1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 3 --
-- --
-- B o d y --
-- --
-- --
-- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Elists; use Elists;
with Einfo; use Einfo;
with Errout; use Errout;
with Eval_Fat; use Eval_Fat;
with Exp_Ch3; use Exp_Ch3;
with Exp_Dist; use Exp_Dist;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Layout; use Layout;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Case; use Sem_Case;
with Sem_Cat; use Sem_Cat;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Smem; use Sem_Smem;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Sem_Ch3 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Build_Derived_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Is_Completion : Boolean;
Derive_Subps : Boolean := True);
-- Create and decorate a Derived_Type given the Parent_Type entity.
-- N is the N_Full_Type_Declaration node containing the derived type
-- definition. Parent_Type is the entity for the parent type in the derived
-- type definition and Derived_Type the actual derived type. Is_Completion
-- must be set to False if Derived_Type is the N_Defining_Identifier node
-- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
-- the completion of a private type declaration. If Is_Completion is
-- set to True, N is the completion of a private type declaration and
-- Derived_Type is different from the defining identifier inside N (i.e.
-- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
-- the parent subprograms should be derived. The only case where this
-- parameter is False is when Build_Derived_Type is recursively called to
-- process an implicit derived full type for a type derived from a private
-- type (in that case the subprograms must only be derived for the private
-- view of the type).
-- ??? These flags need a bit of re-examination and re-documentation:
-- ??? are they both necessary (both seem related to the recursion)?
procedure Build_Derived_Access_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Type. For a derived access type,
-- create an implicit base if the parent type is constrained or if the
-- subtype indication has a constraint.
procedure Build_Derived_Array_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Type. For a derived array type,
-- create an implicit base if the parent type is constrained or if the
-- subtype indication has a constraint.
procedure Build_Derived_Concurrent_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
-- tected type, inherit entries and protected subprograms, check legality
-- of discriminant constraints if any.
procedure Build_Derived_Enumeration_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
-- type, we must create a new list of literals. Types derived from
-- Character and Wide_Character are special-cased.
procedure Build_Derived_Numeric_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Type. For numeric types, create
-- an anonymous base type, and propagate constraint to subtype if needed.
procedure Build_Derived_Private_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Is_Completion : Boolean;
Derive_Subps : Boolean := True);
-- Substidiary procedure to Build_Derived_Type. This procedure is complex
-- because the parent may or may not have a completion, and the derivation
-- may itself be a completion.
procedure Build_Derived_Record_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Derive_Subps : Boolean := True);
-- Subsidiary procedure to Build_Derived_Type and
-- Analyze_Private_Extension_Declaration used for tagged and untagged
-- record types. All parameters are as in Build_Derived_Type except that
-- N, in addition to being an N_Full_Type_Declaration node, can also be an
-- N_Private_Extension_Declaration node. See the definition of this routine
-- for much more info. Derive_Subps indicates whether subprograms should
-- be derived from the parent type. The only case where Derive_Subps is
-- False is for an implicit derived full type for a type derived from a
-- private type (see Build_Derived_Type).
function Inherit_Components
(N : Node_Id;
Parent_Base : Entity_Id;
Derived_Base : Entity_Id;
Is_Tagged : Boolean;
Inherit_Discr : Boolean;
Discs : Elist_Id)
return Elist_Id;
-- Called from Build_Derived_Record_Type to inherit the components of
-- Parent_Base (a base type) into the Derived_Base (the derived base type).
-- For more information on derived types and component inheritance please
-- consult the comment above the body of Build_Derived_Record_Type.
--
-- N is the original derived type declaration.
-- Is_Tagged is set if we are dealing with tagged types.
-- If Inherit_Discr is set, Derived_Base inherits its discriminants from
-- Parent_Base, otherwise no discriminants are inherited.
-- Discs gives the list of constraints that apply to Parent_Base in the
-- derived type declaration. If Discs is set to No_Elist, then we have the
-- following situation:
--
-- type Parent (D1..Dn : ..) is [tagged] record ...;
-- type Derived is new Parent [with ...];
--
-- which gets treated as
--
-- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
--
-- For untagged types the returned value is an association list:
-- (Old_Component => New_Component), where Old_Component is the Entity_Id
-- of a component in Parent_Base and New_Component is the Entity_Id of the
-- corresponding component in Derived_Base. For untagged records, this
-- association list is needed when copying the record declaration for the
-- derived base. In the tagged case the value returned is irrelevant.
procedure Build_Discriminal (Discrim : Entity_Id);
-- Create the discriminal corresponding to discriminant Discrim, that is
-- the parameter corresponding to Discrim to be used in initialization
-- procedures for the type where Discrim is a discriminant. Discriminals
-- are not used during semantic analysis, and are not fully defined
-- entities until expansion. Thus they are not given a scope until
-- initialization procedures are built.
function Build_Discriminant_Constraints
(T : Entity_Id;
Def : Node_Id;
Derived_Def : Boolean := False)
return Elist_Id;
-- Validate discriminant constraints, and return the list of the
-- constraints in order of discriminant declarations. T is the
-- discriminated unconstrained type. Def is the N_Subtype_Indication
-- node where the discriminants constraints for T are specified.
-- Derived_Def is True if we are building the discriminant constraints
-- in a derived type definition of the form "type D (...) is new T (xxx)".
-- In this case T is the parent type and Def is the constraint "(xxx)" on
-- T and this routine sets the Corresponding_Discriminant field of the
-- discriminants in the derived type D to point to the corresponding
-- discriminants in the parent type T.
procedure Build_Discriminated_Subtype
(T : Entity_Id;
Def_Id : Entity_Id;
Elist : Elist_Id;
Related_Nod : Node_Id;
For_Access : Boolean := False);
-- Subsidiary procedure to Constrain_Discriminated_Type and to
-- Process_Incomplete_Dependents. Given
--
-- T (a possibly discriminated base type)
-- Def_Id (a very partially built subtype for T),
--
-- the call completes Def_Id to be the appropriate E_*_Subtype.
--
-- The Elist is the list of discriminant constraints if any (it is set to
-- No_Elist if T is not a discriminated type, and to an empty list if
-- T has discriminants but there are no discriminant constraints). The
-- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
-- The For_Access says whether or not this subtype is really constraining
-- an access type. That is its sole purpose is the designated type of an
-- access type -- in which case a Private_Subtype Is_For_Access_Subtype
-- is built to avoid freezing T when the access subtype is frozen.
function Build_Scalar_Bound
(Bound : Node_Id;
Par_T : Entity_Id;
Der_T : Entity_Id)
return Node_Id;
-- The bounds of a derived scalar type are conversions of the bounds of
-- the parent type. Optimize the representation if the bounds are literals.
-- Needs a more complete spec--what are the parameters exactly, and what
-- exactly is the returned value, and how is Bound affected???
procedure Build_Underlying_Full_View
(N : Node_Id;
Typ : Entity_Id;
Par : Entity_Id);
-- If the completion of a private type is itself derived from a private
-- type, or if the full view of a private subtype is itself private, the
-- back-end has no way to compute the actual size of this type. We build
-- an internal subtype declaration of the proper parent type to convey
-- this information. This extra mechanism is needed because a full
-- view cannot itself have a full view (it would get clobbered during
-- view exchanges).
procedure Check_Access_Discriminant_Requires_Limited
(D : Node_Id;
Loc : Node_Id);
-- Check the restriction that the type to which an access discriminant
-- belongs must be a concurrent type or a descendant of a type with
-- the reserved word 'limited' in its declaration.
procedure Check_Delta_Expression (E : Node_Id);
-- Check that the expression represented by E is suitable for use as
-- a delta expression, i.e. it is of real type and is static.
procedure Check_Digits_Expression (E : Node_Id);
-- Check that the expression represented by E is suitable for use as
-- a digits expression, i.e. it is of integer type, positive and static.
procedure Check_Incomplete (T : Entity_Id);
-- Called to verify that an incomplete type is not used prematurely
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
-- Validate the initialization of an object declaration. T is the
-- required type, and Exp is the initialization expression.
procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id);
-- If T is the full declaration of an incomplete or private type, check
-- the conformance of the discriminants, otherwise process them.
procedure Check_Real_Bound (Bound : Node_Id);
-- Check given bound for being of real type and static. If not, post an
-- appropriate message, and rewrite the bound with the real literal zero.
procedure Constant_Redeclaration
(Id : Entity_Id;
N : Node_Id;
T : out Entity_Id);
-- Various checks on legality of full declaration of deferred constant.
-- Id is the entity for the redeclaration, N is the N_Object_Declaration,
-- node. The caller has not yet set any attributes of this entity.
procedure Convert_Scalar_Bounds
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Loc : Source_Ptr);
-- For derived scalar types, convert the bounds in the type definition
-- to the derived type, and complete their analysis.
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
-- Copies attributes from array base type T2 to array base type T1.
-- Copies only attributes that apply to base types, but not subtypes.
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
-- Copies attributes from array subtype T2 to array subtype T1. Copies
-- attributes that apply to both subtypes and base types.
procedure Create_Constrained_Components
(Subt : Entity_Id;
Decl_Node : Node_Id;
Typ : Entity_Id;
Constraints : Elist_Id);
-- Build the list of entities for a constrained discriminated record
-- subtype. If a component depends on a discriminant, replace its subtype
-- using the discriminant values in the discriminant constraint.
-- Subt is the defining identifier for the subtype whose list of
-- constrained entities we will create. Decl_Node is the type declaration
-- node where we will attach all the itypes created. Typ is the base
-- discriminated type for the subtype Subt. Constraints is the list of
-- discriminant constraints for Typ.
function Constrain_Component_Type
(Compon_Type : Entity_Id;
Constrained_Typ : Entity_Id;
Related_Node : Node_Id;
Typ : Entity_Id;
Constraints : Elist_Id)
return Entity_Id;
-- Given a discriminated base type Typ, a list of discriminant constraint
-- Constraints for Typ and the type of a component of Typ, Compon_Type,
-- create and return the type corresponding to Compon_type where all
-- discriminant references are replaced with the corresponding
-- constraint. If no discriminant references occurr in Compon_Typ then
-- return it as is. Constrained_Typ is the final constrained subtype to
-- which the constrained Compon_Type belongs. Related_Node is the node
-- where we will attach all the itypes created.
procedure Constrain_Access
(Def_Id : in out Entity_Id;
S : Node_Id;
Related_Nod : Node_Id);
-- Apply a list of constraints to an access type. If Def_Id is empty,
-- it is an anonymous type created for a subtype indication. In that
-- case it is created in the procedure and attached to Related_Nod.
procedure Constrain_Array
(Def_Id : in out Entity_Id;
SI : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character);
-- Apply a list of index constraints to an unconstrained array type. The
-- first parameter is the entity for the resulting subtype. A value of
-- Empty for Def_Id indicates that an implicit type must be created, but
-- creation is delayed (and must be done by this procedure) because other
-- subsidiary implicit types must be created first (which is why Def_Id
-- is an in/out parameter). The second parameter is a subtype indication
-- node for the constrained array to be created (e.g. something of the
-- form string (1 .. 10)). Related_Nod gives the place where this type
-- has to be inserted in the tree. The Related_Id and Suffix parameters
-- are used to build the associated Implicit type name.
procedure Constrain_Concurrent
(Def_Id : in out Entity_Id;
SI : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character);
-- Apply list of discriminant constraints to an unconstrained concurrent
-- type.
--
-- SI is the N_Subtype_Indication node containing the constraint and
-- the unconstrained type to constrain.
--
-- Def_Id is the entity for the resulting constrained subtype. A
-- value of Empty for Def_Id indicates that an implicit type must be
-- created, but creation is delayed (and must be done by this procedure)
-- because other subsidiary implicit types must be created first (which
-- is why Def_Id is an in/out parameter).
--
-- Related_Nod gives the place where this type has to be inserted
-- in the tree
--
-- The last two arguments are used to create its external name if needed.
function Constrain_Corresponding_Record
(Prot_Subt : Entity_Id;
Corr_Rec : Entity_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id)
return Entity_Id;
-- When constraining a protected type or task type with discriminants,
-- constrain the corresponding record with the same discriminant values.
procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
-- Constrain a decimal fixed point type with a digits constraint and/or a
-- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
procedure Constrain_Discriminated_Type
(Def_Id : Entity_Id;
S : Node_Id;
Related_Nod : Node_Id;
For_Access : Boolean := False);
-- Process discriminant constraints of composite type. Verify that values
-- have been provided for all discriminants, that the original type is
-- unconstrained, and that the types of the supplied expressions match
-- the discriminant types. The first three parameters are like in routine
-- Constrain_Concurrent. See Build_Discrimated_Subtype for an explanation
-- of For_Access.
procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
-- Constrain an enumeration type with a range constraint. This is
-- identical to Constrain_Integer, but for the Ekind of the
-- resulting subtype.
procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
-- Constrain a floating point type with either a digits constraint
-- and/or a range constraint, building a E_Floating_Point_Subtype.
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat);
-- Process an index constraint in a constrained array declaration.
-- The constraint can be a subtype name, or a range with or without
-- an explicit subtype mark. The index is the corresponding index of the
-- unconstrained array. The Related_Id and Suffix parameters are used to
-- build the associated Implicit type name.
procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
-- Build subtype of a signed or modular integer type.
procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
-- Constrain an ordinary fixed point type with a range constraint, and
-- build an E_Ordinary_Fixed_Point_Subtype entity.
procedure Copy_And_Swap (Privat, Full : Entity_Id);
-- Copy the Privat entity into the entity of its full declaration
-- then swap the two entities in such a manner that the former private
-- type is now seen as a full type.
procedure Copy_Private_To_Full (Priv, Full : Entity_Id);
-- Initialize the full view declaration with the relevant fields
-- from the private view.
procedure Decimal_Fixed_Point_Type_Declaration
(T : Entity_Id;
Def : Node_Id);
-- Create a new decimal fixed point type, and apply the constraint to
-- obtain a subtype of this new type.
procedure Complete_Private_Subtype
(Priv : Entity_Id;
Full : Entity_Id;
Full_Base : Entity_Id;
Related_Nod : Node_Id);
-- Complete the implicit full view of a private subtype by setting
-- the appropriate semantic fields. If the full view of the parent is
-- a record type, build constrained components of subtype.
procedure Derived_Standard_Character
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id);
-- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
-- derivations from types Standard.Character and Standard.Wide_Character.
procedure Derived_Type_Declaration
(T : Entity_Id;
N : Node_Id;
Is_Completion : Boolean);
-- Process a derived type declaration. This routine will invoke
-- Build_Derived_Type to process the actual derived type definition.
-- Parameters N and Is_Completion have the same meaning as in
-- Build_Derived_Type. T is the N_Defining_Identifier for the entity
-- defined in the N_Full_Type_Declaration node N, that is T is the
-- derived type.
function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
-- Given a subtype indication S (which is really an N_Subtype_Indication
-- node or a plain N_Identifier), find the type of the subtype mark.
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
-- Insert each literal in symbol table, as an overloadable identifier
-- Each enumeration type is mapped into a sequence of integers, and
-- each literal is defined as a constant with integer value. If any
-- of the literals are character literals, the type is a character
-- type, which means that strings are legal aggregates for arrays of
-- components of the type.
procedure Expand_Others_Choice
(Case_Table : Choice_Table_Type;
Others_Choice : Node_Id;
Choice_Type : Entity_Id);
-- In the case of a variant part of a record type that has an OTHERS
-- choice, this procedure expands the OTHERS into the actual choices
-- that it represents. This new list of choice nodes is attached to
-- the OTHERS node via the Others_Discrete_Choices field. The Case_Table
-- contains all choices that have been given explicitly in the variant.
function Find_Type_Of_Object
(Obj_Def : Node_Id;
Related_Nod : Node_Id)
return Entity_Id;
-- Get type entity for object referenced by Obj_Def, attaching the
-- implicit types generated to Related_Nod
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
-- Create a new float, and apply the constraint to obtain subtype of it
function Has_Range_Constraint (N : Node_Id) return Boolean;
-- Given an N_Subtype_Indication node N, return True if a range constraint
-- is present, either directly, or as part of a digits or delta constraint.
-- In addition, a digits constraint in the decimal case returns True, since
-- it establishes a default range if no explicit range is present.
function Is_Valid_Constraint_Kind
(T_Kind : Type_Kind;
Constraint_Kind : Node_Kind)
return Boolean;
-- Returns True if it is legal to apply the given kind of constraint
-- to the given kind of type (index constraint to an array type,
-- for example).
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
-- Create new modular type. Verify that modulus is in bounds and is
-- a power of two (implementation restriction).
procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id);
-- Create an abbreviated declaration for an operator in order to
-- materialize minimally operators on derived types.
procedure Ordinary_Fixed_Point_Type_Declaration
(T : Entity_Id;
Def : Node_Id);
-- Create a new ordinary fixed point type, and apply the constraint
-- to obtain subtype of it.
procedure Prepare_Private_Subtype_Completion
(Id : Entity_Id;
Related_Nod : Node_Id);
-- Id is a subtype of some private type. Creates the full declaration
-- associated with Id whenever possible, i.e. when the full declaration
-- of the base type is already known. Records each subtype into
-- Private_Dependents of the base type.
procedure Process_Incomplete_Dependents
(N : Node_Id;
Full_T : Entity_Id;
Inc_T : Entity_Id);
-- Process all entities that depend on an incomplete type. There include
-- subtypes, subprogram types that mention the incomplete type in their
-- profiles, and subprogram with access parameters that designate the
-- incomplete type.
-- Inc_T is the defining identifier of an incomplete type declaration, its
-- Ekind is E_Incomplete_Type.
--
-- N is the corresponding N_Full_Type_Declaration for Inc_T.
--
-- Full_T is N's defining identifier.
--
-- Subtypes of incomplete types with discriminants are completed when the
-- parent type is. This is simpler than private subtypes, because they can
-- only appear in the same scope, and there is no need to exchange views.
-- Similarly, access_to_subprogram types may have a parameter or a return
-- type that is an incomplete type, and that must be replaced with the
-- full type.
-- If the full type is tagged, subprogram with access parameters that
-- designated the incomplete may be primitive operations of the full type,
-- and have to be processed accordingly.
procedure Process_Real_Range_Specification (Def : Node_Id);
-- Given the type definition for a real type, this procedure processes
-- and checks the real range specification of this type definition if
-- one is present. If errors are found, error messages are posted, and
-- the Real_Range_Specification of Def is reset to Empty.
procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id);
-- Process a record type declaration (for both untagged and tagged
-- records). Parameters T and N are exactly like in procedure
-- Derived_Type_Declaration, except that no flag Is_Completion is
-- needed for this routine.
procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id);
-- This routine is used to process the actual record type definition
-- (both for untagged and tagged records). Def is a record type
-- definition node. This procedure analyzes the components in this
-- record type definition. T is the entity for the enclosing record
-- type. It is provided so that its Has_Task flag can be set if any of
-- the component have Has_Task set.
procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
-- Subsidiary to Build_Derived_Record_Type. For untagged records, we
-- build a copy of the declaration tree of the parent, and we create
-- independently the list of components for the derived type. Semantic
-- information uses the component entities, but record representation
-- clauses are validated on the declaration tree. This procedure replaces
-- discriminants and components in the declaration with those that have
-- been created by Inherit_Components.
procedure Set_Fixed_Range
(E : Entity_Id;
Loc : Source_Ptr;
Lo : Ureal;
Hi : Ureal);
-- Build a range node with the given bounds and set it as the Scalar_Range
-- of the given fixed-point type entity. Loc is the source location used
-- for the constructed range. See body for further details.
procedure Set_Scalar_Range_For_Subtype
(Def_Id : Entity_Id;
R : Node_Id;
Subt : Entity_Id);
-- This routine is used to set the scalar range field for a subtype
-- given Def_Id, the entity for the subtype, and R, the range expression
-- for the scalar range. Subt provides the parent subtype to be used
-- to analyze, resolve, and check the given range.
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
-- Create a new signed integer entity, and apply the constraint to obtain
-- the required first named subtype of this type.
-----------------------
-- Access_Definition --
-----------------------
function Access_Definition
(Related_Nod : Node_Id;
N : Node_Id)
return Entity_Id
is
Anon_Type : constant Entity_Id :=
Create_Itype (E_Anonymous_Access_Type, Related_Nod,
Scope_Id => Scope (Current_Scope));
Desig_Type : Entity_Id;
begin
if Is_Entry (Current_Scope)
and then Is_Task_Type (Etype (Scope (Current_Scope)))
then
Error_Msg_N ("task entries cannot have access parameters", N);
end if;
Find_Type (Subtype_Mark (N));
Desig_Type := Entity (Subtype_Mark (N));
Set_Directly_Designated_Type
(Anon_Type, Desig_Type);
Set_Etype (Anon_Type, Anon_Type);
Init_Size_Align (Anon_Type);
Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
-- The anonymous access type is as public as the discriminated type or
-- subprogram that defines it. It is imported (for back-end purposes)
-- if the designated type is.
Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
-- The context is either a subprogram declaration or an access
-- discriminant, in a private or a full type declaration. In
-- the case of a subprogram, If the designated type is incomplete,
-- the operation will be a primitive operation of the full type, to
-- be updated subsequently.
if Ekind (Desig_Type) = E_Incomplete_Type
and then Is_Overloadable (Current_Scope)
then
Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
Set_Has_Delayed_Freeze (Current_Scope);
end if;
return Anon_Type;
end Access_Definition;
-----------------------------------
-- Access_Subprogram_Declaration --
-----------------------------------
procedure Access_Subprogram_Declaration
(T_Name : Entity_Id;
T_Def : Node_Id)
is
Formals : constant List_Id := Parameter_Specifications (T_Def);
Formal : Entity_Id;
Desig_Type : constant Entity_Id :=
Create_Itype (E_Subprogram_Type, Parent (T_Def));
begin
if Nkind (T_Def) = N_Access_Function_Definition then
Analyze (Subtype_Mark (T_Def));
Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
else
Set_Etype (Desig_Type, Standard_Void_Type);
end if;
if Present (Formals) then
New_Scope (Desig_Type);
Process_Formals (Formals, Parent (T_Def));
-- A bit of a kludge here, End_Scope requires that the parent
-- pointer be set to something reasonable, but Itypes don't
-- have parent pointers. So we set it and then unset it ???
-- If and when Itypes have proper parent pointers to their
-- declarations, this kludge can be removed.
Set_Parent (Desig_Type, T_Name);
End_Scope;
Set_Parent (Desig_Type, Empty);
end if;
-- The return type and/or any parameter type may be incomplete. Mark
-- the subprogram_type as depending on the incomplete type, so that
-- it can be updated when the full type declaration is seen.
if Present (Formals) then
Formal := First_Formal (Desig_Type);
while Present (Formal) loop
if Ekind (Formal) /= E_In_Parameter
and then Nkind (T_Def) = N_Access_Function_Definition
then
Error_Msg_N ("functions can only have IN parameters", Formal);
end if;
if Ekind (Etype (Formal)) = E_Incomplete_Type then
Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
Set_Has_Delayed_Freeze (Desig_Type);
end if;
Next_Formal (Formal);
end loop;
end if;
if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
and then not Has_Delayed_Freeze (Desig_Type)
then
Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
Set_Has_Delayed_Freeze (Desig_Type);
end if;
Check_Delayed_Subprogram (Desig_Type);
if Protected_Present (T_Def) then
Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
Set_Convention (Desig_Type, Convention_Protected);
else
Set_Ekind (T_Name, E_Access_Subprogram_Type);
end if;
Set_Etype (T_Name, T_Name);
Init_Size_Align (T_Name);
Set_Directly_Designated_Type (T_Name, Desig_Type);
Check_Restriction (No_Access_Subprograms, T_Def);
end Access_Subprogram_Declaration;
----------------------------
-- Access_Type_Declaration --
----------------------------
procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
S : constant Node_Id := Subtype_Indication (Def);
P : constant Node_Id := Parent (Def);
begin
-- Check for permissible use of incomplete type
if Nkind (S) /= N_Subtype_Indication then
Analyze (S);
if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
Set_Directly_Designated_Type (T, Entity (S));
else
Set_Directly_Designated_Type (T,
Process_Subtype (S, P, T, 'P'));
end if;
else
Set_Directly_Designated_Type (T,
Process_Subtype (S, P, T, 'P'));
end if;
if All_Present (Def) or Constant_Present (Def) then
Set_Ekind (T, E_General_Access_Type);
else
Set_Ekind (T, E_Access_Type);
end if;
if Base_Type (Designated_Type (T)) = T then
Error_Msg_N ("access type cannot designate itself", S);
end if;
Set_Etype (T, T);
-- If the type has appeared already in a with_type clause, it is
-- frozen and the pointer size is already set. Else, initialize.
if not From_With_Type (T) then
Init_Size_Align (T);
end if;
Set_Is_Access_Constant (T, Constant_Present (Def));
-- If designated type is an imported tagged type, indicate that the
-- access type is also imported, and therefore restricted in its use.
-- The access type may already be imported, so keep setting otherwise.
if From_With_Type (Designated_Type (T)) then
Set_From_With_Type (T);
end if;
-- Note that Has_Task is always false, since the access type itself
-- is not a task type. See Einfo for more description on this point.
-- Exactly the same consideration applies to Has_Controlled_Component.
Set_Has_Task (T, False);
Set_Has_Controlled_Component (T, False);
end Access_Type_Declaration;
-----------------------------------
-- Analyze_Component_Declaration --
-----------------------------------
procedure Analyze_Component_Declaration (N : Node_Id) is
Id : constant Entity_Id := Defining_Identifier (N);
T : Entity_Id;
P : Entity_Id;
begin
Generate_Definition (Id);
Enter_Name (Id);
T := Find_Type_Of_Object (Subtype_Indication (N), N);
-- If the component declaration includes a default expression, then we
-- check that the component is not of a limited type (RM 3.7(5)),
-- and do the special preanalysis of the expression (see section on
-- "Handling of Default Expressions" in the spec of package Sem).
if Present (Expression (N)) then
Analyze_Default_Expression (Expression (N), T);
Check_Initialization (T, Expression (N));
end if;
-- The parent type may be a private view with unknown discriminants,
-- and thus unconstrained. Regular components must be constrained.
if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
Error_Msg_N
("unconstrained subtype in component declaration",
Subtype_Indication (N));
-- Components cannot be abstract, except for the special case of
-- the _Parent field (case of extending an abstract tagged type)
elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
Error_Msg_N ("type of a component cannot be abstract", N);
end if;
Set_Etype (Id, T);
Set_Is_Aliased (Id, Aliased_Present (N));
-- If the this component is private (or depends on a private type),
-- flag the record type to indicate that some operations are not
-- available.
P := Private_Component (T);
if Present (P) then
-- Check for circular definitions.
if P = Any_Type then
Set_Etype (Id, Any_Type);
-- There is a gap in the visibility of operations only if the
-- component type is not defined in the scope of the record type.
elsif Scope (P) = Scope (Current_Scope) then
null;
elsif Is_Limited_Type (P) then
Set_Is_Limited_Composite (Current_Scope);
else
Set_Is_Private_Composite (Current_Scope);
end if;
end if;
if P /= Any_Type
and then Is_Limited_Type (T)
and then Chars (Id) /= Name_uParent
and then Is_Tagged_Type (Current_Scope)
then
if Is_Derived_Type (Current_Scope)
and then not Is_Limited_Record (Root_Type (Current_Scope))
then
Error_Msg_N
("extension of nonlimited type cannot have limited components",
N);
Set_Etype (Id, Any_Type);
Set_Is_Limited_Composite (Current_Scope, False);
elsif not Is_Derived_Type (Current_Scope)
and then not Is_Limited_Record (Current_Scope)
then
Error_Msg_N ("nonlimited type cannot have limited components", N);
Set_Etype (Id, Any_Type);
Set_Is_Limited_Composite (Current_Scope, False);
end if;
end if;
Set_Original_Record_Component (Id, Id);
end Analyze_Component_Declaration;
--------------------------
-- Analyze_Declarations --
--------------------------
procedure Analyze_Declarations (L : List_Id) is
D : Node_Id;
Next_Node : Node_Id;
Freeze_From : Entity_Id := Empty;
procedure Adjust_D;
-- Adjust D not to include implicit label declarations, since these
-- have strange Sloc values that result in elaboration check problems.
procedure Adjust_D is
begin
while Present (Prev (D))
and then Nkind (D) = N_Implicit_Label_Declaration
loop
Prev (D);
end loop;
end Adjust_D;
-- Start of processing for Analyze_Declarations
begin
D := First (L);
while Present (D) loop
-- Complete analysis of declaration
Analyze (D);
Next_Node := Next (D);
if No (Freeze_From) then
Freeze_From := First_Entity (Current_Scope);
end if;
-- At the end of a declarative part, freeze remaining entities
-- declared in it. The end of the visible declarations of a
-- package specification is not the end of a declarative part
-- if private declarations are present. The end of a package
-- declaration is a freezing point only if it a library package.
-- A task definition or protected type definition is not a freeze
-- point either. Finally, we do not freeze entities in generic
-- scopes, because there is no code generated for them and freeze
-- nodes will be generated for the instance.
-- The end of a package instantiation is not a freeze point, but
-- for now we make it one, because the generic body is inserted
-- (currently) immediately after. Generic instantiations will not
-- be a freeze point once delayed freezing of bodies is implemented.
-- (This is needed in any case for early instantiations ???).
if No (Next_Node) then
if Nkind (Parent (L)) = N_Component_List
or else Nkind (Parent (L)) = N_Task_Definition
or else Nkind (Parent (L)) = N_Protected_Definition
then
null;
elsif Nkind (Parent (L)) /= N_Package_Specification then
if Nkind (Parent (L)) = N_Package_Body then
Freeze_From := First_Entity (Current_Scope);
end if;
Adjust_D;
Freeze_All (Freeze_From, D);
Freeze_From := Last_Entity (Current_Scope);
elsif Scope (Current_Scope) /= Standard_Standard
and then not Is_Child_Unit (Current_Scope)
and then No (Generic_Parent (Parent (L)))
then
null;
elsif L /= Visible_Declarations (Parent (L))
or else No (Private_Declarations (Parent (L)))
or else Is_Empty_List (Private_Declarations (Parent (L)))
then
Adjust_D;
Freeze_All (Freeze_From, D);
Freeze_From := Last_Entity (Current_Scope);
end if;
-- If next node is a body then freeze all types before the body.
-- An exception occurs for expander generated bodies, which can
-- be recognized by their already being analyzed. The expander
-- ensures that all types needed by these bodies have been frozen
-- but it is not necessary to freeze all types (and would be wrong
-- since it would not correspond to an RM defined freeze point).
elsif not Analyzed (Next_Node)
and then (Nkind (Next_Node) = N_Subprogram_Body
or else Nkind (Next_Node) = N_Entry_Body
or else Nkind (Next_Node) = N_Package_Body
or else Nkind (Next_Node) = N_Protected_Body
or else Nkind (Next_Node) = N_Task_Body
or else Nkind (Next_Node) in N_Body_Stub)
then
Adjust_D;
Freeze_All (Freeze_From, D);
Freeze_From := Last_Entity (Current_Scope);
end if;
D := Next_Node;
end loop;
end Analyze_Declarations;
--------------------------------
-- Analyze_Default_Expression --
--------------------------------
procedure Analyze_Default_Expression (N : Node_Id; T : Entity_Id) is
Save_In_Default_Expression : constant Boolean := In_Default_Expression;
begin
In_Default_Expression := True;
Pre_Analyze_And_Resolve (N, T);
In_Default_Expression := Save_In_Default_Expression;
end Analyze_Default_Expression;
----------------------------------
-- Analyze_Incomplete_Type_Decl --
----------------------------------
procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
F : constant Boolean := Is_Pure (Current_Scope);
T : Entity_Id;
begin
Generate_Definition (Defining_Identifier (N));
-- Process an incomplete declaration. The identifier must not have been
-- declared already in the scope. However, an incomplete declaration may
-- appear in the private part of a package, for a private type that has
-- already been declared.
-- In this case, the discriminants (if any) must match.
T := Find_Type_Name (N);
Set_Ekind (T, E_Incomplete_Type);
Init_Size_Align (T);
Set_Is_First_Subtype (T, True);
Set_Etype (T, T);
New_Scope (T);
Set_Girder_Constraint (T, No_Elist);
if Present (Discriminant_Specifications (N)) then
Process_Discriminants (N);
end if;
End_Scope;
-- If the type has discriminants, non-trivial subtypes may be
-- be declared before the full view of the type. The full views
-- of those subtypes will be built after the full view of the type.
Set_Private_Dependents (T, New_Elmt_List);
Set_Is_Pure (T, F);
end Analyze_Incomplete_Type_Decl;
-----------------------------
-- Analyze_Itype_Reference --
-----------------------------
-- Nothing to do. This node is placed in the tree only for the benefit
-- of Gigi processing, and has no effect on the semantic processing.
procedure Analyze_Itype_Reference (N : Node_Id) is
begin
pragma Assert (Is_Itype (Itype (N)));
null;
end Analyze_Itype_Reference;
--------------------------------
-- Analyze_Number_Declaration --
--------------------------------
procedure Analyze_Number_Declaration (N : Node_Id) is
Id : constant Entity_Id := Defining_Identifier (N);
E : constant Node_Id := Expression (N);
T : Entity_Id;
Index : Interp_Index;
It : Interp;
begin
Generate_Definition (Id);
Enter_Name (Id);
-- This is an optimization of a common case of an integer literal
if Nkind (E) = N_Integer_Literal then
Set_Is_Static_Expression (E, True);
Set_Etype (E, Universal_Integer);
Set_Etype (Id, Universal_Integer);
Set_Ekind (Id, E_Named_Integer);
Set_Is_Frozen (Id, True);
return;
end if;
Set_Is_Pure (Id, Is_Pure (Current_Scope));
-- Process expression, replacing error by integer zero, to avoid
-- cascaded errors or aborts further along in the processing
-- Replace Error by integer zero, which seems least likely to
-- cause cascaded errors.
if E = Error then
Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
Set_Error_Posted (E);
end if;
Analyze (E);
-- Verify that the expression is static and numeric. If
-- the expression is overloaded, we apply the preference
-- rule that favors root numeric types.
if not Is_Overloaded (E) then
T := Etype (E);
else
T := Any_Type;
Get_First_Interp (E, Index, It);
while Present (It.Typ) loop
if (Is_Integer_Type (It.Typ)
or else Is_Real_Type (It.Typ))
and then (Scope (Base_Type (It.Typ))) = Standard_Standard
then
if T = Any_Type then
T := It.Typ;
elsif It.Typ = Universal_Real
or else It.Typ = Universal_Integer
then
-- Choose universal interpretation over any other.
T := It.Typ;
exit;
end if;
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
if Is_Integer_Type (T) then
Resolve (E, T);
Set_Etype (Id, Universal_Integer);
Set_Ekind (Id, E_Named_Integer);
elsif Is_Real_Type (T) then
-- Because the real value is converted to universal_real, this
-- is a legal context for a universal fixed expression.
if T = Universal_Fixed then
declare
Loc : constant Source_Ptr := Sloc (N);
Conv : constant Node_Id := Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Universal_Real, Loc),
Expression => Relocate_Node (E));
begin
Rewrite (E, Conv);
Analyze (E);
end;
elsif T = Any_Fixed then
Error_Msg_N ("illegal context for mixed mode operation", E);
-- Expression is of the form : universal_fixed * integer.
-- Try to resolve as universal_real.
T := Universal_Real;
Set_Etype (E, T);
end if;
Resolve (E, T);
Set_Etype (Id, Universal_Real);
Set_Ekind (Id, E_Named_Real);
else
Wrong_Type (E, Any_Numeric);
Resolve (E, T);
Set_Etype (Id, T);
Set_Ekind (Id, E_Constant);
Set_Not_Source_Assigned (Id, True);
Set_Is_True_Constant (Id, True);
return;
end if;
if Nkind (E) = N_Integer_Literal
or else Nkind (E) = N_Real_Literal
then
Set_Etype (E, Etype (Id));
end if;
if not Is_OK_Static_Expression (E) then
Error_Msg_N ("non-static expression used in number declaration", E);
Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
Set_Etype (E, Any_Type);
end if;
end Analyze_Number_Declaration;
--------------------------------
-- Analyze_Object_Declaration --
--------------------------------
procedure Analyze_Object_Declaration (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Id : constant Entity_Id := Defining_Identifier (N);
T : Entity_Id;
Act_T : Entity_Id;
E : Node_Id := Expression (N);
-- E is set to Expression (N) throughout this routine. When
-- Expression (N) is modified, E is changed accordingly.
Prev_Entity : Entity_Id := Empty;
function Build_Default_Subtype return Entity_Id;
-- If the object is limited or aliased, and if the type is unconstrained
-- and there is no expression, the discriminants cannot be modified and
-- the subtype of the object is constrained by the defaults, so it is
-- worthile building the corresponding subtype.
---------------------------
-- Build_Default_Subtype --
---------------------------
function Build_Default_Subtype return Entity_Id is
Act : Entity_Id;
Constraints : List_Id := New_List;
Decl : Node_Id;
Disc : Entity_Id;
begin
Disc := First_Discriminant (T);
if No (Discriminant_Default_Value (Disc)) then
return T; -- previous error.
end if;
Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
while Present (Disc) loop
Append (
New_Copy_Tree (
Discriminant_Default_Value (Disc)), Constraints);
Next_Discriminant (Disc);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Act,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint
(Loc, Constraints)));
Insert_Before (N, Decl);
Analyze (Decl);
return Act;
end Build_Default_Subtype;
-- Start of processing for Analyze_Object_Declaration
begin
-- There are three kinds of implicit types generated by an
-- object declaration:
-- 1. Those for generated by the original Object Definition
-- 2. Those generated by the Expression
-- 3. Those used to constrained the Object Definition with the
-- expression constraints when it is unconstrained
-- They must be generated in this order to avoid order of elaboration
-- issues. Thus the first step (after entering the name) is to analyze
-- the object definition.
if Constant_Present (N) then
Prev_Entity := Current_Entity_In_Scope (Id);
-- If homograph is an implicit subprogram, it is overridden by the
-- current declaration.
if Present (Prev_Entity)
and then Is_Overloadable (Prev_Entity)
and then Is_Inherited_Operation (Prev_Entity)
then
Prev_Entity := Empty;
end if;
end if;
if Present (Prev_Entity) then
Constant_Redeclaration (Id, N, T);
Generate_Reference (Prev_Entity, Id, 'c');
Set_Completion_Referenced (Id);
if Error_Posted (N) then
-- Type mismatch or illegal redeclaration, Do not analyze
-- expression to avoid cascaded errors.
T := Find_Type_Of_Object (Object_Definition (N), N);
Set_Etype (Id, T);
Set_Ekind (Id, E_Variable);
return;
end if;
-- In the normal case, enter identifier at the start to catch
-- premature usage in the initialization expression.
else
Generate_Definition (Id);
Enter_Name (Id);
T := Find_Type_Of_Object (Object_Definition (N), N);
if Error_Posted (Id) then
Set_Etype (Id, T);
Set_Ekind (Id, E_Variable);
return;
end if;
end if;
Set_Is_Pure (Id, Is_Pure (Current_Scope));
-- If deferred constant, make sure context is appropriate. We detect
-- a deferred constant as a constant declaration with no expression.
