a full view is needed ???
return
Is_Elementary_Type (Ent)
or else (Is_Private_Type (Ent)
and then Present (Underlying_Type (Ent))
and then Is_Elementary_Type (Underlying_Type (Ent)));
end Is_By_Copy_Type;
--------------------------
-- Is_By_Reference_Type --
--------------------------
function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is
Btype : constant Entity_Id := Base_Type (Ent);
begin
if Error_Posted (Ent) or else Error_Posted (Btype) then
return False;
elsif Is_Private_Type (Btype) then
declare
Utyp : constant Entity_Id := Underlying_Type (Btype);
begin
if No (Utyp) then
return False;
else
return Is_By_Reference_Type (Utyp);
end if;
end;
elsif Is_Incomplete_Type (Btype) then
declare
Ftyp : constant Entity_Id := Full_View (Btype);
begin
if No (Ftyp) then
return False;
else
return Is_By_Reference_Type (Ftyp);
end if;
end;
elsif Is_Concurrent_Type (Btype) then
return True;
elsif Is_Record_Type (Btype) then
if Is_Limited_Record (Btype)
or else Is_Tagged_Type (Btype)
or else Is_Volatile (Btype)
then
return True;
else
declare
C : Entity_Id;
begin
C := First_Component (Btype);
while Present (C) loop
if Is_By_Reference_Type (Etype (C))
or else Is_Volatile (Etype (C))
then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return
Is_Volatile (Btype)
or else Is_By_Reference_Type (Component_Type (Btype))
or else Is_Volatile (Component_Type (Btype))
or else Has_Volatile_Components (Btype);
else
return False;
end if;
end Is_By_Reference_Type;
---------------------
-- Is_Derived_Type --
---------------------
function Is_Derived_Type (Ent : E) return B is
Par : Node_Id;
begin
if Is_Type (Ent)
and then Base_Type (Ent) /= Root_Type (Ent)
and then not Is_Class_Wide_Type (Ent)
then
if not Is_Numeric_Type (Root_Type (Ent)) then
return True;
else
Par := Parent (First_Subtype (Ent));
return Present (Par)
and then Nkind (Par) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Par)) =
N_Derived_Type_Definition;
end if;
else
return False;
end if;
end Is_Derived_Type;
-----------------------
-- Is_Generic_Formal --
-----------------------
function Is_Generic_Formal (E : Entity_Id) return Boolean is
Kind : Node_Kind;
begin
if No (E) then
return False;
else
Kind := Nkind (Parent (E));
return
Nkind_In (Kind, N_Formal_Object_Declaration,
N_Formal_Package_Declaration,
N_Formal_Type_Declaration)
or else Is_Formal_Subprogram (E);
end if;
end Is_Generic_Formal;
---------------------------
-- Is_Indefinite_Subtype --
---------------------------
function Is_Indefinite_Subtype (Ent : Entity_Id) return Boolean is
K : constant Entity_Kind := Ekind (Ent);
begin
if Is_Constrained (Ent) then
return False;
elsif K in Array_Kind
or else K in Class_Wide_Kind
or else Has_Unknown_Discriminants (Ent)
then
return True;
-- Known discriminants: indefinite if there are no default values
elsif K in Record_Kind
or else Is_Incomplete_Or_Private_Type (Ent)
or else Is_Concurrent_Type (Ent)
then
return (Has_Discriminants (Ent)
and then
No (Discriminant_Default_Value (First_Discriminant (Ent))));
else
return False;
end if;
end Is_Indefinite_Subtype;
-------------------------------
-- Is_Immutably_Limited_Type --
-------------------------------
function Is_Immutably_Limited_Type (Ent : Entity_Id) return Boolean is
Btype : constant Entity_Id := Available_View (Base_Type (Ent));
begin
if Is_Limited_Record (Btype) then
return True;
elsif Ekind (Btype) = E_Limited_Private_Type
and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
then
return not In_Package_Body (Scope ((Btype)));
elsif Is_Private_Type (Btype) then
-- AI05-0063: A type derived from a limited private formal type is
-- not immutably limited in a generic body.
