summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_aux.adb
blob: 5b7de452037bcc412c464f7bfb30e1d9eeb991b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ A U X                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2011, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;  use Atree;
with Einfo;  use Einfo;
with Namet;  use Namet;
with Opt;    use Opt;
with Sinfo;  use Sinfo;
with Snames; use Snames;
with Stand;  use Stand;

package body Sem_Aux is

   ----------------------
   -- Ancestor_Subtype --
   ----------------------

   function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is
   begin
      --  If this is first subtype, or is a base type, then there is no
      --  ancestor subtype, so we return Empty to indicate this fact.

      if Is_First_Subtype (Typ) or else Is_Base_Type (Typ) then
         return Empty;
      end if;

      declare
         D : constant Node_Id := Declaration_Node (Typ);

      begin
         --  If we have a subtype declaration, get the ancestor subtype

         if Nkind (D) = N_Subtype_Declaration then
            if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
               return Entity (Subtype_Mark (Subtype_Indication (D)));
            else
               return Entity (Subtype_Indication (D));
            end if;

         --  If not, then no subtype indication is available

         else
            return Empty;
         end if;
      end;
   end Ancestor_Subtype;

   --------------------
   -- Available_View --
   --------------------

   function Available_View (Typ : Entity_Id) return Entity_Id is
   begin
      if Is_Incomplete_Type (Typ)
        and then Present (Non_Limited_View (Typ))
      then
         --  The non-limited view may itself be an incomplete type, in which
         --  case get its full view.

         return Get_Full_View (Non_Limited_View (Typ));

      elsif Is_Class_Wide_Type (Typ)
        and then Is_Incomplete_Type (Etype (Typ))
        and then Present (Non_Limited_View (Etype (Typ)))
      then
         return Class_Wide_Type (Non_Limited_View (Etype (Typ)));

      else
         return Typ;
      end if;
   end Available_View;

   --------------------
   -- Constant_Value --
   --------------------

   function Constant_Value (Ent : Entity_Id) return Node_Id is
      D      : constant Node_Id := Declaration_Node (Ent);
      Full_D : Node_Id;

   begin
      --  If we have no declaration node, then return no constant value. Not
      --  clear how this can happen, but it does sometimes and this is the
      --  safest approach.

      if No (D) then
         return Empty;

      --  Normal case where a declaration node is present

      elsif Nkind (D) = N_Object_Renaming_Declaration then
         return Renamed_Object (Ent);

      --  If this is a component declaration whose entity is a constant, it is
      --  a prival within a protected function (and so has no constant value).

      elsif Nkind (D) = N_Component_Declaration then
         return Empty;

      --  If there is an expression, return it

      elsif Present (Expression (D)) then
         return (Expression (D));

      --  For a constant, see if we have a full view

      elsif Ekind (Ent) = E_Constant
        and then Present (Full_View (Ent))
      then
         Full_D := Parent (Full_View (Ent));

         --  The full view may have been rewritten as an object renaming

         if Nkind (Full_D) = N_Object_Renaming_Declaration then
            return Name (Full_D);
         else
            return Expression (Full_D);
         end if;

      --  Otherwise we have no expression to return

      else
         return Empty;
      end if;
   end Constant_Value;

   -----------------------------
   -- Enclosing_Dynamic_Scope --
   -----------------------------

   function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
      S : Entity_Id;

   begin
      --  The following test is an error defense against some syntax errors
      --  that can leave scopes very messed up.

      if Ent = Standard_Standard then
         return Ent;
      end if;

      --  Normal case, search enclosing scopes

      --  Note: the test for Present (S) should not be required, it defends
      --  against an ill-formed tree.

      S := Scope (Ent);
      loop
         --  If we somehow got an empty value for Scope, the tree must be
         --  malformed. Rather than blow up we return Standard in this case.

         if No (S) then
            return Standard_Standard;

         --  Quit if we get to standard or a dynamic scope. We must also
         --  handle enclosing scopes that have a full view; required to
         --  locate enclosing scopes that are synchronized private types
         --  whose full view is a task type.

         elsif S = Standard_Standard
           or else Is_Dynamic_Scope (S)
           or else (Is_Private_Type (S)
                     and then Present (Full_View (S))
                     and then Is_Dynamic_Scope (Full_View (S)))
         then
            return S;

         --  Otherwise keep climbing

         else
            S := Scope (S);
         end if;
      end loop;
   end Enclosing_Dynamic_Scope;