-- A deferred constant can appear in a package body if its completion
-- is by means of an interface pragma.
if Constant_Present (N)
and then No (E)
then
if not Is_Package (Current_Scope) then
Error_Msg_N
("invalid context for deferred constant declaration", N);
Set_Constant_Present (N, False);
-- In Ada 83, deferred constant must be of private type
elsif not Is_Private_Type (T) then
if Ada_83 and then Comes_From_Source (N) then
Error_Msg_N
("(Ada 83) deferred constant must be private type", N);
end if;
end if;
-- If not a deferred constant, then object declaration freezes its type
else
Check_Fully_Declared (T, N);
Freeze_Before (N, T);
end if;
-- If the object was created by a constrained array definition, then
-- set the link in both the anonymous base type and anonymous subtype
-- that are built to represent the array type to point to the object.
if Nkind (Object_Definition (Declaration_Node (Id))) =
N_Constrained_Array_Definition
then
Set_Related_Array_Object (T, Id);
Set_Related_Array_Object (Base_Type (T), Id);
end if;
-- Special checks for protected objects not at library level
if Is_Protected_Type (T)
and then not Is_Library_Level_Entity (Id)
then
Check_Restriction (No_Local_Protected_Objects, Id);
-- Protected objects with interrupt handlers must be at library level
if Has_Interrupt_Handler (T) then
Error_Msg_N
("interrupt object can only be declared at library level", Id);
end if;
end if;
-- The actual subtype of the object is the nominal subtype, unless
-- the nominal one is unconstrained and obtained from the expression.
Act_T := T;
-- Process initialization expression if present and not in error
if Present (E) and then E /= Error then
Analyze (E);
if not Assignment_OK (N) then
Check_Initialization (T, E);
end if;
Resolve (E, T);
-- Check for library level object that will require implicit
-- heap allocation.
if Is_Array_Type (T)
and then not Size_Known_At_Compile_Time (T)
and then Is_Library_Level_Entity (Id)
then
-- String literals are always allowed
if T = Standard_String
and then Nkind (E) = N_String_Literal
then
null;
-- Otherwise we do not allow this since it may cause an
-- implicit heap allocation.
else
Check_Restriction
(No_Implicit_Heap_Allocations, Object_Definition (N));
end if;
end if;
-- Check incorrect use of dynamically tagged expressions. Note
-- the use of Is_Tagged_Type (T) which seems redundant but is in
-- fact important to avoid spurious errors due to expanded code
-- for dispatching functions over an anonymous access type
if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
and then Is_Tagged_Type (T)
and then not Is_Class_Wide_Type (T)
then
Error_Msg_N ("dynamically tagged expression not allowed!", E);
end if;
Apply_Scalar_Range_Check (E, T);
Apply_Static_Length_Check (E, T);
end if;
-- Abstract type is never permitted for a variable or constant.
-- Note: we inhibit this check for objects that do not come from
-- source because there is at least one case (the expansion of
-- x'class'input where x is abstract) where we legitimately
-- generate an abstract object.
if Is_Abstract (T) and then Comes_From_Source (N) then
Error_Msg_N ("type of object cannot be abstract",
Object_Definition (N));
if Is_CPP_Class (T) then
Error_Msg_NE ("\} may need a cpp_constructor",
Object_Definition (N), T);
end if;
-- Case of unconstrained type
elsif Is_Indefinite_Subtype (T) then
-- Nothing to do in deferred constant case
if Constant_Present (N) and then No (E) then
null;
-- Case of no initialization present
elsif No (E) then
if No_Initialization (N) then
null;
elsif Is_Class_Wide_Type (T) then
Error_Msg_N
("initialization required in class-wide declaration ", N);
else
Error_Msg_N
("unconstrained subtype not allowed (need initialization)",
Object_Definition (N));
end if;
-- Case of initialization present but in error. Set initial
-- expression as absent (but do not make above complaints)
elsif E = Error then
Set_Expression (N, Empty);
E := Empty;
-- Case of initialization present
else
-- Not allowed in Ada 83
if not Constant_Present (N) then
if Ada_83
and then Comes_From_Source (Object_Definition (N))
then
Error_Msg_N
("(Ada 83) unconstrained variable not allowed",
Object_Definition (N));
end if;
end if;
-- Now we constrain the variable from the initializing expression
-- If the expression is an aggregate, it has been expanded into
-- individual assignments. Retrieve the actual type from the
-- expanded construct.
if Is_Array_Type (T)
and then No_Initialization (N)
and then Nkind (Original_Node (E)) = N_Aggregate
then
Act_T := Etype (E);
else
Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
Act_T := Find_Type_Of_Object (Object_Definition (N), N);
end if;
Set_Is_Constr_Subt_For_U_Nominal (Act_T);
if Aliased_Present (N) then
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
end if;
Freeze_Before (N, Act_T);
Freeze_Before (N, T);
end if;
elsif Is_Array_Type (T)
and then No_Initialization (N)
and then Nkind (Original_Node (E)) = N_Aggregate
then
if not Is_Entity_Name (Object_Definition (N)) then
Act_T := Etype (E);
if Aliased_Present (N) then
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
end if;
end if;
-- When the given object definition and the aggregate are specified
-- independently, and their lengths might differ do a length check.
-- This cannot happen if the aggregate is of the form (others =>...)
if not Is_Constrained (T) then
null;
elsif Nkind (E) = N_Raise_Constraint_Error then
-- Aggregate is statically illegal. Place back in declaration
Set_Expression (N, E);
Set_No_Initialization (N, False);
elsif T = Etype (E) then
null;
elsif Nkind (E) = N_Aggregate
and then Present (Component_Associations (E))
and then Present (Choices (First (Component_Associations (E))))
and then Nkind (First
(Choices (First (Component_Associations (E))))) = N_Others_Choice
then
null;
else
Apply_Length_Check (E, T);
end if;
elsif (Is_Limited_Record (T)
or else Is_Concurrent_Type (T))
and then not Is_Constrained (T)
and then Has_Discriminants (T)
then
Act_T := Build_Default_Subtype;
Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
elsif not Is_Constrained (T)
and then Has_Discriminants (T)
and then Constant_Present (N)
and then Nkind (E) = N_Function_Call
then
-- The back-end has problems with constants of a discriminated type
-- with defaults, if the initial value is a function call. We
-- generate an intermediate temporary for the result of the call.
-- It is unclear why this should make it acceptable to gcc. ???
Remove_Side_Effects (E);
end if;
if T = Standard_Wide_Character
or else Root_Type (T) = Standard_Wide_String
then
Check_Restriction (No_Wide_Characters, Object_Definition (N));
end if;
-- Now establish the proper kind and type of the object
if Constant_Present (N) then
Set_Ekind (Id, E_Constant);
Set_Not_Source_Assigned (Id, True);
Set_Is_True_Constant (Id, True);
else
Set_Ekind (Id, E_Variable);
-- A variable is set as shared passive if it appears in a shared
-- passive package, and is at the outer level. This is not done
-- for entities generated during expansion, because those are
-- always manipulated locally.
if Is_Shared_Passive (Current_Scope)
and then Is_Library_Level_Entity (Id)
and then Comes_From_Source (Id)
then
Set_Is_Shared_Passive (Id);
Check_Shared_Var (Id, T, N);
end if;
-- If an initializing expression is present, then the variable
-- is potentially a true constant if no further assignments are
-- present. The code generator can use this for optimization.
-- The flag will be reset if there are any assignments. We only
-- set this flag for non library level entities, since for any
-- library level entities, assignments could exist in other units.
if Present (E) then
if not Is_Library_Level_Entity (Id) then
-- For now we omit this, because it seems to cause some
-- problems. In particular, if you uncomment this out, then
-- test case 4427-002 will fail for unclear reasons ???
if False then
Set_Is_True_Constant (Id);
end if;
end if;
-- Case of no initializing expression present. If the type is not
-- fully initialized, then we set Not_Source_Assigned, since this
-- is a case of a potentially uninitialized object. Note that we
-- do not consider access variables to be fully initialized for
-- this purpose, since it still seems dubious if someone declares
-- an access variable and never assigns to it.
else
if Is_Access_Type (T)
or else not Is_Fully_Initialized_Type (T)
then
Set_Not_Source_Assigned (Id);
end if;
end if;
end if;
Init_Alignment (Id);
Init_Esize (Id);
if Aliased_Present (N) then
Set_Is_Aliased (Id);
if No (E)
and then Is_Record_Type (T)
and then not Is_Constrained (T)
and then Has_Discriminants (T)
then
Set_Actual_Subtype (Id, Build_Default_Subtype);
end if;
end if;
Set_Etype (Id, Act_T);
if Has_Controlled_Component (Etype (Id))
or else Is_Controlled (Etype (Id))
then
if not Is_Library_Level_Entity (Id) then
Check_Restriction (No_Nested_Finalization, N);
else
Validate_Controlled_Object (Id);
end if;
-- Generate a warning when an initialization causes an obvious
-- ABE violation. If the init expression is a simple aggregate
-- there shouldn't be any initialize/adjust call generated. This
-- will be true as soon as aggregates are built in place when
-- possible. ??? at the moment we do not generate warnings for
-- temporaries created for those aggregates although a
-- Program_Error might be generated if compiled with -gnato
if Is_Controlled (Etype (Id))
and then Comes_From_Source (Id)
then
declare
BT : constant Entity_Id := Base_Type (Etype (Id));
Implicit_Call : Entity_Id;
function Is_Aggr (N : Node_Id) return Boolean;
-- Check that N is an aggregate
function Is_Aggr (N : Node_Id) return Boolean is
begin
case Nkind (Original_Node (N)) is
when N_Aggregate | N_Extension_Aggregate =>
return True;
when N_Qualified_Expression |
N_Type_Conversion |
N_Unchecked_Type_Conversion =>
return Is_Aggr (Expression (Original_Node (N)));
when others =>
return False;
end case;
end Is_Aggr;
begin
-- If no underlying type, we already are in an error situation
-- don't try to add a warning since we do not have access
-- prim-op list.
if No (Underlying_Type (BT)) then
Implicit_Call := Empty;
-- A generic type does not have usable primitive operators.
-- Initialization calls are built for instances.
elsif Is_Generic_Type (BT) then
Implicit_Call := Empty;
-- if the init expression is not an aggregate, an adjust
-- call will be generated
elsif Present (E) and then not Is_Aggr (E) then
Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
-- if no init expression and we are not in the deferred
-- constant case, an Initialize call will be generated
elsif No (E) and then not Constant_Present (N) then
Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
else
Implicit_Call := Empty;
end if;
end;
end if;
end if;
if Has_Task (Etype (Id)) then
if not Is_Library_Level_Entity (Id) then
Check_Restriction (No_Task_Hierarchy, N);
Check_Potentially_Blocking_Operation (N);
end if;
-- A rather specialized test. If we see two tasks being declared
-- of the same type in the same object declaration, and the task
-- has an entry with an address clause, we know that program error
-- will be raised at run-time since we can't have two tasks with
-- entries at the same address.
if Is_Task_Type (Etype (Id))
and then More_Ids (N)
then
declare
E : Entity_Id;
begin
E := First_Entity (Etype (Id));
while Present (E) loop
if Ekind (E) = E_Entry
and then Present (Get_Attribute_Definition_Clause
(E, Attribute_Address))
then
Error_Msg_N
("?more than one task with same entry address", N);
Error_Msg_N
("\?Program_Error will be raised at run time", N);
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Duplicated_Entry_Address));
exit;
end if;
Next_Entity (E);
end loop;
end;
end if;
end if;
-- Some simple constant-propagation: if the expression is a constant
-- string initialized with a literal, share the literal. This avoids
-- a run-time copy.
if Present (E)
and then Is_Entity_Name (E)
and then Ekind (Entity (E)) = E_Constant
and then Base_Type (Etype (E)) = Standard_String
then
declare
Val : constant Node_Id := Constant_Value (Entity (E));
begin
if Present (Val)
and then Nkind (Val) = N_String_Literal
then
Rewrite (E, New_Copy (Val));
end if;
end;
end if;
-- Another optimization: if the nominal subtype is unconstrained and
-- the expression is a function call that returns and unconstrained
-- type, rewrite the declararation as a renaming of the result of the
-- call. The exceptions below are cases where the copy is expected,
-- either by the back end (Aliased case) or by the semantics, as for
-- initializing controlled types or copying tags for classwide types.
if Present (E)
and then Nkind (E) = N_Explicit_Dereference
and then Nkind (Original_Node (E)) = N_Function_Call
and then not Is_Library_Level_Entity (Id)
and then not Is_Constrained (T)
and then not Is_Aliased (Id)
and then not Is_Class_Wide_Type (T)
and then not Is_Controlled (T)
and then not Has_Controlled_Component (Base_Type (T))
and then Expander_Active
then
Rewrite (N,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Id,
Subtype_Mark => New_Occurrence_Of
(Base_Type (Etype (Id)), Loc),
Name => E));
Set_Renamed_Object (Id, E);
end if;
if Present (Prev_Entity)
and then Is_Frozen (Prev_Entity)
and then not Error_Posted (Id)
then
Error_Msg_N ("full constant declaration appears too late", N);
end if;
Check_Eliminated (Id);
end Analyze_Object_Declaration;
---------------------------
-- Analyze_Others_Choice --
---------------------------
-- Nothing to do for the others choice node itself, the semantic analysis
-- of the others choice will occur as part of the processing of the parent
procedure Analyze_Others_Choice (N : Node_Id) is
pragma Warnings (Off, N);
begin
null;
end Analyze_Others_Choice;
-------------------------------------------
-- Analyze_Private_Extension_Declaration --
-------------------------------------------
procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
T : Entity_Id := Defining_Identifier (N);
Indic : constant Node_Id := Subtype_Indication (N);
Parent_Type : Entity_Id;
Parent_Base : Entity_Id;
begin
Generate_Definition (T);
Enter_Name (T);
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
Parent_Base := Base_Type (Parent_Type);
if Parent_Type = Any_Type
or else Etype (Parent_Type) = Any_Type
then
Set_Ekind (T, Ekind (Parent_Type));
Set_Etype (T, Any_Type);
return;
elsif not Is_Tagged_Type (Parent_Type) then
Error_Msg_N
("parent of type extension must be a tagged type ", Indic);
return;
elsif Ekind (Parent_Type) = E_Void
or else Ekind (Parent_Type) = E_Incomplete_Type
then
Error_Msg_N ("premature derivation of incomplete type", Indic);
return;
end if;
-- Perhaps the parent type should be changed to the class-wide type's
-- specific type in this case to prevent cascading errors ???
if Is_Class_Wide_Type (Parent_Type) then
Error_Msg_N
("parent of type extension must not be a class-wide type", Indic);
return;
end if;
if (not Is_Package (Current_Scope)
and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
or else In_Private_Part (Current_Scope)
then
Error_Msg_N ("invalid context for private extension", N);
end if;
-- Set common attributes
Set_Is_Pure (T, Is_Pure (Current_Scope));
Set_Scope (T, Current_Scope);
Set_Ekind (T, E_Record_Type_With_Private);
Init_Size_Align (T);
Set_Etype (T, Parent_Base);
Set_Has_Task (T, Has_Task (Parent_Base));
Set_Convention (T, Convention (Parent_Type));
Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
Set_Is_First_Subtype (T);
Make_Class_Wide_Type (T);
Build_Derived_Record_Type (N, Parent_Type, T);
end Analyze_Private_Extension_Declaration;
---------------------------------
-- Analyze_Subtype_Declaration --
---------------------------------
procedure Analyze_Subtype_Declaration (N : Node_Id) is
Id : constant Entity_Id := Defining_Identifier (N);
T : Entity_Id;
R_Checks : Check_Result;
begin
Generate_Definition (Id);
Set_Is_Pure (Id, Is_Pure (Current_Scope));
Init_Size_Align (Id);
-- The following guard condition on Enter_Name is to handle cases
-- where the defining identifier has already been entered into the
-- scope but the declaration as a whole needs to be analyzed.
-- This case in particular happens for derived enumeration types.
-- The derived enumeration type is processed as an inserted enumeration
-- type declaration followed by a rewritten subtype declaration. The
-- defining identifier, however, is entered into the name scope very
-- early in the processing of the original type declaration and
-- therefore needs to be avoided here, when the created subtype
-- declaration is analyzed. (See Build_Derived_Types)
-- This also happens when the full view of a private type is a
-- derived type with constraints. In this case the entity has been
-- introduced in the private declaration.
if Present (Etype (Id))
and then (Is_Private_Type (Etype (Id))
or else Is_Task_Type (Etype (Id))
or else Is_Rewrite_Substitution (N))
then
null;
else
Enter_Name (Id);
end if;
T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
-- Inherit common attributes
Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
Set_Is_Volatile (Id, Is_Volatile (T));
Set_Is_Atomic (Id, Is_Atomic (T));
-- In the case where there is no constraint given in the subtype
-- indication, Process_Subtype just returns the Subtype_Mark,
-- so its semantic attributes must be established here.
if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
Set_Etype (Id, Base_Type (T));
case Ekind (T) is
when Array_Kind =>
Set_Ekind (Id, E_Array_Subtype);
-- Shouldn't we call Copy_Array_Subtype_Attributes here???
Set_First_Index (Id, First_Index (T));
Set_Is_Aliased (Id, Is_Aliased (T));
Set_Is_Constrained (Id, Is_Constrained (T));
when Decimal_Fixed_Point_Kind =>
Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
Set_Digits_Value (Id, Digits_Value (T));
Set_Delta_Value (Id, Delta_Value (T));
Set_Scale_Value (Id, Scale_Value (T));
Set_Small_Value (Id, Small_Value (T));
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_RM_Size (Id, RM_Size (T));
when Enumeration_Kind =>
Set_Ekind (Id, E_Enumeration_Subtype);
Set_First_Literal (Id, First_Literal (Base_Type (T)));
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Is_Character_Type (Id, Is_Character_Type (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_RM_Size (Id, RM_Size (T));
when Ordinary_Fixed_Point_Kind =>
Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Small_Value (Id, Small_Value (T));
Set_Delta_Value (Id, Delta_Value (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_RM_Size (Id, RM_Size (T));
when Float_Kind =>
Set_Ekind (Id, E_Floating_Point_Subtype);
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Digits_Value (Id, Digits_Value (T));
Set_Is_Constrained (Id, Is_Constrained (T));
when Signed_Integer_Kind =>
Set_Ekind (Id, E_Signed_Integer_Subtype);
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_RM_Size (Id, RM_Size (T));
when Modular_Integer_Kind =>
Set_Ekind (Id, E_Modular_Integer_Subtype);
Set_Scalar_Range (Id, Scalar_Range (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_RM_Size (Id, RM_Size (T));
when Class_Wide_Kind =>
Set_Ekind (Id, E_Class_Wide_Subtype);
Set_First_Entity (Id, First_Entity (T));
Set_Last_Entity (Id, Last_Entity (T));
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
Set_Cloned_Subtype (Id, T);
Set_Is_Tagged_Type (Id, True);
Set_Has_Unknown_Discriminants
(Id, True);
if Ekind (T) = E_Class_Wide_Subtype then
Set_Equivalent_Type (Id, Equivalent_Type (T));
end if;
when E_Record_Type | E_Record_Subtype =>
Set_Ekind (Id, E_Record_Subtype);
if Ekind (T) = E_Record_Subtype
and then Present (Cloned_Subtype (T))
then
Set_Cloned_Subtype (Id, Cloned_Subtype (T));
else
Set_Cloned_Subtype (Id, T);
end if;
Set_First_Entity (Id, First_Entity (T));
Set_Last_Entity (Id, Last_Entity (T));
Set_Has_Discriminants (Id, Has_Discriminants (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
Set_Has_Unknown_Discriminants
(Id, Has_Unknown_Discriminants (T));
if Has_Discriminants (T) then
Set_Discriminant_Constraint
(Id, Discriminant_Constraint (T));
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
elsif Has_Unknown_Discriminants (Id) then
Set_Discriminant_Constraint (Id, No_Elist);
end if;
if Is_Tagged_Type (T) then
Set_Is_Tagged_Type (Id);
Set_Is_Abstract (Id, Is_Abstract (T));
Set_Primitive_Operations
(Id, Primitive_Operations (T));
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
end if;
when Private_Kind =>
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
Set_Has_Discriminants (Id, Has_Discriminants (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_First_Entity (Id, First_Entity (T));
Set_Last_Entity (Id, Last_Entity (T));
Set_Private_Dependents (Id, New_Elmt_List);
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
Set_Has_Unknown_Discriminants
(Id, Has_Unknown_Discriminants (T));
if Is_Tagged_Type (T) then
Set_Is_Tagged_Type (Id);
Set_Is_Abstract (Id, Is_Abstract (T));
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
end if;
-- In general the attributes of the subtype of a private
-- type are the attributes of the partial view of parent.
-- However, the full view may be a discriminated type,
-- and the subtype must share the discriminant constraint
-- to generate correct calls to initialization procedures.
if Has_Discriminants (T) then
Set_Discriminant_Constraint
(Id, Discriminant_Constraint (T));
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
elsif Present (Full_View (T))
and then Has_Discriminants (Full_View (T))
then
Set_Discriminant_Constraint
(Id, Discriminant_Constraint (Full_View (T)));
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
-- This would seem semantically correct, but apparently
-- confuses the back-end (4412-009). To be explained ???
-- Set_Has_Discriminants (Id);
end if;
Prepare_Private_Subtype_Completion (Id, N);
when Access_Kind =>
Set_Ekind (Id, E_Access_Subtype);
Set_Is_Constrained (Id, Is_Constrained (T));
Set_Is_Access_Constant
(Id, Is_Access_Constant (T));
Set_Directly_Designated_Type
(Id, Designated_Type (T));
-- A Pure library_item must not contain the declaration of a
-- named access type, except within a subprogram, generic
-- subprogram, task unit, or protected unit (RM 10.2.1(16)).
if Comes_From_Source (Id)
and then In_Pure_Unit
and then not In_Subprogram_Task_Protected_Unit
then
Error_Msg_N
("named access types not allowed in pure unit", N);
end if;
when Concurrent_Kind =>
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
Set_Corresponding_Record_Type (Id,
Corresponding_Record_Type (T));
Set_First_Entity (Id, First_Entity (T));
Set_First_Private_Entity (Id, First_Private_Entity (T));
Set_Has_Discriminants (Id, Has_Discriminants (T));
Set_Is_Constrained (Id, Is_Constrained (T));
Set_Last_Entity (Id, Last_Entity (T));
if Has_Discriminants (T) then
Set_Discriminant_Constraint (Id,
Discriminant_Constraint (T));
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
end if;
-- If the subtype name denotes an incomplete type
-- an error was already reported by Process_Subtype.
when E_Incomplete_Type =>
Set_Etype (Id, Any_Type);
when others =>
raise Program_Error;
end case;
end if;
if Etype (Id) = Any_Type then
return;
end if;
-- Some common processing on all types
Set_Size_Info (Id, T);
Set_First_Rep_Item (Id, First_Rep_Item (T));
T := Etype (Id);
Set_Is_Immediately_Visible (Id, True);
Set_Depends_On_Private (Id, Has_Private_Component (T));
if Present (Generic_Parent_Type (N))
and then
(Nkind
(Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
or else Nkind
(Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
/= N_Formal_Private_Type_Definition)
then
if Is_Tagged_Type (Id) then
if Is_Class_Wide_Type (Id) then
Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
else
Derive_Subprograms (Generic_Parent_Type (N), Id, T);
end if;
elsif Scope (Etype (Id)) /= Standard_Standard then
Derive_Subprograms (Generic_Parent_Type (N), Id);
end if;
end if;
if Is_Private_Type (T)
and then Present (Full_View (T))
then
Conditional_Delay (Id, Full_View (T));
-- The subtypes of components or subcomponents of protected types
-- do not need freeze nodes, which would otherwise appear in the
-- wrong scope (before the freeze node for the protected type). The
-- proper subtypes are those of the subcomponents of the corresponding
-- record.
elsif Ekind (Scope (Id)) /= E_Protected_Type
and then Present (Scope (Scope (Id))) -- error defense!
and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
then
Conditional_Delay (Id, T);
end if;
-- Check that constraint_error is raised for a scalar subtype
-- indication when the lower or upper bound of a non-null range
-- lies outside the range of the type mark.
if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
if Is_Scalar_Type (Etype (Id))
and then Scalar_Range (Id) /=
Scalar_Range (Etype (Subtype_Mark
(Subtype_Indication (N))))
then
Apply_Range_Check
(Scalar_Range (Id),
Etype (Subtype_Mark (Subtype_Indication (N))));
elsif Is_Array_Type (Etype (Id))
and then Present (First_Index (Id))
then
-- This really should be a subprogram that finds the indications
-- to check???
if ((Nkind (First_Index (Id)) = N_Identifier
and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
or else Nkind (First_Index (Id)) = N_Subtype_Indication)
and then
Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
then
declare
Target_Typ : Entity_Id :=
Etype
(First_Index
(Etype (Subtype_Mark (Subtype_Indication (N)))));
begin
R_Checks :=
Range_Check
(Scalar_Range (Etype (First_Index (Id))),
Target_Typ,
Etype (First_Index (Id)),
Defining_Identifier (N));
Insert_Range_Checks
(R_Checks,
N,
Target_Typ,
Sloc (Defining_Identifier (N)));
end;
end if;
end if;
end if;
Check_Eliminated (Id);
end Analyze_Subtype_Declaration;
--------------------------------
-- Analyze_Subtype_Indication --
--------------------------------
procedure Analyze_Subtype_Indication (N : Node_Id) is
T : constant Entity_Id := Subtype_Mark (N);
R : constant Node_Id := Range_Expression (Constraint (N));
begin
Analyze (T);
if R /= Error then
Analyze (R);
Set_Etype (N, Etype (R));
else
Set_Error_Posted (R);
Set_Error_Posted (T);
end if;
end Analyze_Subtype_Indication;
------------------------------
-- Analyze_Type_Declaration --
------------------------------
procedure Analyze_Type_Declaration (N : Node_Id) is
Def : constant Node_Id := Type_Definition (N);
Def_Id : constant Entity_Id := Defining_Identifier (N);
T : Entity_Id;
Prev : Entity_Id;
begin
Prev := Find_Type_Name (N);
if Ekind (Prev) = E_Incomplete_Type then
T := Full_View (Prev);
else
T := Prev;
end if;
Set_Is_Pure (T, Is_Pure (Current_Scope));
-- We set the flag Is_First_Subtype here. It is needed to set the
-- corresponding flag for the Implicit class-wide-type created
-- during tagged types processing.
Set_Is_First_Subtype (T, True);
-- Only composite types other than array types are allowed to have
-- discriminants.
case Nkind (Def) is
-- For derived types, the rule will be checked once we've figured
-- out the parent type.
when N_Derived_Type_Definition =>
null;
-- For record types, discriminants are allowed.
when N_Record_Definition =>
null;
when others =>
if Present (Discriminant_Specifications (N)) then
Error_Msg_N
("elementary or array type cannot have discriminants",
Defining_Identifier
(First (Discriminant_Specifications (N))));
end if;
end case;
-- Elaborate the type definition according to kind, and generate
-- susbsidiary (implicit) subtypes where needed. We skip this if
-- it was already done (this happens during the reanalysis that
-- follows a call to the high level optimizer).
if not Analyzed (T) then
Set_Analyzed (T);
case Nkind (Def) is
when N_Access_To_Subprogram_Definition =>
Access_Subprogram_Declaration (T, Def);
-- If this is a remote access to subprogram, we must create
-- the equivalent fat pointer type, and related subprograms.
if Is_Remote_Types (Current_Scope)
or else Is_Remote_Call_Interface (Current_Scope)
then
Validate_Remote_Access_To_Subprogram_Type (N);
Process_Remote_AST_Declaration (N);
end if;
-- Validate categorization rule against access type declaration
-- usually a violation in Pure unit, Shared_Passive unit.
Validate_Access_Type_Declaration (T, N);
when N_Access_To_Object_Definition =>
Access_Type_Declaration (T, Def);
-- Validate categorization rule against access type declaration
-- usually a violation in Pure unit, Shared_Passive unit.
Validate_Access_Type_Declaration (T, N);
-- If we are in a Remote_Call_Interface package and define
-- a RACW, Read and Write attribute must be added.
if (Is_Remote_Call_Interface (Current_Scope)
or else Is_Remote_Types (Current_Scope))
and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
then
Add_RACW_Features (Def_Id);
end if;
when N_Array_Type_Definition =>
Array_Type_Declaration (T, Def);
when N_Derived_Type_Definition =>
Derived_Type_Declaration (T, N, T /= Def_Id);
when N_Enumeration_Type_Definition =>
Enumeration_Type_Declaration (T, Def);
when N_Floating_Point_Definition =>
Floating_Point_Type_Declaration (T, Def);
when N_Decimal_Fixed_Point_Definition =>
Decimal_Fixed_Point_Type_Declaration (T, Def);
when N_Ordinary_Fixed_Point_Definition =>
Ordinary_Fixed_Point_Type_Declaration (T, Def);
when N_Signed_Integer_Type_Definition =>
Signed_Integer_Type_Declaration (T, Def);
when N_Modular_Type_Definition =>
Modular_Type_Declaration (T, Def);
when N_Record_Definition =>
Record_Type_Declaration (T, N);
when others =>
raise Program_Error;
end case;
end if;
if Etype (T) = Any_Type then
return;
end if;
-- Some common processing for all types
Set_Depends_On_Private (T, Has_Private_Component (T));
-- Both the declared entity, and its anonymous base type if one
-- was created, need freeze nodes allocated.
declare
B : constant Entity_Id := Base_Type (T);
begin
-- In the case where the base type is different from the first
-- subtype, we pre-allocate a freeze node, and set the proper
-- link to the first subtype. Freeze_Entity will use this
-- preallocated freeze node when it freezes the entity.
if B /= T then
Ensure_Freeze_Node (B);
Set_First_Subtype_Link (Freeze_Node (B), T);
end if;
if not From_With_Type (T) then
Set_Has_Delayed_Freeze (T);
end if;
end;
-- Case of T is the full declaration of some private type which has
-- been swapped in Defining_Identifier (N).
if T /= Def_Id and then Is_Private_Type (Def_Id) then
Process_Full_View (N, T, Def_Id);
-- Record the reference. The form of this is a little strange,
-- since the full declaration has been swapped in. So the first
-- parameter here represents the entity to which a reference is
-- made which is the "real" entity, i.e. the one swapped in,
-- and the second parameter provides the reference location.
Generate_Reference (T, T, 'c');
Set_Completion_Referenced (Def_Id);
-- For completion of incomplete type, process incomplete dependents
-- and always mark the full type as referenced (it is the incomplete
-- type that we get for any real reference).
elsif Ekind (Prev) = E_Incomplete_Type then
Process_Incomplete_Dependents (N, T, Prev);
Generate_Reference (Prev, Def_Id, 'c');
Set_Completion_Referenced (Def_Id);
-- If not private type or incomplete type completion, this is a real
-- definition of a new entity, so record it.
else
Generate_Definition (Def_Id);
end if;
Check_Eliminated (Def_Id);
end Analyze_Type_Declaration;
--------------------------
-- Analyze_Variant_Part --
--------------------------
procedure Analyze_Variant_Part (N : Node_Id) is
procedure Non_Static_Choice_Error (Choice : Node_Id);
-- Error routine invoked by the generic instantiation below when
-- the variant part has a non static choice.
procedure Process_Declarations (Variant : Node_Id);
-- Analyzes all the declarations associated with a Variant.
-- Needed by the generic instantiation below.
package Variant_Choices_Processing is new
Generic_Choices_Processing
(Get_Alternatives => Variants,
Get_Choices => Discrete_Choices,
Process_Empty_Choice => No_OP,
Process_Non_Static_Choice => Non_Static_Choice_Error,
Process_Associated_Node => Process_Declarations);
use Variant_Choices_Processing;
-- Instantiation of the generic choice processing package.
-----------------------------
-- Non_Static_Choice_Error --
-----------------------------
procedure Non_Static_Choice_Error (Choice : Node_Id) is
begin
Error_Msg_N ("choice given in variant part is not static", Choice);
end Non_Static_Choice_Error;
--------------------------
-- Process_Declarations --
--------------------------
procedure Process_Declarations (Variant : Node_Id) is
begin
if not Null_Present (Component_List (Variant)) then
Analyze_Declarations (Component_Items (Component_List (Variant)));
if Present (Variant_Part (Component_List (Variant))) then
Analyze (Variant_Part (Component_List (Variant)));
end if;
end if;
end Process_Declarations;
-- Variables local to Analyze_Case_Statement.
Others_Choice : Node_Id;
Discr_Name : Node_Id;
Discr_Type : Entity_Id;
Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
Last_Choice : Nat;
Dont_Care : Boolean;
Others_Present : Boolean := False;
-- Start of processing for Analyze_Variant_Part
begin
Discr_Name := Name (N);
Analyze (Discr_Name);
if Ekind (Entity (Discr_Name)) /= E_Discriminant then
Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
end if;
Discr_Type := Etype (Entity (Discr_Name));
if not Is_Discrete_Type (Discr_Type) then
Error_Msg_N
("discriminant in a variant part must be of a discrete type",
Name (N));
return;
end if;
-- Call the instantiated Analyze_Choices which does the rest of the work
Analyze_Choices
(N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
if Others_Present then
-- Fill in Others_Discrete_Choices field of the OTHERS choice
Others_Choice := First (Discrete_Choices (Last (Variants (N))));
Expand_Others_Choice
(Case_Table (1 .. Last_Choice), Others_Choice, Discr_Type);
end if;
end Analyze_Variant_Part;
----------------------------
-- Array_Type_Declaration --
----------------------------
procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
Component_Def : constant Node_Id := Subtype_Indication (Def);
Element_Type : Entity_Id;
Implicit_Base : Entity_Id;
Index : Node_Id;
Related_Id : Entity_Id := Empty;
Nb_Index : Nat;
P : constant Node_Id := Parent (Def);
Priv : Entity_Id;
begin
if Nkind (Def) = N_Constrained_Array_Definition then
Index := First (Discrete_Subtype_Definitions (Def));
-- Find proper names for the implicit types which may be public.
-- in case of anonymous arrays we use the name of the first object
-- of that type as prefix.
if No (T) then
Related_Id := Defining_Identifier (P);
else
Related_Id := T;
end if;
else
Index := First (Subtype_Marks (Def));
end if;
Nb_Index := 1;
while Present (Index) loop
Analyze (Index);
Make_Index (Index, P, Related_Id, Nb_Index);
Next_Index (Index);
Nb_Index := Nb_Index + 1;
end loop;
Element_Type := Process_Subtype (Component_Def, P, Related_Id, 'C');
-- Constrained array case
if No (T) then
T := Create_Itype (E_Void, P, Related_Id, 'T');
end if;
if Nkind (Def) = N_Constrained_Array_Definition then
-- Establish Implicit_Base as unconstrained base type
Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
Init_Size_Align (Implicit_Base);
Set_Etype (Implicit_Base, Implicit_Base);
Set_Scope (Implicit_Base, Current_Scope);
Set_Has_Delayed_Freeze (Implicit_Base);
-- The constrained array type is a subtype of the unconstrained one
Set_Ekind (T, E_Array_Subtype);
Init_Size_Align (T);
Set_Etype (T, Implicit_Base);
Set_Scope (T, Current_Scope);
Set_Is_Constrained (T, True);
Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
Set_Has_Delayed_Freeze (T);
-- Complete setup of implicit base type
Set_First_Index (Implicit_Base, First_Index (T));
Set_Component_Type (Implicit_Base, Element_Type);
Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
Set_Component_Size (Implicit_Base, Uint_0);
Set_Has_Controlled_Component
(Implicit_Base, Has_Controlled_Component
(Element_Type)
or else
Is_Controlled (Element_Type));
Set_Finalize_Storage_Only
(Implicit_Base, Finalize_Storage_Only
(Element_Type));
-- Unconstrained array case
else
Set_Ekind (T, E_Array_Type);
Init_Size_Align (T);
Set_Etype (T, T);
Set_Scope (T, Current_Scope);
Set_Component_Size (T, Uint_0);
Set_Is_Constrained (T, False);
Set_First_Index (T, First (Subtype_Marks (Def)));
Set_Has_Delayed_Freeze (T, True);
Set_Has_Task (T, Has_Task (Element_Type));
Set_Has_Controlled_Component (T, Has_Controlled_Component
(Element_Type)
or else
Is_Controlled (Element_Type));
Set_Finalize_Storage_Only (T, Finalize_Storage_Only
(Element_Type));
end if;
Set_Component_Type (Base_Type (T), Element_Type);
if Aliased_Present (Def) then
Set_Has_Aliased_Components (Etype (T));
end if;
Priv := Private_Component (Element_Type);
if Present (Priv) then
-- Check for circular definitions
if Priv = Any_Type then
Set_Component_Type (Etype (T), Any_Type);
-- There is a gap in the visiblity of operations on the composite
-- type only if the component type is defined in a different scope.
elsif Scope (Priv) = Current_Scope then
null;
elsif Is_Limited_Type (Priv) then
Set_Is_Limited_Composite (Etype (T));
Set_Is_Limited_Composite (T);
else
Set_Is_Private_Composite (Etype (T));
Set_Is_Private_Composite (T);
end if;
end if;
-- Create a concatenation operator for the new type. Internal
-- array types created for packed entities do not need such, they
-- are compatible with the user-defined type.
if Number_Dimensions (T) = 1
and then not Is_Packed_Array_Type (T)
then
New_Binary_Operator (Name_Op_Concat, T);
end if;
-- In the case of an unconstrained array the parser has already
-- verified that all the indices are unconstrained but we still
-- need to make sure that the element type is constrained.
if Is_Indefinite_Subtype (Element_Type) then
Error_Msg_N
("unconstrained element type in array declaration ",
Component_Def);
elsif Is_Abstract (Element_Type) then
Error_Msg_N ("The type of a component cannot be abstract ",
Component_Def);
end if;
end Array_Type_Declaration;
-------------------------------
-- Build_Derived_Access_Type --
-------------------------------
procedure Build_Derived_Access_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
S : constant Node_Id := Subtype_Indication (Type_Definition (N));
Desig_Type : Entity_Id;
Discr : Entity_Id;
Discr_Con_Elist : Elist_Id;
Discr_Con_El : Elmt_Id;
Subt : Entity_Id;
begin
-- Set the designated type so it is available in case this is
-- an access to a self-referential type, e.g. a standard list
-- type with a next pointer. Will be reset after subtype is built.
Set_Directly_Designated_Type (Derived_Type,
Designated_Type (Parent_Type));
Subt := Process_Subtype (S, N);
if Nkind (S) /= N_Subtype_Indication
and then Subt /= Base_Type (Subt)
then
Set_Ekind (Derived_Type, E_Access_Subtype);
end if;
if Ekind (Derived_Type) = E_Access_Subtype then
declare
Pbase : constant Entity_Id := Base_Type (Parent_Type);
Ibase : constant Entity_Id :=
Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
Svg_Chars : constant Name_Id := Chars (Ibase);
Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
begin
Copy_Node (Pbase, Ibase);
Set_Chars (Ibase, Svg_Chars);
Set_Next_Entity (Ibase, Svg_Next_E);
Set_Sloc (Ibase, Sloc (Derived_Type));
Set_Scope (Ibase, Scope (Derived_Type));
Set_Freeze_Node (Ibase, Empty);
Set_Is_Frozen (Ibase, False);
Set_Comes_From_Source (Ibase, False);
Set_Is_First_Subtype (Ibase, False);
Set_Etype (Ibase, Pbase);
Set_Etype (Derived_Type, Ibase);
end;
end if;
Set_Directly_Designated_Type
(Derived_Type, Designated_Type (Subt));
Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
Set_Size_Info (Derived_Type, Parent_Type);
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
Set_Depends_On_Private (Derived_Type,
Has_Private_Component (Derived_Type));
Conditional_Delay (Derived_Type, Subt);
-- Note: we do not copy the Storage_Size_Variable, since
-- we always go to the root type for this information.