if Is_Derived_Type (Btype)
and then Is_Generic_Type (Etype (Btype))
then
if not Is_Limited_Type (Etype (Btype)) then
return False;
-- A descendant of a limited formal type is not immutably limited
-- in the generic body, or in the body of a generic child.
elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
return not In_Package_Body (Scope (Btype));
else
return False;
end if;
else
declare
Utyp : constant Entity_Id := Underlying_Type (Btype);
begin
if No (Utyp) then
return False;
else
return Is_Immutably_Limited_Type (Utyp);
end if;
end;
end if;
elsif Is_Concurrent_Type (Btype) then
return True;
elsif Is_Record_Type (Btype) then
-- Note that we return True for all limited interfaces, even though
-- (unsynchronized) limited interfaces can have descendants that are
-- nonlimited, because this is a predicate on the type itself, and
-- things like functions with limited interface results need to be
-- handled as build in place even though they might return objects
-- of a type that is not inherently limited.
if Is_Class_Wide_Type (Btype) then
return Is_Immutably_Limited_Type (Root_Type (Btype));
else
declare
C : Entity_Id;
begin
C := First_Component (Btype);
while Present (C) loop
-- Don't consider components with interface types (which can
-- only occur in the case of a _parent component anyway).
-- They don't have any components, plus it would cause this
-- function to return true for nonlimited types derived from
-- limited interfaces.
if not Is_Interface (Etype (C))
and then Is_Immutably_Limited_Type (Etype (C))
then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return Is_Immutably_Limited_Type (Component_Type (Btype));
else
return False;
end if;
end Is_Immutably_Limited_Type;
---------------------
-- Is_Limited_Type --
---------------------
function Is_Limited_Type (Ent : Entity_Id) return Boolean is
Btype : constant E := Base_Type (Ent);
Rtype : constant E := Root_Type (Btype);
begin
if not Is_Type (Ent) then
return False;
elsif Ekind (Btype) = E_Limited_Private_Type
or else Is_Limited_Composite (Btype)
then
return True;
elsif Is_Concurrent_Type (Btype) then
return True;
-- The Is_Limited_Record flag normally indicates that the type is
-- limited. The exception is that a type does not inherit limitedness
-- from its interface ancestor. So the type may be derived from a
-- limited interface, but is not limited.
elsif Is_Limited_Record (Ent)
and then not Is_Interface (Ent)
then
return True;
-- Otherwise we will look around to see if there is some other reason
-- for it to be limited, except that if an error was posted on the
-- entity, then just assume it is non-limited, because it can cause
-- trouble to recurse into a murky erroneous entity!
elsif Error_Posted (Ent) then
return False;
elsif Is_Record_Type (Btype) then
if Is_Limited_Interface (Ent) then
return True;
-- AI-419: limitedness is not inherited from a limited interface
elsif Is_Limited_Record (Rtype) then
return not Is_Interface (Rtype)
or else Is_Protected_Interface (Rtype)
or else Is_Synchronized_Interface (Rtype)
or else Is_Task_Interface (Rtype);
elsif Is_Class_Wide_Type (Btype) then
return Is_Limited_Type (Rtype);
else
declare
C : E;
begin
C := First_Component (Btype);
while Present (C) loop
if Is_Limited_Type (Etype (C)) then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return Is_Limited_Type (Component_Type (Btype));
else
return False;
end if;
end Is_Limited_Type;
----------------------
-- Nearest_Ancestor --
----------------------
function Nearest_Ancestor (Typ : Entity_Id) return Entity_Id is
D : constant Node_Id := Declaration_Node (Typ);
begin
-- If we have a subtype declaration, get the ancestor subtype
if Nkind (D) = N_Subtype_Declaration then
if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
return Entity (Subtype_Mark (Subtype_Indication (D)));
else
return Entity (Subtype_Indication (D));
end if;
-- If derived type declaration, find who we are derived from
elsif Nkind (D) = N_Full_Type_Declaration
and then Nkind (Type_Definition (D)) = N_Derived_Type_Definition
then
declare
DTD : constant Entity_Id := Type_Definition (D);
SI : constant Entity_Id := Subtype_Indication (DTD);
begin
if Is_Entity_Name (SI) then
return Entity (SI);
else
return Entity (Subtype_Mark (SI));
end if;
end;
-- If derived type and private type, get the full view to find who we
-- are derived from.