   ------------------------
   -- First_Discriminant --
   ------------------------

   function First_Discriminant (Typ : Entity_Id) return Entity_Id is
      Ent : Entity_Id;

   begin
      pragma Assert
        (Has_Discriminants (Typ) or else Has_Unknown_Discriminants (Typ));

      Ent := First_Entity (Typ);

      --  The discriminants are not necessarily contiguous, because access
      --  discriminants will generate itypes. They are not the first entities
      --  either, because tag and controller record must be ahead of them.

      if Chars (Ent) = Name_uTag then
         Ent := Next_Entity (Ent);
      end if;

      if Chars (Ent) = Name_uController then
         Ent := Next_Entity (Ent);
      end if;

      --  Skip all hidden stored discriminants if any

      while Present (Ent) loop
         exit when Ekind (Ent) = E_Discriminant
           and then not Is_Completely_Hidden (Ent);

         Ent := Next_Entity (Ent);
      end loop;

      pragma Assert (Ekind (Ent) = E_Discriminant);

      return Ent;
   end First_Discriminant;

   -------------------------------
   -- First_Stored_Discriminant --
   -------------------------------

   function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is
      Ent : Entity_Id;

      function Has_Completely_Hidden_Discriminant
        (Typ : Entity_Id) return Boolean;
      --  Scans the Discriminants to see whether any are Completely_Hidden
      --  (the mechanism for describing non-specified stored discriminants)

      ----------------------------------------
      -- Has_Completely_Hidden_Discriminant --
      ----------------------------------------

      function Has_Completely_Hidden_Discriminant
        (Typ : Entity_Id) return Boolean
      is
         Ent : Entity_Id;

      begin
         pragma Assert (Ekind (Typ) = E_Discriminant);

         Ent := Typ;
         while Present (Ent) and then Ekind (Ent) = E_Discriminant loop
            if Is_Completely_Hidden (Ent) then
               return True;
            end if;

            Ent := Next_Entity (Ent);
         end loop;

         return False;
      end Has_Completely_Hidden_Discriminant;

   --  Start of processing for First_Stored_Discriminant

   begin
      pragma Assert
        (Has_Discriminants (Typ)
          or else Has_Unknown_Discriminants (Typ));

      Ent := First_Entity (Typ);

      if Chars (Ent) = Name_uTag then
         Ent := Next_Entity (Ent);
      end if;

      if Chars (Ent) = Name_uController then
         Ent := Next_Entity (Ent);
      end if;

      if Has_Completely_Hidden_Discriminant (Ent) then

         while Present (Ent) loop
            exit when Is_Completely_Hidden (Ent);
            Ent := Next_Entity (Ent);
         end loop;

      end if;

      pragma Assert (Ekind (Ent) = E_Discriminant);

      return Ent;
   end First_Stored_Discriminant;

   -------------------
   -- First_Subtype --
   -------------------

   function First_Subtype (Typ : Entity_Id) return Entity_Id is
      B   : constant Entity_Id := Base_Type (Typ);
      F   : constant Node_Id   := Freeze_Node (B);
      Ent : Entity_Id;

   begin
      --  If the base type has no freeze node, it is a type in Standard, and
      --  always acts as its own first subtype, except where it is one of the
      --  predefined integer types. If the type is formal, it is also a first
      --  subtype, and its base type has no freeze node. On the other hand, a
      --  subtype of a generic formal is not its own first subtype. Its base
      --  type, if anonymous, is attached to the formal type decl. from which
      --  the first subtype is obtained.

      if No (F) then
         if B = Base_Type (Standard_Integer) then
            return Standard_Integer;

         elsif B = Base_Type (Standard_Long_Integer) then
            return Standard_Long_Integer;

         elsif B = Base_Type (Standard_Short_Short_Integer) then
            return Standard_Short_Short_Integer;

         elsif B = Base_Type (Standard_Short_Integer) then
            return Standard_Short_Integer;

         elsif B = Base_Type (Standard_Long_Long_Integer) then
            return Standard_Long_Long_Integer;

         elsif Is_Generic_Type (Typ) then
            if Present (Parent (B)) then
               return Defining_Identifier (Parent (B));
            else
               return Defining_Identifier (Associated_Node_For_Itype (B));
            end if;

         else
            return B;
         end if;

      --  Otherwise we check the freeze node, if it has a First_Subtype_Link
      --  then we use that link, otherwise (happens with some Itypes), we use
      --  the base type itself.

      else
         Ent := First_Subtype_Link (F);

         if Present (Ent) then
            return Ent;
         else
            return B;
         end if;
      end if;
   end First_Subtype;