-- Apply range checks to discriminants for derived record case
-- ??? THIS CODE SHOULD NOT BE HERE REALLY.
Desig_Type := Designated_Type (Derived_Type);
if Is_Composite_Type (Desig_Type)
and then (not Is_Array_Type (Desig_Type))
and then Has_Discriminants (Desig_Type)
and then Base_Type (Desig_Type) /= Desig_Type
then
Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
Discr_Con_El := First_Elmt (Discr_Con_Elist);
Discr := First_Discriminant (Base_Type (Desig_Type));
while Present (Discr_Con_El) loop
Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
Next_Elmt (Discr_Con_El);
Next_Discriminant (Discr);
end loop;
end if;
end Build_Derived_Access_Type;
------------------------------
-- Build_Derived_Array_Type --
------------------------------
procedure Build_Derived_Array_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Tdef : constant Node_Id := Type_Definition (N);
Indic : constant Node_Id := Subtype_Indication (Tdef);
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
Implicit_Base : Entity_Id;
New_Indic : Node_Id;
procedure Make_Implicit_Base;
-- If the parent subtype is constrained, the derived type is a
-- subtype of an implicit base type derived from the parent base.
------------------------
-- Make_Implicit_Base --
------------------------
procedure Make_Implicit_Base is
begin
Implicit_Base :=
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
Set_Etype (Implicit_Base, Parent_Base);
Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
Set_Has_Delayed_Freeze (Implicit_Base, True);
end Make_Implicit_Base;
-- Start of processing for Build_Derived_Array_Type
begin
if not Is_Constrained (Parent_Type) then
if Nkind (Indic) /= N_Subtype_Indication then
Set_Ekind (Derived_Type, E_Array_Type);
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
Set_Has_Delayed_Freeze (Derived_Type, True);
else
Make_Implicit_Base;
Set_Etype (Derived_Type, Implicit_Base);
New_Indic :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Derived_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
Constraint => Constraint (Indic)));
Rewrite (N, New_Indic);
Analyze (N);
end if;
else
if Nkind (Indic) /= N_Subtype_Indication then
Make_Implicit_Base;
Set_Ekind (Derived_Type, Ekind (Parent_Type));
Set_Etype (Derived_Type, Implicit_Base);
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
else
Error_Msg_N ("illegal constraint on constrained type", Indic);
end if;
end if;
-- If the parent type is not a derived type itself, and is
-- declared in a closed scope (e.g., a subprogram), then we
-- need to explicitly introduce the new type's concatenation
-- operator since Derive_Subprograms will not inherit the
-- parent's operator.
if Number_Dimensions (Parent_Type) = 1
and then not Is_Limited_Type (Parent_Type)
and then not Is_Derived_Type (Parent_Type)
and then not Is_Package (Scope (Base_Type (Parent_Type)))
then
New_Binary_Operator (Name_Op_Concat, Derived_Type);
end if;
end Build_Derived_Array_Type;
-----------------------------------
-- Build_Derived_Concurrent_Type --
-----------------------------------
procedure Build_Derived_Concurrent_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
D_Constraint : Node_Id;
Disc_Spec : Node_Id;
Old_Disc : Entity_Id;
New_Disc : Entity_Id;
Constraint_Present : constant Boolean :=
Nkind (Subtype_Indication (Type_Definition (N)))
= N_Subtype_Indication;
begin
Set_Girder_Constraint (Derived_Type, No_Elist);
if Is_Task_Type (Parent_Type) then
Set_Storage_Size_Variable (Derived_Type,
Storage_Size_Variable (Parent_Type));
end if;
if Present (Discriminant_Specifications (N)) then
New_Scope (Derived_Type);
Check_Or_Process_Discriminants (N, Derived_Type);
End_Scope;
elsif Constraint_Present then
-- Build constrained subtype and derive from it
declare
Loc : constant Source_Ptr := Sloc (N);
Anon : Entity_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Derived_Type), 'T'));
Decl : Node_Id;
begin
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Anon,
Subtype_Indication =>
New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
Insert_Before (N, Decl);
Rewrite (Subtype_Indication (Type_Definition (N)),
New_Occurrence_Of (Anon, Loc));
Analyze (Decl);
Set_Analyzed (Derived_Type, False);
Analyze (N);
return;
end;
end if;
-- All attributes are inherited from parent. In particular,
-- entries and the corresponding record type are the same.
-- Discriminants may be renamed, and must be treated separately.
Set_Has_Discriminants
(Derived_Type, Has_Discriminants (Parent_Type));
Set_Corresponding_Record_Type
(Derived_Type, Corresponding_Record_Type (Parent_Type));
if Constraint_Present then
if not Has_Discriminants (Parent_Type) then
Error_Msg_N ("untagged parent must have discriminants", N);
elsif Present (Discriminant_Specifications (N)) then
-- Verify that new discriminants are used to constrain
-- the old ones.
Old_Disc := First_Discriminant (Parent_Type);
New_Disc := First_Discriminant (Derived_Type);
Disc_Spec := First (Discriminant_Specifications (N));
D_Constraint :=
First
(Constraints
(Constraint (Subtype_Indication (Type_Definition (N)))));
while Present (Old_Disc) and then Present (Disc_Spec) loop
if Nkind (Discriminant_Type (Disc_Spec)) /=
N_Access_Definition
then
Analyze (Discriminant_Type (Disc_Spec));
if not Subtypes_Statically_Compatible (
Etype (Discriminant_Type (Disc_Spec)),
Etype (Old_Disc))
then
Error_Msg_N
("not statically compatible with parent discriminant",
Discriminant_Type (Disc_Spec));
end if;
end if;
if Nkind (D_Constraint) = N_Identifier
and then Chars (D_Constraint) /=
Chars (Defining_Identifier (Disc_Spec))
then
Error_Msg_N ("new discriminants must constrain old ones",
D_Constraint);
else
Set_Corresponding_Discriminant (New_Disc, Old_Disc);
end if;
Next_Discriminant (Old_Disc);
Next_Discriminant (New_Disc);
Next (Disc_Spec);
end loop;
if Present (Old_Disc) or else Present (Disc_Spec) then
Error_Msg_N ("discriminant mismatch in derivation", N);
end if;
end if;
elsif Present (Discriminant_Specifications (N)) then
Error_Msg_N
("missing discriminant constraint in untagged derivation",
N);
end if;
if Present (Discriminant_Specifications (N)) then
Old_Disc := First_Discriminant (Parent_Type);
while Present (Old_Disc) loop
if No (Next_Entity (Old_Disc))
or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
then
Set_Next_Entity (Last_Entity (Derived_Type),
Next_Entity (Old_Disc));
exit;
end if;
Next_Discriminant (Old_Disc);
end loop;
else
Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
if Has_Discriminants (Parent_Type) then
Set_Discriminant_Constraint (
Derived_Type, Discriminant_Constraint (Parent_Type));
end if;
end if;
Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
Set_Has_Completion (Derived_Type);
end Build_Derived_Concurrent_Type;
------------------------------------
-- Build_Derived_Enumeration_Type --
------------------------------------
procedure Build_Derived_Enumeration_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Def : constant Node_Id := Type_Definition (N);
Indic : constant Node_Id := Subtype_Indication (Def);
Implicit_Base : Entity_Id;
Literal : Entity_Id;
New_Lit : Entity_Id;
Literals_List : List_Id;
Type_Decl : Node_Id;
Hi, Lo : Node_Id;
Rang_Expr : Node_Id;
begin
-- Since types Standard.Character and Standard.Wide_Character do
-- not have explicit literals lists we need to process types derived
-- from them specially. This is handled by Derived_Standard_Character.
-- If the parent type is a generic type, there are no literals either,
-- and we construct the same skeletal representation as for the generic
-- parent type.
if Root_Type (Parent_Type) = Standard_Character
or else Root_Type (Parent_Type) = Standard_Wide_Character
then
Derived_Standard_Character (N, Parent_Type, Derived_Type);
elsif Is_Generic_Type (Root_Type (Parent_Type)) then
declare
Lo : Node_Id;
Hi : Node_Id;
begin
Lo :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Reference_To (Derived_Type, Loc));
Set_Etype (Lo, Derived_Type);
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Reference_To (Derived_Type, Loc));
Set_Etype (Hi, Derived_Type);
Set_Scalar_Range (Derived_Type,
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi));
end;
else
-- If a constraint is present, analyze the bounds to catch
-- premature usage of the derived literals.
if Nkind (Indic) = N_Subtype_Indication
and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
then
Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
Analyze (High_Bound (Range_Expression (Constraint (Indic))));
end if;
-- Introduce an implicit base type for the derived type even
-- if there is no constraint attached to it, since this seems
-- closer to the Ada semantics. Build a full type declaration
-- tree for the derived type using the implicit base type as
-- the defining identifier. The build a subtype declaration
-- tree which applies the constraint (if any) have it replace
-- the derived type declaration.
Literal := First_Literal (Parent_Type);
Literals_List := New_List;
while Present (Literal)
and then Ekind (Literal) = E_Enumeration_Literal
loop
-- Literals of the derived type have the same representation as
-- those of the parent type, but this representation can be
-- overridden by an explicit representation clause. Indicate
-- that there is no explicit representation given yet. These
-- derived literals are implicit operations of the new type,
-- and can be overriden by explicit ones.
if Nkind (Literal) = N_Defining_Character_Literal then
New_Lit :=
Make_Defining_Character_Literal (Loc, Chars (Literal));
else
New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
end if;
Set_Ekind (New_Lit, E_Enumeration_Literal);
Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
Set_Enumeration_Rep_Expr (New_Lit, Empty);
Set_Alias (New_Lit, Literal);
Set_Is_Known_Valid (New_Lit, True);
Append (New_Lit, Literals_List);
Next_Literal (Literal);
end loop;
Implicit_Base :=
Make_Defining_Identifier (Sloc (Derived_Type),
New_External_Name (Chars (Derived_Type), 'B'));
-- Indicate the proper nature of the derived type. This must
-- be done before analysis of the literals, to recognize cases
-- when a literal may be hidden by a previous explicit function
-- definition (cf. c83031a).
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
Set_Etype (Derived_Type, Implicit_Base);
Type_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Implicit_Base,
Discriminant_Specifications => No_List,
Type_Definition =>
Make_Enumeration_Type_Definition (Loc, Literals_List));
Mark_Rewrite_Insertion (Type_Decl);
Insert_Before (N, Type_Decl);
Analyze (Type_Decl);
-- After the implicit base is analyzed its Etype needs to be
-- changed to reflect the fact that it is derived from the
-- parent type which was ignored during analysis. We also set
-- the size at this point.
Set_Etype (Implicit_Base, Parent_Type);
Set_Size_Info (Implicit_Base, Parent_Type);
Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
Set_Has_Non_Standard_Rep
(Implicit_Base, Has_Non_Standard_Rep
(Parent_Type));
Set_Has_Delayed_Freeze (Implicit_Base);
-- Process the subtype indication including a validation check
-- on the constraint, if any. If a constraint is given, its bounds
-- must be implicitly converted to the new type.
if Nkind (Indic) = N_Subtype_Indication then
declare
R : constant Node_Id :=
Range_Expression (Constraint (Indic));
begin
if Nkind (R) = N_Range then
Hi := Build_Scalar_Bound
(High_Bound (R), Parent_Type, Implicit_Base);
Lo := Build_Scalar_Bound
(Low_Bound (R), Parent_Type, Implicit_Base);
else
-- Constraint is a Range attribute. Replace with the
-- explicit mention of the bounds of the prefix, which
-- must be a subtype.
Analyze (Prefix (R));
Hi :=
Convert_To (Implicit_Base,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
Lo :=
Convert_To (Implicit_Base,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
end if;
end;
else
Hi :=
Build_Scalar_Bound
(Type_High_Bound (Parent_Type),
Parent_Type, Implicit_Base);
Lo :=
Build_Scalar_Bound
(Type_Low_Bound (Parent_Type),
Parent_Type, Implicit_Base);
end if;
Rang_Expr :=
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
-- If we constructed a default range for the case where no range
-- was given, then the expressions in the range must not freeze
-- since they do not correspond to expressions in the source.
if Nkind (Indic) /= N_Subtype_Indication then
Set_Must_Not_Freeze (Lo);
Set_Must_Not_Freeze (Hi);
Set_Must_Not_Freeze (Rang_Expr);
end if;
Rewrite (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Derived_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression => Rang_Expr))));
Analyze (N);
-- If pragma Discard_Names applies on the first subtype
-- of the parent type, then it must be applied on this
-- subtype as well.
if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
Set_Discard_Names (Derived_Type);
end if;
-- Apply a range check. Since this range expression doesn't
-- have an Etype, we have to specifically pass the Source_Typ
-- parameter. Is this right???
if Nkind (Indic) = N_Subtype_Indication then
Apply_Range_Check (Range_Expression (Constraint (Indic)),
Parent_Type,
Source_Typ => Entity (Subtype_Mark (Indic)));
end if;
end if;
end Build_Derived_Enumeration_Type;
--------------------------------
-- Build_Derived_Numeric_Type --
--------------------------------
procedure Build_Derived_Numeric_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Tdef : constant Node_Id := Type_Definition (N);
Indic : constant Node_Id := Subtype_Indication (Tdef);
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
No_Constraint : constant Boolean := Nkind (Indic) /=
N_Subtype_Indication;
Implicit_Base : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
T : Entity_Id;
begin
-- Process the subtype indication including a validation check on
-- the constraint if any.
T := Process_Subtype (Indic, N);
-- Introduce an implicit base type for the derived type even if
-- there is no constraint attached to it, since this seems closer
-- to the Ada semantics.
Implicit_Base :=
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
Set_Etype (Implicit_Base, Parent_Base);
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
Set_Size_Info (Implicit_Base, Parent_Base);
Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
Set_Parent (Implicit_Base, Parent (Derived_Type));
if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
end if;
Set_Has_Delayed_Freeze (Implicit_Base);
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
Set_Scalar_Range (Implicit_Base,
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi));
if Has_Infinities (Parent_Base) then
Set_Includes_Infinities (Scalar_Range (Implicit_Base));
end if;
-- The Derived_Type, which is the entity of the declaration, is
-- a subtype of the implicit base. Its Ekind is a subtype, even
-- in the absence of an explicit constraint.
Set_Etype (Derived_Type, Implicit_Base);
-- If we did not have a constraint, then the Ekind is set from the
-- parent type (otherwise Process_Subtype has set the bounds)
if No_Constraint then
Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
end if;
-- If we did not have a range constraint, then set the range
-- from the parent type. Otherwise, the call to Process_Subtype
-- has set the bounds.
if No_Constraint
or else not Has_Range_Constraint (Indic)
then
Set_Scalar_Range (Derived_Type,
Make_Range (Loc,
Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
if Has_Infinities (Parent_Type) then
Set_Includes_Infinities (Scalar_Range (Derived_Type));
end if;
end if;
-- Set remaining type-specific fields, depending on numeric type
if Is_Modular_Integer_Type (Parent_Type) then
Set_Modulus (Implicit_Base, Modulus (Parent_Base));
Set_Non_Binary_Modulus
(Implicit_Base, Non_Binary_Modulus (Parent_Base));
elsif Is_Floating_Point_Type (Parent_Type) then
-- Digits of base type is always copied from the digits value of
-- the parent base type, but the digits of the derived type will
-- already have been set if there was a constraint present.
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
if No_Constraint then
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
end if;
elsif Is_Fixed_Point_Type (Parent_Type) then
-- Small of base type and derived type are always copied from
-- the parent base type, since smalls never change. The delta
-- of the base type is also copied from the parent base type.
-- However the delta of the derived type will have been set
-- already if a constraint was present.
Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
if No_Constraint then
Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
end if;
-- The scale and machine radix in the decimal case are always
-- copied from the parent base type.
if Is_Decimal_Fixed_Point_Type (Parent_Type) then
Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
Set_Machine_Radix_10
(Derived_Type, Machine_Radix_10 (Parent_Base));
Set_Machine_Radix_10
(Implicit_Base, Machine_Radix_10 (Parent_Base));
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
if No_Constraint then
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
else
-- the analysis of the subtype_indication sets the
-- digits value of the derived type.
null;
end if;
end if;
end if;
-- The type of the bounds is that of the parent type, and they
-- must be converted to the derived type.
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
-- The implicit_base should be frozen when the derived type is frozen,
-- but note that it is used in the conversions of the bounds. For
-- fixed types we delay the determination of the bounds until the proper
-- freezing point. For other numeric types this is rejected by GCC, for
-- reasons that are currently unclear (???), so we choose to freeze the
-- implicit base now. In the case of integers and floating point types
-- this is harmless because subsequent representation clauses cannot
-- affect anything, but it is still baffling that we cannot use the
-- same mechanism for all derived numeric types.
if Is_Fixed_Point_Type (Parent_Type) then
Conditional_Delay (Implicit_Base, Parent_Type);
else
Freeze_Before (N, Implicit_Base);
end if;
end Build_Derived_Numeric_Type;
--------------------------------
-- Build_Derived_Private_Type --
--------------------------------
procedure Build_Derived_Private_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Is_Completion : Boolean;
Derive_Subps : Boolean := True)
is
Der_Base : Entity_Id;
Discr : Entity_Id;
Full_Decl : Node_Id := Empty;
Full_Der : Entity_Id;
Full_P : Entity_Id;
Last_Discr : Entity_Id;
Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
Swapped : Boolean := False;
procedure Copy_And_Build;
-- Copy derived type declaration, replace parent with its full view,
-- and analyze new declaration.
--------------------
-- Copy_And_Build --
--------------------
procedure Copy_And_Build is
Full_N : Node_Id;
begin
if Ekind (Parent_Type) in Record_Kind
or else (Ekind (Parent_Type) in Enumeration_Kind
and then Root_Type (Parent_Type) /= Standard_Character
and then Root_Type (Parent_Type) /= Standard_Wide_Character
and then not Is_Generic_Type (Root_Type (Parent_Type)))
then
Full_N := New_Copy_Tree (N);
Insert_After (N, Full_N);
Build_Derived_Type (
Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
else
Build_Derived_Type (
N, Parent_Type, Full_Der, True, Derive_Subps => False);
end if;
end Copy_And_Build;
-- Start of processing for Build_Derived_Private_Type
begin
if Is_Tagged_Type (Parent_Type) then
Build_Derived_Record_Type
(N, Parent_Type, Derived_Type, Derive_Subps);
return;
elsif Has_Discriminants (Parent_Type) then
if Present (Full_View (Parent_Type)) then
if not Is_Completion then
-- Copy declaration for subsequent analysis.
Full_Decl := New_Copy_Tree (N);
Full_Der := New_Copy (Derived_Type);
Insert_After (N, Full_Decl);
else
-- If this is a completion, the full view being built is
-- itself private. We build a subtype of the parent with
-- the same constraints as this full view, to convey to the
-- back end the constrained components and the size of this
-- subtype. If the parent is constrained, its full view can
-- serve as the underlying full view of the derived type.
if No (Discriminant_Specifications (N)) then
if Nkind (Subtype_Indication (Type_Definition (N)))
= N_Subtype_Indication
then
Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
elsif Is_Constrained (Full_View (Parent_Type)) then
Set_Underlying_Full_View (Derived_Type,
Full_View (Parent_Type));
end if;
else
-- If there are new discriminants, the parent subtype is
-- constrained by them, but it is not clear how to build
-- the underlying_full_view in this case ???
null;
end if;
end if;
end if;
Build_Derived_Record_Type
(N, Parent_Type, Derived_Type, Derive_Subps);
if Present (Full_View (Parent_Type))
and then not Is_Completion
then
if not In_Open_Scopes (Par_Scope)
or else not In_Same_Source_Unit (N, Parent_Type)
then
-- Swap partial and full views temporarily
Install_Private_Declarations (Par_Scope);
Install_Visible_Declarations (Par_Scope);
Swapped := True;
end if;
-- Subprograms have been derived on the private view,
-- the completion does not derive them anew.
Build_Derived_Record_Type
(Full_Decl, Parent_Type, Full_Der, False);
if Swapped then
Uninstall_Declarations (Par_Scope);
if In_Open_Scopes (Par_Scope) then
Install_Visible_Declarations (Par_Scope);
end if;
end if;
Der_Base := Base_Type (Derived_Type);
Set_Full_View (Derived_Type, Full_Der);
Set_Full_View (Der_Base, Base_Type (Full_Der));
-- Copy the discriminant list from full view to
-- the partial views (base type and its subtype).
-- Gigi requires that the partial and full views
-- have the same discriminants.
-- ??? Note that since the partial view is pointing
-- to discriminants in the full view, their scope
-- will be that of the full view. This might
-- cause some front end problems and need
-- adustment?
Discr := First_Discriminant (Base_Type (Full_Der));
Set_First_Entity (Der_Base, Discr);
loop
Last_Discr := Discr;
Next_Discriminant (Discr);
exit when No (Discr);
end loop;
Set_Last_Entity (Der_Base, Last_Discr);
Set_First_Entity (Derived_Type, First_Entity (Der_Base));
Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
else
-- If this is a completion, the derived type stays private
-- and there is no need to create a further full view, except
-- in the unusual case when the derivation is nested within a
-- child unit, see below.
null;
end if;
elsif Present (Full_View (Parent_Type))
and then Has_Discriminants (Full_View (Parent_Type))
then
if Has_Unknown_Discriminants (Parent_Type)
and then Nkind (Subtype_Indication (Type_Definition (N)))
= N_Subtype_Indication
then
Error_Msg_N
("cannot constrain type with unknown discriminants",
Subtype_Indication (Type_Definition (N)));
return;
end if;
-- If full view of parent is a record type, Build full view as
-- a derivation from the parent's full view. Partial view remains
-- private.
if not Is_Private_Type (Full_View (Parent_Type)) then
Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
Chars (Derived_Type));
Set_Is_Itype (Full_Der);
Set_Has_Private_Declaration (Full_Der);
Set_Has_Private_Declaration (Derived_Type);
Set_Associated_Node_For_Itype (Full_Der, N);
Set_Parent (Full_Der, Parent (Derived_Type));
Set_Full_View (Derived_Type, Full_Der);
Full_P := Full_View (Parent_Type);
Exchange_Declarations (Parent_Type);
Copy_And_Build;
Exchange_Declarations (Full_P);
else
Build_Derived_Record_Type
(N, Full_View (Parent_Type), Derived_Type,
Derive_Subps => False);
end if;
-- In any case, the primitive operations are inherited from
-- the parent type, not from the internal full view.
Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
if Derive_Subps then
Derive_Subprograms (Parent_Type, Derived_Type);
end if;
else
-- Untagged type, No discriminants on either view
if Nkind (Subtype_Indication (Type_Definition (N)))
= N_Subtype_Indication
then
Error_Msg_N
("illegal constraint on type without discriminants", N);
end if;
if Present (Discriminant_Specifications (N))
and then Present (Full_View (Parent_Type))
and then not Is_Tagged_Type (Full_View (Parent_Type))
then
Error_Msg_N
("cannot add discriminants to untagged type", N);
end if;
Set_Girder_Constraint (Derived_Type, No_Elist);
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
Set_Has_Controlled_Component
(Derived_Type, Has_Controlled_Component
(Parent_Type));
-- Direct controlled types do not inherit Finalize_Storage_Only flag
if not Is_Controlled (Parent_Type) then
Set_Finalize_Storage_Only
(Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
end if;
-- Construct the implicit full view by deriving from full
-- view of the parent type. In order to get proper visiblity,
-- we install the parent scope and its declarations.
-- ??? if the parent is untagged private and its
-- completion is tagged, this mechanism will not
-- work because we cannot derive from the tagged
-- full view unless we have an extension
if Present (Full_View (Parent_Type))
and then not Is_Tagged_Type (Full_View (Parent_Type))
and then not Is_Completion
then
Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
Chars (Derived_Type));
Set_Is_Itype (Full_Der);
Set_Has_Private_Declaration (Full_Der);
Set_Has_Private_Declaration (Derived_Type);
Set_Associated_Node_For_Itype (Full_Der, N);
Set_Parent (Full_Der, Parent (Derived_Type));
Set_Full_View (Derived_Type, Full_Der);
if not In_Open_Scopes (Par_Scope) then
Install_Private_Declarations (Par_Scope);
Install_Visible_Declarations (Par_Scope);
Copy_And_Build;
Uninstall_Declarations (Par_Scope);
-- If parent scope is open and in another unit, and
-- parent has a completion, then the derivation is taking
-- place in the visible part of a child unit. In that
-- case retrieve the full view of the parent momentarily.
elsif not In_Same_Source_Unit (N, Parent_Type) then
Full_P := Full_View (Parent_Type);
Exchange_Declarations (Parent_Type);
Copy_And_Build;
Exchange_Declarations (Full_P);
-- Otherwise it is a local derivation.
else
Copy_And_Build;
end if;
Set_Scope (Full_Der, Current_Scope);
Set_Is_First_Subtype (Full_Der,
Is_First_Subtype (Derived_Type));
Set_Has_Size_Clause (Full_Der, False);
Set_Has_Alignment_Clause (Full_Der, False);
Set_Next_Entity (Full_Der, Empty);
Set_Has_Delayed_Freeze (Full_Der);
Set_Is_Frozen (Full_Der, False);
Set_Freeze_Node (Full_Der, Empty);
Set_Depends_On_Private (Full_Der,
Has_Private_Component (Full_Der));
Set_Public_Status (Full_Der);
end if;
end if;
Set_Has_Unknown_Discriminants (Derived_Type,
Has_Unknown_Discriminants (Parent_Type));
if Is_Private_Type (Derived_Type) then
Set_Private_Dependents (Derived_Type, New_Elmt_List);
end if;
if Is_Private_Type (Parent_Type)
and then Base_Type (Parent_Type) = Parent_Type
and then In_Open_Scopes (Scope (Parent_Type))
then
Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
if Is_Child_Unit (Scope (Current_Scope))
and then Is_Completion
and then In_Private_Part (Current_Scope)
and then Scope (Parent_Type) /= Current_Scope
then
-- This is the unusual case where a type completed by a private
-- derivation occurs within a package nested in a child unit,
-- and the parent is declared in an ancestor. In this case, the
-- full view of the parent type will become visible in the body
-- of the enclosing child, and only then will the current type
-- be possibly non-private. We build a underlying full view that
-- will be installed when the enclosing child body is compiled.
declare
IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
begin
Full_Der :=
Make_Defining_Identifier (Sloc (Derived_Type),
Chars (Derived_Type));
Set_Is_Itype (Full_Der);
Set_Itype (IR, Full_Der);
Insert_After (N, IR);
-- The full view will be used to swap entities on entry/exit
-- to the body, and must appear in the entity list for the
-- package.
Append_Entity (Full_Der, Scope (Derived_Type));
Set_Has_Private_Declaration (Full_Der);
Set_Has_Private_Declaration (Derived_Type);
Set_Associated_Node_For_Itype (Full_Der, N);
Set_Parent (Full_Der, Parent (Derived_Type));
Full_P := Full_View (Parent_Type);
Exchange_Declarations (Parent_Type);
Copy_And_Build;
Exchange_Declarations (Full_P);
Set_Underlying_Full_View (Derived_Type, Full_Der);
end;
end if;
end if;
end Build_Derived_Private_Type;
-------------------------------
-- Build_Derived_Record_Type --
-------------------------------
-- 1. INTRODUCTION.
-- Ideally we would like to use the same model of type derivation for
-- tagged and untagged record types. Unfortunately this is not quite
-- possible because the semantics of representation clauses is different
-- for tagged and untagged records under inheritance. Consider the
-- following:
-- type R (...) is [tagged] record ... end record;
-- type T (...) is new R (...) [with ...];
-- The representation clauses of T can specify a completely different
-- record layout from R's. Hence the same component can be placed in
-- two very different positions in objects of type T and R. If R and T
-- are tagged types, representation clauses for T can only specify the
-- layout of non inherited components, thus components that are common
-- in R and T have the same position in objects of type R and T.
-- This has two implications. The first is that the entire tree for R's
-- declaration needs to be copied for T in the untagged case, so that
-- T can be viewd as a record type of its own with its own derivation
-- clauses. The second implication is the way we handle discriminants.
-- Specifically, in the untagged case we need a way to communicate to Gigi
-- what are the real discriminants in the record, while for the semantics
-- we need to consider those introduced by the user to rename the
-- discriminants in the parent type. This is handled by introducing the
-- notion of girder discriminants. See below for more.
-- Fortunately the way regular components are inherited can be handled in
-- the same way in tagged and untagged types.
-- To complicate things a bit more the private view of a private extension
-- cannot be handled in the same way as the full view (for one thing the
-- semantic rules are somewhat different). We will explain what differs
-- below.
-- 2. DISCRIMINANTS UNDER INHERITANCE.
-- The semantic rules governing the discriminants of derived types are
-- quite subtle.
-- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
-- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
-- If parent type has discriminants, then the discriminants that are
-- declared in the derived type are [3.4 (11)]:
-- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
-- there is one;
-- o Otherwise, each discriminant of the parent type (implicitly
-- declared in the same order with the same specifications). In this
-- case, the discriminants are said to be "inherited", or if unknown in
-- the parent are also unknown in the derived type.
-- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
-- o The parent subtype shall be constrained;
-- o If the parent type is not a tagged type, then each discriminant of
-- the derived type shall be used in the constraint defining a parent
-- subtype [Implementation note: this ensures that the new discriminant
-- can share storage with an existing discriminant.].
-- For the derived type each discriminant of the parent type is either
-- inherited, constrained to equal some new discriminant of the derived
-- type, or constrained to the value of an expression.
-- When inherited or constrained to equal some new discriminant, the
-- parent discriminant and the discriminant of the derived type are said
-- to "correspond".
-- If a discriminant of the parent type is constrained to a specific value
-- in the derived type definition, then the discriminant is said to be
-- "specified" by that derived type definition.
-- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES.
-- We have spoken about girder discriminants in the point 1 (introduction)
-- above. There are two sort of girder discriminants: implicit and
-- explicit. As long as the derived type inherits the same discriminants as
-- the root record type, girder discriminants are the same as regular
-- discriminants, and are said to be implicit. However, if any discriminant
-- in the root type was renamed in the derived type, then the derived
-- type will contain explicit girder discriminants. Explicit girder
-- discriminants are discriminants in addition to the semantically visible
-- discriminants defined for the derived type. Girder discriminants are
-- used by Gigi to figure out what are the physical discriminants in
-- objects of the derived type (see precise definition in einfo.ads).
-- As an example, consider the following:
-- type R (D1, D2, D3 : Int) is record ... end record;
-- type T1 is new R;
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
-- type T3 is new T2;
-- type T4 (Y : Int) is new T3 (Y, 99);
-- The following table summarizes the discriminants and girder
-- discriminants in R and T1 through T4.
-- Type Discrim Girder Discrim Comment
-- R (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in R
-- T1 (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in T1
-- T2 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T2
-- T3 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T3
-- T4 (Y) (D1, D2, D3) Gider discrims are EXPLICIT in T4
-- Field Corresponding_Discriminant (abbreviated CD below) allows to find
-- the corresponding discriminant in the parent type, while
-- Original_Record_Component (abbreviated ORC below), the actual physical
-- component that is renamed. Finally the field Is_Completely_Hidden
-- (abbreaviated ICH below) is set for all explicit girder discriminants
-- (see einfo.ads for more info). For the above example this gives:
-- Discrim CD ORC ICH
-- ^^^^^^^ ^^ ^^^ ^^^
-- D1 in R empty itself no
-- D2 in R empty itself no
-- D3 in R empty itself no
-- D1 in T1 D1 in R itself no
-- D2 in T1 D2 in R itself no
-- D3 in T1 D3 in R itself no
-- X1 in T2 D3 in T1 D3 in T2 no
-- X2 in T2 D1 in T1 D1 in T2 no
-- D1 in T2 empty itself yes
-- D2 in T2 empty itself yes
-- D3 in T2 empty itself yes
-- X1 in T3 X1 in T2 D3 in T3 no
-- X2 in T3 X2 in T2 D1 in T3 no
-- D1 in T3 empty itself yes
-- D2 in T3 empty itself yes
-- D3 in T3 empty itself yes
-- Y in T4 X1 in T3 D3 in T3 no
-- D1 in T3 empty itself yes
-- D2 in T3 empty itself yes
-- D3 in T3 empty itself yes
-- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES.
-- Type derivation for tagged types is fairly straightforward. if no
-- discriminants are specified by the derived type, these are inherited
-- from the parent. No explicit girder discriminants are ever necessary.
-- The only manipulation that is done to the tree is that of adding a
-- _parent field with parent type and constrained to the same constraint
-- specified for the parent in the derived type definition. For instance:
-- type R (D1, D2, D3 : Int) is tagged record ... end record;
-- type T1 is new R with null record;
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
-- are changed into :
-- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
-- _parent : R (D1, D2, D3);
-- end record;
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
-- _parent : T1 (X2, 88, X1);
-- end record;
-- The discriminants actually present in R, T1 and T2 as well as their CD,
-- ORC and ICH fields are:
-- Discrim CD ORC ICH
-- ^^^^^^^ ^^ ^^^ ^^^
-- D1 in R empty itself no
-- D2 in R empty itself no
-- D3 in R empty itself no
-- D1 in T1 D1 in R D1 in R no
-- D2 in T1 D2 in R D2 in R no
-- D3 in T1 D3 in R D3 in R no
-- X1 in T2 D3 in T1 D3 in R no
-- X2 in T2 D1 in T1 D1 in R no
-- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS.
--
-- Regardless of whether we dealing with a tagged or untagged type
-- we will transform all derived type declarations of the form
--
-- type T is new R (...) [with ...];
-- or
-- subtype S is R (...);
-- type T is new S [with ...];
-- into
-- type BT is new R [with ...];
-- subtype T is BT (...);
--
-- That is, the base derived type is constrained only if it has no
-- discriminants. The reason for doing this is that GNAT's semantic model
-- assumes that a base type with discriminants is unconstrained.
--
-- Note that, strictly speaking, the above transformation is not always
-- correct. Consider for instance the following exercpt from ACVC b34011a:
--
-- procedure B34011A is
-- type REC (D : integer := 0) is record
-- I : Integer;
-- end record;
-- package P is
-- type T6 is new Rec;
-- function F return T6;
-- end P;
-- use P;
-- package Q6 is
-- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
-- end Q6;
--
-- The definition of Q6.U is illegal. However transforming Q6.U into
-- type BaseU is new T6;
-- subtype U is BaseU (Q6.F.I)
-- turns U into a legal subtype, which is incorrect. To avoid this problem
-- we always analyze the constraint (in this case (Q6.F.I)) before applying
-- the transformation described above.
-- There is another instance where the above transformation is incorrect.
-- Consider:
-- package Pack is
-- type Base (D : Integer) is tagged null record;
-- procedure P (X : Base);
-- type Der is new Base (2) with null record;
-- procedure P (X : Der);
-- end Pack;
-- Then the above transformation turns this into
-- type Der_Base is new Base with null record;
-- -- procedure P (X : Base) is implicitly inherited here
-- -- as procedure P (X : Der_Base).
-- subtype Der is Der_Base (2);
-- procedure P (X : Der);
-- -- The overriding of P (X : Der_Base) is illegal since we
-- -- have a parameter conformance problem.
-- To get around this problem, after having semantically processed Der_Base
-- and the rewritten subtype declaration for Der, we copy Der_Base field
-- Discriminant_Constraint from Der so that when parameter conformance is
-- checked when P is overridden, no sematic errors are flagged.
-- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS.
-- Regardless of the fact that we dealing with a tagged or untagged type
-- we will transform all derived type declarations of the form
-- type R (D1, .., Dn : ...) is [tagged] record ...;
-- type T is new R [with ...];
-- into
-- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
-- The reason for such transformation is that it allows us to implement a
-- very clean form of component inheritance as explained below.
-- Note that this transformation is not achieved by direct tree rewriting
-- and manipulation, but rather by redoing the semantic actions that the
-- above transformation will entail. This is done directly in routine
-- Inherit_Components.
-- 7. TYPE DERIVATION AND COMPONENT INHERITANCE.
-- In both tagged and untagged derived types, regular non discriminant
-- components are inherited in the derived type from the parent type. In
-- the absence of discriminants component, inheritance is straightforward
-- as components can simply be copied from the parent.
-- If the parent has discriminants, inheriting components constrained with
-- these discriminants requires caution. Consider the following example:
-- type R (D1, D2 : Positive) is [tagged] record
-- S : String (D1 .. D2);
-- end record;
-- type T1 is new R [with null record];
-- type T2 (X : positive) is new R (1, X) [with null record];
-- As explained in 6. above, T1 is rewritten as
-- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
-- which makes the treatment for T1 and T2 identical.
-- What we want when inheriting S, is that references to D1 and D2 in R are
-- replaced with references to their correct constraints, ie D1 and D2 in
-- T1 and 1 and X in T2. So all R's discriminant references are replaced
-- with either discriminant references in the derived type or expressions.
-- This replacement is acheived as follows: before inheriting R's
-- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
-- created in the scope of T1 (resp. scope of T2) so that discriminants D1
-- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
-- For T2, for instance, this has the effect of replacing String (D1 .. D2)
-- by String (1 .. X).
-- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS.
-- We explain here the rules governing private type extensions relevant to
-- type derivation. These rules are explained on the following example:
-- type D [(...)] is new A [(...)] with private; <-- partial view
-- type D [(...)] is new P [(...)] with null record; <-- full view
-- Type A is called the ancestor subtype of the private extension.
-- Type P is the parent type of the full view of the private extension. It
-- must be A or a type derived from A.
-- The rules concerning the discriminants of private type extensions are
-- [7.3(10-13)]:
-- o If a private extension inherits known discriminants from the ancestor
-- subtype, then the full view shall also inherit its discriminants from
-- the ancestor subtype and the parent subtype of the full view shall be
-- constrained if and only if the ancestor subtype is constrained.
-- o If a partial view has unknown discriminants, then the full view may
-- define a definite or an indefinite subtype, with or without
-- discriminants.
-- o If a partial view has neither known nor unknown discriminants, then
-- the full view shall define a definite subtype.
-- o If the ancestor subtype of a private extension has constrained
-- discrimiants, then the parent subtype of the full view shall impose a
-- statically matching constraint on those discriminants.
-- This means that only the following forms of private extensions are
-- allowed:
-- type D is new A with private; <-- partial view
-- type D is new P with null record; <-- full view
-- If A has no discriminants than P has no discriminants, otherwise P must
-- inherit A's discriminants.
-- type D is new A (...) with private; <-- partial view
-- type D is new P (:::) with null record; <-- full view
-- P must inherit A's discriminants and (...) and (:::) must statically
-- match.
-- subtype A is R (...);
-- type D is new A with private; <-- partial view
-- type D is new P with null record; <-- full view
-- P must have inherited R's discriminants and must be derived from A or
-- any of its subtypes.