elsif Is_Derived_Type (Typ)
and then Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
return Nearest_Ancestor (Full_View (Typ));
-- Otherwise, nothing useful to return, return Empty
else
return Empty;
end if;
end Nearest_Ancestor;
---------------------------
-- Nearest_Dynamic_Scope --
---------------------------
function Nearest_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
begin
if Is_Dynamic_Scope (Ent) then
return Ent;
else
return Enclosing_Dynamic_Scope (Ent);
end if;
end Nearest_Dynamic_Scope;
------------------------
-- Next_Tag_Component --
------------------------
function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is
Comp : Entity_Id;
begin
pragma Assert (Is_Tag (Tag));
-- Loop to look for next tag component
Comp := Next_Entity (Tag);
while Present (Comp) loop
if Is_Tag (Comp) then
pragma Assert (Chars (Comp) /= Name_uTag);
return Comp;
end if;
Comp := Next_Entity (Comp);
end loop;
-- No tag component found
return Empty;
end Next_Tag_Component;
--------------------------
-- Number_Discriminants --
--------------------------
function Number_Discriminants (Typ : Entity_Id) return Pos is
N : Int;
Discr : Entity_Id;
begin
N := 0;
Discr := First_Discriminant (Typ);
while Present (Discr) loop
N := N + 1;
Discr := Next_Discriminant (Discr);
end loop;
return N;
end Number_Discriminants;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Obsolescent_Warnings.Tree_Read;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Obsolescent_Warnings.Tree_Write;
end Tree_Write;
--------------------
-- Ultimate_Alias --
--------------------
function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
E : Entity_Id := Prim;
begin
while Present (Alias (E)) loop
pragma Assert (Alias (E) /= E);
E := Alias (E);
end loop;
return E;
end Ultimate_Alias;
--------------------------
-- Unit_Declaration_Node --
--------------------------
function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
N : Node_Id := Parent (Unit_Id);
begin
-- Predefined operators do not have a full function declaration
if Ekind (Unit_Id) = E_Operator then
return N;
end if;
-- Isn't there some better way to express the following ???
while Nkind (N) /= N_Abstract_Subprogram_Declaration
and then Nkind (N) /= N_Formal_Package_Declaration
and then Nkind (N) /= N_Function_Instantiation
and then Nkind (N) /= N_Generic_Package_Declaration
and then Nkind (N) /= N_Generic_Subprogram_Declaration
and then Nkind (N) /= N_Package_Declaration
and then Nkind (N) /= N_Package_Body
and then Nkind (N) /= N_Package_Instantiation
and then Nkind (N) /= N_Package_Renaming_Declaration
and then Nkind (N) /= N_Procedure_Instantiation
and then Nkind (N) /= N_Protected_Body
and then Nkind (N) /= N_Subprogram_Declaration
and then Nkind (N) /= N_Subprogram_Body
and then Nkind (N) /= N_Subprogram_Body_Stub
and then Nkind (N) /= N_Subprogram_Renaming_Declaration
and then Nkind (N) /= N_Task_Body
and then Nkind (N) /= N_Task_Type_Declaration
and then Nkind (N) not in N_Formal_Subprogram_Declaration
and then Nkind (N) not in N_Generic_Renaming_Declaration
loop
N := Parent (N);
-- We don't use Assert here, because that causes an infinite loop
-- when assertions are turned off. Better to crash.
if No (N) then
raise Program_Error;
end if;
end loop;
return N;
end Unit_Declaration_Node;
end Sem_Aux;
|