   -------------------------
   -- First_Tag_Component --
   -------------------------

   function First_Tag_Component (Typ : Entity_Id) return Entity_Id is
      Comp : Entity_Id;
      Ctyp : Entity_Id;

   begin
      Ctyp := Typ;
      pragma Assert (Is_Tagged_Type (Ctyp));

      if Is_Class_Wide_Type (Ctyp) then
         Ctyp := Root_Type (Ctyp);
      end if;

      if Is_Private_Type (Ctyp) then
         Ctyp := Underlying_Type (Ctyp);

         --  If the underlying type is missing then the source program has
         --  errors and there is nothing else to do (the full-type declaration
         --  associated with the private type declaration is missing).

         if No (Ctyp) then
            return Empty;
         end if;
      end if;

      Comp := First_Entity (Ctyp);
      while Present (Comp) loop
         if Is_Tag (Comp) then
            return Comp;
         end if;

         Comp := Next_Entity (Comp);
      end loop;

      --  No tag component found

      return Empty;
   end First_Tag_Component;

   -------------------------------
   -- Initialization_Suppressed --
   -------------------------------

   function Initialization_Suppressed (Typ : Entity_Id) return Boolean is
   begin
      return Suppress_Initialization (Typ)
        or else Suppress_Initialization (Base_Type (Typ));
   end Initialization_Suppressed;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      Obsolescent_Warnings.Init;
   end Initialize;

   ---------------------
   -- Is_By_Copy_Type --
   ---------------------

   function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is
   begin
      --  If Id is a private type whose full declaration has not been seen,
      --  we assume for now that it is not a By_Copy type. Clearly this
      --  attribute should not be used before the type is frozen, but it is
      --  needed to build the associated record of a protected type. Another
      --  place where some lookahead for a full view is needed ???

      return
        Is_Elementary_Type (Ent)
          or else (Is_Private_Type (Ent)
                     and then Present (Underlying_Type (Ent))
                     and then Is_Elementary_Type (Underlying_Type (Ent)));
   end Is_By_Copy_Type;

   --------------------------
   -- Is_By_Reference_Type --
   --------------------------

   function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is
      Btype : constant Entity_Id := Base_Type (Ent);

   begin
      if Error_Posted (Ent)
        or else Error_Posted (Btype)
      then
         return False;

      elsif Is_Private_Type (Btype) then
         declare
            Utyp : constant Entity_Id := Underlying_Type (Btype);
         begin
            if No (Utyp) then
               return False;
            else
               return Is_By_Reference_Type (Utyp);
            end if;
         end;

      elsif Is_Incomplete_Type (Btype) then
         declare
            Ftyp : constant Entity_Id := Full_View (Btype);
         begin
            if No (Ftyp) then
               return False;
            else
               return Is_By_Reference_Type (Ftyp);
            end if;
         end;

      elsif Is_Concurrent_Type (Btype) then
         return True;

      elsif Is_Record_Type (Btype) then
         if Is_Limited_Record (Btype)
           or else Is_Tagged_Type (Btype)
           or else Is_Volatile (Btype)
         then
            return True;

         else
            declare
               C : Entity_Id;

            begin
               C := First_Component (Btype);
               while Present (C) loop
                  if Is_By_Reference_Type (Etype (C))
                    or else Is_Volatile (Etype (C))
                  then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return
           Is_Volatile (Btype)
             or else Is_By_Reference_Type (Component_Type (Btype))
             or else Is_Volatile (Component_Type (Btype))
             or else Has_Volatile_Components (Btype);

      else
         return False;
      end if;
   end Is_By_Reference_Type;

   ---------------------
   -- Is_Derived_Type --
   ---------------------

   function Is_Derived_Type (Ent : E) return B is
      Par : Node_Id;

   begin
      if Is_Type (Ent)
        and then Base_Type (Ent) /= Root_Type (Ent)
        and then not Is_Class_Wide_Type (Ent)
      then
         if not Is_Numeric_Type (Root_Type (Ent)) then
            return True;

         else
            Par := Parent (First_Subtype (Ent));

            return Present (Par)
              and then Nkind (Par) = N_Full_Type_Declaration
              and then Nkind (Type_Definition (Par)) =
                         N_Derived_Type_Definition;
         end if;

      else
         return False;
      end if;
   end Is_Derived_Type;