-- type D (..) is new A with private; <-- partial view
-- type D (..) is new P [(:::)] with null record; <-- full view
-- No specific constraints on P's discriminants or constraint (:::).
-- Note that A can be unconstrained, but the parent subtype P must either
-- be constrained or (:::) must be present.
-- type D (..) is new A [(...)] with private; <-- partial view
-- type D (..) is new P [(:::)] with null record; <-- full view
-- P's constraints on A's discriminants must statically match those
-- imposed by (...).
-- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS.
-- The full view of a private extension is handled exactly as described
-- above. The model chose for the private view of a private extension
-- is the same for what concerns discriminants (ie they receive the same
-- treatment as in the tagged case). However, the private view of the
-- private extension always inherits the components of the parent base,
-- without replacing any discriminant reference. Strictly speacking this
-- is incorrect. However, Gigi never uses this view to generate code so
-- this is a purely semantic issue. In theory, a set of transformations
-- similar to those given in 5. and 6. above could be applied to private
-- views of private extensions to have the same model of component
-- inheritance as for non private extensions. However, this is not done
-- because it would further complicate private type processing.
-- Semantically speaking, this leaves us in an uncomfortable
-- situation. As an example consider:
-- package Pack is
-- type R (D : integer) is tagged record
-- S : String (1 .. D);
-- end record;
-- procedure P (X : R);
-- type T is new R (1) with private;
-- private
-- type T is new R (1) with null record;
-- end;
-- This is transformed into:
-- package Pack is
-- type R (D : integer) is tagged record
-- S : String (1 .. D);
-- end record;
-- procedure P (X : R);
-- type T is new R (1) with private;
-- private
-- type BaseT is new R with null record;
-- subtype T is BaseT (1);
-- end;
-- (strictly speaking the above is incorrect Ada).
-- From the semantic standpoint the private view of private extension T
-- should be flagged as constrained since one can clearly have
--
-- Obj : T;
--
-- in a unit withing Pack. However, when deriving subprograms for the
-- private view of private extension T, T must be seen as unconstrained
-- since T has discriminants (this is a constraint of the current
-- subprogram derivation model). Thus, when processing the private view of
-- a private extension such as T, we first mark T as unconstrained, we
-- process it, we perform program derivation and just before returning from
-- Build_Derived_Record_Type we mark T as constrained.
-- ??? Are there are other unconfortable cases that we will have to
-- deal with.
-- 10. RECORD_TYPE_WITH_PRIVATE complications.
-- Types that are derived from a visible record type and have a private
-- extension present other peculiarities. They behave mostly like private
-- types, but if they have primitive operations defined, these will not
-- have the proper signatures for further inheritance, because other
-- primitive operations will use the implicit base that we define for
-- private derivations below. This affect subprogram inheritance (see
-- Derive_Subprograms for details). We also derive the implicit base from
-- the base type of the full view, so that the implicit base is a record
-- type and not another private type, This avoids infinite loops.
procedure Build_Derived_Record_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Derive_Subps : Boolean := True)
is
Loc : constant Source_Ptr := Sloc (N);
Parent_Base : Entity_Id;
Type_Def : Node_Id;
Indic : Node_Id;
Discrim : Entity_Id;
Last_Discrim : Entity_Id;
Constrs : Elist_Id;
Discs : Elist_Id := New_Elmt_List;
-- An empty Discs list means that there were no constraints in the
-- subtype indication or that there was an error processing it.
Assoc_List : Elist_Id;
New_Discrs : Elist_Id;
New_Base : Entity_Id;
New_Decl : Node_Id;
New_Indic : Node_Id;
Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
Discriminant_Specs : constant Boolean :=
Present (Discriminant_Specifications (N));
Private_Extension : constant Boolean :=
(Nkind (N) = N_Private_Extension_Declaration);
Constraint_Present : Boolean;
Inherit_Discrims : Boolean := False;
Save_Etype : Entity_Id;
Save_Discr_Constr : Elist_Id;
Save_Next_Entity : Entity_Id;
begin
if Ekind (Parent_Type) = E_Record_Type_With_Private
and then Present (Full_View (Parent_Type))
and then Has_Discriminants (Parent_Type)
then
Parent_Base := Base_Type (Full_View (Parent_Type));
else
Parent_Base := Base_Type (Parent_Type);
end if;
-- Before we start the previously documented transformations, here is
-- a little fix for size and alignment of tagged types. Normally when
-- we derive type D from type P, we copy the size and alignment of P
-- as the default for D, and in the absence of explicit representation
-- clauses for D, the size and alignment are indeed the same as the
-- parent.
-- But this is wrong for tagged types, since fields may be added,
-- and the default size may need to be larger, and the default
-- alignment may need to be larger.
-- We therefore reset the size and alignment fields in the tagged
-- case. Note that the size and alignment will in any case be at
-- least as large as the parent type (since the derived type has
-- a copy of the parent type in the _parent field)
if Is_Tagged then
Init_Size_Align (Derived_Type);
end if;
-- STEP 0a: figure out what kind of derived type declaration we have.
if Private_Extension then
Type_Def := N;
Set_Ekind (Derived_Type, E_Record_Type_With_Private);
else
Type_Def := Type_Definition (N);
-- Ekind (Parent_Base) in not necessarily E_Record_Type since
-- Parent_Base can be a private type or private extension. However,
-- for tagged types with an extension the newly added fields are
-- visible and hence the Derived_Type is always an E_Record_Type.
-- (except that the parent may have its own private fields).
-- For untagged types we preserve the Ekind of the Parent_Base.
if Present (Record_Extension_Part (Type_Def)) then
Set_Ekind (Derived_Type, E_Record_Type);
else
Set_Ekind (Derived_Type, Ekind (Parent_Base));
end if;
end if;
-- Indic can either be an N_Identifier if the subtype indication
-- contains no constraint or an N_Subtype_Indication if the subtype
-- indication has a constraint.
Indic := Subtype_Indication (Type_Def);
Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
if Constraint_Present then
if not Has_Discriminants (Parent_Base) then
Error_Msg_N
("invalid constraint: type has no discriminant",
Constraint (Indic));
Constraint_Present := False;
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
elsif Is_Constrained (Parent_Type) then
Error_Msg_N
("invalid constraint: parent type is already constrained",
Constraint (Indic));
Constraint_Present := False;
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
end if;
end if;
-- STEP 0b: If needed, apply transformation given in point 5. above.
if not Private_Extension
and then Has_Discriminants (Parent_Type)
and then not Discriminant_Specs
and then (Is_Constrained (Parent_Type) or else Constraint_Present)
then
-- First, we must analyze the constraint (see comment in point 5.).
if Constraint_Present then
New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
if Has_Discriminants (Derived_Type)
and then Has_Private_Declaration (Derived_Type)
and then Present (Discriminant_Constraint (Derived_Type))
then
-- Verify that constraints of the full view conform to those
-- given in partial view.
declare
C1, C2 : Elmt_Id;
begin
C1 := First_Elmt (New_Discrs);
C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
while Present (C1) and then Present (C2) loop
if not
Fully_Conformant_Expressions (Node (C1), Node (C2))
then
Error_Msg_N (
"constraint not conformant to previous declaration",
Node (C1));
end if;
Next_Elmt (C1);
Next_Elmt (C2);
end loop;
end;
end if;
end if;
-- Insert and analyze the declaration for the unconstrained base type
New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
New_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => New_Base,
Type_Definition =>
Make_Derived_Type_Definition (Loc,
Abstract_Present => Abstract_Present (Type_Def),
Subtype_Indication =>
New_Occurrence_Of (Parent_Base, Loc),
Record_Extension_Part =>
Relocate_Node (Record_Extension_Part (Type_Def))));
Set_Parent (New_Decl, Parent (N));
Mark_Rewrite_Insertion (New_Decl);
Insert_Before (N, New_Decl);
-- Note that this call passes False for the Derive_Subps
-- parameter because subprogram derivation is deferred until
-- after creating the subtype (see below).
Build_Derived_Type
(New_Decl, Parent_Base, New_Base,
Is_Completion => True, Derive_Subps => False);
-- ??? This needs re-examination to determine whether the
-- above call can simply be replaced by a call to Analyze.
Set_Analyzed (New_Decl);
-- Insert and analyze the declaration for the constrained subtype
if Constraint_Present then
New_Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
Constraint => Relocate_Node (Constraint (Indic)));
else
declare
Expr : Node_Id;
Constr_List : List_Id := New_List;
C : Elmt_Id;
begin
C := First_Elmt (Discriminant_Constraint (Parent_Type));
while Present (C) loop
Expr := Node (C);
-- It is safe here to call New_Copy_Tree since
-- Force_Evaluation was called on each constraint in
-- Build_Discriminant_Constraints.
Append (New_Copy_Tree (Expr), To => Constr_List);
Next_Elmt (C);
end loop;
New_Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
end;
end if;
Rewrite (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Derived_Type,
Subtype_Indication => New_Indic));
Analyze (N);
-- Derivation of subprograms must be delayed until the
-- full subtype has been established to ensure proper
-- overriding of subprograms inherited by full types.
-- If the derivations occurred as part of the call to
-- Build_Derived_Type above, then the check for type
-- conformance would fail because earlier primitive
-- subprograms could still refer to the full type prior
-- the change to the new subtype and hence wouldn't
-- match the new base type created here.
Derive_Subprograms (Parent_Type, Derived_Type);
-- For tagged types the Discriminant_Constraint of the new base itype
-- is inherited from the first subtype so that no subtype conformance
-- problem arise when the first subtype overrides primitive
-- operations inherited by the implicit base type.
if Is_Tagged then
Set_Discriminant_Constraint
(New_Base, Discriminant_Constraint (Derived_Type));
end if;
return;
end if;
-- If we get here Derived_Type will have no discriminants or it will be
-- a discriminated unconstrained base type.
-- STEP 1a: perform preliminary actions/checks for derived tagged types
if Is_Tagged then
-- The parent type is frozen for non-private extensions (RM 13.14(7))
if not Private_Extension then
Freeze_Before (N, Parent_Type);
end if;
if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
and then not Is_Generic_Type (Derived_Type)
then
if Is_Controlled (Parent_Type) then
Error_Msg_N
("controlled type must be declared at the library level",
Indic);
else
Error_Msg_N
("type extension at deeper accessibility level than parent",
Indic);
end if;
else
declare
GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
begin
if Present (GB)
and then GB /= Enclosing_Generic_Body (Parent_Base)
then
Error_Msg_N
("parent type must not be outside generic body",
Indic);
end if;
end;
end if;
end if;
-- STEP 1b : preliminary cleanup of the full view of private types
-- If the type is already marked as having discriminants, then it's the
-- completion of a private type or private extension and we need to
-- retain the discriminants from the partial view if the current
-- declaration has Discriminant_Specifications so that we can verify
-- conformance. However, we must remove any existing components that
-- were inherited from the parent (and attached in Copy_Private_To_Full)
-- because the full type inherits all appropriate components anyway, and
-- we don't want the partial view's components interfering.
if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
Discrim := First_Discriminant (Derived_Type);
loop
Last_Discrim := Discrim;
Next_Discriminant (Discrim);
exit when No (Discrim);
end loop;
Set_Last_Entity (Derived_Type, Last_Discrim);
-- In all other cases wipe out the list of inherited components (even
-- inherited discriminants), it will be properly rebuilt here.
else
Set_First_Entity (Derived_Type, Empty);
Set_Last_Entity (Derived_Type, Empty);
end if;
-- STEP 1c: Initialize some flags for the Derived_Type
-- The following flags must be initialized here so that
-- Process_Discriminants can check that discriminants of tagged types
-- do not have a default initial value and that access discriminants
-- are only specified for limited records. For completeness, these
-- flags are also initialized along with all the other flags below.
Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
-- STEP 2a: process discriminants of derived type if any.
New_Scope (Derived_Type);
if Discriminant_Specs then
Set_Has_Unknown_Discriminants (Derived_Type, False);
-- The following call initializes fields Has_Discriminants and
-- Discriminant_Constraint, unless we are processing the completion
-- of a private type declaration.
Check_Or_Process_Discriminants (N, Derived_Type);
-- For non-tagged types the constraint on the Parent_Type must be
-- present and is used to rename the discriminants.
if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
Error_Msg_N ("untagged parent must have discriminants", Indic);
elsif not Is_Tagged and then not Constraint_Present then
Error_Msg_N
("discriminant constraint needed for derived untagged records",
Indic);
-- Otherwise the parent subtype must be constrained unless we have a
-- private extension.
elsif not Constraint_Present
and then not Private_Extension
and then not Is_Constrained (Parent_Type)
then
Error_Msg_N
("unconstrained type not allowed in this context", Indic);
elsif Constraint_Present then
-- The following call sets the field Corresponding_Discriminant
-- for the discriminants in the Derived_Type.
Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
-- For untagged types all new discriminants must rename
-- discriminants in the parent. For private extensions new
-- discriminants cannot rename old ones (implied by [7.3(13)]).
Discrim := First_Discriminant (Derived_Type);
while Present (Discrim) loop
if not Is_Tagged
and then not Present (Corresponding_Discriminant (Discrim))
then
Error_Msg_N
("new discriminants must constrain old ones", Discrim);
elsif Private_Extension
and then Present (Corresponding_Discriminant (Discrim))
then
Error_Msg_N
("Only static constraints allowed for parent"
& " discriminants in the partial view", Indic);
exit;
end if;
-- If a new discriminant is used in the constraint,
-- then its subtype must be statically compatible
-- with the parent discriminant's subtype (3.7(15)).
if Present (Corresponding_Discriminant (Discrim))
and then
not Subtypes_Statically_Compatible
(Etype (Discrim),
Etype (Corresponding_Discriminant (Discrim)))
then
Error_Msg_N
("subtype must be compatible with parent discriminant",
Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
end if;
-- STEP 2b: No new discriminants, inherit discriminants if any
else
if Private_Extension then
Set_Has_Unknown_Discriminants
(Derived_Type, Has_Unknown_Discriminants (Parent_Type)
or else Unknown_Discriminants_Present (N));
else
Set_Has_Unknown_Discriminants
(Derived_Type, Has_Unknown_Discriminants (Parent_Type));
end if;
if not Has_Unknown_Discriminants (Derived_Type)
and then Has_Discriminants (Parent_Type)
then
Inherit_Discrims := True;
Set_Has_Discriminants
(Derived_Type, True);
Set_Discriminant_Constraint
(Derived_Type, Discriminant_Constraint (Parent_Base));
end if;
-- The following test is true for private types (remember
-- transformation 5. is not applied to those) and in an error
-- situation.
if Constraint_Present then
Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
end if;
-- For now mark a new derived type as cosntrained only if it has no
-- discriminants. At the end of Build_Derived_Record_Type we properly
-- set this flag in the case of private extensions. See comments in
-- point 9. just before body of Build_Derived_Record_Type.
Set_Is_Constrained
(Derived_Type,
not (Inherit_Discrims
or else Has_Unknown_Discriminants (Derived_Type)));
end if;
-- STEP 3: initialize fields of derived type.
Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
Set_Girder_Constraint (Derived_Type, No_Elist);
-- Fields inherited from the Parent_Type
Set_Discard_Names
(Derived_Type, Einfo.Discard_Names (Parent_Type));
Set_Has_Specified_Layout
(Derived_Type, Has_Specified_Layout (Parent_Type));
Set_Is_Limited_Composite
(Derived_Type, Is_Limited_Composite (Parent_Type));
Set_Is_Limited_Record
(Derived_Type, Is_Limited_Record (Parent_Type));
Set_Is_Private_Composite
(Derived_Type, Is_Private_Composite (Parent_Type));
-- Fields inherited from the Parent_Base
Set_Has_Controlled_Component
(Derived_Type, Has_Controlled_Component (Parent_Base));
Set_Has_Non_Standard_Rep
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
Set_Has_Primitive_Operations
(Derived_Type, Has_Primitive_Operations (Parent_Base));
-- Direct controlled types do not inherit Finalize_Storage_Only flag
if not Is_Controlled (Parent_Type) then
Set_Finalize_Storage_Only
(Derived_Type, Finalize_Storage_Only (Parent_Type));
end if;
-- Set fields for private derived types.
if Is_Private_Type (Derived_Type) then
Set_Depends_On_Private (Derived_Type, True);
Set_Private_Dependents (Derived_Type, New_Elmt_List);
-- Inherit fields from non private record types. If this is the
-- completion of a derivation from a private type, the parent itself
-- is private, and the attributes come from its full view, which must
-- be present.
else
if Is_Private_Type (Parent_Base)
and then not Is_Record_Type (Parent_Base)
then
Set_Component_Alignment
(Derived_Type, Component_Alignment (Full_View (Parent_Base)));
Set_C_Pass_By_Copy
(Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
else
Set_Component_Alignment
(Derived_Type, Component_Alignment (Parent_Base));
Set_C_Pass_By_Copy
(Derived_Type, C_Pass_By_Copy (Parent_Base));
end if;
end if;
-- Set fields for tagged types.
if Is_Tagged then
Set_Primitive_Operations (Derived_Type, New_Elmt_List);
-- All tagged types defined in Ada.Finalization are controlled
if Chars (Scope (Derived_Type)) = Name_Finalization
and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
then
Set_Is_Controlled (Derived_Type);
else
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
end if;
Make_Class_Wide_Type (Derived_Type);
Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
if Has_Discriminants (Derived_Type)
and then Constraint_Present
then
Set_Girder_Constraint
(Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
end if;
else
Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
Set_Has_Non_Standard_Rep
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
end if;
-- STEP 4: Inherit components from the parent base and constrain them.
-- Apply the second transformation described in point 6. above.
if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
or else not Has_Discriminants (Parent_Type)
or else not Is_Constrained (Parent_Type)
then
Constrs := Discs;
else
Constrs := Discriminant_Constraint (Parent_Type);
end if;
Assoc_List := Inherit_Components (N,
Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
-- STEP 5a: Copy the parent record declaration for untagged types
if not Is_Tagged then
-- Discriminant_Constraint (Derived_Type) has been properly
-- constructed. Save it and temporarily set it to Empty because we do
-- not want the call to New_Copy_Tree below to mess this list.
if Has_Discriminants (Derived_Type) then
Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
Set_Discriminant_Constraint (Derived_Type, No_Elist);
else
Save_Discr_Constr := No_Elist;
end if;
-- Save the Etype field of Derived_Type. It is correctly set now, but
-- the call to New_Copy tree may remap it to point to itself, which
-- is not what we want. Ditto for the Next_Entity field.
Save_Etype := Etype (Derived_Type);
Save_Next_Entity := Next_Entity (Derived_Type);
-- Assoc_List maps all girder discriminants in the Parent_Base to
-- girder discriminants in the Derived_Type. It is fundamental that
-- no types or itypes with discriminants other than the girder
-- discriminants appear in the entities declared inside
-- Derived_Type. Gigi won't like it.
New_Decl :=
New_Copy_Tree
(Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
-- Restore the fields saved prior to the New_Copy_Tree call
-- and compute the girder constraint.
Set_Etype (Derived_Type, Save_Etype);
Set_Next_Entity (Derived_Type, Save_Next_Entity);
if Has_Discriminants (Derived_Type) then
Set_Discriminant_Constraint
(Derived_Type, Save_Discr_Constr);
Set_Girder_Constraint
(Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
Replace_Components (Derived_Type, New_Decl);
end if;
-- Insert the new derived type declaration
Rewrite (N, New_Decl);
-- STEP 5b: Complete the processing for record extensions in generics
-- There is no completion for record extensions declared in the
-- parameter part of a generic, so we need to complete processing for
-- these generic record extensions here. The call to
-- Record_Type_Definition will change the Ekind of the components
-- from E_Void to E_Component.
elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
Record_Type_Definition (Empty, Derived_Type);
-- STEP 5c: Process the record extension for non private tagged types.
elsif not Private_Extension then
-- Add the _parent field in the derived type.
Expand_Derived_Record (Derived_Type, Type_Def);
-- Analyze the record extension
Record_Type_Definition
(Record_Extension_Part (Type_Def), Derived_Type);
end if;
End_Scope;
if Etype (Derived_Type) = Any_Type then
return;
end if;
-- Set delayed freeze and then derive subprograms, we need to do
-- this in this order so that derived subprograms inherit the
-- derived freeze if necessary.
Set_Has_Delayed_Freeze (Derived_Type);
if Derive_Subps then
Derive_Subprograms (Parent_Type, Derived_Type);
end if;
-- If we have a private extension which defines a constrained derived
-- type mark as constrained here after we have derived subprograms. See
-- comment on point 9. just above the body of Build_Derived_Record_Type.
if Private_Extension and then Inherit_Discrims then
if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
Set_Is_Constrained (Derived_Type, True);
Set_Discriminant_Constraint (Derived_Type, Discs);
elsif Is_Constrained (Parent_Type) then
Set_Is_Constrained
(Derived_Type, True);
Set_Discriminant_Constraint
(Derived_Type, Discriminant_Constraint (Parent_Type));
end if;
end if;
end Build_Derived_Record_Type;
------------------------
-- Build_Derived_Type --
------------------------
procedure Build_Derived_Type
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Is_Completion : Boolean;
Derive_Subps : Boolean := True)
is
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
begin
-- Set common attributes
Set_Scope (Derived_Type, Current_Scope);
Set_Ekind (Derived_Type, Ekind (Parent_Base));
Set_Etype (Derived_Type, Parent_Base);
Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
Set_Size_Info (Derived_Type, Parent_Type);
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
Set_Convention (Derived_Type, Convention (Parent_Type));
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
case Ekind (Parent_Type) is
when Numeric_Kind =>
Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
when Array_Kind =>
Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
when E_Record_Type
| E_Record_Subtype
| Class_Wide_Kind =>
Build_Derived_Record_Type
(N, Parent_Type, Derived_Type, Derive_Subps);
return;
when Enumeration_Kind =>
Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
when Access_Kind =>
Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
when Incomplete_Or_Private_Kind =>
Build_Derived_Private_Type
(N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
-- For discriminated types, the derivation includes deriving
-- primitive operations. For others it is done below.
if Is_Tagged_Type (Parent_Type)
or else Has_Discriminants (Parent_Type)
or else (Present (Full_View (Parent_Type))
and then Has_Discriminants (Full_View (Parent_Type)))
then
return;
end if;
when Concurrent_Kind =>
Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
when others =>
raise Program_Error;
end case;
if Etype (Derived_Type) = Any_Type then
return;
end if;
-- Set delayed freeze and then derive subprograms, we need to do
-- this in this order so that derived subprograms inherit the
-- derived freeze if necessary.
Set_Has_Delayed_Freeze (Derived_Type);
if Derive_Subps then
Derive_Subprograms (Parent_Type, Derived_Type);
end if;
Set_Has_Primitive_Operations
(Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
end Build_Derived_Type;
-----------------------
-- Build_Discriminal --
-----------------------
procedure Build_Discriminal (Discrim : Entity_Id) is
D_Minal : Entity_Id;
CR_Disc : Entity_Id;
begin
-- A discriminal has the same names as the discriminant.
D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
Set_Ekind (D_Minal, E_In_Parameter);
Set_Mechanism (D_Minal, Default_Mechanism);
Set_Etype (D_Minal, Etype (Discrim));
Set_Discriminal (Discrim, D_Minal);
Set_Discriminal_Link (D_Minal, Discrim);
-- For task types, build at once the discriminants of the corresponding
-- record, which are needed if discriminants are used in entry defaults
-- and in family bounds.
if Is_Concurrent_Type (Current_Scope)
or else Is_Limited_Type (Current_Scope)
then
CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
Set_Ekind (CR_Disc, E_In_Parameter);
Set_Mechanism (CR_Disc, Default_Mechanism);
Set_Etype (CR_Disc, Etype (Discrim));
Set_CR_Discriminant (Discrim, CR_Disc);
end if;
end Build_Discriminal;
------------------------------------
-- Build_Discriminant_Constraints --
------------------------------------
function Build_Discriminant_Constraints
(T : Entity_Id;
Def : Node_Id;
Derived_Def : Boolean := False)
return Elist_Id
is
C : constant Node_Id := Constraint (Def);
Nb_Discr : constant Nat := Number_Discriminants (T);
Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
-- Saves the expression corresponding to a given discriminant in T.
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
-- Return the Position number within array Discr_Expr of a discriminant
-- D within the discriminant list of the discriminated type T.
------------------
-- Pos_Of_Discr --
------------------
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
Disc : Entity_Id;
begin
Disc := First_Discriminant (T);
for J in Discr_Expr'Range loop
if Disc = D then
return J;
end if;
Next_Discriminant (Disc);
end loop;
-- Note: Since this function is called on discriminants that are
-- known to belong to the discriminated type, falling through the
-- loop with no match signals an internal compiler error.
raise Program_Error;
end Pos_Of_Discr;
-- Variables local to Build_Discriminant_Constraints
Discr : Entity_Id;
E : Entity_Id;
Elist : Elist_Id := New_Elmt_List;
Constr : Node_Id;
Expr : Node_Id;
Id : Node_Id;
Position : Nat;
Found : Boolean;
Discrim_Present : Boolean := False;
-- Start of processing for Build_Discriminant_Constraints
begin
-- The following loop will process positional associations only.
-- For a positional association, the (single) discriminant is
-- implicitly specified by position, in textual order (RM 3.7.2).
Discr := First_Discriminant (T);
Constr := First (Constraints (C));
for D in Discr_Expr'Range loop
exit when Nkind (Constr) = N_Discriminant_Association;
if No (Constr) then
Error_Msg_N ("too few discriminants given in constraint", C);
return New_Elmt_List;
elsif Nkind (Constr) = N_Range
or else (Nkind (Constr) = N_Attribute_Reference
and then
Attribute_Name (Constr) = Name_Range)
then
Error_Msg_N
("a range is not a valid discriminant constraint", Constr);
Discr_Expr (D) := Error;
else
Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
Discr_Expr (D) := Constr;
end if;
Next_Discriminant (Discr);
Next (Constr);
end loop;
if No (Discr) and then Present (Constr) then
Error_Msg_N ("too many discriminants given in constraint", Constr);
return New_Elmt_List;
end if;
-- Named associations can be given in any order, but if both positional
-- and named associations are used in the same discriminant constraint,
-- then positional associations must occur first, at their normal
-- position. Hence once a named association is used, the rest of the
-- discriminant constraint must use only named associations.
while Present (Constr) loop
-- Positional association forbidden after a named association.
if Nkind (Constr) /= N_Discriminant_Association then
Error_Msg_N ("positional association follows named one", Constr);
return New_Elmt_List;
-- Otherwise it is a named association
else
-- E records the type of the discriminants in the named
-- association. All the discriminants specified in the same name
-- association must have the same type.
E := Empty;
-- Search the list of discriminants in T to see if the simple name
-- given in the constraint matches any of them.
Id := First (Selector_Names (Constr));
while Present (Id) loop
Found := False;
-- If Original_Discriminant is present, we are processing a
-- generic instantiation and this is an instance node. We need
-- to find the name of the corresponding discriminant in the
-- actual record type T and not the name of the discriminant in
-- the generic formal. Example:
--
-- generic
-- type G (D : int) is private;
-- package P is
-- subtype W is G (D => 1);
-- end package;
-- type Rec (X : int) is record ... end record;
-- package Q is new P (G => Rec);
--
-- At the point of the instantiation, formal type G is Rec
-- and therefore when reanalyzing "subtype W is G (D => 1);"
-- which really looks like "subtype W is Rec (D => 1);" at
-- the point of instantiation, we want to find the discriminant
-- that corresponds to D in Rec, ie X.
if Present (Original_Discriminant (Id)) then
Discr := Find_Corresponding_Discriminant (Id, T);
Found := True;
else
Discr := First_Discriminant (T);
while Present (Discr) loop
if Chars (Discr) = Chars (Id) then
Found := True;
exit;
end if;
Next_Discriminant (Discr);
end loop;
if not Found then
Error_Msg_N ("& does not match any discriminant", Id);
return New_Elmt_List;
-- The following is only useful for the benefit of generic
-- instances but it does not interfere with other
-- processing for the non-generic case so we do it in all
-- cases (for generics this statement is executed when
-- processing the generic definition, see comment at the
-- begining of this if statement).
else
Set_Original_Discriminant (Id, Discr);
end if;
end if;
Position := Pos_Of_Discr (T, Discr);
if Present (Discr_Expr (Position)) then
Error_Msg_N ("duplicate constraint for discriminant&", Id);
else
-- Each discriminant specified in the same named association
-- must be associated with a separate copy of the
-- corresponding expression.
if Present (Next (Id)) then
Expr := New_Copy_Tree (Expression (Constr));
Set_Parent (Expr, Parent (Expression (Constr)));
else
Expr := Expression (Constr);
end if;
Discr_Expr (Position) := Expr;
Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
end if;
-- A discriminant association with more than one discriminant
-- name is only allowed if the named discriminants are all of
-- the same type (RM 3.7.1(8)).
if E = Empty then
E := Base_Type (Etype (Discr));
elsif Base_Type (Etype (Discr)) /= E then
Error_Msg_N
("all discriminants in an association " &
"must have the same type", Id);
end if;
Next (Id);
end loop;
end if;
Next (Constr);
end loop;
-- A discriminant constraint must provide exactly one value for each
-- discriminant of the type (RM 3.7.1(8)).
for J in Discr_Expr'Range loop
if No (Discr_Expr (J)) then
Error_Msg_N ("too few discriminants given in constraint", C);
return New_Elmt_List;
end if;
end loop;
-- Determine if there are discriminant expressions in the constraint.
for J in Discr_Expr'Range loop
if Denotes_Discriminant (Discr_Expr (J)) then
Discrim_Present := True;
end if;
end loop;
-- Build an element list consisting of the expressions given in the
-- discriminant constraint and apply the appropriate range
-- checks. The list is constructed after resolving any named
-- discriminant associations and therefore the expressions appear in
-- the textual order of the discriminants.
Discr := First_Discriminant (T);
for J in Discr_Expr'Range loop
if Discr_Expr (J) /= Error then
Append_Elmt (Discr_Expr (J), Elist);
-- If any of the discriminant constraints is given by a
-- discriminant and we are in a derived type declaration we
-- have a discriminant renaming. Establish link between new
-- and old discriminant.
if Denotes_Discriminant (Discr_Expr (J)) then
if Derived_Def then
Set_Corresponding_Discriminant
(Entity (Discr_Expr (J)), Discr);
end if;
-- Force the evaluation of non-discriminant expressions.
-- If we have found a discriminant in the constraint 3.4(26)
-- and 3.8(18) demand that no range checks are performed are
-- after evaluation. In all other cases perform a range check.
else
if not Discrim_Present then
Apply_Range_Check (Discr_Expr (J), Etype (Discr));
end if;
Force_Evaluation (Discr_Expr (J));
end if;
-- Check that the designated type of an access discriminant's
-- expression is not a class-wide type unless the discriminant's
-- designated type is also class-wide.
if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
and then not Is_Class_Wide_Type
(Designated_Type (Etype (Discr)))
and then Etype (Discr_Expr (J)) /= Any_Type
and then Is_Class_Wide_Type
(Designated_Type (Etype (Discr_Expr (J))))
then
Wrong_Type (Discr_Expr (J), Etype (Discr));
end if;
end if;
Next_Discriminant (Discr);
end loop;
return Elist;
end Build_Discriminant_Constraints;
---------------------------------
-- Build_Discriminated_Subtype --
---------------------------------
procedure Build_Discriminated_Subtype
(T : Entity_Id;
Def_Id : Entity_Id;
Elist : Elist_Id;
Related_Nod : Node_Id;
For_Access : Boolean := False)
is
Has_Discrs : constant Boolean := Has_Discriminants (T);
Constrained : constant Boolean
:= (Has_Discrs
and then not Is_Empty_Elmt_List (Elist)
and then not Is_Class_Wide_Type (T))
or else Is_Constrained (T);
begin
if Ekind (T) = E_Record_Type then
if For_Access then
Set_Ekind (Def_Id, E_Private_Subtype);
Set_Is_For_Access_Subtype (Def_Id, True);
else
Set_Ekind (Def_Id, E_Record_Subtype);
end if;
elsif Ekind (T) = E_Task_Type then
Set_Ekind (Def_Id, E_Task_Subtype);
elsif Ekind (T) = E_Protected_Type then
Set_Ekind (Def_Id, E_Protected_Subtype);
elsif Is_Private_Type (T) then
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
elsif Is_Class_Wide_Type (T) then
Set_Ekind (Def_Id, E_Class_Wide_Subtype);
else
-- Incomplete type. Attach subtype to list of dependents, to be
-- completed with full view of parent type.
Set_Ekind (Def_Id, Ekind (T));
Append_Elmt (Def_Id, Private_Dependents (T));
end if;
Set_Etype (Def_Id, T);
Init_Size_Align (Def_Id);
Set_Has_Discriminants (Def_Id, Has_Discrs);
Set_Is_Constrained (Def_Id, Constrained);
Set_First_Entity (Def_Id, First_Entity (T));
Set_Last_Entity (Def_Id, Last_Entity (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
if Is_Tagged_Type (T) then
Set_Is_Tagged_Type (Def_Id);
Make_Class_Wide_Type (Def_Id);
end if;
Set_Girder_Constraint (Def_Id, No_Elist);
if Has_Discrs then
Set_Discriminant_Constraint (Def_Id, Elist);
Set_Girder_Constraint_From_Discriminant_Constraint (Def_Id);
end if;
if Is_Tagged_Type (T) then
Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
Set_Is_Abstract (Def_Id, Is_Abstract (T));
end if;
-- Subtypes introduced by component declarations do not need to be
-- marked as delayed, and do not get freeze nodes, because the semantics
-- verifies that the parents of the subtypes are frozen before the
-- enclosing record is frozen.
if not Is_Type (Scope (Def_Id)) then
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
if Is_Private_Type (T)
and then Present (Full_View (T))
then
Conditional_Delay (Def_Id, Full_View (T));
else
Conditional_Delay (Def_Id, T);
end if;
end if;
if Is_Record_Type (T) then
Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
if Has_Discrs
and then not Is_Empty_Elmt_List (Elist)
and then not For_Access
then
Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
elsif not For_Access then
Set_Cloned_Subtype (Def_Id, T);
end if;
end if;
end Build_Discriminated_Subtype;
------------------------
-- Build_Scalar_Bound --
------------------------
function Build_Scalar_Bound
(Bound : Node_Id;
Par_T : Entity_Id;
Der_T : Entity_Id)
return Node_Id
is
New_Bound : Entity_Id;
begin
-- Note: not clear why this is needed, how can the original bound
-- be unanalyzed at this point? and if it is, what business do we
-- have messing around with it? and why is the base type of the
-- parent type the right type for the resolution. It probably is
-- not! It is OK for the new bound we are creating, but not for
-- the old one??? Still if it never happens, no problem!
Analyze_And_Resolve (Bound, Base_Type (Par_T));
if Nkind (Bound) = N_Integer_Literal
or else Nkind (Bound) = N_Real_Literal
then
New_Bound := New_Copy (Bound);
Set_Etype (New_Bound, Der_T);
Set_Analyzed (New_Bound);
elsif Is_Entity_Name (Bound) then
New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
-- The following is almost certainly wrong. What business do we have
-- relocating a node (Bound) that is presumably still attached to
-- the tree elsewhere???
else
New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
end if;
Set_Etype (New_Bound, Der_T);
return New_Bound;
end Build_Scalar_Bound;
--------------------------------
-- Build_Underlying_Full_View --
--------------------------------
procedure Build_Underlying_Full_View
(N : Node_Id;
Typ : Entity_Id;
Par : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Subt : constant Entity_Id :=
Make_Defining_Identifier
(Loc, New_External_Name (Chars (Typ), 'S'));
Constr : Node_Id;
Indic : Node_Id;
C : Node_Id;
Id : Node_Id;
begin
if Nkind (N) = N_Full_Type_Declaration then
Constr := Constraint (Subtype_Indication (Type_Definition (N)));
-- ??? ??? is this assert right, I assume so otherwise Constr
-- would not be defined below (this used to be an elsif)
else pragma Assert (Nkind (N) = N_Subtype_Declaration);
Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
end if;
-- If the constraint has discriminant associations, the discriminant
-- entity is already set, but it denotes a discriminant of the new
-- type, not the original parent, so it must be found anew.
C := First (Constraints (Constr));
while Present (C) loop
if Nkind (C) = N_Discriminant_Association then
Id := First (Selector_Names (C));
while Present (Id) loop
Set_Original_Discriminant (Id, Empty);
Next (Id);
end loop;
end if;
Next (C);
end loop;
Indic := Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Par, Loc),
Constraint => New_Copy_Tree (Constr)));
Insert_Before (N, Indic);
Analyze (Indic);
Set_Underlying_Full_View (Typ, Full_View (Subt));
end Build_Underlying_Full_View;
-------------------------------
-- Check_Abstract_Overriding --
-------------------------------
procedure Check_Abstract_Overriding (T : Entity_Id) is
Op_List : Elist_Id;
Elmt : Elmt_Id;
Subp : Entity_Id;
Type_Def : Node_Id;
begin
Op_List := Primitive_Operations (T);
-- Loop to check primitive operations
Elmt := First_Elmt (Op_List);
while Present (Elmt) loop
Subp := Node (Elmt);
-- Special exception, do not complain about failure to
-- override _Input and _Output, since we always provide
-- automatic overridings for these subprograms.
if Is_Abstract (Subp)
and then Chars (Subp) /= Name_uInput
and then Chars (Subp) /= Name_uOutput
and then not Is_Abstract (T)
then
if Present (Alias (Subp)) then
-- Only perform the check for a derived subprogram when
-- the type has an explicit record extension. This avoids
-- incorrectly flagging abstract subprograms for the case
-- of a type without an extension derived from a formal type
-- with a tagged actual (can occur within a private part).
Type_Def := Type_Definition (Parent (T));
if Nkind (Type_Def) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (Type_Def))
then
Error_Msg_NE
("type must be declared abstract or & overridden",
T, Subp);
end if;
else
Error_Msg_NE
("abstract subprogram not allowed for type&",
Subp, T);
Error_Msg_NE
("nonabstract type has abstract subprogram&",
T, Subp);
end if;
end if;
Next_Elmt (Elmt);
end loop;
end Check_Abstract_Overriding;
------------------------------------------------
-- Check_Access_Discriminant_Requires_Limited --
------------------------------------------------
procedure Check_Access_Discriminant_Requires_Limited
(D : Node_Id;
Loc : Node_Id)
is
begin
-- A discriminant_specification for an access discriminant
-- shall appear only in the declaration for a task or protected
-- type, or for a type with the reserved word 'limited' in
-- its definition or in one of its ancestors. (RM 3.7(10))
if Nkind (Discriminant_Type (D)) = N_Access_Definition
and then not Is_Concurrent_Type (Current_Scope)
and then not Is_Concurrent_Record_Type (Current_Scope)
and then not Is_Limited_Record (Current_Scope)
and then Ekind (Current_Scope) /= E_Limited_Private_Type
then
Error_Msg_N
("access discriminants allowed only for limited types", Loc);
end if;
end Check_Access_Discriminant_Requires_Limited;
-----------------------------------
-- Check_Aliased_Component_Types --
-----------------------------------
procedure Check_Aliased_Component_Types (T : Entity_Id) is
C : Entity_Id;
begin
-- ??? Also need to check components of record extensions,
-- but not components of protected types (which are always
-- limited).
if not Is_Limited_Type (T) then
if Ekind (T) = E_Record_Type then
C := First_Component (T);
while Present (C) loop
if Is_Aliased (C)
and then Has_Discriminants (Etype (C))
and then not Is_Constrained (Etype (C))
and then not In_Instance
then
Error_Msg_N
("aliased component must be constrained ('R'M 3.6(11))",
C);
end if;
Next_Component (C);
end loop;
elsif Ekind (T) = E_Array_Type then
if Has_Aliased_Components (T)
and then Has_Discriminants (Component_Type (T))
and then not Is_Constrained (Component_Type (T))
and then not In_Instance
then
Error_Msg_N
("aliased component type must be constrained ('R'M 3.6(11))",
T);
end if;
end if;
end if;
end Check_Aliased_Component_Types;
----------------------
-- Check_Completion --
----------------------
procedure Check_Completion (Body_Id : Node_Id := Empty) is
E : Entity_Id;
procedure Post_Error;
-- Post error message for lack of completion for entity E
procedure Post_Error is
begin
if not Comes_From_Source (E) then
if (Ekind (E) = E_Task_Type
or else Ekind (E) = E_Protected_Type)
then
-- It may be an anonymous protected type created for a
-- single variable. Post error on variable, if present.
declare
Var : Entity_Id;
begin
Var := First_Entity (Current_Scope);
while Present (Var) loop
exit when Etype (Var) = E
and then Comes_From_Source (Var);
Next_Entity (Var);
end loop;
if Present (Var) then
E := Var;
end if;
end;
end if;
end if;
-- If a generated entity has no completion, then either previous
-- semantic errors have disabled the expansion phase, or else
-- we had missing subunits, or else we are compiling without expan-
-- sion, or else something is very wrong.
if not Comes_From_Source (E) then
pragma Assert
(Serious_Errors_Detected > 0
or else Subunits_Missing
or else not Expander_Active);
return;
-- Here for source entity
else
-- Here if no body to post the error message, so we post the error
-- on the declaration that has no completion. This is not really
-- the right place to post it, think about this later ???
if No (Body_Id) then
if Is_Type (E) then
Error_Msg_NE
("missing full declaration for }", Parent (E), E);
else
Error_Msg_NE
("missing body for &", Parent (E), E);
end if;
-- Package body has no completion for a declaration that appears
-- in the corresponding spec. Post error on the body, with a
-- reference to the non-completed declaration.
else
Error_Msg_Sloc := Sloc (E);
if Is_Type (E) then
Error_Msg_NE
("missing full declaration for }!", Body_Id, E);
elsif Is_Overloadable (E)
and then Current_Entity_In_Scope (E) /= E
then
-- It may be that the completion is mistyped and appears
-- as a distinct overloading of the entity.
declare
Candidate : Entity_Id := Current_Entity_In_Scope (E);
Decl : Node_Id := Unit_Declaration_Node (Candidate);
begin
if Is_Overloadable (Candidate)
and then Ekind (Candidate) = Ekind (E)
and then Nkind (Decl) = N_Subprogram_Body
and then Acts_As_Spec (Decl)
then
Check_Type_Conformant (Candidate, E);
else
Error_Msg_NE ("missing body for & declared#!",
Body_Id, E);
end if;
end;
else
Error_Msg_NE ("missing body for & declared#!",
Body_Id, E);
end if;
end if;
end if;
end Post_Error;
-- Start processing for Check_Completion
begin
E := First_Entity (Current_Scope);
while Present (E) loop
if Is_Intrinsic_Subprogram (E) then
null;
-- The following situation requires special handling: a child
-- unit that appears in the context clause of the body of its
-- parent:
-- procedure Parent.Child (...);
--
-- with Parent.Child;
-- package body Parent is
-- Here Parent.Child appears as a local entity, but should not
-- be flagged as requiring completion, because it is a
-- compilation unit.
elsif Ekind (E) = E_Function
or else Ekind (E) = E_Procedure
or else Ekind (E) = E_Generic_Function
or else Ekind (E) = E_Generic_Procedure
then
if not Has_Completion (E)
and then not Is_Abstract (E)
and then Nkind (Parent (Unit_Declaration_Node (E))) /=
N_Compilation_Unit
and then Chars (E) /= Name_uSize
then
Post_Error;
end if;
elsif Is_Entry (E) then
if not Has_Completion (E) and then
(Ekind (Scope (E)) = E_Protected_Object
or else Ekind (Scope (E)) = E_Protected_Type)
then
Post_Error;
end if;
elsif Is_Package (E) then
if Unit_Requires_Body (E) then
if not Has_Completion (E)
and then Nkind (Parent (Unit_Declaration_Node (E))) /=
N_Compilation_Unit
then
Post_Error;
end if;
elsif not Is_Child_Unit (E) then
May_Need_Implicit_Body (E);
end if;
elsif Ekind (E) = E_Incomplete_Type
and then No (Underlying_Type (E))
then
Post_Error;
elsif (Ekind (E) = E_Task_Type or else
Ekind (E) = E_Protected_Type)
and then not Has_Completion (E)
then
Post_Error;
elsif Ekind (E) = E_Constant
and then Ekind (Etype (E)) = E_Task_Type
and then not Has_Completion (Etype (E))
then
Post_Error;
elsif Ekind (E) = E_Protected_Object
and then not Has_Completion (Etype (E))
then
Post_Error;
elsif Ekind (E) = E_Record_Type then
if Is_Tagged_Type (E) then
Check_Abstract_Overriding (E);
end if;
Check_Aliased_Component_Types (E);
elsif Ekind (E) = E_Array_Type then
Check_Aliased_Component_Types (E);
end if;
Next_Entity (E);
end loop;
end Check_Completion;
----------------------------
-- Check_Delta_Expression --
----------------------------
procedure Check_Delta_Expression (E : Node_Id) is
begin
if not (Is_Real_Type (Etype (E))) then
Wrong_Type (E, Any_Real);
elsif not Is_OK_Static_Expression (E) then
Error_Msg_N ("non-static expression used for delta value", E);
elsif not UR_Is_Positive (Expr_Value_R (E)) then
Error_Msg_N ("delta expression must be positive", E);
else
return;
end if;
-- If any of above errors occurred, then replace the incorrect
-- expression by the real 0.1, which should prevent further errors.
Rewrite (E,
Make_Real_Literal (Sloc (E), Ureal_Tenth));
Analyze_And_Resolve (E, Standard_Float);
end Check_Delta_Expression;
-----------------------------
-- Check_Digits_Expression --
-----------------------------
procedure Check_Digits_Expression (E : Node_Id) is
begin
if not (Is_Integer_Type (Etype (E))) then
Wrong_Type (E, Any_Integer);
elsif not Is_OK_Static_Expression (E) then
Error_Msg_N ("non-static expression used for digits value", E);
elsif Expr_Value (E) <= 0 then
Error_Msg_N ("digits value must be greater than zero", E);
else
return;
end if;
-- If any of above errors occurred, then replace the incorrect
-- expression by the integer 1, which should prevent further errors.
Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
Analyze_And_Resolve (E, Standard_Integer);
end Check_Digits_Expression;
----------------------
-- Check_Incomplete --
----------------------
procedure Check_Incomplete (T : Entity_Id) is
begin
if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
Error_Msg_N ("invalid use of type before its full declaration", T);
end if;
end Check_Incomplete;
--------------------------
-- Check_Initialization --
--------------------------
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
begin
if (Is_Limited_Type (T)
or else Is_Limited_Composite (T))
and then not In_Instance
then
Error_Msg_N
("cannot initialize entities of limited type", Exp);
end if;
end Check_Initialization;
------------------------------------
-- Check_Or_Process_Discriminants --
------------------------------------
-- If an incomplete or private type declaration was already given for
-- the type, the discriminants may have already been processed if they
-- were present on the incomplete declaration. In this case a full
-- conformance check is performed otherwise just process them.
procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id) is
begin
if Has_Discriminants (T) then
-- Make the discriminants visible to component declarations.
declare
D : Entity_Id := First_Discriminant (T);
Prev : Entity_Id;
begin
while Present (D) loop
Prev := Current_Entity (D);
Set_Current_Entity (D);
Set_Is_Immediately_Visible (D);
Set_Homonym (D, Prev);
-- This restriction gets applied to the full type here; it
-- has already been applied earlier to the partial view
Check_Access_Discriminant_Requires_Limited (Parent (D), N);
Next_Discriminant (D);
end loop;
end;
elsif Present (Discriminant_Specifications (N)) then
Process_Discriminants (N);
end if;
end Check_Or_Process_Discriminants;
----------------------
-- Check_Real_Bound --
----------------------
procedure Check_Real_Bound (Bound : Node_Id) is
begin
if not Is_Real_Type (Etype (Bound)) then
Error_Msg_N
("bound in real type definition must be of real type", Bound);
elsif not Is_OK_Static_Expression (Bound) then
Error_Msg_N
("non-static expression used for real type bound", Bound);
else
return;
end if;
Rewrite
(Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
Analyze (Bound);
Resolve (Bound, Standard_Float);
end Check_Real_Bound;
------------------------------
-- Complete_Private_Subtype --
------------------------------
procedure Complete_Private_Subtype
(Priv : Entity_Id;
Full : Entity_Id;
Full_Base : Entity_Id;
Related_Nod : Node_Id)
is
Save_Next_Entity : Entity_Id;
Save_Homonym : Entity_Id;
begin
-- Set semantic attributes for (implicit) private subtype completion.
-- If the full type has no discriminants, then it is a copy of the full
-- view of the base. Otherwise, it is a subtype of the base with a
-- possible discriminant constraint. Save and restore the original
-- Next_Entity field of full to ensure that the calls to Copy_Node
-- do not corrupt the entity chain.
-- Note that the type of the full view is the same entity as the
-- type of the partial view. In this fashion, the subtype has
-- access to the correct view of the parent.
Save_Next_Entity := Next_Entity (Full);
Save_Homonym := Homonym (Priv);
case Ekind (Full_Base) is
when E_Record_Type |
E_Record_Subtype |
Class_Wide_Kind |
Private_Kind |
Task_Kind |
Protected_Kind =>
Copy_Node (Priv, Full);
Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
Set_First_Entity (Full, First_Entity (Full_Base));
Set_Last_Entity (Full, Last_Entity (Full_Base));
when others =>
Copy_Node (Full_Base, Full);
Set_Chars (Full, Chars (Priv));
Conditional_Delay (Full, Priv);
Set_Sloc (Full, Sloc (Priv));
end case;
Set_Next_Entity (Full, Save_Next_Entity);
Set_Homonym (Full, Save_Homonym);
Set_Associated_Node_For_Itype (Full, Related_Nod);
-- Set common attributes for all subtypes.
Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
-- The Etype of the full view is inconsistent. Gigi needs to see the
-- structural full view, which is what the current scheme gives:
-- the Etype of the full view is the etype of the full base. However,
-- if the full base is a derived type, the full view then looks like
-- a subtype of the parent, not a subtype of the full base. If instead
-- we write:
-- Set_Etype (Full, Full_Base);
-- then we get inconsistencies in the front-end (confusion between
-- views). Several outstanding bugs are related to this.
Set_Is_First_Subtype (Full, False);
Set_Scope (Full, Scope (Priv));
Set_Size_Info (Full, Full_Base);
Set_RM_Size (Full, RM_Size (Full_Base));
Set_Is_Itype (Full);
-- A subtype of a private-type-without-discriminants, whose full-view
-- has discriminants with default expressions, is not constrained!
if not Has_Discriminants (Priv) then
Set_Is_Constrained (Full, Is_Constrained (Full_Base));
end if;
Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
Set_Depends_On_Private (Full, Has_Private_Component (Full));
-- Freeze the private subtype entity if its parent is delayed,
-- and not already frozen. We skip this processing if the type
-- is an anonymous subtype of a record component, or is the
-- corresponding record of a protected type, since ???
if not Is_Type (Scope (Full)) then
Set_Has_Delayed_Freeze (Full,
Has_Delayed_Freeze (Full_Base)
and then (not Is_Frozen (Full_Base)));
end if;
Set_Freeze_Node (Full, Empty);
Set_Is_Frozen (Full, False);
Set_Full_View (Priv, Full);
if Has_Discriminants (Full) then
Set_Girder_Constraint_From_Discriminant_Constraint (Full);
Set_Girder_Constraint (Priv, Girder_Constraint (Full));
if Has_Unknown_Discriminants (Full) then
Set_Discriminant_Constraint (Full, No_Elist);
end if;
end if;
if Ekind (Full_Base) = E_Record_Type
and then Has_Discriminants (Full_Base)
and then Has_Discriminants (Priv) -- might not, if errors
and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
then
Create_Constrained_Components
(Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
-- If the full base is itself derived from private, build a congruent
-- subtype of its underlying type, for use by the back end.
elsif Ekind (Full_Base) in Private_Kind
and then Is_Derived_Type (Full_Base)
and then Has_Discriminants (Full_Base)
and then
Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
then
Build_Underlying_Full_View (Parent (Priv), Full, Etype (Full_Base));
elsif Is_Record_Type (Full_Base) then
-- Show Full is simply a renaming of Full_Base.
Set_Cloned_Subtype (Full, Full_Base);
end if;
-- It is usafe to share to bounds of a scalar type, because the
-- Itype is elaborated on demand, and if a bound is non-static
-- then different orders of elaboration in different units will
-- lead to different external symbols.
if Is_Scalar_Type (Full_Base) then
Set_Scalar_Range (Full,
Make_Range (Sloc (Related_Nod),
Low_Bound => Duplicate_Subexpr (Type_Low_Bound (Full_Base)),
High_Bound => Duplicate_Subexpr (Type_High_Bound (Full_Base))));
end if;
-- ??? It seems that a lot of fields are missing that should be
-- copied from Full_Base to Full. Here are some that are introduced
-- in a non-disruptive way but a cleanup is necessary.
if Is_Tagged_Type (Full_Base) then
Set_Is_Tagged_Type (Full);
Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
elsif Is_Concurrent_Type (Full_Base) then
if Has_Discriminants (Full)
and then Present (Corresponding_Record_Type (Full_Base))
then
Set_Corresponding_Record_Type (Full,
Constrain_Corresponding_Record
(Full, Corresponding_Record_Type (Full_Base),
Related_Nod, Full_Base));
else
Set_Corresponding_Record_Type (Full,
Corresponding_Record_Type (Full_Base));
end if;
end if;
end Complete_Private_Subtype;
----------------------------
-- Constant_Redeclaration --
----------------------------
procedure Constant_Redeclaration
(Id : Entity_Id;
N : Node_Id;
T : out Entity_Id)
is
Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
Obj_Def : constant Node_Id := Object_Definition (N);
New_T : Entity_Id;
procedure Check_Recursive_Declaration (Typ : Entity_Id);
-- If deferred constant is an access type initialized with an
-- allocator, check whether there is an illegal recursion in the
-- definition, through a default value of some record subcomponent.
-- This is normally detected when generating init_procs, but requires
-- this additional mechanism when expansion is disabled.
procedure Check_Recursive_Declaration (Typ : Entity_Id) is
Comp : Entity_Id;
begin
if Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Comes_From_Source (Comp) then
if Present (Expression (Parent (Comp)))
and then Is_Entity_Name (Expression (Parent (Comp)))
and then Entity (Expression (Parent (Comp))) = Prev
then
Error_Msg_Sloc := Sloc (Parent (Comp));
Error_Msg_NE
("illegal circularity with declaration for&#",
N, Comp);
return;
elsif Is_Record_Type (Etype (Comp)) then
Check_Recursive_Declaration (Etype (Comp));
end if;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Recursive_Declaration;
-- Start of processing for Constant_Redeclaration
begin
if Nkind (Parent (Prev)) = N_Object_Declaration then
if Nkind (Object_Definition
(Parent (Prev))) = N_Subtype_Indication
then
-- Find type of new declaration. The constraints of the two
-- views must match statically, but there is no point in
-- creating an itype for the full view.
if Nkind (Obj_Def) = N_Subtype_Indication then
Find_Type (Subtype_Mark (Obj_Def));
New_T := Entity (Subtype_Mark (Obj_Def));
else
Find_Type (Obj_Def);
New_T := Entity (Obj_Def);
end if;
T := Etype (Prev);
else
-- The full view may impose a constraint, even if the partial
-- view does not, so construct the subtype.
New_T := Find_Type_Of_Object (Obj_Def, N);
T := New_T;
end if;
else
-- Current declaration is illegal, diagnosed below in Enter_Name.
T := Empty;
New_T := Any_Type;
end if;
-- If previous full declaration exists, or if a homograph is present,
-- let Enter_Name handle it, either with an error, or with the removal
-- of an overridden implicit subprogram.
if Ekind (Prev) /= E_Constant
or else Present (Expression (Parent (Prev)))
or else Present (Full_View (Prev))
then
Enter_Name (Id);
-- Verify that types of both declarations match.
elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_N ("type does not match declaration#", N);
Set_Full_View (Prev, Id);
Set_Etype (Id, Any_Type);
-- If so, process the full constant declaration
else
Set_Full_View (Prev, Id);
Set_Is_Public (Id, Is_Public (Prev));
Set_Is_Internal (Id);
Append_Entity (Id, Current_Scope);
-- Check ALIASED present if present before (RM 7.4(7))
if Is_Aliased (Prev)
and then not Aliased_Present (N)
then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_N ("ALIASED required (see declaration#)", N);
end if;
-- Check that placement is in private part and that the incomplete
-- declaration appeared in the visible part.
if Ekind (Current_Scope) = E_Package
and then not In_Private_Part (Current_Scope)
then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_N ("full constant for declaration#"
& " must be in private part", N);
elsif Ekind (Current_Scope) = E_Package
and then List_Containing (Parent (Prev))
/= Visible_Declarations
(Specification (Unit_Declaration_Node (Current_Scope)))
then
Error_Msg_N
("deferred constant must be declared in visible part",
Parent (Prev));
end if;
if Is_Access_Type (T)
and then Nkind (Expression (N)) = N_Allocator
then
Check_Recursive_Declaration (Designated_Type (T));
end if;
end if;
end Constant_Redeclaration;
----------------------
-- Constrain_Access --
----------------------
procedure Constrain_Access
(Def_Id : in out Entity_Id;
S : Node_Id;
Related_Nod : Node_Id)
is
T : constant Entity_Id := Entity (Subtype_Mark (S));
Desig_Type : constant Entity_Id := Designated_Type (T);
Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
Constraint_OK : Boolean := True;
begin
if Is_Array_Type (Desig_Type) then
Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
elsif (Is_Record_Type (Desig_Type)
or else Is_Incomplete_Or_Private_Type (Desig_Type))
and then not Is_Constrained (Desig_Type)
then
-- ??? The following code is a temporary kludge to ignore
-- discriminant constraint on access type if
-- it is constraining the current record. Avoid creating the
-- implicit subtype of the record we are currently compiling
-- since right now, we cannot handle these.
-- For now, just return the access type itself.
if Desig_Type = Current_Scope
and then No (Def_Id)
then
Set_Ekind (Desig_Subtype, E_Record_Subtype);
Def_Id := Entity (Subtype_Mark (S));
-- This call added to ensure that the constraint is
-- analyzed (needed for a B test). Note that we
-- still return early from this procedure to avoid
-- recursive processing. ???
Constrain_Discriminated_Type
(Desig_Subtype, S, Related_Nod, For_Access => True);
return;
end if;
if Ekind (T) = E_General_Access_Type
and then Has_Private_Declaration (Desig_Type)
and then In_Open_Scopes (Scope (Desig_Type))
then
-- Enforce rule that the constraint is illegal if there is
-- an unconstrained view of the designated type. This means
-- that the partial view (either a private type declaration or
-- a derivation from a private type) has no discriminants.
-- (Defect Report 8652/0008, Technical Corrigendum 1, checked
-- by ACATS B371001).
declare
Pack : Node_Id := Unit_Declaration_Node (Scope (Desig_Type));
Decls : List_Id;
Decl : Node_Id;
begin
if Nkind (Pack) = N_Package_Declaration then
Decls := Visible_Declarations (Specification (Pack));
Decl := First (Decls);
while Present (Decl) loop
if (Nkind (Decl) = N_Private_Type_Declaration
and then
Chars (Defining_Identifier (Decl)) =
Chars (Desig_Type))
or else
(Nkind (Decl) = N_Full_Type_Declaration
and then
Chars (Defining_Identifier (Decl)) =
Chars (Desig_Type)
and then Is_Derived_Type (Desig_Type)
and then
Has_Private_Declaration (Etype (Desig_Type)))
then
if No (Discriminant_Specifications (Decl)) then
Error_Msg_N
("cannot constrain general access type " &
"if designated type has unconstrained view", S);
end if;
exit;
end if;
Next (Decl);
end loop;
end if;
end;
end if;
Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
For_Access => True);
elsif (Is_Task_Type (Desig_Type)
or else Is_Protected_Type (Desig_Type))
and then not Is_Constrained (Desig_Type)
then
Constrain_Concurrent
(Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
else
Error_Msg_N ("invalid constraint on access type", S);
Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
Constraint_OK := False;
end if;
if No (Def_Id) then
Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
else
Set_Ekind (Def_Id, E_Access_Subtype);
end if;
if Constraint_OK then
Set_Etype (Def_Id, Base_Type (T));
if Is_Private_Type (Desig_Type) then
Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
end if;
else
Set_Etype (Def_Id, Any_Type);
end if;
Set_Size_Info (Def_Id, T);
Set_Is_Constrained (Def_Id, Constraint_OK);
Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
-- Itypes created for constrained record components do not receive
-- a freeze node, they are elaborated when first seen.
if not Is_Record_Type (Current_Scope) then
Conditional_Delay (Def_Id, T);
end if;
end Constrain_Access;
---------------------
-- Constrain_Array --
---------------------
procedure Constrain_Array
(Def_Id : in out Entity_Id;
SI : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character)
is
C : constant Node_Id := Constraint (SI);
Number_Of_Constraints : Nat := 0;
Index : Node_Id;
S, T : Entity_Id;
Constraint_OK : Boolean := True;
begin
T := Entity (Subtype_Mark (SI));
if Ekind (T) in Access_Kind then
T := Designated_Type (T);
end if;
-- If an index constraint follows a subtype mark in a subtype indication
-- then the type or subtype denoted by the subtype mark must not already
-- impose an index constraint. The subtype mark must denote either an
-- unconstrained array type or an access type whose designated type
-- is such an array type... (RM 3.6.1)
if Is_Constrained (T) then
Error_Msg_N
("array type is already constrained", Subtype_Mark (SI));
Constraint_OK := False;
else
S := First (Constraints (C));
while Present (S) loop
Number_Of_Constraints := Number_Of_Constraints + 1;
Next (S);
end loop;
-- In either case, the index constraint must provide a discrete
-- range for each index of the array type and the type of each
-- discrete range must be the same as that of the corresponding
-- index. (RM 3.6.1)
if Number_Of_Constraints /= Number_Dimensions (T) then
Error_Msg_NE ("incorrect number of index constraints for }", C, T);
Constraint_OK := False;
else
S := First (Constraints (C));
Index := First_Index (T);
Analyze (Index);
-- Apply constraints to each index type
for J in 1 .. Number_Of_Constraints loop
Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
Next (Index);
Next (S);
end loop;
end if;
end if;
if No (Def_Id) then
Def_Id :=
Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
else
Set_Ekind (Def_Id, E_Array_Subtype);
end if;
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Etype (Def_Id, Base_Type (T));
if Constraint_OK then
Set_First_Index (Def_Id, First (Constraints (C)));
end if;
Set_Is_Constrained (Def_Id, True);
Set_Is_Aliased (Def_Id, Is_Aliased (T));
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
-- If the subtype is not that of a record component, build a freeze
-- node if parent still needs one.
-- If the subtype is not that of a record component, make sure
-- that the Depends_On_Private status is set (explanation ???)
-- and also that a conditional delay is set.
if not Is_Type (Scope (Def_Id)) then
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
Conditional_Delay (Def_Id, T);
end if;
end Constrain_Array;
------------------------------
-- Constrain_Component_Type --
------------------------------
function Constrain_Component_Type
(Compon_Type : Entity_Id;
Constrained_Typ : Entity_Id;
Related_Node : Node_Id;
Typ : Entity_Id;
Constraints : Elist_Id)
return Entity_Id
is
Loc : constant Source_Ptr := Sloc (Constrained_Typ);
function Build_Constrained_Array_Type
(Old_Type : Entity_Id)
return Entity_Id;
-- If Old_Type is an array type, one of whose indices is
-- constrained by a discriminant, build an Itype whose constraint
-- replaces the discriminant with its value in the constraint.
function Build_Constrained_Discriminated_Type
(Old_Type : Entity_Id)
return Entity_Id;
-- Ditto for record components.
function Build_Constrained_Access_Type
(Old_Type : Entity_Id)
return Entity_Id;
-- Ditto for access types. Makes use of previous two functions, to
-- constrain designated type.
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
-- T is an array or discriminated type, C is a list of constraints
-- that apply to T. This routine builds the constrained subtype.
function Is_Discriminant (Expr : Node_Id) return Boolean;
-- Returns True if Expr is a discriminant.
function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
-- Find the value of discriminant Discrim in Constraint.
-----------------------------------
-- Build_Constrained_Access_Type --
-----------------------------------
function Build_Constrained_Access_Type
(Old_Type : Entity_Id)
return Entity_Id
is
Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
Itype : Entity_Id;
Desig_Subtype : Entity_Id;
Scop : Entity_Id;
begin
-- if the original access type was not embedded in the enclosing
-- type definition, there is no need to produce a new access
-- subtype. In fact every access type with an explicit constraint
-- generates an itype whose scope is the enclosing record.
if not Is_Type (Scope (Old_Type)) then
return Old_Type;
elsif Is_Array_Type (Desig_Type) then
Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
elsif Has_Discriminants (Desig_Type) then
-- This may be an access type to an enclosing record type for
-- which we are constructing the constrained components. Return
-- the enclosing record subtype. This is not always correct,
-- but avoids infinite recursion. ???
Desig_Subtype := Any_Type;
for J in reverse 0 .. Scope_Stack.Last loop
Scop := Scope_Stack.Table (J).Entity;
if Is_Type (Scop)
and then Base_Type (Scop) = Base_Type (Desig_Type)
then
Desig_Subtype := Scop;
end if;
exit when not Is_Type (Scop);
end loop;
if Desig_Subtype = Any_Type then
Desig_Subtype :=
Build_Constrained_Discriminated_Type (Desig_Type);
end if;
else
return Old_Type;
end if;
if Desig_Subtype /= Desig_Type then
-- The Related_Node better be here or else we won't be able
-- to attach new itypes to a node in the tree.
pragma Assert (Present (Related_Node));
Itype := Create_Itype (E_Access_Subtype, Related_Node);
Set_Etype (Itype, Base_Type (Old_Type));
Set_Size_Info (Itype, (Old_Type));
Set_Directly_Designated_Type (Itype, Desig_Subtype);
Set_Depends_On_Private (Itype, Has_Private_Component
(Old_Type));
Set_Is_Access_Constant (Itype, Is_Access_Constant
(Old_Type));
-- The new itype needs freezing when it depends on a not frozen
-- type and the enclosing subtype needs freezing.
if Has_Delayed_Freeze (Constrained_Typ)
and then not Is_Frozen (Constrained_Typ)
then
Conditional_Delay (Itype, Base_Type (Old_Type));
end if;
return Itype;
else
return Old_Type;
end if;
end Build_Constrained_Access_Type;
----------------------------------
-- Build_Constrained_Array_Type --
----------------------------------
function Build_Constrained_Array_Type
(Old_Type : Entity_Id)
return Entity_Id
is
Lo_Expr : Node_Id;
Hi_Expr : Node_Id;
Old_Index : Node_Id;
Range_Node : Node_Id;
Constr_List : List_Id;
Need_To_Create_Itype : Boolean := False;
begin
Old_Index := First_Index (Old_Type);
while Present (Old_Index) loop
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
if Is_Discriminant (Lo_Expr)
or else Is_Discriminant (Hi_Expr)
then
Need_To_Create_Itype := True;
end if;
Next_Index (Old_Index);
end loop;
if Need_To_Create_Itype then
Constr_List := New_List;
Old_Index := First_Index (Old_Type);
while Present (Old_Index) loop
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
if Is_Discriminant (Lo_Expr) then
Lo_Expr := Get_Discr_Value (Lo_Expr);
end if;
if Is_Discriminant (Hi_Expr) then
Hi_Expr := Get_Discr_Value (Hi_Expr);
end if;
Range_Node :=
Make_Range
(Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
Append (Range_Node, To => Constr_List);
Next_Index (Old_Index);
end loop;
return Build_Subtype (Old_Type, Constr_List);
else
return Old_Type;
end if;
end Build_Constrained_Array_Type;
------------------------------------------
-- Build_Constrained_Discriminated_Type --
------------------------------------------
function Build_Constrained_Discriminated_Type
(Old_Type : Entity_Id)
return Entity_Id
is
Expr : Node_Id;
Constr_List : List_Id;
Old_Constraint : Elmt_Id;
Need_To_Create_Itype : Boolean := False;
begin
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
while Present (Old_Constraint) loop
Expr := Node (Old_Constraint);
if Is_Discriminant (Expr) then
Need_To_Create_Itype := True;
end if;
Next_Elmt (Old_Constraint);
end loop;
if Need_To_Create_Itype then
Constr_List := New_List;
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
while Present (Old_Constraint) loop
Expr := Node (Old_Constraint);
if Is_Discriminant (Expr) then
Expr := Get_Discr_Value (Expr);
end if;
Append (New_Copy_Tree (Expr), To => Constr_List);
Next_Elmt (Old_Constraint);
end loop;
return Build_Subtype (Old_Type, Constr_List);
else
return Old_Type;
end if;
end Build_Constrained_Discriminated_Type;
-------------------
-- Build_Subtype --
-------------------
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
Indic : Node_Id;
Subtyp_Decl : Node_Id;
Def_Id : Entity_Id;
Btyp : Entity_Id := Base_Type (T);
begin
-- The Related_Node better be here or else we won't be able
-- to attach new itypes to a node in the tree.
pragma Assert (Present (Related_Node));
-- If the view of the component's type is incomplete or private
-- with unknown discriminants, then the constraint must be applied
-- to the full type.
if Has_Unknown_Discriminants (Btyp)
and then Present (Underlying_Type (Btyp))
then
Btyp := Underlying_Type (Btyp);
end if;
Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
Def_Id := Create_Itype (Ekind (T), Related_Node);
Subtyp_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Indication => Indic);
Set_Parent (Subtyp_Decl, Parent (Related_Node));
-- Itypes must be analyzed with checks off (see itypes.ads).
Analyze (Subtyp_Decl, Suppress => All_Checks);
return Def_Id;
end Build_Subtype;
---------------------
-- Get_Discr_Value --
---------------------
function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
D : Entity_Id := First_Discriminant (Typ);
E : Elmt_Id := First_Elmt (Constraints);
G : Elmt_Id;
begin
-- The discriminant may be declared for the type, in which case we
-- find it by iterating over the list of discriminants. If the
-- discriminant is inherited from a parent type, it appears as the
-- corresponding discriminant of the current type. This will be the
-- case when constraining an inherited component whose constraint is
-- given by a discriminant of the parent.
while Present (D) loop
if D = Entity (Discrim)
or else Corresponding_Discriminant (D) = Entity (Discrim)
then
return Node (E);
end if;
Next_Discriminant (D);
Next_Elmt (E);
end loop;
-- The corresponding_Discriminant mechanism is incomplete, because
-- the correspondence between new and old discriminants is not one
-- to one: one new discriminant can constrain several old ones.
-- In that case, scan sequentially the girder_constraint, the list
-- of discriminants of the parents, and the constraints.
if Is_Derived_Type (Typ)
and then Present (Girder_Constraint (Typ))
and then Scope (Entity (Discrim)) = Etype (Typ)
then
D := First_Discriminant (Etype (Typ));
E := First_Elmt (Constraints);
G := First_Elmt (Girder_Constraint (Typ));
while Present (D) loop
if D = Entity (Discrim) then
return Node (E);
end if;
Next_Discriminant (D);
Next_Elmt (E);
Next_Elmt (G);
end loop;
end if;
-- Something is wrong if we did not find the value
raise Program_Error;
end Get_Discr_Value;
---------------------
-- Is_Discriminant --
---------------------
function Is_Discriminant (Expr : Node_Id) return Boolean is
Discrim_Scope : Entity_Id;
begin
if Denotes_Discriminant (Expr) then
Discrim_Scope := Scope (Entity (Expr));
-- Either we have a reference to one of Typ's discriminants,
pragma Assert (Discrim_Scope = Typ
-- or to the discriminants of the parent type, in the case
-- of a derivation of a tagged type with variants.
or else Discrim_Scope = Etype (Typ)
or else Full_View (Discrim_Scope) = Etype (Typ)
-- or same as above for the case where the discriminants
-- were declared in Typ's private view.
or else (Is_Private_Type (Discrim_Scope)
and then Chars (Discrim_Scope) = Chars (Typ))
-- or else we are deriving from the full view and the
-- discriminant is declared in the private entity.
or else (Is_Private_Type (Typ)
and then Chars (Discrim_Scope) = Chars (Typ))
-- or we have a class-wide type, in which case make sure the
-- discriminant found belongs to the root type.
or else (Is_Class_Wide_Type (Typ)
and then Etype (Typ) = Discrim_Scope));
return True;
end if;
-- In all other cases we have something wrong.
return False;
end Is_Discriminant;
-- Start of processing for Constrain_Component_Type
begin
if Is_Array_Type (Compon_Type) then
return Build_Constrained_Array_Type (Compon_Type);
elsif Has_Discriminants (Compon_Type) then
return Build_Constrained_Discriminated_Type (Compon_Type);
elsif Is_Access_Type (Compon_Type) then
return Build_Constrained_Access_Type (Compon_Type);
end if;
return Compon_Type;
end Constrain_Component_Type;
--------------------------
-- Constrain_Concurrent --
--------------------------
-- For concurrent types, the associated record value type carries the same
-- discriminants, so when we constrain a concurrent type, we must constrain
-- the value type as well.
procedure Constrain_Concurrent
(Def_Id : in out Entity_Id;
SI : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character)
is
T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
T_Val : Entity_Id;
begin
if Ekind (T_Ent) in Access_Kind then
T_Ent := Designated_Type (T_Ent);
end if;
T_Val := Corresponding_Record_Type (T_Ent);
if Present (T_Val) then
if No (Def_Id) then
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
end if;
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
Set_Corresponding_Record_Type (Def_Id,
Constrain_Corresponding_Record
(Def_Id, T_Val, Related_Nod, Related_Id));
else
-- If there is no associated record, expansion is disabled and this
-- is a generic context. Create a subtype in any case, so that
-- semantic analysis can proceed.
if No (Def_Id) then
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
end if;
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
end if;
end Constrain_Concurrent;
------------------------------------
-- Constrain_Corresponding_Record --
------------------------------------
function Constrain_Corresponding_Record
(Prot_Subt : Entity_Id;
Corr_Rec : Entity_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id)
return Entity_Id
is
T_Sub : constant Entity_Id
:= Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
begin
Set_Etype (T_Sub, Corr_Rec);
Init_Size_Align (T_Sub);
Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
Set_Is_Constrained (T_Sub, True);
Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
Conditional_Delay (T_Sub, Corr_Rec);
if Has_Discriminants (Prot_Subt) then -- False only if errors.
Set_Discriminant_Constraint (T_Sub,
Discriminant_Constraint (Prot_Subt));
Set_Girder_Constraint_From_Discriminant_Constraint (T_Sub);
Create_Constrained_Components (T_Sub, Related_Nod, Corr_Rec,
Discriminant_Constraint (T_Sub));
end if;
Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
return T_Sub;
end Constrain_Corresponding_Record;
-----------------------
-- Constrain_Decimal --
-----------------------
procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
T : constant Entity_Id := Entity (Subtype_Mark (S));
C : constant Node_Id := Constraint (S);
Loc : constant Source_Ptr := Sloc (C);
Range_Expr : Node_Id;
Digits_Expr : Node_Id;
Digits_Val : Uint;
Bound_Val : Ureal;
begin
Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
if Nkind (C) = N_Range_Constraint then
Range_Expr := Range_Expression (C);
Digits_Val := Digits_Value (T);
else
pragma Assert (Nkind (C) = N_Digits_Constraint);
Digits_Expr := Digits_Expression (C);
Analyze_And_Resolve (Digits_Expr, Any_Integer);
Check_Digits_Expression (Digits_Expr);
Digits_Val := Expr_Value (Digits_Expr);
if Digits_Val > Digits_Value (T) then
Error_Msg_N
("digits expression is incompatible with subtype", C);
Digits_Val := Digits_Value (T);
end if;
if Present (Range_Constraint (C)) then
Range_Expr := Range_Expression (Range_Constraint (C));
else
Range_Expr := Empty;
end if;
end if;
Set_Etype (Def_Id, Base_Type (T));
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Delta_Value (Def_Id, Delta_Value (T));
Set_Scale_Value (Def_Id, Scale_Value (T));
Set_Small_Value (Def_Id, Small_Value (T));
Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
Set_Digits_Value (Def_Id, Digits_Val);
-- Manufacture range from given digits value if no range present
if No (Range_Expr) then
Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
Range_Expr :=
Make_Range (Loc,
Low_Bound =>
Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
High_Bound =>
Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
end if;
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
Set_Discrete_RM_Size (Def_Id);
-- Unconditionally delay the freeze, since we cannot set size
-- information in all cases correctly until the freeze point.
Set_Has_Delayed_Freeze (Def_Id);
end Constrain_Decimal;
----------------------------------
-- Constrain_Discriminated_Type --
----------------------------------
procedure Constrain_Discriminated_Type
(Def_Id : Entity_Id;
S : Node_Id;
Related_Nod : Node_Id;
For_Access : Boolean := False)
is
E : constant Entity_Id := Entity (Subtype_Mark (S));
T : Entity_Id;
C : Node_Id;
Elist : Elist_Id := New_Elmt_List;
procedure Fixup_Bad_Constraint;
-- This is called after finding a bad constraint, and after having
-- posted an appropriate error message. The mission is to leave the
-- entity T in as reasonable state as possible!
procedure Fixup_Bad_Constraint is
begin
-- Set a reasonable Ekind for the entity. For an incomplete type,
-- we can't do much, but for other types, we can set the proper
-- corresponding subtype kind.
if Ekind (T) = E_Incomplete_Type then
Set_Ekind (Def_Id, Ekind (T));
else
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
end if;
Set_Etype (Def_Id, Any_Type);
Set_Error_Posted (Def_Id);
end Fixup_Bad_Constraint;
-- Start of processing for Constrain_Discriminated_Type
begin
C := Constraint (S);
-- A discriminant constraint is only allowed in a subtype indication,
-- after a subtype mark. This subtype mark must denote either a type
-- with discriminants, or an access type whose designated type is a
-- type with discriminants. A discriminant constraint specifies the
-- values of these discriminants (RM 3.7.2(5)).