   -----------------------
   -- Is_Generic_Formal --
   -----------------------

   function Is_Generic_Formal (E : Entity_Id) return Boolean is
      Kind : Node_Kind;
   begin
      if No (E) then
         return False;
      else
         Kind := Nkind (Parent (E));
         return
           Nkind_In (Kind, N_Formal_Object_Declaration,
                           N_Formal_Package_Declaration,
                           N_Formal_Type_Declaration)
             or else Is_Formal_Subprogram (E);
      end if;
   end Is_Generic_Formal;

   ---------------------------
   -- Is_Indefinite_Subtype --
   ---------------------------

   function Is_Indefinite_Subtype (Ent : Entity_Id) return Boolean is
      K : constant Entity_Kind := Ekind (Ent);

   begin
      if Is_Constrained (Ent) then
         return False;

      elsif K in Array_Kind
        or else K in Class_Wide_Kind
        or else Has_Unknown_Discriminants (Ent)
      then
         return True;

      --  Known discriminants: indefinite if there are no default values

      elsif K in Record_Kind
        or else Is_Incomplete_Or_Private_Type (Ent)
        or else Is_Concurrent_Type (Ent)
      then
         return (Has_Discriminants (Ent)
           and then
             No (Discriminant_Default_Value (First_Discriminant (Ent))));

      else
         return False;
      end if;
   end Is_Indefinite_Subtype;

   -------------------------------
   -- Is_Immutably_Limited_Type --
   -------------------------------

   function Is_Immutably_Limited_Type (Ent : Entity_Id) return Boolean is
      Btype : constant Entity_Id := Base_Type (Ent);

   begin
      if Is_Limited_Record (Btype) then
         return True;

      elsif Ekind (Btype) = E_Limited_Private_Type
        and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
      then
         return not In_Package_Body (Scope ((Btype)));
      end if;

      if Is_Private_Type (Btype) then

         --  AI05-0063: A type derived from a limited private formal type is
         --  not immutably limited in a generic body.

         if Is_Derived_Type (Btype)
           and then Is_Generic_Type (Etype (Btype))
         then
            if not Is_Limited_Type (Etype (Btype)) then
               return False;

            --  A descendant of a limited formal type is not immutably limited
            --  in the generic body, or in the body of a generic child.

            elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
               return not In_Package_Body (Scope (Btype));

            else
               return False;
            end if;

         else
            declare
               Utyp : constant Entity_Id := Underlying_Type (Btype);
            begin
               if No (Utyp) then
                  return False;
               else
                  return Is_Immutably_Limited_Type (Utyp);
               end if;
            end;
         end if;

      elsif Is_Concurrent_Type (Btype) then
         return True;

      elsif Is_Record_Type (Btype) then

         --  Note that we return True for all limited interfaces, even though
         --  (unsynchronized) limited interfaces can have descendants that are
         --  nonlimited, because this is a predicate on the type itself, and
         --  things like functions with limited interface results need to be
         --  handled as build in place even though they might return objects
         --  of a type that is not inherently limited.

         if Is_Class_Wide_Type (Btype) then
            return Is_Immutably_Limited_Type (Root_Type (Btype));

         else
            declare
               C : Entity_Id;

            begin
               C := First_Component (Btype);
               while Present (C) loop

                  --  Don't consider components with interface types (which can
                  --  only occur in the case of a _parent component anyway).
                  --  They don't have any components, plus it would cause this
                  --  function to return true for nonlimited types derived from
                  --  limited interfaces.

                  if not Is_Interface (Etype (C))
                    and then Is_Immutably_Limited_Type (Etype (C))
                  then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return Is_Immutably_Limited_Type (Component_Type (Btype));

      else
         return False;
      end if;
   end Is_Immutably_Limited_Type;

   ---------------------
   -- Is_Limited_Type --
   ---------------------

   function Is_Limited_Type (Ent : Entity_Id) return Boolean is
      Btype : constant E := Base_Type (Ent);
      Rtype : constant E := Root_Type (Btype);

   begin
      if not Is_Type (Ent) then
         return False;

      elsif Ekind (Btype) = E_Limited_Private_Type
        or else Is_Limited_Composite (Btype)
      then
         return True;

      elsif Is_Concurrent_Type (Btype) then
         return True;

         --  The Is_Limited_Record flag normally indicates that the type is
         --  limited. The exception is that a type does not inherit limitedness
         --  from its interface ancestor. So the type may be derived from a
         --  limited interface, but is not limited.

      elsif Is_Limited_Record (Ent)
        and then not Is_Interface (Ent)
      then
         return True;

      --  Otherwise we will look around to see if there is some other reason
      --  for it to be limited, except that if an error was posted on the
      --  entity, then just assume it is non-limited, because it can cause
      --  trouble to recurse into a murky erroneous entity!