T := Base_Type (Entity (Subtype_Mark (S)));
if Ekind (T) in Access_Kind then
T := Designated_Type (T);
end if;
if not Has_Discriminants (T) then
Error_Msg_N ("invalid constraint: type has no discriminant", C);
Fixup_Bad_Constraint;
return;
elsif Is_Constrained (E)
or else (Ekind (E) = E_Class_Wide_Subtype
and then Present (Discriminant_Constraint (E)))
then
Error_Msg_N ("type is already constrained", Subtype_Mark (S));
Fixup_Bad_Constraint;
return;
end if;
-- T may be an unconstrained subtype (e.g. a generic actual).
-- Constraint applies to the base type.
T := Base_Type (T);
Elist := Build_Discriminant_Constraints (T, S);
-- If the list returned was empty we had an error in building the
-- discriminant constraint. We have also already signalled an error
-- in the incomplete type case
if Is_Empty_Elmt_List (Elist) then
Fixup_Bad_Constraint;
return;
end if;
Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
end Constrain_Discriminated_Type;
---------------------------
-- Constrain_Enumeration --
---------------------------
procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
T : constant Entity_Id := Entity (Subtype_Mark (S));
C : constant Node_Id := Constraint (S);
begin
Set_Ekind (Def_Id, E_Enumeration_Subtype);
Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
Set_Etype (Def_Id, Base_Type (T));
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
Set_Discrete_RM_Size (Def_Id);
end Constrain_Enumeration;
----------------------
-- Constrain_Float --
----------------------
procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
T : constant Entity_Id := Entity (Subtype_Mark (S));
C : Node_Id;
D : Node_Id;
Rais : Node_Id;
begin
Set_Ekind (Def_Id, E_Floating_Point_Subtype);
Set_Etype (Def_Id, Base_Type (T));
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
-- Process the constraint
C := Constraint (S);
-- Digits constraint present
if Nkind (C) = N_Digits_Constraint then
D := Digits_Expression (C);
Analyze_And_Resolve (D, Any_Integer);
Check_Digits_Expression (D);
Set_Digits_Value (Def_Id, Expr_Value (D));
-- Check that digits value is in range. Obviously we can do this
-- at compile time, but it is strictly a runtime check, and of
-- course there is an ACVC test that checks this!
if Digits_Value (Def_Id) > Digits_Value (T) then
Error_Msg_Uint_1 := Digits_Value (T);
Error_Msg_N ("?digits value is too large, maximum is ^", D);
Rais :=
Make_Raise_Constraint_Error (Sloc (D),
Reason => CE_Range_Check_Failed);
Insert_Action (Declaration_Node (Def_Id), Rais);
end if;
C := Range_Constraint (C);
-- No digits constraint present
else
Set_Digits_Value (Def_Id, Digits_Value (T));
end if;
-- Range constraint present
if Nkind (C) = N_Range_Constraint then
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
-- No range constraint present
else
pragma Assert (No (C));
Set_Scalar_Range (Def_Id, Scalar_Range (T));
end if;
Set_Is_Constrained (Def_Id);
end Constrain_Float;
---------------------
-- Constrain_Index --
---------------------
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat)
is
Def_Id : Entity_Id;
R : Node_Id := Empty;
Checks_Off : Boolean := False;
T : constant Entity_Id := Etype (Index);
begin
if Nkind (S) = N_Range
or else Nkind (S) = N_Attribute_Reference
then
-- A Range attribute will transformed into N_Range by Resolve.
Analyze (S);
Set_Etype (S, T);
R := S;
-- ??? Why on earth do we turn checks of in this very specific case ?
-- From the revision history: (Constrain_Index): Call
-- Process_Range_Expr_In_Decl with range checking off for range
-- bounds that are attributes. This avoids some horrible
-- constraint error checks.
if Nkind (R) = N_Range
and then Nkind (Low_Bound (R)) = N_Attribute_Reference
and then Nkind (High_Bound (R)) = N_Attribute_Reference
then
Checks_Off := True;
end if;
Process_Range_Expr_In_Decl (R, T, Empty_List, Checks_Off);
if not Error_Posted (S)
and then
(Nkind (S) /= N_Range
or else Base_Type (T) /= Base_Type (Etype (Low_Bound (S)))
or else Base_Type (T) /= Base_Type (Etype (High_Bound (S))))
then
if Base_Type (T) /= Any_Type
and then Etype (Low_Bound (S)) /= Any_Type
and then Etype (High_Bound (S)) /= Any_Type
then
Error_Msg_N ("range expected", S);
end if;
end if;
elsif Nkind (S) = N_Subtype_Indication then
-- the parser has verified that this is a discrete indication.
Resolve_Discrete_Subtype_Indication (S, T);
R := Range_Expression (Constraint (S));
elsif Nkind (S) = N_Discriminant_Association then
-- syntactically valid in subtype indication.
Error_Msg_N ("invalid index constraint", S);
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
return;
-- Subtype_Mark case, no anonymous subtypes to construct
else
Analyze (S);
if Is_Entity_Name (S) then
if not Is_Type (Entity (S)) then
Error_Msg_N ("expect subtype mark for index constraint", S);
elsif Base_Type (Entity (S)) /= Base_Type (T) then
Wrong_Type (S, Base_Type (T));
end if;
return;
else
Error_Msg_N ("invalid index constraint", S);
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
return;
end if;
end if;
Def_Id :=
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
Set_Etype (Def_Id, Base_Type (T));
if Is_Modular_Integer_Type (T) then
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
elsif Is_Integer_Type (T) then
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
else
Set_Ekind (Def_Id, E_Enumeration_Subtype);
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
end if;
Set_Size_Info (Def_Id, (T));
Set_RM_Size (Def_Id, RM_Size (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Scalar_Range (Def_Id, R);
Set_Etype (S, Def_Id);
Set_Discrete_RM_Size (Def_Id);
end Constrain_Index;
-----------------------
-- Constrain_Integer --
-----------------------
procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
T : constant Entity_Id := Entity (Subtype_Mark (S));
C : constant Node_Id := Constraint (S);
begin
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
if Is_Modular_Integer_Type (T) then
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
else
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
end if;
Set_Etype (Def_Id, Base_Type (T));
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Discrete_RM_Size (Def_Id);
end Constrain_Integer;
------------------------------
-- Constrain_Ordinary_Fixed --
------------------------------
procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
T : constant Entity_Id := Entity (Subtype_Mark (S));
C : Node_Id;
D : Node_Id;
Rais : Node_Id;
begin
Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
Set_Etype (Def_Id, Base_Type (T));
Set_Size_Info (Def_Id, (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Small_Value (Def_Id, Small_Value (T));
-- Process the constraint
C := Constraint (S);
-- Delta constraint present
if Nkind (C) = N_Delta_Constraint then
D := Delta_Expression (C);
Analyze_And_Resolve (D, Any_Real);
Check_Delta_Expression (D);
Set_Delta_Value (Def_Id, Expr_Value_R (D));
-- Check that delta value is in range. Obviously we can do this
-- at compile time, but it is strictly a runtime check, and of
-- course there is an ACVC test that checks this!
if Delta_Value (Def_Id) < Delta_Value (T) then
Error_Msg_N ("?delta value is too small", D);
Rais :=
Make_Raise_Constraint_Error (Sloc (D),
Reason => CE_Range_Check_Failed);
Insert_Action (Declaration_Node (Def_Id), Rais);
end if;
C := Range_Constraint (C);
-- No delta constraint present
else
Set_Delta_Value (Def_Id, Delta_Value (T));
end if;
-- Range constraint present
if Nkind (C) = N_Range_Constraint then
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
-- No range constraint present
else
pragma Assert (No (C));
Set_Scalar_Range (Def_Id, Scalar_Range (T));
end if;
Set_Discrete_RM_Size (Def_Id);
-- Unconditionally delay the freeze, since we cannot set size
-- information in all cases correctly until the freeze point.
Set_Has_Delayed_Freeze (Def_Id);
end Constrain_Ordinary_Fixed;
---------------------------
-- Convert_Scalar_Bounds --
---------------------------
procedure Convert_Scalar_Bounds
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Loc : Source_Ptr)
is
Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
Lo : Node_Id;
Hi : Node_Id;
Rng : Node_Id;
begin
Lo := Build_Scalar_Bound
(Type_Low_Bound (Derived_Type),
Parent_Type, Implicit_Base);
Hi := Build_Scalar_Bound
(Type_High_Bound (Derived_Type),
Parent_Type, Implicit_Base);
Rng :=
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
Set_Parent (Rng, N);
Set_Scalar_Range (Derived_Type, Rng);
-- Analyze the bounds
Analyze_And_Resolve (Lo, Implicit_Base);
Analyze_And_Resolve (Hi, Implicit_Base);
-- Analyze the range itself, except that we do not analyze it if
-- the bounds are real literals, and we have a fixed-point type.
-- The reason for this is that we delay setting the bounds in this
-- case till we know the final Small and Size values (see circuit
-- in Freeze.Freeze_Fixed_Point_Type for further details).
if Is_Fixed_Point_Type (Parent_Type)
and then Nkind (Lo) = N_Real_Literal
and then Nkind (Hi) = N_Real_Literal
then
return;
-- Here we do the analysis of the range.
-- Note: we do this manually, since if we do a normal Analyze and
-- Resolve call, there are problems with the conversions used for
-- the derived type range.
else
Set_Etype (Rng, Implicit_Base);
Set_Analyzed (Rng, True);
end if;
end Convert_Scalar_Bounds;
-------------------
-- Copy_And_Swap --
-------------------
procedure Copy_And_Swap (Privat, Full : Entity_Id) is
begin
-- Initialize new full declaration entity by copying the pertinent
-- fields of the corresponding private declaration entity.
Copy_Private_To_Full (Privat, Full);
-- Swap the two entities. Now Privat is the full type entity and
-- Full is the private one. They will be swapped back at the end
-- of the private part. This swapping ensures that the entity that
-- is visible in the private part is the full declaration.
Exchange_Entities (Privat, Full);
Append_Entity (Full, Scope (Full));
end Copy_And_Swap;
-------------------------------------
-- Copy_Array_Base_Type_Attributes --
-------------------------------------
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
begin
Set_Component_Alignment (T1, Component_Alignment (T2));
Set_Component_Type (T1, Component_Type (T2));
Set_Component_Size (T1, Component_Size (T2));
Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
Set_Has_Task (T1, Has_Task (T2));
Set_Is_Packed (T1, Is_Packed (T2));
Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
end Copy_Array_Base_Type_Attributes;
-----------------------------------
-- Copy_Array_Subtype_Attributes --
-----------------------------------
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
begin
Set_Size_Info (T1, T2);
Set_First_Index (T1, First_Index (T2));
Set_Is_Aliased (T1, Is_Aliased (T2));
Set_Is_Atomic (T1, Is_Atomic (T2));
Set_Is_Volatile (T1, Is_Volatile (T2));
Set_Is_Constrained (T1, Is_Constrained (T2));
Set_Depends_On_Private (T1, Has_Private_Component (T2));
Set_First_Rep_Item (T1, First_Rep_Item (T2));
Set_Convention (T1, Convention (T2));
Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
end Copy_Array_Subtype_Attributes;
--------------------------
-- Copy_Private_To_Full --
--------------------------
procedure Copy_Private_To_Full (Priv, Full : Entity_Id) is
begin
-- We temporarily set Ekind to a value appropriate for a type to
-- avoid assert failures in Einfo from checking for setting type
-- attributes on something that is not a type. Ekind (Priv) is an
-- appropriate choice, since it allowed the attributes to be set
-- in the first place. This Ekind value will be modified later.
Set_Ekind (Full, Ekind (Priv));
-- Also set Etype temporarily to Any_Type, again, in the absence
-- of errors, it will be properly reset, and if there are errors,
-- then we want a value of Any_Type to remain.
Set_Etype (Full, Any_Type);
-- Now start copying attributes
Set_Has_Discriminants (Full, Has_Discriminants (Priv));
if Has_Discriminants (Full) then
Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
Set_Girder_Constraint (Full, Girder_Constraint (Priv));
end if;
Set_Homonym (Full, Homonym (Priv));
Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
Set_Is_Public (Full, Is_Public (Priv));
Set_Is_Pure (Full, Is_Pure (Priv));
Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
Conditional_Delay (Full, Priv);
if Is_Tagged_Type (Full) then
Set_Primitive_Operations (Full, Primitive_Operations (Priv));
if Priv = Base_Type (Priv) then
Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
end if;
end if;
Set_Is_Volatile (Full, Is_Volatile (Priv));
Set_Scope (Full, Scope (Priv));
Set_Next_Entity (Full, Next_Entity (Priv));
Set_First_Entity (Full, First_Entity (Priv));
Set_Last_Entity (Full, Last_Entity (Priv));
-- If access types have been recorded for later handling, keep them
-- in the full view so that they get handled when the full view freeze
-- node is expanded.
if Present (Freeze_Node (Priv))
and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
then
Ensure_Freeze_Node (Full);
Set_Access_Types_To_Process (Freeze_Node (Full),
Access_Types_To_Process (Freeze_Node (Priv)));
end if;
end Copy_Private_To_Full;
-----------------------------------
-- Create_Constrained_Components --
-----------------------------------
procedure Create_Constrained_Components
(Subt : Entity_Id;
Decl_Node : Node_Id;
Typ : Entity_Id;
Constraints : Elist_Id)
is
Loc : constant Source_Ptr := Sloc (Subt);
Assoc_List : List_Id := New_List;
Comp_List : Elist_Id := New_Elmt_List;
Discr_Val : Elmt_Id;
Errors : Boolean;
New_C : Entity_Id;
Old_C : Entity_Id;
Is_Static : Boolean := True;
Parent_Type : constant Entity_Id := Etype (Typ);
procedure Collect_Fixed_Components (Typ : Entity_Id);
-- Collect components of parent type that do not appear in a variant
-- part.
procedure Create_All_Components;
-- Iterate over Comp_List to create the components of the subtype.
function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
-- Creates a new component from Old_Compon, coppying all the fields from
-- it, including its Etype, inserts the new component in the Subt entity
-- chain and returns the new component.
function Is_Variant_Record (T : Entity_Id) return Boolean;
-- If true, and discriminants are static, collect only components from
-- variants selected by discriminant values.
------------------------------
-- Collect_Fixed_Components --
------------------------------
procedure Collect_Fixed_Components (Typ : Entity_Id) is
begin
-- Build association list for discriminants, and find components of
-- the variant part selected by the values of the discriminants.
Old_C := First_Discriminant (Typ);
Discr_Val := First_Elmt (Constraints);
while Present (Old_C) loop
Append_To (Assoc_List,
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
Expression => New_Copy (Node (Discr_Val))));
Next_Elmt (Discr_Val);
Next_Discriminant (Old_C);
end loop;
-- The tag, and the possible parent and controller components
-- are unconditionally in the subtype.
if Is_Tagged_Type (Typ)
or else Has_Controlled_Component (Typ)
then
Old_C := First_Component (Typ);
while Present (Old_C) loop
if Chars ((Old_C)) = Name_uTag
or else Chars ((Old_C)) = Name_uParent
or else Chars ((Old_C)) = Name_uController
then
Append_Elmt (Old_C, Comp_List);
end if;
Next_Component (Old_C);
end loop;
end if;
end Collect_Fixed_Components;
---------------------------
-- Create_All_Components --
---------------------------
procedure Create_All_Components is
Comp : Elmt_Id;
begin
Comp := First_Elmt (Comp_List);
while Present (Comp) loop
Old_C := Node (Comp);
New_C := Create_Component (Old_C);
Set_Etype
(New_C,
Constrain_Component_Type
(Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
Set_Is_Public (New_C, Is_Public (Subt));
Next_Elmt (Comp);
end loop;
end Create_All_Components;
----------------------
-- Create_Component --
----------------------
function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
New_Compon : Entity_Id := New_Copy (Old_Compon);
begin
-- Set the parent so we have a proper link for freezing etc. This
-- is not a real parent pointer, since of course our parent does
-- not own up to us and reference us, we are an illegitimate
-- child of the original parent!
Set_Parent (New_Compon, Parent (Old_Compon));
-- We do not want this node marked as Comes_From_Source, since
-- otherwise it would get first class status and a separate
-- cross-reference line would be generated. Illegitimate
-- children do not rate such recognition.
Set_Comes_From_Source (New_Compon, False);
-- But it is a real entity, and a birth certificate must be
-- properly registered by entering it into the entity list.
Enter_Name (New_Compon);
return New_Compon;
end Create_Component;
-----------------------
-- Is_Variant_Record --
-----------------------
function Is_Variant_Record (T : Entity_Id) return Boolean is
begin
return Nkind (Parent (T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
and then Present (Component_List (Type_Definition (Parent (T))))
and then Present (
Variant_Part (Component_List (Type_Definition (Parent (T)))));
end Is_Variant_Record;
-- Start of processing for Create_Constrained_Components
begin
pragma Assert (Subt /= Base_Type (Subt));
pragma Assert (Typ = Base_Type (Typ));
Set_First_Entity (Subt, Empty);
Set_Last_Entity (Subt, Empty);
-- Check whether constraint is fully static, in which case we can
-- optimize the list of components.
Discr_Val := First_Elmt (Constraints);
while Present (Discr_Val) loop
if not Is_OK_Static_Expression (Node (Discr_Val)) then
Is_Static := False;
exit;
end if;
Next_Elmt (Discr_Val);
end loop;
New_Scope (Subt);
-- Inherit the discriminants of the parent type.
Old_C := First_Discriminant (Typ);
while Present (Old_C) loop
New_C := Create_Component (Old_C);
Set_Is_Public (New_C, Is_Public (Subt));
Next_Discriminant (Old_C);
end loop;
if Is_Static
and then Is_Variant_Record (Typ)
then
Collect_Fixed_Components (Typ);
Gather_Components (
Typ,
Component_List (Type_Definition (Parent (Typ))),
Governed_By => Assoc_List,
Into => Comp_List,
Report_Errors => Errors);
pragma Assert (not Errors);
Create_All_Components;
-- If the subtype declaration is created for a tagged type derivation
-- with constraints, we retrieve the record definition of the parent
-- type to select the components of the proper variant.
elsif Is_Static
and then Is_Tagged_Type (Typ)
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
and then
Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
and then Is_Variant_Record (Parent_Type)
then
Collect_Fixed_Components (Typ);
Gather_Components (
Typ,
Component_List (Type_Definition (Parent (Parent_Type))),
Governed_By => Assoc_List,
Into => Comp_List,
Report_Errors => Errors);
pragma Assert (not Errors);
-- If the tagged derivation has a type extension, collect all the
-- new components therein.
if Present (
Record_Extension_Part (Type_Definition (Parent (Typ))))
then
Old_C := First_Component (Typ);
while Present (Old_C) loop
if Original_Record_Component (Old_C) = Old_C
and then Chars (Old_C) /= Name_uTag
and then Chars (Old_C) /= Name_uParent
and then Chars (Old_C) /= Name_uController
then
Append_Elmt (Old_C, Comp_List);
end if;
Next_Component (Old_C);
end loop;
end if;
Create_All_Components;
else
-- If the discriminants are not static, or if this is a multi-level
-- type extension, we have to include all the components of the
-- parent type.
Old_C := First_Component (Typ);
while Present (Old_C) loop
New_C := Create_Component (Old_C);
Set_Etype
(New_C,
Constrain_Component_Type
(Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
Set_Is_Public (New_C, Is_Public (Subt));
Next_Component (Old_C);
end loop;
end if;
End_Scope;
end Create_Constrained_Components;
------------------------------------------
-- Decimal_Fixed_Point_Type_Declaration --
------------------------------------------
procedure Decimal_Fixed_Point_Type_Declaration
(T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
Digs_Expr : constant Node_Id := Digits_Expression (Def);
Delta_Expr : constant Node_Id := Delta_Expression (Def);
Implicit_Base : Entity_Id;
Digs_Val : Uint;
Delta_Val : Ureal;
Scale_Val : Uint;
Bound_Val : Ureal;
-- Start of processing for Decimal_Fixed_Point_Type_Declaration
begin
Check_Restriction (No_Fixed_Point, Def);
-- Create implicit base type
Implicit_Base :=
Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
Set_Etype (Implicit_Base, Implicit_Base);
-- Analyze and process delta expression
Analyze_And_Resolve (Delta_Expr, Universal_Real);
Check_Delta_Expression (Delta_Expr);
Delta_Val := Expr_Value_R (Delta_Expr);
-- Check delta is power of 10, and determine scale value from it
declare
Val : Ureal := Delta_Val;
begin
Scale_Val := Uint_0;
if Val < Ureal_1 then
while Val < Ureal_1 loop
Val := Val * Ureal_10;
Scale_Val := Scale_Val + 1;
end loop;
if Scale_Val > 18 then
Error_Msg_N ("scale exceeds maximum value of 18", Def);
Scale_Val := UI_From_Int (+18);
end if;
else
while Val > Ureal_1 loop
Val := Val / Ureal_10;
Scale_Val := Scale_Val - 1;
end loop;
if Scale_Val < -18 then
Error_Msg_N ("scale is less than minimum value of -18", Def);
Scale_Val := UI_From_Int (-18);
end if;
end if;
if Val /= Ureal_1 then
Error_Msg_N ("delta expression must be a power of 10", Def);
Delta_Val := Ureal_10 ** (-Scale_Val);
end if;
end;
-- Set delta, scale and small (small = delta for decimal type)
Set_Delta_Value (Implicit_Base, Delta_Val);
Set_Scale_Value (Implicit_Base, Scale_Val);
Set_Small_Value (Implicit_Base, Delta_Val);
-- Analyze and process digits expression
Analyze_And_Resolve (Digs_Expr, Any_Integer);
Check_Digits_Expression (Digs_Expr);
Digs_Val := Expr_Value (Digs_Expr);
if Digs_Val > 18 then
Digs_Val := UI_From_Int (+18);
Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
end if;
Set_Digits_Value (Implicit_Base, Digs_Val);
Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
-- Set range of base type from digits value for now. This will be
-- expanded to represent the true underlying base range by Freeze.
Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
-- Set size to zero for now, size will be set at freeze time. We have
-- to do this for ordinary fixed-point, because the size depends on
-- the specified small, and we might as well do the same for decimal
-- fixed-point.
Init_Size_Align (Implicit_Base);
-- Complete entity for first subtype
Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
Set_Etype (T, Implicit_Base);
Set_Size_Info (T, Implicit_Base);
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
Set_Digits_Value (T, Digs_Val);
Set_Delta_Value (T, Delta_Val);
Set_Small_Value (T, Delta_Val);
Set_Scale_Value (T, Scale_Val);
Set_Is_Constrained (T);
-- If there are bounds given in the declaration use them as the
-- bounds of the first named subtype.
if Present (Real_Range_Specification (Def)) then
declare
RRS : constant Node_Id := Real_Range_Specification (Def);
Low : constant Node_Id := Low_Bound (RRS);
High : constant Node_Id := High_Bound (RRS);
Low_Val : Ureal;
High_Val : Ureal;
begin
Analyze_And_Resolve (Low, Any_Real);
Analyze_And_Resolve (High, Any_Real);
Check_Real_Bound (Low);
Check_Real_Bound (High);
Low_Val := Expr_Value_R (Low);
High_Val := Expr_Value_R (High);
if Low_Val < (-Bound_Val) then
Error_Msg_N
("range low bound too small for digits value", Low);
Low_Val := -Bound_Val;
end if;
if High_Val > Bound_Val then
Error_Msg_N
("range high bound too large for digits value", High);
High_Val := Bound_Val;
end if;
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
end;
-- If no explicit range, use range that corresponds to given
-- digits value. This will end up as the final range for the
-- first subtype.
else
Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
end if;
end Decimal_Fixed_Point_Type_Declaration;
-----------------------
-- Derive_Subprogram --
-----------------------
procedure Derive_Subprogram
(New_Subp : in out Entity_Id;
Parent_Subp : Entity_Id;
Derived_Type : Entity_Id;
Parent_Type : Entity_Id;
Actual_Subp : Entity_Id := Empty)
is
Formal : Entity_Id;
New_Formal : Entity_Id;
Same_Subt : constant Boolean :=
Is_Scalar_Type (Parent_Type)
and then Subtypes_Statically_Compatible (Parent_Type, Derived_Type);
function Is_Private_Overriding return Boolean;
-- If Subp is a private overriding of a visible operation, the in-
-- herited operation derives from the overridden op (even though
-- its body is the overriding one) and the inherited operation is
-- visible now. See sem_disp to see the details of the handling of
-- the overridden subprogram, which is removed from the list of
-- primitive operations of the type.
procedure Replace_Type (Id, New_Id : Entity_Id);
-- When the type is an anonymous access type, create a new access type
-- designating the derived type.
---------------------------
-- Is_Private_Overriding --
---------------------------
function Is_Private_Overriding return Boolean is
Prev : Entity_Id;
begin
Prev := Homonym (Parent_Subp);
-- The visible operation that is overriden is a homonym of
-- the parent subprogram. We scan the homonym chain to find
-- the one whose alias is the subprogram we are deriving.
while Present (Prev) loop
if Is_Dispatching_Operation (Parent_Subp)
and then Present (Prev)
and then Ekind (Prev) = Ekind (Parent_Subp)
and then Alias (Prev) = Parent_Subp
and then Scope (Parent_Subp) = Scope (Prev)
and then not Is_Hidden (Prev)
then
return True;
end if;
Prev := Homonym (Prev);
end loop;
return False;
end Is_Private_Overriding;
------------------
-- Replace_Type --
------------------
procedure Replace_Type (Id, New_Id : Entity_Id) is
Acc_Type : Entity_Id;
IR : Node_Id;
begin
-- When the type is an anonymous access type, create a new access
-- type designating the derived type. This itype must be elaborated
-- at the point of the derivation, not on subsequent calls that may
-- be out of the proper scope for Gigi, so we insert a reference to
-- it after the derivation.
if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
declare
Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
begin
if Ekind (Desig_Typ) = E_Record_Type_With_Private
and then Present (Full_View (Desig_Typ))
and then not Is_Private_Type (Parent_Type)
then
Desig_Typ := Full_View (Desig_Typ);
end if;
if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
Acc_Type := New_Copy (Etype (Id));
Set_Etype (Acc_Type, Acc_Type);
Set_Scope (Acc_Type, New_Subp);
-- Compute size of anonymous access type.
if Is_Array_Type (Desig_Typ)
and then not Is_Constrained (Desig_Typ)
then
Init_Size (Acc_Type, 2 * System_Address_Size);
else
Init_Size (Acc_Type, System_Address_Size);
end if;
Init_Alignment (Acc_Type);
Set_Directly_Designated_Type (Acc_Type, Derived_Type);
Set_Etype (New_Id, Acc_Type);
Set_Scope (New_Id, New_Subp);
-- Create a reference to it.
IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
Set_Itype (IR, Acc_Type);
Insert_After (Parent (Derived_Type), IR);
else
Set_Etype (New_Id, Etype (Id));
end if;
end;
elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
or else
(Ekind (Etype (Id)) = E_Record_Type_With_Private
and then Present (Full_View (Etype (Id)))
and then Base_Type (Full_View (Etype (Id))) =
Base_Type (Parent_Type))
then
-- Constraint checks on formals are generated during expansion,
-- based on the signature of the original subprogram. The bounds
-- of the derived type are not relevant, and thus we can use
-- the base type for the formals. However, the return type may be
-- used in a context that requires that the proper static bounds
-- be used (a case statement, for example) and for those cases
-- we must use the derived type (first subtype), not its base.
if Etype (Id) = Parent_Type
and then Same_Subt
then
Set_Etype (New_Id, Derived_Type);
else
Set_Etype (New_Id, Base_Type (Derived_Type));
end if;
else
Set_Etype (New_Id, Etype (Id));
end if;
end Replace_Type;
-- Start of processing for Derive_Subprogram
begin
New_Subp :=
New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
Set_Ekind (New_Subp, Ekind (Parent_Subp));
-- Check whether the inherited subprogram is a private operation that
-- should be inherited but not yet made visible. Such subprograms can
-- become visible at a later point (e.g., the private part of a public
-- child unit) via Declare_Inherited_Private_Subprograms. If the
-- following predicate is true, then this is not such a private
-- operation and the subprogram simply inherits the name of the parent
-- subprogram. Note the special check for the names of controlled
-- operations, which are currently exempted from being inherited with
-- a hidden name because they must be findable for generation of
-- implicit run-time calls.
if not Is_Hidden (Parent_Subp)
or else Is_Internal (Parent_Subp)
or else Is_Private_Overriding
or else Is_Internal_Name (Chars (Parent_Subp))
or else Chars (Parent_Subp) = Name_Initialize
or else Chars (Parent_Subp) = Name_Adjust
or else Chars (Parent_Subp) = Name_Finalize
then
Set_Chars (New_Subp, Chars (Parent_Subp));
-- If parent is hidden, this can be a regular derivation if the
-- parent is immediately visible in a non-instantiating context,
-- or if we are in the private part of an instance. This test
-- should still be refined ???
-- The test for In_Instance_Not_Visible avoids inheriting the
-- derived operation as a non-visible operation in cases where
-- the parent subprogram might not be visible now, but was
-- visible within the original generic, so it would be wrong
-- to make the inherited subprogram non-visible now. (Not
-- clear if this test is fully correct; are there any cases
-- where we should declare the inherited operation as not
-- visible to avoid it being overridden, e.g., when the
-- parent type is a generic actual with private primitives ???)
-- (they should be treated the same as other private inherited
-- subprograms, but it's not clear how to do this cleanly). ???
elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
and then Is_Immediately_Visible (Parent_Subp)
and then not In_Instance)
or else In_Instance_Not_Visible
then
Set_Chars (New_Subp, Chars (Parent_Subp));
-- The type is inheriting a private operation, so enter
-- it with a special name so it can't be overridden.
else
Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
end if;
Set_Parent (New_Subp, Parent (Derived_Type));
Replace_Type (Parent_Subp, New_Subp);
Conditional_Delay (New_Subp, Parent_Subp);
Formal := First_Formal (Parent_Subp);
while Present (Formal) loop
New_Formal := New_Copy (Formal);
-- Normally we do not go copying parents, but in the case of
-- formals, we need to link up to the declaration (which is
-- the parameter specification), and it is fine to link up to
-- the original formal's parameter specification in this case.
Set_Parent (New_Formal, Parent (Formal));
Append_Entity (New_Formal, New_Subp);
Replace_Type (Formal, New_Formal);
Next_Formal (Formal);
end loop;
-- If this derivation corresponds to a tagged generic actual, then
-- primitive operations rename those of the actual. Otherwise the
-- primitive operations rename those of the parent type.
if No (Actual_Subp) then
Set_Alias (New_Subp, Parent_Subp);
Set_Is_Intrinsic_Subprogram (New_Subp,
Is_Intrinsic_Subprogram (Parent_Subp));
else
Set_Alias (New_Subp, Actual_Subp);
end if;
-- Derived subprograms of a tagged type must inherit the convention
-- of the parent subprogram (a requirement of AI-117). Derived
-- subprograms of untagged types simply get convention Ada by default.
if Is_Tagged_Type (Derived_Type) then
Set_Convention (New_Subp, Convention (Parent_Subp));
end if;
Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
if Ekind (Parent_Subp) = E_Procedure then
Set_Is_Valued_Procedure
(New_Subp, Is_Valued_Procedure (Parent_Subp));
end if;
New_Overloaded_Entity (New_Subp, Derived_Type);
-- Check for case of a derived subprogram for the instantiation
-- of a formal derived tagged type, so mark the subprogram as
-- dispatching and inherit the dispatching attributes of the
-- parent subprogram. The derived subprogram is effectively a
-- renaming of the actual subprogram, so it needs to have the
-- same attributes as the actual.
if Present (Actual_Subp)
and then Is_Dispatching_Operation (Parent_Subp)
then
Set_Is_Dispatching_Operation (New_Subp);
if Present (DTC_Entity (Parent_Subp)) then
Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
end if;
end if;
-- Indicate that a derived subprogram does not require a body
-- and that it does not require processing of default expressions.
Set_Has_Completion (New_Subp);
Set_Default_Expressions_Processed (New_Subp);
-- A derived function with a controlling result is abstract.
-- If the Derived_Type is a nonabstract formal generic derived
-- type, then inherited operations are not abstract: check is
-- done at instantiation time. If the derivation is for a generic
-- actual, the function is not abstract unless the actual is.
if Is_Generic_Type (Derived_Type)
and then not Is_Abstract (Derived_Type)
then
null;
elsif Is_Abstract (Alias (New_Subp))
or else (Is_Tagged_Type (Derived_Type)
and then Etype (New_Subp) = Derived_Type
and then No (Actual_Subp))
then
Set_Is_Abstract (New_Subp);
end if;
if Ekind (New_Subp) = E_Function then
Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
end if;
end Derive_Subprogram;
------------------------
-- Derive_Subprograms --
------------------------
procedure Derive_Subprograms
(Parent_Type : Entity_Id;
Derived_Type : Entity_Id;
Generic_Actual : Entity_Id := Empty)
is
Op_List : Elist_Id := Collect_Primitive_Operations (Parent_Type);
Act_List : Elist_Id;
Act_Elmt : Elmt_Id;
Elmt : Elmt_Id;
Subp : Entity_Id;
New_Subp : Entity_Id := Empty;
Parent_Base : Entity_Id;
begin
if Ekind (Parent_Type) = E_Record_Type_With_Private
and then Has_Discriminants (Parent_Type)
and then Present (Full_View (Parent_Type))
then
Parent_Base := Full_View (Parent_Type);
else
Parent_Base := Parent_Type;
end if;
Elmt := First_Elmt (Op_List);
if Present (Generic_Actual) then
Act_List := Collect_Primitive_Operations (Generic_Actual);
Act_Elmt := First_Elmt (Act_List);
else
Act_Elmt := No_Elmt;
end if;
-- Literals are derived earlier in the process of building the
-- derived type, and are skipped here.
while Present (Elmt) loop
Subp := Node (Elmt);
if Ekind (Subp) /= E_Enumeration_Literal then
if No (Generic_Actual) then
Derive_Subprogram
(New_Subp, Subp, Derived_Type, Parent_Base);
else
Derive_Subprogram (New_Subp, Subp,
Derived_Type, Parent_Base, Node (Act_Elmt));
Next_Elmt (Act_Elmt);
end if;
end if;
Next_Elmt (Elmt);
end loop;
end Derive_Subprograms;
--------------------------------
-- Derived_Standard_Character --
--------------------------------
procedure Derived_Standard_Character
(N : Node_Id;
Parent_Type : Entity_Id;
Derived_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Def : constant Node_Id := Type_Definition (N);
Indic : constant Node_Id := Subtype_Indication (Def);
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
Implicit_Base : constant Entity_Id :=
Create_Itype
(E_Enumeration_Type, N, Derived_Type, 'B');
Lo : Node_Id;
Hi : Node_Id;
T : Entity_Id;
begin
T := Process_Subtype (Indic, N);
Set_Etype (Implicit_Base, Parent_Base);
Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
Set_Is_Character_Type (Implicit_Base, True);
Set_Has_Delayed_Freeze (Implicit_Base);
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
Set_Scalar_Range (Implicit_Base,
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi));
Conditional_Delay (Derived_Type, Parent_Type);
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
Set_Etype (Derived_Type, Implicit_Base);
Set_Size_Info (Derived_Type, Parent_Type);
if Unknown_RM_Size (Derived_Type) then
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
end if;
Set_Is_Character_Type (Derived_Type, True);
if Nkind (Indic) /= N_Subtype_Indication then
Set_Scalar_Range (Derived_Type, Scalar_Range (Implicit_Base));
end if;
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
-- Because the implicit base is used in the conversion of the bounds,
-- we have to freeze it now. This is similar to what is done for
-- numeric types, and it equally suspicious, but otherwise a non-
-- static bound will have a reference to an unfrozen type, which is
-- rejected by Gigi (???).
Freeze_Before (N, Implicit_Base);
end Derived_Standard_Character;
------------------------------
-- Derived_Type_Declaration --
------------------------------
procedure Derived_Type_Declaration
(T : Entity_Id;
N : Node_Id;
Is_Completion : Boolean)
is
Def : constant Node_Id := Type_Definition (N);
Indic : constant Node_Id := Subtype_Indication (Def);
Extension : constant Node_Id := Record_Extension_Part (Def);
Parent_Type : Entity_Id;
Parent_Scope : Entity_Id;
Taggd : Boolean;
begin
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
if Parent_Type = Any_Type
or else Etype (Parent_Type) = Any_Type
or else (Is_Class_Wide_Type (Parent_Type)
and then Etype (Parent_Type) = T)
then
-- If Parent_Type is undefined or illegal, make new type into
-- a subtype of Any_Type, and set a few attributes to prevent
-- cascaded errors. If this is a self-definition, emit error now.
if T = Parent_Type
or else T = Etype (Parent_Type)
then
Error_Msg_N ("type cannot be used in its own definition", Indic);
end if;
Set_Ekind (T, Ekind (Parent_Type));
Set_Etype (T, Any_Type);
Set_Scalar_Range (T, Scalar_Range (Any_Type));
if Is_Tagged_Type (T) then
Set_Primitive_Operations (T, New_Elmt_List);
end if;
return;
elsif Is_Unchecked_Union (Parent_Type) then
Error_Msg_N ("cannot derive from Unchecked_Union type", N);
end if;
-- Only composite types other than array types are allowed to have
-- discriminants.
if Present (Discriminant_Specifications (N))
and then (Is_Elementary_Type (Parent_Type)
or else Is_Array_Type (Parent_Type))
and then not Error_Posted (N)
then
Error_Msg_N
("elementary or array type cannot have discriminants",
Defining_Identifier (First (Discriminant_Specifications (N))));
Set_Has_Discriminants (T, False);
end if;
-- In Ada 83, a derived type defined in a package specification cannot
-- be used for further derivation until the end of its visible part.
-- Note that derivation in the private part of the package is allowed.
if Ada_83
and then Is_Derived_Type (Parent_Type)
and then In_Visible_Part (Scope (Parent_Type))
then
if Ada_83 and then Comes_From_Source (Indic) then
Error_Msg_N
("(Ada 83): premature use of type for derivation", Indic);
end if;
end if;
-- Check for early use of incomplete or private type
if Ekind (Parent_Type) = E_Void
or else Ekind (Parent_Type) = E_Incomplete_Type
then
Error_Msg_N ("premature derivation of incomplete type", Indic);
return;
elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
and then not Is_Generic_Type (Parent_Type)
and then not Is_Generic_Type (Root_Type (Parent_Type))
and then not Is_Generic_Actual_Type (Parent_Type))
or else Has_Private_Component (Parent_Type)
then
-- The ancestor type of a formal type can be incomplete, in which
-- case only the operations of the partial view are available in
-- the generic. Subsequent checks may be required when the full
-- view is analyzed, to verify that derivation from a tagged type
-- has an extension.
if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
null;
elsif No (Underlying_Type (Parent_Type))
or else Has_Private_Component (Parent_Type)
then
Error_Msg_N
("premature derivation of derived or private type", Indic);
-- Flag the type itself as being in error, this prevents some
-- nasty problems with people looking at the malformed type.
Set_Error_Posted (T);
-- Check that within the immediate scope of an untagged partial
-- view it's illegal to derive from the partial view if the
-- full view is tagged. (7.3(7))
-- We verify that the Parent_Type is a partial view by checking
-- that it is not a Full_Type_Declaration (i.e. a private type or
-- private extension declaration), to distinguish a partial view
-- from a derivation from a private type which also appears as
-- E_Private_Type.
elsif Present (Full_View (Parent_Type))
and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
and then not Is_Tagged_Type (Parent_Type)
and then Is_Tagged_Type (Full_View (Parent_Type))
then
Parent_Scope := Scope (T);
while Present (Parent_Scope)
and then Parent_Scope /= Standard_Standard
loop
if Parent_Scope = Scope (Parent_Type) then
Error_Msg_N
("premature derivation from type with tagged full view",
Indic);
end if;
Parent_Scope := Scope (Parent_Scope);
end loop;
end if;
end if;
-- Check that form of derivation is appropriate
Taggd := Is_Tagged_Type (Parent_Type);
-- Perhaps the parent type should be changed to the class-wide type's
-- specific type in this case to prevent cascading errors ???
if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
Error_Msg_N ("parent type must not be a class-wide type", Indic);
return;
end if;
if Present (Extension) and then not Taggd then
Error_Msg_N
("type derived from untagged type cannot have extension", Indic);
elsif No (Extension) and then Taggd then
-- If this is within a private part (or body) of a generic
-- instantiation then the derivation is allowed (the parent
-- type can only appear tagged in this case if it's a generic
-- actual type, since it would otherwise have been rejected
-- in the analysis of the generic template).
if not Is_Generic_Actual_Type (Parent_Type)
or else In_Visible_Part (Scope (Parent_Type))
then
Error_Msg_N
("type derived from tagged type must have extension", Indic);
end if;
end if;
Build_Derived_Type (N, Parent_Type, T, Is_Completion);
end Derived_Type_Declaration;
----------------------------------
-- Enumeration_Type_Declaration --
----------------------------------
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
Ev : Uint;
L : Node_Id;
R_Node : Node_Id;
B_Node : Node_Id;
begin
-- Create identifier node representing lower bound
B_Node := New_Node (N_Identifier, Sloc (Def));
L := First (Literals (Def));
Set_Chars (B_Node, Chars (L));
Set_Entity (B_Node, L);
Set_Etype (B_Node, T);
Set_Is_Static_Expression (B_Node, True);
R_Node := New_Node (N_Range, Sloc (Def));
Set_Low_Bound (R_Node, B_Node);
Set_Ekind (T, E_Enumeration_Type);
Set_First_Literal (T, L);
Set_Etype (T, T);
Set_Is_Constrained (T);
Ev := Uint_0;
-- Loop through literals of enumeration type setting pos and rep values
-- except that if the Ekind is already set, then it means that the
-- literal was already constructed (case of a derived type declaration
-- and we should not disturb the Pos and Rep values.
while Present (L) loop
if Ekind (L) /= E_Enumeration_Literal then
Set_Ekind (L, E_Enumeration_Literal);
Set_Enumeration_Pos (L, Ev);
Set_Enumeration_Rep (L, Ev);
Set_Is_Known_Valid (L, True);
end if;
Set_Etype (L, T);
New_Overloaded_Entity (L);
Generate_Definition (L);
Set_Convention (L, Convention_Intrinsic);
if Nkind (L) = N_Defining_Character_Literal then
Set_Is_Character_Type (T, True);
end if;
Ev := Ev + 1;
Next (L);
end loop;
-- Now create a node representing upper bound
B_Node := New_Node (N_Identifier, Sloc (Def));
Set_Chars (B_Node, Chars (Last (Literals (Def))));
Set_Entity (B_Node, Last (Literals (Def)));
Set_Etype (B_Node, T);
Set_Is_Static_Expression (B_Node, True);
Set_High_Bound (R_Node, B_Node);
Set_Scalar_Range (T, R_Node);
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
Set_Enum_Esize (T);
-- Set Discard_Names if configuration pragma setg, or if there is
-- a parameterless pragma in the current declarative region
if Global_Discard_Names
or else Discard_Names (Scope (T))
then
Set_Discard_Names (T);
end if;
-- Process end label if there is one
if Present (Def) then
Process_End_Label (Def, 'e', T);
end if;
end Enumeration_Type_Declaration;
--------------------------
-- Expand_Others_Choice --
--------------------------
procedure Expand_Others_Choice
(Case_Table : Choice_Table_Type;
Others_Choice : Node_Id;
Choice_Type : Entity_Id)
is
Choice : Node_Id;
Choice_List : List_Id := New_List;
Exp_Lo : Node_Id;
Exp_Hi : Node_Id;
Hi : Uint;
Lo : Uint;
Loc : Source_Ptr := Sloc (Others_Choice);
Previous_Hi : Uint;
function Build_Choice (Value1, Value2 : Uint) return Node_Id;
-- Builds a node representing the missing choices given by the
-- Value1 and Value2. A N_Range node is built if there is more than
-- one literal value missing. Otherwise a single N_Integer_Literal,
-- N_Identifier or N_Character_Literal is built depending on what
-- Choice_Type is.
function Lit_Of (Value : Uint) return Node_Id;
-- Returns the Node_Id for the enumeration literal corresponding to the
-- position given by Value within the enumeration type Choice_Type.
------------------
-- Build_Choice --
------------------
function Build_Choice (Value1, Value2 : Uint) return Node_Id is
Lit_Node : Node_Id;
Lo, Hi : Node_Id;
begin
-- If there is only one choice value missing between Value1 and
-- Value2, build an integer or enumeration literal to represent it.
if (Value2 - Value1) = 0 then
if Is_Integer_Type (Choice_Type) then
Lit_Node := Make_Integer_Literal (Loc, Value1);
Set_Etype (Lit_Node, Choice_Type);
else
Lit_Node := Lit_Of (Value1);
end if;
-- Otherwise is more that one choice value that is missing between
-- Value1 and Value2, therefore build a N_Range node of either
-- integer or enumeration literals.
else
if Is_Integer_Type (Choice_Type) then
Lo := Make_Integer_Literal (Loc, Value1);
Set_Etype (Lo, Choice_Type);
Hi := Make_Integer_Literal (Loc, Value2);
Set_Etype (Hi, Choice_Type);
Lit_Node :=
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
else
Lit_Node :=
Make_Range (Loc,
Low_Bound => Lit_Of (Value1),
High_Bound => Lit_Of (Value2));
end if;
end if;
return Lit_Node;
end Build_Choice;
------------
-- Lit_Of --
------------
function Lit_Of (Value : Uint) return Node_Id is
Lit : Entity_Id;
begin
-- In the case where the literal is of type Character, there needs
-- to be some special handling since there is no explicit chain
-- of literals to search. Instead, a N_Character_Literal node
-- is created with the appropriate Char_Code and Chars fields.
if Root_Type (Choice_Type) = Standard_Character then
Set_Character_Literal_Name (Char_Code (UI_To_Int (Value)));
Lit := New_Node (N_Character_Literal, Loc);
Set_Chars (Lit, Name_Find);
Set_Char_Literal_Value (Lit, Char_Code (UI_To_Int (Value)));
Set_Etype (Lit, Choice_Type);
Set_Is_Static_Expression (Lit, True);
return Lit;
-- Otherwise, iterate through the literals list of Choice_Type
-- "Value" number of times until the desired literal is reached
-- and then return an occurrence of it.
else
Lit := First_Literal (Choice_Type);
for J in 1 .. UI_To_Int (Value) loop
Next_Literal (Lit);
end loop;
return New_Occurrence_Of (Lit, Loc);
end if;
end Lit_Of;
-- Start of processing for Expand_Others_Choice
begin
if Case_Table'Length = 0 then
-- Pathological case: only an others case is present.
-- The others case covers the full range of the type.
if Is_Static_Subtype (Choice_Type) then
Choice := New_Occurrence_Of (Choice_Type, Loc);
else
Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
end if;
Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
return;
end if;
-- Establish the bound values for the variant depending upon whether
-- the type of the discriminant name is static or not.
if Is_OK_Static_Subtype (Choice_Type) then
Exp_Lo := Type_Low_Bound (Choice_Type);
Exp_Hi := Type_High_Bound (Choice_Type);
else
Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
end if;
Lo := Expr_Value (Case_Table (Case_Table'First).Lo);
Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
Previous_Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
-- Build the node for any missing choices that are smaller than any
-- explicit choices given in the variant.
if Expr_Value (Exp_Lo) < Lo then
Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
end if;
-- Build the nodes representing any missing choices that lie between
-- the explicit ones given in the variant.
for J in Case_Table'First + 1 .. Case_Table'Last loop
Lo := Expr_Value (Case_Table (J).Lo);
Hi := Expr_Value (Case_Table (J).Hi);
if Lo /= (Previous_Hi + 1) then
Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
end if;
Previous_Hi := Hi;
end loop;
-- Build the node for any missing choices that are greater than any
-- explicit choices given in the variant.
if Expr_Value (Exp_Hi) > Hi then
Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
end if;
Set_Others_Discrete_Choices (Others_Choice, Choice_List);
end Expand_Others_Choice;
---------------------------------
-- Expand_To_Girder_Constraint --
---------------------------------
function Expand_To_Girder_Constraint
(Typ : Entity_Id;
Constraint : Elist_Id)
return Elist_Id
is
Explicitly_Discriminated_Type : Entity_Id;
Expansion : Elist_Id;
Discriminant : Entity_Id;
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
-- Find the nearest type that actually specifies discriminants.
---------------------------------
-- Type_With_Explicit_Discrims --
---------------------------------
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
Typ : constant E := Base_Type (Id);
begin
if Ekind (Typ) in Incomplete_Or_Private_Kind then
if Present (Full_View (Typ)) then
return Type_With_Explicit_Discrims (Full_View (Typ));
end if;
else
if Has_Discriminants (Typ) then
return Typ;
end if;
end if;
if Etype (Typ) = Typ then
return Empty;
elsif Has_Discriminants (Typ) then
return Typ;
else
return Type_With_Explicit_Discrims (Etype (Typ));
end if;
end Type_With_Explicit_Discrims;
-- Start of processing for Expand_To_Girder_Constraint
begin
if No (Constraint)
or else Is_Empty_Elmt_List (Constraint)
then
return No_Elist;
end if;
Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
if No (Explicitly_Discriminated_Type) then
return No_Elist;
end if;
Expansion := New_Elmt_List;
Discriminant :=
First_Girder_Discriminant (Explicitly_Discriminated_Type);
while Present (Discriminant) loop
Append_Elmt (
Get_Discriminant_Value (
Discriminant, Explicitly_Discriminated_Type, Constraint),
Expansion);
Next_Girder_Discriminant (Discriminant);
end loop;
return Expansion;
end Expand_To_Girder_Constraint;
--------------------
-- Find_Type_Name --
--------------------
function Find_Type_Name (N : Node_Id) return Entity_Id is
Id : constant Entity_Id := Defining_Identifier (N);
Prev : Entity_Id;
New_Id : Entity_Id;
Prev_Par : Node_Id;
begin
-- Find incomplete declaration, if some was given.
Prev := Current_Entity_In_Scope (Id);
if Present (Prev) then
-- Previous declaration exists. Error if not incomplete/private case
-- except if previous declaration is implicit, etc. Enter_Name will
-- emit error if appropriate.
Prev_Par := Parent (Prev);
if not Is_Incomplete_Or_Private_Type (Prev) then
Enter_Name (Id);
New_Id := Id;
elsif Nkind (N) /= N_Full_Type_Declaration
and then Nkind (N) /= N_Task_Type_Declaration
and then Nkind (N) /= N_Protected_Type_Declaration
then
-- Completion must be a full type declarations (RM 7.3(4))
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_NE ("invalid completion of }", Id, Prev);
-- Set scope of Id to avoid cascaded errors. Entity is never
-- examined again, except when saving globals in generics.
Set_Scope (Id, Current_Scope);
New_Id := Id;
-- Case of full declaration of incomplete type
elsif Ekind (Prev) = E_Incomplete_Type then
-- Indicate that the incomplete declaration has a matching
-- full declaration. The defining occurrence of the incomplete
-- declaration remains the visible one, and the procedure
-- Get_Full_View dereferences it whenever the type is used.
if Present (Full_View (Prev)) then
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
end if;
Set_Full_View (Prev, Id);
Append_Entity (Id, Current_Scope);
Set_Is_Public (Id, Is_Public (Prev));
Set_Is_Internal (Id);
New_Id := Prev;
-- Case of full declaration of private type
else
if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
if Etype (Prev) /= Prev then
-- Prev is a private subtype or a derived type, and needs
-- no completion.
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
New_Id := Id;
elsif Ekind (Prev) = E_Private_Type
and then
(Nkind (N) = N_Task_Type_Declaration
or else Nkind (N) = N_Protected_Type_Declaration)
then
Error_Msg_N
("completion of nonlimited type cannot be limited", N);
end if;
elsif Nkind (N) /= N_Full_Type_Declaration
or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
then
Error_Msg_N ("full view of private extension must be"
& " an extension", N);
elsif not (Abstract_Present (Parent (Prev)))
and then Abstract_Present (Type_Definition (N))
then
Error_Msg_N ("full view of non-abstract extension cannot"
& " be abstract", N);
end if;
if not In_Private_Part (Current_Scope) then
Error_Msg_N
("declaration of full view must appear in private part", N);
end if;
Copy_And_Swap (Prev, Id);
Set_Has_Private_Declaration (Prev);
Set_Has_Private_Declaration (Id);
-- If no error, propagate freeze_node from private to full view.
-- It may have been generated for an early operational item.
if Present (Freeze_Node (Id))
and then Serious_Errors_Detected = 0
and then No (Full_View (Id))
then
Set_Freeze_Node (Prev, Freeze_Node (Id));
Set_Freeze_Node (Id, Empty);
Set_First_Rep_Item (Prev, First_Rep_Item (Id));
end if;
Set_Full_View (Id, Prev);
New_Id := Prev;
end if;
-- Verify that full declaration conforms to incomplete one
if Is_Incomplete_Or_Private_Type (Prev)
and then Present (Discriminant_Specifications (Prev_Par))
then
if Present (Discriminant_Specifications (N)) then
if Ekind (Prev) = E_Incomplete_Type then
Check_Discriminant_Conformance (N, Prev, Prev);
else
Check_Discriminant_Conformance (N, Prev, Id);
end if;
else
Error_Msg_N
("missing discriminants in full type declaration", N);
-- To avoid cascaded errors on subsequent use, share the
-- discriminants of the partial view.
Set_Discriminant_Specifications (N,
Discriminant_Specifications (Prev_Par));
end if;
end if;
-- A prior untagged private type can have an associated
-- class-wide type due to use of the class attribute,
-- and in this case also the full type is required to
-- be tagged.
if Is_Type (Prev)
and then (Is_Tagged_Type (Prev)
or else Present (Class_Wide_Type (Prev)))
then
-- The full declaration is either a tagged record or an
-- extension otherwise this is an error
if Nkind (Type_Definition (N)) = N_Record_Definition then
if not Tagged_Present (Type_Definition (N)) then
Error_Msg_NE
("full declaration of } must be tagged", Prev, Id);
Set_Is_Tagged_Type (Id);
Set_Primitive_Operations (Id, New_Elmt_List);
end if;
elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
if No (Record_Extension_Part (Type_Definition (N))) then
Error_Msg_NE (
"full declaration of } must be a record extension",
Prev, Id);
Set_Is_Tagged_Type (Id);
Set_Primitive_Operations (Id, New_Elmt_List);
end if;
else
Error_Msg_NE
("full declaration of } must be a tagged type", Prev, Id);
end if;
end if;
return New_Id;
else
-- New type declaration
Enter_Name (Id);
return Id;
end if;
end Find_Type_Name;
-------------------------
-- Find_Type_Of_Object --
-------------------------
function Find_Type_Of_Object
(Obj_Def : Node_Id;
Related_Nod : Node_Id)
return Entity_Id
is
Def_Kind : constant Node_Kind := Nkind (Obj_Def);
P : constant Node_Id := Parent (Obj_Def);
T : Entity_Id;
Nam : Name_Id;
begin
-- Case of an anonymous array subtype
if Def_Kind = N_Constrained_Array_Definition
or else Def_Kind = N_Unconstrained_Array_Definition
then
T := Empty;
Array_Type_Declaration (T, Obj_Def);
-- Create an explicit subtype whenever possible.
elsif Nkind (P) /= N_Component_Declaration
and then Def_Kind = N_Subtype_Indication
then
-- Base name of subtype on object name, which will be unique in
-- the current scope.
-- If this is a duplicate declaration, return base type, to avoid
-- generating duplicate anonymous types.
if Error_Posted (P) then
Analyze (Subtype_Mark (Obj_Def));
return Entity (Subtype_Mark (Obj_Def));
end if;
Nam :=
New_External_Name
(Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
T := Make_Defining_Identifier (Sloc (P), Nam);
Insert_Action (Obj_Def,
Make_Subtype_Declaration (Sloc (P),
Defining_Identifier => T,
Subtype_Indication => Relocate_Node (Obj_Def)));
-- This subtype may need freezing and it will not be done
-- automatically if the object declaration is not in a
-- declarative part. Since this is an object declaration, the
-- type cannot always be frozen here. Deferred constants do not
-- freeze their type (which often enough will be private).
if Nkind (P) = N_Object_Declaration
and then Constant_Present (P)
and then No (Expression (P))
then
null;
else
Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
end if;
else
T := Process_Subtype (Obj_Def, Related_Nod);
end if;
return T;
end Find_Type_Of_Object;
--------------------------------
-- Find_Type_Of_Subtype_Indic --
--------------------------------
function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
Typ : Entity_Id;
begin
-- Case of subtype mark with a constraint
if Nkind (S) = N_Subtype_Indication then
Find_Type (Subtype_Mark (S));
Typ := Entity (Subtype_Mark (S));
if not
Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
then
Error_Msg_N
("incorrect constraint for this kind of type", Constraint (S));
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
end if;
-- Otherwise we have a subtype mark without a constraint
elsif Error_Posted (S) then
Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
return Any_Type;
else
Find_Type (S);
Typ := Entity (S);
end if;
if Typ = Standard_Wide_Character
or else Typ = Standard_Wide_String
then
Check_Restriction (No_Wide_Characters, S);
end if;
return Typ;
end Find_Type_Of_Subtype_Indic;
-------------------------------------
-- Floating_Point_Type_Declaration --
-------------------------------------
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
Digs : constant Node_Id := Digits_Expression (Def);
Digs_Val : Uint;
Base_Typ : Entity_Id;
Implicit_Base : Entity_Id;
Bound : Node_Id;
function Can_Derive_From (E : Entity_Id) return Boolean;
-- Find if given digits value allows derivation from specified type
function Can_Derive_From (E : Entity_Id) return Boolean is
Spec : constant Entity_Id := Real_Range_Specification (Def);
begin
if Digs_Val > Digits_Value (E) then
return False;
end if;
if Present (Spec) then
if Expr_Value_R (Type_Low_Bound (E)) >
Expr_Value_R (Low_Bound (Spec))
then
return False;
end if;
if Expr_Value_R (Type_High_Bound (E)) <
Expr_Value_R (High_Bound (Spec))
then
return False;
end if;
end if;
return True;
end Can_Derive_From;
-- Start of processing for Floating_Point_Type_Declaration
begin
Check_Restriction (No_Floating_Point, Def);
-- Create an implicit base type
Implicit_Base :=
Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
-- Analyze and verify digits value
Analyze_And_Resolve (Digs, Any_Integer);
Check_Digits_Expression (Digs);
Digs_Val := Expr_Value (Digs);
-- Process possible range spec and find correct type to derive from
Process_Real_Range_Specification (Def);
if Can_Derive_From (Standard_Short_Float) then
Base_Typ := Standard_Short_Float;
elsif Can_Derive_From (Standard_Float) then
Base_Typ := Standard_Float;
elsif Can_Derive_From (Standard_Long_Float) then
Base_Typ := Standard_Long_Float;
elsif Can_Derive_From (Standard_Long_Long_Float) then
Base_Typ := Standard_Long_Long_Float;
-- If we can't derive from any existing type, use long long float
-- and give appropriate message explaining the problem.
else
Base_Typ := Standard_Long_Long_Float;
if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
Error_Msg_N ("digits value out of range, maximum is ^", Digs);
else
Error_Msg_N
("range too large for any predefined type",
Real_Range_Specification (Def));
end if;
end if;
-- If there are bounds given in the declaration use them as the bounds
-- of the type, otherwise use the bounds of the predefined base type
-- that was chosen based on the Digits value.
if Present (Real_Range_Specification (Def)) then
Set_Scalar_Range (T, Real_Range_Specification (Def));
Set_Is_Constrained (T);
-- The bounds of this range must be converted to machine numbers
-- in accordance with RM 4.9(38).
Bound := Type_Low_Bound (T);
if Nkind (Bound) = N_Real_Literal then
Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
Set_Is_Machine_Number (Bound);
end if;
Bound := Type_High_Bound (T);
if Nkind (Bound) = N_Real_Literal then
Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
Set_Is_Machine_Number (Bound);
end if;
else
Set_Scalar_Range (T, Scalar_Range (Base_Typ));
end if;
-- Complete definition of implicit base and declared first subtype
Set_Etype (Implicit_Base, Base_Typ);
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
Set_Size_Info (Implicit_Base, (Base_Typ));
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
Set_Ekind (T, E_Floating_Point_Subtype);
Set_Etype (T, Implicit_Base);
Set_Size_Info (T, (Implicit_Base));
Set_RM_Size (T, RM_Size (Implicit_Base));
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
Set_Digits_Value (T, Digs_Val);
end Floating_Point_Type_Declaration;
----------------------------
-- Get_Discriminant_Value --
----------------------------
-- This is the situation...
-- There is a non-derived type
-- type T0 (Dx, Dy, Dz...)
-- There are zero or more levels of derivation, with each
-- derivation either purely inheriting the discriminants, or
-- defining its own.
-- type Ti is new Ti-1
-- or
-- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
-- or
-- subtype Ti is ...
-- The subtype issue is avoided by the use of
-- Original_Record_Component, and the fact that derived subtypes
-- also derive the constraits.
-- This chain leads back from
-- Typ_For_Constraint
-- Typ_For_Constraint has discriminants, and the value for each
-- discriminant is given by its corresponding Elmt of Constraints.
-- Discriminant is some discriminant in this hierarchy.
-- We need to return its value.
-- We do this by recursively searching each level, and looking for
-- Discriminant. Once we get to the bottom, we start backing up
-- returning the value for it which may in turn be a discriminant
-- further up, so on the backup we continue the substitution.
function Get_Discriminant_Value
(Discriminant : Entity_Id;
Typ_For_Constraint : Entity_Id;
Constraint : Elist_Id)
return Node_Id
is
function Recurse
(Ti : Entity_Id;
Discrim_Values : Elist_Id;
Girder_Discrim_Values : Boolean)
return Node_Or_Entity_Id;
-- This is the routine that performs the recursive search of levels
-- as described above.
function Recurse
(Ti : Entity_Id;
Discrim_Values : Elist_Id;
Girder_Discrim_Values : Boolean)
return Node_Or_Entity_Id
is
Assoc : Elmt_Id;
Disc : Entity_Id;
Result : Node_Or_Entity_Id;
Result_Entity : Node_Id;
begin
-- If inappropriate type, return Error, this happens only in
-- cascaded error situations, and we want to avoid a blow up.
if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
return Error;
end if;
-- Look deeper if possible. Use Girder_Constraints only for
-- untagged types. For tagged types use the given constraint.
-- This asymmetry needs explanation???
if not Girder_Discrim_Values
and then Present (Girder_Constraint (Ti))
and then not Is_Tagged_Type (Ti)
then
Result := Recurse (Ti, Girder_Constraint (Ti), True);
else
declare
Td : Entity_Id := Etype (Ti);
begin
if Td = Ti then
Result := Discriminant;
else
if Present (Girder_Constraint (Ti)) then
Result :=
Recurse (Td, Girder_Constraint (Ti), True);
else
Result :=
Recurse (Td, Discrim_Values, Girder_Discrim_Values);
end if;
end if;
end;
end if;
-- Extra underlying places to search, if not found above. For
-- concurrent types, the relevant discriminant appears in the
-- corresponding record. For a type derived from a private type
-- without discriminant, the full view inherits the discriminants
-- of the full view of the parent.
if Result = Discriminant then
if Is_Concurrent_Type (Ti)
and then Present (Corresponding_Record_Type (Ti))
then
Result :=
Recurse (
Corresponding_Record_Type (Ti),
Discrim_Values,
Girder_Discrim_Values);
elsif Is_Private_Type (Ti)
and then not Has_Discriminants (Ti)
and then Present (Full_View (Ti))
and then Etype (Full_View (Ti)) /= Ti
then
Result :=
Recurse (
Full_View (Ti),
Discrim_Values,
Girder_Discrim_Values);
end if;
end if;
-- If Result is not a (reference to a) discriminant,
-- return it, otherwise set Result_Entity to the discriminant.
if Nkind (Result) = N_Defining_Identifier then
pragma Assert (Result = Discriminant);
Result_Entity := Result;
else
if not Denotes_Discriminant (Result) then
return Result;
end if;
Result_Entity := Entity (Result);
end if;
-- See if this level of derivation actually has discriminants
-- because tagged derivations can add them, hence the lower
-- levels need not have any.
if not Has_Discriminants (Ti) then
return Result;
end if;
-- Scan Ti's discriminants for Result_Entity,
-- and return its corresponding value, if any.
Result_Entity := Original_Record_Component (Result_Entity);
Assoc := First_Elmt (Discrim_Values);
if Girder_Discrim_Values then
Disc := First_Girder_Discriminant (Ti);
else
Disc := First_Discriminant (Ti);
end if;
while Present (Disc) loop
pragma Assert (Present (Assoc));
if Original_Record_Component (Disc) = Result_Entity then
return Node (Assoc);
end if;
Next_Elmt (Assoc);
if Girder_Discrim_Values then
Next_Girder_Discriminant (Disc);
else
Next_Discriminant (Disc);
end if;
end loop;
-- Could not find it
--
return Result;
end Recurse;
Result : Node_Or_Entity_Id;
-- Start of processing for Get_Discriminant_Value
begin
-- ??? this routine is a gigantic mess and will be deleted.
-- for the time being just test for the trivial case before calling
-- recurse.
if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
declare
D : Entity_Id := First_Discriminant (Typ_For_Constraint);
E : Elmt_Id := First_Elmt (Constraint);
begin
while Present (D) loop
if Chars (D) = Chars (Discriminant) then
return Node (E);
end if;
Next_Discriminant (D);
Next_Elmt (E);
end loop;
end;
end if;
Result := Recurse (Typ_For_Constraint, Constraint, False);
-- ??? hack to disappear when this routine is gone
if Nkind (Result) = N_Defining_Identifier then
declare
D : Entity_Id := First_Discriminant (Typ_For_Constraint);
E : Elmt_Id := First_Elmt (Constraint);
begin
while Present (D) loop
if Corresponding_Discriminant (D) = Discriminant then
return Node (E);
end if;
Next_Discriminant (D);
Next_Elmt (E);
end loop;
end;
end if;
pragma Assert (Nkind (Result) /= N_Defining_Identifier);
return Result;
end Get_Discriminant_Value;
--------------------------
-- Has_Range_Constraint --
--------------------------
function Has_Range_Constraint (N : Node_Id) return Boolean is
C : constant Node_Id := Constraint (N);
begin
if Nkind (C) = N_Range_Constraint then
return True;
elsif Nkind (C) = N_Digits_Constraint then
return
Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
or else
Present (Range_Constraint (C));
elsif Nkind (C) = N_Delta_Constraint then
return Present (Range_Constraint (C));
else
return False;
end if;
end Has_Range_Constraint;
------------------------
-- Inherit_Components --
------------------------
function Inherit_Components
(N : Node_Id;
Parent_Base : Entity_Id;
Derived_Base : Entity_Id;
Is_Tagged : Boolean;
Inherit_Discr : Boolean;
Discs : Elist_Id)
return Elist_Id
is
Assoc_List : Elist_Id := New_Elmt_List;
procedure Inherit_Component
(Old_C : Entity_Id;
Plain_Discrim : Boolean := False;
Girder_Discrim : Boolean := False);
-- Inherits component Old_C from Parent_Base to the Derived_Base.
-- If Plain_Discrim is True, Old_C is a discriminant.
-- If Girder_Discrim is True, Old_C is a girder discriminant.
-- If they are both false then Old_C is a regular component.
-----------------------
-- Inherit_Component --
-----------------------
procedure Inherit_Component
(Old_C : Entity_Id;
Plain_Discrim : Boolean := False;
Girder_Discrim : Boolean := False)
is
New_C : Entity_Id := New_Copy (Old_C);
Discrim : Entity_Id;
Corr_Discrim : Entity_Id;
begin
pragma Assert (not Is_Tagged or else not Girder_Discrim);
Set_Parent (New_C, Parent (Old_C));
-- Regular discriminants and components must be inserted
-- in the scope of the Derived_Base. Do it here.
if not Girder_Discrim then
Enter_Name (New_C);
end if;
-- For tagged types the Original_Record_Component must point to
-- whatever this field was pointing to in the parent type. This has
-- already been achieved by the call to New_Copy above.
if not Is_Tagged then
Set_Original_Record_Component (New_C, New_C);
end if;
-- If we have inherited a component then see if its Etype contains
-- references to Parent_Base discriminants. In this case, replace
-- these references with the constraints given in Discs. We do not
-- do this for the partial view of private types because this is
-- not needed (only the components of the full view will be used
-- for code generation) and cause problem. We also avoid this
-- transformation in some error situations.
if Ekind (New_C) = E_Component then
if (Is_Private_Type (Derived_Base)
and then not Is_Generic_Type (Derived_Base))
or else (Is_Empty_Elmt_List (Discs)
and then not Expander_Active)
then
Set_Etype (New_C, Etype (Old_C));
else
Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
Derived_Base, N, Parent_Base, Discs));
end if;
end if;
-- In derived tagged types it is illegal to reference a non
-- discriminant component in the parent type. To catch this, mark
-- these components with an Ekind of E_Void. This will be reset in
-- Record_Type_Definition after processing the record extension of
-- the derived type.
if Is_Tagged and then Ekind (New_C) = E_Component then
Set_Ekind (New_C, E_Void);
end if;
if Plain_Discrim then
Set_Corresponding_Discriminant (New_C, Old_C);
Build_Discriminal (New_C);
-- If we are explicitly inheriting a girder discriminant it will be
-- completely hidden.
elsif Girder_Discrim then
Set_Corresponding_Discriminant (New_C, Empty);
Set_Discriminal (New_C, Empty);
Set_Is_Completely_Hidden (New_C);
-- Set the Original_Record_Component of each discriminant in the
-- derived base to point to the corresponding girder that we just
-- created.
Discrim := First_Discriminant (Derived_Base);
while Present (Discrim) loop
Corr_Discrim := Corresponding_Discriminant (Discrim);
-- Corr_Discrimm could be missing in an error situation.
if Present (Corr_Discrim)
and then Original_Record_Component (Corr_Discrim) = Old_C
then
Set_Original_Record_Component (Discrim, New_C);
end if;
Next_Discriminant (Discrim);
end loop;
Append_Entity (New_C, Derived_Base);
end if;
if not Is_Tagged then
Append_Elmt (Old_C, Assoc_List);
Append_Elmt (New_C, Assoc_List);
end if;
end Inherit_Component;
-- Variables local to Inherit_Components.
Loc : constant Source_Ptr := Sloc (N);
Parent_Discrim : Entity_Id;
Girder_Discrim : Entity_Id;
D : Entity_Id;
Component : Entity_Id;
-- Start of processing for Inherit_Components
begin
if not Is_Tagged then
Append_Elmt (Parent_Base, Assoc_List);
Append_Elmt (Derived_Base, Assoc_List);
end if;
-- Inherit parent discriminants if needed.
if Inherit_Discr then
Parent_Discrim := First_Discriminant (Parent_Base);
while Present (Parent_Discrim) loop
Inherit_Component (Parent_Discrim, Plain_Discrim => True);
Next_Discriminant (Parent_Discrim);
end loop;
end if;
-- Create explicit girder discrims for untagged types when necessary.
if not Has_Unknown_Discriminants (Derived_Base)
and then Has_Discriminants (Parent_Base)
and then not Is_Tagged
and then
(not Inherit_Discr
or else First_Discriminant (Parent_Base) /=
First_Girder_Discriminant (Parent_Base))
then
Girder_Discrim := First_Girder_Discriminant (Parent_Base);
while Present (Girder_Discrim) loop
Inherit_Component (Girder_Discrim, Girder_Discrim => True);
Next_Girder_Discriminant (Girder_Discrim);
end loop;
end if;
-- See if we can apply the second transformation for derived types, as
-- explained in point 6. in the comments above Build_Derived_Record_Type
-- This is achieved by appending Derived_Base discriminants into
-- Discs, which has the side effect of returning a non empty Discs
-- list to the caller of Inherit_Components, which is what we want.
if Inherit_Discr
and then Is_Empty_Elmt_List (Discs)
and then (not Is_Private_Type (Derived_Base)
or Is_Generic_Type (Derived_Base))
then
D := First_Discriminant (Derived_Base);
while Present (D) loop
Append_Elmt (New_Reference_To (D, Loc), Discs);
Next_Discriminant (D);
end loop;
end if;
-- Finally, inherit non-discriminant components unless they are not
-- visible because defined or inherited from the full view of the
-- parent. Don't inherit the _parent field of the parent type.
Component := First_Entity (Parent_Base);
while Present (Component) loop
if Ekind (Component) /= E_Component
or else Chars (Component) = Name_uParent
then
null;
-- If the derived type is within the parent type's declarative
-- region, then the components can still be inherited even though
-- they aren't visible at this point. This can occur for cases
-- such as within public child units where the components must
-- become visible upon entering the child unit's private part.
elsif not Is_Visible_Component (Component)
and then not In_Open_Scopes (Scope (Parent_Base))
then
null;
elsif Ekind (Derived_Base) = E_Private_Type
or else Ekind (Derived_Base) = E_Limited_Private_Type
then
null;
else
Inherit_Component (Component);
end if;
Next_Entity (Component);
end loop;
-- For tagged derived types, inherited discriminants cannot be used in
-- component declarations of the record extension part. To achieve this
-- we mark the inherited discriminants as not visible.
if Is_Tagged and then Inherit_Discr then
D := First_Discriminant (Derived_Base);
while Present (D) loop
Set_Is_Immediately_Visible (D, False);
Next_Discriminant (D);
end loop;
end if;
return Assoc_List;
end Inherit_Components;
------------------------------
-- Is_Valid_Constraint_Kind --
------------------------------
function Is_Valid_Constraint_Kind
(T_Kind : Type_Kind;
Constraint_Kind : Node_Kind)
return Boolean
is
begin
case T_Kind is
when Enumeration_Kind |
Integer_Kind =>
return Constraint_Kind = N_Range_Constraint;
when Decimal_Fixed_Point_Kind =>
return
Constraint_Kind = N_Digits_Constraint
or else
Constraint_Kind = N_Range_Constraint;
when Ordinary_Fixed_Point_Kind =>
return
Constraint_Kind = N_Delta_Constraint
or else
Constraint_Kind = N_Range_Constraint;
when Float_Kind =>
return
Constraint_Kind = N_Digits_Constraint
or else
Constraint_Kind = N_Range_Constraint;
when Access_Kind |
Array_Kind |
E_Record_Type |
E_Record_Subtype |
Class_Wide_Kind |
E_Incomplete_Type |
Private_Kind |
Concurrent_Kind =>
return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
when others =>
return True; -- Error will be detected later.
end case;
end Is_Valid_Constraint_Kind;
--------------------------
-- Is_Visible_Component --
--------------------------
function Is_Visible_Component (C : Entity_Id) return Boolean is
Original_Comp : constant Entity_Id := Original_Record_Component (C);
Original_Scope : Entity_Id;
begin
if No (Original_Comp) then
-- Premature usage, or previous error
return False;
else
Original_Scope := Scope (Original_Comp);
end if;
-- This test only concern tagged types
if not Is_Tagged_Type (Original_Scope) then
return True;
-- If it is _Parent or _Tag, there is no visiblity issue
elsif not Comes_From_Source (Original_Comp) then
return True;
-- If we are in the body of an instantiation, the component is
-- visible even when the parent type (possibly defined in an
-- enclosing unit or in a parent unit) might not.
elsif In_Instance_Body then
return True;
-- Discriminants are always visible.
elsif Ekind (Original_Comp) = E_Discriminant
and then not Has_Unknown_Discriminants (Original_Scope)
then
return True;
-- If the component has been declared in an ancestor which is
-- currently a private type, then it is not visible. The same
-- applies if the component's containing type is not in an
-- open scope and the original component's enclosing type
-- is a visible full type of a private type (which can occur
-- in cases where an attempt is being made to reference a
-- component in a sibling package that is inherited from
-- a visible component of a type in an ancestor package;
-- the component in the sibling package should not be
-- visible even though the component it inherited from
-- is visible). This does not apply however in the case
-- where the scope of the type is a private child unit.
-- The latter suppression of visibility is needed for cases
-- that are tested in B730006.
elsif (Ekind (Original_Comp) /= E_Discriminant
or else Has_Unknown_Discriminants (Original_Scope))
and then
(Is_Private_Type (Original_Scope)
or else
(not Is_Private_Descendant (Scope (Base_Type (Scope (C))))
and then not In_Open_Scopes (Scope (Base_Type (Scope (C))))
and then Has_Private_Declaration (Original_Scope)))
then
return False;
-- There is another weird way in which a component may be invisible
-- when the private and the full view are not derived from the same
-- ancestor. Here is an example :
-- type A1 is tagged record F1 : integer; end record;
-- type A2 is new A1 with record F2 : integer; end record;
-- type T is new A1 with private;
-- private
-- type T is new A2 with private;
-- In this case, the full view of T inherits F1 and F2 but the
-- private view inherits only F1
else
declare
Ancestor : Entity_Id := Scope (C);
begin
loop
if Ancestor = Original_Scope then
return True;
elsif Ancestor = Etype (Ancestor) then
return False;
end if;
Ancestor := Etype (Ancestor);
end loop;
return True;
end;
end if;
end Is_Visible_Component;
--------------------------
-- Make_Class_Wide_Type --
--------------------------
procedure Make_Class_Wide_Type (T : Entity_Id) is
CW_Type : Entity_Id;
CW_Name : Name_Id;
Next_E : Entity_Id;
begin
-- The class wide type can have been defined by the partial view in
-- which case everything is already done
if Present (Class_Wide_Type (T)) then
return;
end if;
CW_Type :=
New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
-- Inherit root type characteristics
CW_Name := Chars (CW_Type);
Next_E := Next_Entity (CW_Type);
Copy_Node (T, CW_Type);
Set_Comes_From_Source (CW_Type, False);
Set_Chars (CW_Type, CW_Name);
Set_Parent (CW_Type, Parent (T));
Set_Next_Entity (CW_Type, Next_E);
Set_Has_Delayed_Freeze (CW_Type);
-- Customize the class-wide type: It has no prim. op., it cannot be
-- abstract and its Etype points back to the specific root type.
Set_Ekind (CW_Type, E_Class_Wide_Type);
Set_Is_Tagged_Type (CW_Type, True);
Set_Primitive_Operations (CW_Type, New_Elmt_List);
Set_Is_Abstract (CW_Type, False);
Set_Is_Constrained (CW_Type, False);
Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
Init_Size_Align (CW_Type);
if Ekind (T) = E_Class_Wide_Subtype then
Set_Etype (CW_Type, Etype (Base_Type (T)));
else
Set_Etype (CW_Type, T);
end if;
-- If this is the class_wide type of a constrained subtype, it does
-- not have discriminants.