      elsif Error_Posted (Ent) then
         return False;

      elsif Is_Record_Type (Btype) then

         if Is_Limited_Interface (Ent) then
            return True;

         --  AI-419: limitedness is not inherited from a limited interface

         elsif Is_Limited_Record (Rtype) then
            return not Is_Interface (Rtype)
              or else Is_Protected_Interface (Rtype)
              or else Is_Synchronized_Interface (Rtype)
              or else Is_Task_Interface (Rtype);

         elsif Is_Class_Wide_Type (Btype) then
            return Is_Limited_Type (Rtype);

         else
            declare
               C : E;

            begin
               C := First_Component (Btype);
               while Present (C) loop
                  if Is_Limited_Type (Etype (C)) then
                     return True;
                  end if;

                  C := Next_Component (C);
               end loop;
            end;

            return False;
         end if;

      elsif Is_Array_Type (Btype) then
         return Is_Limited_Type (Component_Type (Btype));

      else
         return False;
      end if;
   end Is_Limited_Type;

   --------------------------
   -- Is_VM_By_Copy_Actual --
   --------------------------

   function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
   begin
      return not Tagged_Type_Expansion
        and then Nkind (N) = N_Identifier
        and then Present (Renamed_Object (Entity (N)))
        and then Nkind (Renamed_Object (Entity (N))) = N_Slice;
   end Is_VM_By_Copy_Actual;

   ----------------------
   -- Nearest_Ancestor --
   ----------------------

   function Nearest_Ancestor (Typ : Entity_Id) return Entity_Id is
         D : constant Node_Id := Declaration_Node (Typ);

   begin
      --  If we have a subtype declaration, get the ancestor subtype

      if Nkind (D) = N_Subtype_Declaration then
         if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
            return Entity (Subtype_Mark (Subtype_Indication (D)));
         else
            return Entity (Subtype_Indication (D));
         end if;

      --  If derived type declaration, find who we are derived from

      elsif Nkind (D) = N_Full_Type_Declaration
        and then Nkind (Type_Definition (D)) = N_Derived_Type_Definition
      then
         declare
            DTD : constant Entity_Id := Type_Definition (D);
            SI  : constant Entity_Id := Subtype_Indication (DTD);
         begin
            if Is_Entity_Name (SI) then
               return Entity (SI);
            else
               return Entity (Subtype_Mark (SI));
            end if;
         end;

      --  Otherwise, nothing useful to return, return Empty

      else
         return Empty;
      end if;
   end Nearest_Ancestor;

   ---------------------------
   -- Nearest_Dynamic_Scope --
   ---------------------------

   function Nearest_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
   begin
      if Is_Dynamic_Scope (Ent) then
         return Ent;
      else
         return Enclosing_Dynamic_Scope (Ent);
      end if;
   end Nearest_Dynamic_Scope;

   ------------------------
   -- Next_Tag_Component --
   ------------------------

   function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is
      Comp : Entity_Id;

   begin
      pragma Assert (Is_Tag (Tag));

      --  Loop to look for next tag component

      Comp := Next_Entity (Tag);
      while Present (Comp) loop
         if Is_Tag (Comp) then
            pragma Assert (Chars (Comp) /= Name_uTag);
            return Comp;
         end if;

         Comp := Next_Entity (Comp);
      end loop;

      --  No tag component found

      return Empty;
   end Next_Tag_Component;

   --------------------------
   -- Number_Discriminants --
   --------------------------

   function Number_Discriminants (Typ : Entity_Id) return Pos is
      N     : Int;
      Discr : Entity_Id;

   begin
      N := 0;
      Discr := First_Discriminant (Typ);
      while Present (Discr) loop
         N := N + 1;
         Discr := Next_Discriminant (Discr);
      end loop;

      return N;
   end Number_Discriminants;

   ---------------
   -- Tree_Read --
   ---------------

   procedure Tree_Read is
   begin
      Obsolescent_Warnings.Tree_Read;
   end Tree_Read;

   ----------------
   -- Tree_Write --
   ----------------

   procedure Tree_Write is
   begin
      Obsolescent_Warnings.Tree_Write;
   end Tree_Write;

   --------------------
   -- Ultimate_Alias --
   --------------------

   function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
      E : Entity_Id := Prim;

   begin
      while Present (Alias (E)) loop
         pragma Assert (Alias (E) /= E);
         E := Alias (E);
      end loop;

      return E;
   end Ultimate_Alias;

end Sem_Aux;