Set_Has_Discriminants (CW_Type,
Has_Discriminants (T) and then not Is_Constrained (T));
Set_Has_Unknown_Discriminants (CW_Type, True);
Set_Class_Wide_Type (T, CW_Type);
Set_Equivalent_Type (CW_Type, Empty);
-- The class-wide type of a class-wide type is itself (RM 3.9(14))
Set_Class_Wide_Type (CW_Type, CW_Type);
end Make_Class_Wide_Type;
----------------
-- Make_Index --
----------------
procedure Make_Index
(I : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id := Empty;
Suffix_Index : Nat := 1)
is
R : Node_Id;
T : Entity_Id;
Def_Id : Entity_Id := Empty;
Found : Boolean := False;
begin
-- For a discrete range used in a constrained array definition and
-- defined by a range, an implicit conversion to the predefined type
-- INTEGER is assumed if each bound is either a numeric literal, a named
-- number, or an attribute, and the type of both bounds (prior to the
-- implicit conversion) is the type universal_integer. Otherwise, both
-- bounds must be of the same discrete type, other than universal
-- integer; this type must be determinable independently of the
-- context, but using the fact that the type must be discrete and that
-- both bounds must have the same type.
-- Character literals also have a universal type in the absence of
-- of additional context, and are resolved to Standard_Character.
if Nkind (I) = N_Range then
-- The index is given by a range constraint. The bounds are known
-- to be of a consistent type.
if not Is_Overloaded (I) then
T := Etype (I);
-- If the bounds are universal, choose the specific predefined
-- type.
if T = Universal_Integer then
T := Standard_Integer;
elsif T = Any_Character then
if not Ada_83 then
Error_Msg_N
("ambiguous character literals (could be Wide_Character)",
I);
end if;
T := Standard_Character;
end if;
else
T := Any_Type;
declare
Ind : Interp_Index;
It : Interp;
begin
Get_First_Interp (I, Ind, It);
while Present (It.Typ) loop
if Is_Discrete_Type (It.Typ) then
if Found
and then not Covers (It.Typ, T)
and then not Covers (T, It.Typ)
then
Error_Msg_N ("ambiguous bounds in discrete range", I);
exit;
else
T := It.Typ;
Found := True;
end if;
end if;
Get_Next_Interp (Ind, It);
end loop;
if T = Any_Type then
Error_Msg_N ("discrete type required for range", I);
Set_Etype (I, Any_Type);
return;
elsif T = Universal_Integer then
T := Standard_Integer;
end if;
end;
end if;
if not Is_Discrete_Type (T) then
Error_Msg_N ("discrete type required for range", I);
Set_Etype (I, Any_Type);
return;
end if;
R := I;
Process_Range_Expr_In_Decl (R, T);
elsif Nkind (I) = N_Subtype_Indication then
-- The index is given by a subtype with a range constraint.
T := Base_Type (Entity (Subtype_Mark (I)));
if not Is_Discrete_Type (T) then
Error_Msg_N ("discrete type required for range", I);
Set_Etype (I, Any_Type);
return;
end if;
R := Range_Expression (Constraint (I));
Resolve (R, T);
Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
elsif Nkind (I) = N_Attribute_Reference then
-- The parser guarantees that the attribute is a RANGE attribute
Analyze_And_Resolve (I);
T := Etype (I);
R := I;
-- If none of the above, must be a subtype. We convert this to a
-- range attribute reference because in the case of declared first
-- named subtypes, the types in the range reference can be different
-- from the type of the entity. A range attribute normalizes the
-- reference and obtains the correct types for the bounds.
-- This transformation is in the nature of an expansion, is only
-- done if expansion is active. In particular, it is not done on
-- formal generic types, because we need to retain the name of the
-- original index for instantiation purposes.
else
if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
Error_Msg_N ("invalid subtype mark in discrete range ", I);
Set_Etype (I, Any_Integer);
return;
else
-- The type mark may be that of an incomplete type. It is only
-- now that we can get the full view, previous analysis does
-- not look specifically for a type mark.
Set_Entity (I, Get_Full_View (Entity (I)));
Set_Etype (I, Entity (I));
Def_Id := Entity (I);
if not Is_Discrete_Type (Def_Id) then
Error_Msg_N ("discrete type required for index", I);
Set_Etype (I, Any_Type);
return;
end if;
end if;
if Expander_Active then
Rewrite (I,
Make_Attribute_Reference (Sloc (I),
Attribute_Name => Name_Range,
Prefix => Relocate_Node (I)));
-- The original was a subtype mark that does not freeze. This
-- means that the rewritten version must not freeze either.
Set_Must_Not_Freeze (I);
Set_Must_Not_Freeze (Prefix (I));
-- Is order critical??? if so, document why, if not
-- use Analyze_And_Resolve
Analyze (I);
T := Etype (I);
Resolve (I, T);
R := I;
else
-- Type is legal, nothing else to construct.
return;
end if;
end if;
if not Is_Discrete_Type (T) then
Error_Msg_N ("discrete type required for range", I);
Set_Etype (I, Any_Type);
return;
elsif T = Any_Type then
Set_Etype (I, Any_Type);
return;
end if;
-- We will now create the appropriate Itype to describe the
-- range, but first a check. If we originally had a subtype,
-- then we just label the range with this subtype. Not only
-- is there no need to construct a new subtype, but it is wrong
-- to do so for two reasons:
-- 1. A legality concern, if we have a subtype, it must not
-- freeze, and the Itype would cause freezing incorrectly
-- 2. An efficiency concern, if we created an Itype, it would
-- not be recognized as the same type for the purposes of
-- eliminating checks in some circumstances.
-- We signal this case by setting the subtype entity in Def_Id.
-- It would be nice to also do this optimization for the cases
-- of X'Range and also the explicit range X'First .. X'Last,
-- but that is not done yet (it is just an efficiency concern) ???
if No (Def_Id) then
Def_Id :=
Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
Set_Etype (Def_Id, Base_Type (T));
if Is_Signed_Integer_Type (T) then
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
elsif Is_Modular_Integer_Type (T) then
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
else
Set_Ekind (Def_Id, E_Enumeration_Subtype);
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
end if;
Set_Size_Info (Def_Id, (T));
Set_RM_Size (Def_Id, RM_Size (T));
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
Set_Scalar_Range (Def_Id, R);
Conditional_Delay (Def_Id, T);
-- In the subtype indication case, if the immediate parent of the
-- new subtype is non-static, then the subtype we create is non-
-- static, even if its bounds are static.
if Nkind (I) = N_Subtype_Indication
and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
then
Set_Is_Non_Static_Subtype (Def_Id);
end if;
end if;
-- Final step is to label the index with this constructed type
Set_Etype (I, Def_Id);
end Make_Index;
------------------------------
-- Modular_Type_Declaration --
------------------------------
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
Mod_Expr : constant Node_Id := Expression (Def);
M_Val : Uint;
procedure Set_Modular_Size (Bits : Int);
-- Sets RM_Size to Bits, and Esize to normal word size above this
procedure Set_Modular_Size (Bits : Int) is
begin
Set_RM_Size (T, UI_From_Int (Bits));
if Bits <= 8 then
Init_Esize (T, 8);
elsif Bits <= 16 then
Init_Esize (T, 16);
elsif Bits <= 32 then
Init_Esize (T, 32);
else
Init_Esize (T, System_Max_Binary_Modulus_Power);
end if;
end Set_Modular_Size;
-- Start of processing for Modular_Type_Declaration
begin
Analyze_And_Resolve (Mod_Expr, Any_Integer);
Set_Etype (T, T);
Set_Ekind (T, E_Modular_Integer_Type);
Init_Alignment (T);
Set_Is_Constrained (T);
if not Is_OK_Static_Expression (Mod_Expr) then
Error_Msg_N
("non-static expression used for modular type bound", Mod_Expr);
M_Val := 2 ** System_Max_Binary_Modulus_Power;
else
M_Val := Expr_Value (Mod_Expr);
end if;
if M_Val < 1 then
Error_Msg_N ("modulus value must be positive", Mod_Expr);
M_Val := 2 ** System_Max_Binary_Modulus_Power;
end if;
Set_Modulus (T, M_Val);
-- Create bounds for the modular type based on the modulus given in
-- the type declaration and then analyze and resolve those bounds.
Set_Scalar_Range (T,
Make_Range (Sloc (Mod_Expr),
Low_Bound =>
Make_Integer_Literal (Sloc (Mod_Expr), 0),
High_Bound =>
Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
-- Properly analyze the literals for the range. We do this manually
-- because we can't go calling Resolve, since we are resolving these
-- bounds with the type, and this type is certainly not complete yet!
Set_Etype (Low_Bound (Scalar_Range (T)), T);
Set_Etype (High_Bound (Scalar_Range (T)), T);
Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
-- Loop through powers of two to find number of bits required
for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
-- Binary case
if M_Val = 2 ** Bits then
Set_Modular_Size (Bits);
return;
-- Non-binary case
elsif M_Val < 2 ** Bits then
Set_Non_Binary_Modulus (T);
if Bits > System_Max_Nonbinary_Modulus_Power then
Error_Msg_Uint_1 :=
UI_From_Int (System_Max_Nonbinary_Modulus_Power);
Error_Msg_N
("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
Set_Modular_Size (System_Max_Binary_Modulus_Power);
return;
else
-- In the non-binary case, set size as per RM 13.3(55).
Set_Modular_Size (Bits);
return;
end if;
end if;
end loop;
-- If we fall through, then the size exceed System.Max_Binary_Modulus
-- so we just signal an error and set the maximum size.
Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
Set_Modular_Size (System_Max_Binary_Modulus_Power);
Init_Alignment (T);
end Modular_Type_Declaration;
-------------------------
-- New_Binary_Operator --
-------------------------
procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Op : Entity_Id;
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
-- Create abbreviated declaration for the formal of a predefined
-- Operator 'Op' of type 'Typ'
--------------------
-- Make_Op_Formal --
--------------------
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
Formal : Entity_Id;
begin
Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
Set_Etype (Formal, Typ);
Set_Mechanism (Formal, Default_Mechanism);
return Formal;
end Make_Op_Formal;
-- Start of processing for New_Binary_Operator
begin
Op := Make_Defining_Operator_Symbol (Loc, Op_Name);
Set_Ekind (Op, E_Operator);
Set_Scope (Op, Current_Scope);
Set_Etype (Op, Typ);
Set_Homonym (Op, Get_Name_Entity_Id (Op_Name));
Set_Is_Immediately_Visible (Op);
Set_Is_Intrinsic_Subprogram (Op);
Set_Has_Completion (Op);
Append_Entity (Op, Current_Scope);
Set_Name_Entity_Id (Op_Name, Op);
Append_Entity (Make_Op_Formal (Typ, Op), Op);
Append_Entity (Make_Op_Formal (Typ, Op), Op);
end New_Binary_Operator;
-------------------------------------------
-- Ordinary_Fixed_Point_Type_Declaration --
-------------------------------------------
procedure Ordinary_Fixed_Point_Type_Declaration
(T : Entity_Id;
Def : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Def);
Delta_Expr : constant Node_Id := Delta_Expression (Def);
RRS : constant Node_Id := Real_Range_Specification (Def);
Implicit_Base : Entity_Id;
Delta_Val : Ureal;
Small_Val : Ureal;
Low_Val : Ureal;
High_Val : Ureal;
begin
Check_Restriction (No_Fixed_Point, Def);
-- Create implicit base type
Implicit_Base :=
Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
Set_Etype (Implicit_Base, Implicit_Base);
-- Analyze and process delta expression
Analyze_And_Resolve (Delta_Expr, Any_Real);
Check_Delta_Expression (Delta_Expr);
Delta_Val := Expr_Value_R (Delta_Expr);
Set_Delta_Value (Implicit_Base, Delta_Val);
-- Compute default small from given delta, which is the largest
-- power of two that does not exceed the given delta value.
declare
Tmp : Ureal := Ureal_1;
Scale : Int := 0;
begin
if Delta_Val < Ureal_1 then
while Delta_Val < Tmp loop
Tmp := Tmp / Ureal_2;
Scale := Scale + 1;
end loop;
else
loop
Tmp := Tmp * Ureal_2;
exit when Tmp > Delta_Val;
Scale := Scale - 1;
end loop;
end if;
Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
end;
Set_Small_Value (Implicit_Base, Small_Val);
-- If no range was given, set a dummy range
if RRS <= Empty_Or_Error then
Low_Val := -Small_Val;
High_Val := Small_Val;
-- Otherwise analyze and process given range
else
declare
Low : constant Node_Id := Low_Bound (RRS);
High : constant Node_Id := High_Bound (RRS);
begin
Analyze_And_Resolve (Low, Any_Real);
Analyze_And_Resolve (High, Any_Real);
Check_Real_Bound (Low);
Check_Real_Bound (High);
-- Obtain and set the range
Low_Val := Expr_Value_R (Low);
High_Val := Expr_Value_R (High);
if Low_Val > High_Val then
Error_Msg_NE ("?fixed point type& has null range", Def, T);
end if;
end;
end if;
-- The range for both the implicit base and the declared first
-- subtype cannot be set yet, so we use the special routine
-- Set_Fixed_Range to set a temporary range in place. Note that
-- the bounds of the base type will be widened to be symmetrical
-- and to fill the available bits when the type is frozen.
-- We could do this with all discrete types, and probably should, but
-- we absolutely have to do it for fixed-point, since the end-points
-- of the range and the size are determined by the small value, which
-- could be reset before the freeze point.
Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
Init_Size_Align (Implicit_Base);
-- Complete definition of first subtype
Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
Set_Etype (T, Implicit_Base);
Init_Size_Align (T);
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
Set_Small_Value (T, Small_Val);
Set_Delta_Value (T, Delta_Val);
Set_Is_Constrained (T);
end Ordinary_Fixed_Point_Type_Declaration;
----------------------------------------
-- Prepare_Private_Subtype_Completion --
----------------------------------------
procedure Prepare_Private_Subtype_Completion
(Id : Entity_Id;
Related_Nod : Node_Id)
is
Id_B : constant Entity_Id := Base_Type (Id);
Full_B : constant Entity_Id := Full_View (Id_B);
Full : Entity_Id;
begin
if Present (Full_B) then
-- The Base_Type is already completed, we can complete the
-- subtype now. We have to create a new entity with the same name,
-- Thus we can't use Create_Itype.
-- This is messy, should be fixed ???
Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
Set_Is_Itype (Full);
Set_Associated_Node_For_Itype (Full, Related_Nod);
Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
end if;
-- The parent subtype may be private, but the base might not, in some
-- nested instances. In that case, the subtype does not need to be
-- exchanged. It would still be nice to make private subtypes and their
-- bases consistent at all times ???
if Is_Private_Type (Id_B) then
Append_Elmt (Id, Private_Dependents (Id_B));
end if;
end Prepare_Private_Subtype_Completion;
---------------------------
-- Process_Discriminants --
---------------------------
procedure Process_Discriminants (N : Node_Id) is
Id : Node_Id;
Discr : Node_Id;
Discr_Number : Uint;
Discr_Type : Entity_Id;
Default_Present : Boolean := False;
Default_Not_Present : Boolean := False;
Elist : Elist_Id := New_Elmt_List;
begin
-- A composite type other than an array type can have discriminants.
-- Discriminants of non-limited types must have a discrete type.
-- On entry, the current scope is the composite type.
-- The discriminants are initially entered into the scope of the type
-- via Enter_Name with the default Ekind of E_Void to prevent premature
-- use, as explained at the end of this procedure.
Discr := First (Discriminant_Specifications (N));
while Present (Discr) loop
Enter_Name (Defining_Identifier (Discr));
if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
else
Find_Type (Discriminant_Type (Discr));
Discr_Type := Etype (Discriminant_Type (Discr));
if Error_Posted (Discriminant_Type (Discr)) then
Discr_Type := Any_Type;
end if;
end if;
if Is_Access_Type (Discr_Type) then
Check_Access_Discriminant_Requires_Limited
(Discr, Discriminant_Type (Discr));
if Ada_83 and then Comes_From_Source (Discr) then
Error_Msg_N
("(Ada 83) access discriminant not allowed", Discr);
end if;
elsif not Is_Discrete_Type (Discr_Type) then
Error_Msg_N ("discriminants must have a discrete or access type",
Discriminant_Type (Discr));
end if;
Set_Etype (Defining_Identifier (Discr), Discr_Type);
-- If a discriminant specification includes the assignment compound
-- delimiter followed by an expression, the expression is the default
-- expression of the discriminant; the default expression must be of
-- the type of the discriminant. (RM 3.7.1) Since this expression is
-- a default expression, we do the special preanalysis, since this
-- expression does not freeze (see "Handling of Default Expressions"
-- in spec of package Sem).
if Present (Expression (Discr)) then
Analyze_Default_Expression (Expression (Discr), Discr_Type);
if Nkind (N) = N_Formal_Type_Declaration then
Error_Msg_N
("discriminant defaults not allowed for formal type",
Expression (Discr));
elsif Is_Tagged_Type (Current_Scope) then
Error_Msg_N
("discriminants of tagged type cannot have defaults",
Expression (Discr));
else
Default_Present := True;
Append_Elmt (Expression (Discr), Elist);
-- Tag the defining identifiers for the discriminants with
-- their corresponding default expressions from the tree.
Set_Discriminant_Default_Value
(Defining_Identifier (Discr), Expression (Discr));
end if;
else
Default_Not_Present := True;
end if;
Next (Discr);
end loop;
-- An element list consisting of the default expressions of the
-- discriminants is constructed in the above loop and used to set
-- the Discriminant_Constraint attribute for the type. If an object
-- is declared of this (record or task) type without any explicit
-- discriminant constraint given, this element list will form the
-- actual parameters for the corresponding initialization procedure
-- for the type.
Set_Discriminant_Constraint (Current_Scope, Elist);
Set_Girder_Constraint (Current_Scope, No_Elist);
-- Default expressions must be provided either for all or for none
-- of the discriminants of a discriminant part. (RM 3.7.1)
if Default_Present and then Default_Not_Present then
Error_Msg_N
("incomplete specification of defaults for discriminants", N);
end if;
-- The use of the name of a discriminant is not allowed in default
-- expressions of a discriminant part if the specification of the
-- discriminant is itself given in the discriminant part. (RM 3.7.1)
-- To detect this, the discriminant names are entered initially with an
-- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
-- attempt to use a void entity (for example in an expression that is
-- type-checked) produces the error message: premature usage. Now after
-- completing the semantic analysis of the discriminant part, we can set
-- the Ekind of all the discriminants appropriately.
Discr := First (Discriminant_Specifications (N));
Discr_Number := Uint_1;
while Present (Discr) loop
Id := Defining_Identifier (Discr);
Set_Ekind (Id, E_Discriminant);
Init_Component_Location (Id);
Init_Esize (Id);
Set_Discriminant_Number (Id, Discr_Number);
-- Make sure this is always set, even in illegal programs
Set_Corresponding_Discriminant (Id, Empty);
-- Initialize the Original_Record_Component to the entity itself.
-- Inherit_Components will propagate the right value to
-- discriminants in derived record types.
Set_Original_Record_Component (Id, Id);
-- Create the discriminal for the discriminant.
Build_Discriminal (Id);
Next (Discr);
Discr_Number := Discr_Number + 1;
end loop;
Set_Has_Discriminants (Current_Scope);
end Process_Discriminants;
-----------------------
-- Process_Full_View --
-----------------------
procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
Priv_Parent : Entity_Id;
Full_Parent : Entity_Id;
Full_Indic : Node_Id;
begin
-- First some sanity checks that must be done after semantic
-- decoration of the full view and thus cannot be placed with other
-- similar checks in Find_Type_Name
if not Is_Limited_Type (Priv_T)
and then (Is_Limited_Type (Full_T)
or else Is_Limited_Composite (Full_T))
then
Error_Msg_N
("completion of nonlimited type cannot be limited", Full_T);
elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
Error_Msg_N
("completion of nonabstract type cannot be abstract", Full_T);
elsif Is_Tagged_Type (Priv_T)
and then Is_Limited_Type (Priv_T)
and then not Is_Limited_Type (Full_T)
then
-- GNAT allow its own definition of Limited_Controlled to disobey
-- this rule in order in ease the implementation. The next test is
-- safe because Root_Controlled is defined in a private system child
if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
Set_Is_Limited_Composite (Full_T);
else
Error_Msg_N
("completion of limited tagged type must be limited", Full_T);
end if;
elsif Is_Generic_Type (Priv_T) then
Error_Msg_N ("generic type cannot have a completion", Full_T);
end if;
if Is_Tagged_Type (Priv_T)
and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
and then Is_Derived_Type (Full_T)
then
Priv_Parent := Etype (Priv_T);
-- The full view of a private extension may have been transformed
-- into an unconstrained derived type declaration and a subtype
-- declaration (see build_derived_record_type for details).
if Nkind (N) = N_Subtype_Declaration then
Full_Indic := Subtype_Indication (N);
Full_Parent := Etype (Base_Type (Full_T));
else
Full_Indic := Subtype_Indication (Type_Definition (N));
Full_Parent := Etype (Full_T);
end if;
-- Check that the parent type of the full type is a descendant of
-- the ancestor subtype given in the private extension. If either
-- entity has an Etype equal to Any_Type then we had some previous
-- error situation [7.3(8)].
if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
return;
elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
Error_Msg_N
("parent of full type must descend from parent"
& " of private extension", Full_Indic);
-- Check the rules of 7.3(10): if the private extension inherits
-- known discriminants, then the full type must also inherit those
-- discriminants from the same (ancestor) type, and the parent
-- subtype of the full type must be constrained if and only if
-- the ancestor subtype of the private extension is constrained.
elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
and then not Has_Unknown_Discriminants (Priv_T)
and then Has_Discriminants (Base_Type (Priv_Parent))
then
declare
Priv_Indic : constant Node_Id :=
Subtype_Indication (Parent (Priv_T));
Priv_Constr : constant Boolean :=
Is_Constrained (Priv_Parent)
or else
Nkind (Priv_Indic) = N_Subtype_Indication
or else Is_Constrained (Entity (Priv_Indic));
Full_Constr : constant Boolean :=
Is_Constrained (Full_Parent)
or else
Nkind (Full_Indic) = N_Subtype_Indication
or else Is_Constrained (Entity (Full_Indic));
Priv_Discr : Entity_Id;
Full_Discr : Entity_Id;
begin
Priv_Discr := First_Discriminant (Priv_Parent);
Full_Discr := First_Discriminant (Full_Parent);
while Present (Priv_Discr) and then Present (Full_Discr) loop
if Original_Record_Component (Priv_Discr) =
Original_Record_Component (Full_Discr)
or else
Corresponding_Discriminant (Priv_Discr) =
Corresponding_Discriminant (Full_Discr)
then
null;
else
exit;
end if;
Next_Discriminant (Priv_Discr);
Next_Discriminant (Full_Discr);
end loop;
if Present (Priv_Discr) or else Present (Full_Discr) then
Error_Msg_N
("full view must inherit discriminants of the parent type"
& " used in the private extension", Full_Indic);
elsif Priv_Constr and then not Full_Constr then
Error_Msg_N
("parent subtype of full type must be constrained",
Full_Indic);
elsif Full_Constr and then not Priv_Constr then
Error_Msg_N
("parent subtype of full type must be unconstrained",
Full_Indic);
end if;
end;
-- Check the rules of 7.3(12): if a partial view has neither known
-- or unknown discriminants, then the full type declaration shall
-- define a definite subtype.
elsif not Has_Unknown_Discriminants (Priv_T)
and then not Has_Discriminants (Priv_T)
and then not Is_Constrained (Full_T)
then
Error_Msg_N
("full view must define a constrained type if partial view"
& " has no discriminants", Full_T);
end if;
-- ??????? Do we implement the following properly ?????
-- If the ancestor subtype of a private extension has constrained
-- discriminants, then the parent subtype of the full view shall
-- impose a statically matching constraint on those discriminants
-- [7.3(13)].
else
-- For untagged types, verify that a type without discriminants
-- is not completed with an unconstrained type.
if not Is_Indefinite_Subtype (Priv_T)
and then Is_Indefinite_Subtype (Full_T)
then
Error_Msg_N ("full view of type must be definite subtype", Full_T);
end if;
end if;
-- Create a full declaration for all its subtypes recorded in
-- Private_Dependents and swap them similarly to the base type.
-- These are subtypes that have been define before the full
-- declaration of the private type. We also swap the entry in
-- Private_Dependents list so we can properly restore the
-- private view on exit from the scope.
declare
Priv_Elmt : Elmt_Id;
Priv : Entity_Id;
Full : Entity_Id;
begin
Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
while Present (Priv_Elmt) loop
Priv := Node (Priv_Elmt);
if Ekind (Priv) = E_Private_Subtype
or else Ekind (Priv) = E_Limited_Private_Subtype
or else Ekind (Priv) = E_Record_Subtype_With_Private
then
Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
Set_Is_Itype (Full);
Set_Parent (Full, Parent (Priv));
Set_Associated_Node_For_Itype (Full, N);
-- Now we need to complete the private subtype, but since the
-- base type has already been swapped, we must also swap the
-- subtypes (and thus, reverse the arguments in the call to
-- Complete_Private_Subtype).
Copy_And_Swap (Priv, Full);
Complete_Private_Subtype (Full, Priv, Full_T, N);
Replace_Elmt (Priv_Elmt, Full);
end if;
Next_Elmt (Priv_Elmt);
end loop;
end;
-- If the private view was tagged, copy the new Primitive
-- operations from the private view to the full view.
if Is_Tagged_Type (Full_T) then
declare
Priv_List : Elist_Id;
Full_List : constant Elist_Id := Primitive_Operations (Full_T);
P1, P2 : Elmt_Id;
Prim : Entity_Id;
D_Type : Entity_Id;
begin
if Is_Tagged_Type (Priv_T) then
Priv_List := Primitive_Operations (Priv_T);
P1 := First_Elmt (Priv_List);
while Present (P1) loop
Prim := Node (P1);
-- Transfer explicit primitives, not those inherited from
-- parent of partial view, which will be re-inherited on
-- the full view.
if Comes_From_Source (Prim) then
P2 := First_Elmt (Full_List);
while Present (P2) and then Node (P2) /= Prim loop
Next_Elmt (P2);
end loop;
-- If not found, that is a new one
if No (P2) then
Append_Elmt (Prim, Full_List);
end if;
end if;
Next_Elmt (P1);
end loop;
else
-- In this case the partial view is untagged, so here we
-- locate all of the earlier primitives that need to be
-- treated as dispatching (those that appear between the
-- two views). Note that these additional operations must
-- all be new operations (any earlier operations that
-- override inherited operations of the full view will
-- already have been inserted in the primitives list and
-- marked as dispatching by Check_Operation_From_Private_View.
-- Note that implicit "/=" operators are excluded from being
-- added to the primitives list since they shouldn't be
-- treated as dispatching (tagged "/=" is handled specially).
Prim := Next_Entity (Full_T);
while Present (Prim) and then Prim /= Priv_T loop
if (Ekind (Prim) = E_Procedure
or else Ekind (Prim) = E_Function)
then
D_Type := Find_Dispatching_Type (Prim);
if D_Type = Full_T
and then (Chars (Prim) /= Name_Op_Ne
or else Comes_From_Source (Prim))
then
Check_Controlling_Formals (Full_T, Prim);
if not Is_Dispatching_Operation (Prim) then
Append_Elmt (Prim, Full_List);
Set_Is_Dispatching_Operation (Prim, True);
Set_DT_Position (Prim, No_Uint);
end if;
elsif Is_Dispatching_Operation (Prim)
and then D_Type /= Full_T
then
-- Verify that it is not otherwise controlled by
-- a formal or a return value ot type T.
Check_Controlling_Formals (D_Type, Prim);
end if;
end if;
Next_Entity (Prim);
end loop;
end if;
-- For the tagged case, the two views can share the same
-- Primitive Operation list and the same class wide type.
-- Update attributes of the class-wide type which depend on
-- the full declaration.
if Is_Tagged_Type (Priv_T) then
Set_Primitive_Operations (Priv_T, Full_List);
Set_Class_Wide_Type
(Base_Type (Full_T), Class_Wide_Type (Priv_T));
-- Any other attributes should be propagated to C_W ???
Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
end if;
end;
end if;
end Process_Full_View;
-----------------------------------
-- Process_Incomplete_Dependents --
-----------------------------------
procedure Process_Incomplete_Dependents
(N : Node_Id;
Full_T : Entity_Id;
Inc_T : Entity_Id)
is
Inc_Elmt : Elmt_Id;
Priv_Dep : Entity_Id;
New_Subt : Entity_Id;
Disc_Constraint : Elist_Id;
begin
if No (Private_Dependents (Inc_T)) then
return;
else
Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
-- Itypes that may be generated by the completion of an incomplete
-- subtype are not used by the back-end and not attached to the tree.
-- They are created only for constraint-checking purposes.
end if;
while Present (Inc_Elmt) loop
Priv_Dep := Node (Inc_Elmt);
if Ekind (Priv_Dep) = E_Subprogram_Type then
-- An Access_To_Subprogram type may have a return type or a
-- parameter type that is incomplete. Replace with the full view.
if Etype (Priv_Dep) = Inc_T then
Set_Etype (Priv_Dep, Full_T);
end if;
declare
Formal : Entity_Id;
begin
Formal := First_Formal (Priv_Dep);
while Present (Formal) loop
if Etype (Formal) = Inc_T then
Set_Etype (Formal, Full_T);
end if;
Next_Formal (Formal);
end loop;
end;
elsif Is_Overloadable (Priv_Dep) then
if Is_Tagged_Type (Full_T) then
-- Subprogram has an access parameter whose designated type
-- was incomplete. Reexamine declaration now, because it may
-- be a primitive operation of the full type.
Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
Set_Is_Dispatching_Operation (Priv_Dep);
Check_Controlling_Formals (Full_T, Priv_Dep);
end if;
elsif Ekind (Priv_Dep) = E_Subprogram_Body then
-- Can happen during processing of a body before the completion
-- of a TA type. Ignore, because spec is also on dependent list.
return;
-- Dependent is a subtype
else
-- We build a new subtype indication using the full view of the
-- incomplete parent. The discriminant constraints have been
-- elaborated already at the point of the subtype declaration.
New_Subt := Create_Itype (E_Void, N);
if Has_Discriminants (Full_T) then
Disc_Constraint := Discriminant_Constraint (Priv_Dep);
else
Disc_Constraint := No_Elist;
end if;
Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
Set_Full_View (Priv_Dep, New_Subt);
end if;
Next_Elmt (Inc_Elmt);
end loop;
end Process_Incomplete_Dependents;
--------------------------------
-- Process_Range_Expr_In_Decl --
--------------------------------
procedure Process_Range_Expr_In_Decl
(R : Node_Id;
T : Entity_Id;
Check_List : List_Id := Empty_List;
R_Check_Off : Boolean := False)
is
Lo, Hi : Node_Id;
R_Checks : Check_Result;
Type_Decl : Node_Id;
Def_Id : Entity_Id;
begin
Analyze_And_Resolve (R, Base_Type (T));
if Nkind (R) = N_Range then
Lo := Low_Bound (R);
Hi := High_Bound (R);
-- If there were errors in the declaration, try and patch up some
-- common mistakes in the bounds. The cases handled are literals
-- which are Integer where the expected type is Real and vice versa.
-- These corrections allow the compilation process to proceed further
-- along since some basic assumptions of the format of the bounds
-- are guaranteed.
if Etype (R) = Any_Type then
if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
Rewrite (Lo,
Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
Rewrite (Hi,
Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
Rewrite (Lo,
Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
Rewrite (Hi,
Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
end if;
Set_Etype (Lo, T);
Set_Etype (Hi, T);
end if;
-- If the bounds of the range have been mistakenly given as
-- string literals (perhaps in place of character literals),
-- then an error has already been reported, but we rewrite
-- the string literal as a bound of the range's type to
-- avoid blowups in later processing that looks at static
-- values.
if Nkind (Lo) = N_String_Literal then
Rewrite (Lo,
Make_Attribute_Reference (Sloc (Lo),
Attribute_Name => Name_First,
Prefix => New_Reference_To (T, Sloc (Lo))));
Analyze_And_Resolve (Lo);
end if;
if Nkind (Hi) = N_String_Literal then
Rewrite (Hi,
Make_Attribute_Reference (Sloc (Hi),
Attribute_Name => Name_First,
Prefix => New_Reference_To (T, Sloc (Hi))));
Analyze_And_Resolve (Hi);
end if;
-- If bounds aren't scalar at this point then exit, avoiding
-- problems with further processing of the range in this procedure.
if not Is_Scalar_Type (Etype (Lo)) then
return;
end if;
-- Resolve (actually Sem_Eval) has checked that the bounds are in
-- then range of the base type. Here we check whether the bounds
-- are in the range of the subtype itself. Note that if the bounds
-- represent the null range the Constraint_Error exception should
-- not be raised.
-- ??? The following code should be cleaned up as follows
-- 1. The Is_Null_Range (Lo, Hi) test should disapper since it
-- is done in the call to Range_Check (R, T); below
-- 2. The use of R_Check_Off should be investigated and possibly
-- removed, this would clean up things a bit.
if Is_Null_Range (Lo, Hi) then
null;
else
-- We use a flag here instead of suppressing checks on the
-- type because the type we check against isn't necessarily the
-- place where we put the check.
if not R_Check_Off then
R_Checks := Range_Check (R, T);
Type_Decl := Parent (R);
-- Look up tree to find an appropriate insertion point.
-- This seems really junk code, and very brittle, couldn't
-- we just use an insert actions call of some kind ???
while Present (Type_Decl) and then not
(Nkind (Type_Decl) = N_Full_Type_Declaration
or else
Nkind (Type_Decl) = N_Subtype_Declaration
or else
Nkind (Type_Decl) = N_Loop_Statement
or else
Nkind (Type_Decl) = N_Task_Type_Declaration
or else
Nkind (Type_Decl) = N_Single_Task_Declaration
or else
Nkind (Type_Decl) = N_Protected_Type_Declaration
or else
Nkind (Type_Decl) = N_Single_Protected_Declaration)
loop
Type_Decl := Parent (Type_Decl);
end loop;
-- Why would Type_Decl not be present??? Without this test,
-- short regression tests fail.
if Present (Type_Decl) then
if Nkind (Type_Decl) = N_Loop_Statement then
declare
Indic : Node_Id := Parent (R);
begin
while Present (Indic) and then not
(Nkind (Indic) = N_Subtype_Indication)
loop
Indic := Parent (Indic);
end loop;
if Present (Indic) then
Def_Id := Etype (Subtype_Mark (Indic));
Insert_Range_Checks
(R_Checks,
Type_Decl,
Def_Id,
Sloc (Type_Decl),
R,
Do_Before => True);
end if;
end;
else
Def_Id := Defining_Identifier (Type_Decl);
if (Ekind (Def_Id) = E_Record_Type
and then Depends_On_Discriminant (R))
or else
(Ekind (Def_Id) = E_Protected_Type
and then Has_Discriminants (Def_Id))
then
Append_Range_Checks
(R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
else
Insert_Range_Checks
(R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
end if;
end if;
end if;
end if;
end if;
end if;
Get_Index_Bounds (R, Lo, Hi);
if Expander_Active then
Force_Evaluation (Lo);
Force_Evaluation (Hi);
end if;
end Process_Range_Expr_In_Decl;
--------------------------------------
-- Process_Real_Range_Specification --
--------------------------------------
procedure Process_Real_Range_Specification (Def : Node_Id) is
Spec : constant Node_Id := Real_Range_Specification (Def);
Lo : Node_Id;
Hi : Node_Id;
Err : Boolean := False;
procedure Analyze_Bound (N : Node_Id);
-- Analyze and check one bound
procedure Analyze_Bound (N : Node_Id) is
begin
Analyze_And_Resolve (N, Any_Real);
if not Is_OK_Static_Expression (N) then
Error_Msg_N
("bound in real type definition is not static", N);
Err := True;
end if;
end Analyze_Bound;
begin
if Present (Spec) then
Lo := Low_Bound (Spec);
Hi := High_Bound (Spec);
Analyze_Bound (Lo);
Analyze_Bound (Hi);
-- If error, clear away junk range specification
if Err then
Set_Real_Range_Specification (Def, Empty);
end if;
end if;
end Process_Real_Range_Specification;
---------------------
-- Process_Subtype --
---------------------
function Process_Subtype
(S : Node_Id;
Related_Nod : Node_Id;
Related_Id : Entity_Id := Empty;
Suffix : Character := ' ')
return Entity_Id
is
P : Node_Id;
Def_Id : Entity_Id;
Full_View_Id : Entity_Id;
Subtype_Mark_Id : Entity_Id;
N_Dynamic_Ityp : Node_Id := Empty;
begin
-- Case of constraint present, so that we have an N_Subtype_Indication
-- node (this node is created only if constraints are present).
if Nkind (S) = N_Subtype_Indication then
Find_Type (Subtype_Mark (S));
if Nkind (Parent (S)) /= N_Access_To_Object_Definition
and then not
(Nkind (Parent (S)) = N_Subtype_Declaration
and then
Is_Itype (Defining_Identifier (Parent (S))))
then
Check_Incomplete (Subtype_Mark (S));
end if;
P := Parent (S);
Subtype_Mark_Id := Entity (Subtype_Mark (S));
if Is_Unchecked_Union (Subtype_Mark_Id)
and then Comes_From_Source (Related_Nod)
then
Error_Msg_N
("cannot create subtype of Unchecked_Union", Related_Nod);
end if;
-- Explicit subtype declaration case
if Nkind (P) = N_Subtype_Declaration then
Def_Id := Defining_Identifier (P);
-- Explicit derived type definition case
elsif Nkind (P) = N_Derived_Type_Definition then
Def_Id := Defining_Identifier (Parent (P));
-- Implicit case, the Def_Id must be created as an implicit type.
-- The one exception arises in the case of concurrent types,
-- array and access types, where other subsidiary implicit types
-- may be created and must appear before the main implicit type.
-- In these cases we leave Def_Id set to Empty as a signal that
-- Create_Itype has not yet been called to create Def_Id.
else
if Is_Array_Type (Subtype_Mark_Id)
or else Is_Concurrent_Type (Subtype_Mark_Id)
or else Is_Access_Type (Subtype_Mark_Id)
then
Def_Id := Empty;
-- For the other cases, we create a new unattached Itype,
-- and set the indication to ensure it gets attached later.
else
Def_Id :=
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
end if;
N_Dynamic_Ityp := Related_Nod;
end if;
-- If the kind of constraint is invalid for this kind of type,
-- then give an error, and then pretend no constraint was given.
if not Is_Valid_Constraint_Kind
(Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
then
Error_Msg_N
("incorrect constraint for this kind of type", Constraint (S));
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
-- Make recursive call, having got rid of the bogus constraint
return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
end if;
-- Remaining processing depends on type
case Ekind (Subtype_Mark_Id) is
when Access_Kind =>
Constrain_Access (Def_Id, S, Related_Nod);
when Array_Kind =>
Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
when Decimal_Fixed_Point_Kind =>
Constrain_Decimal (Def_Id, S);
when Enumeration_Kind =>
Constrain_Enumeration (Def_Id, S);
when Ordinary_Fixed_Point_Kind =>
Constrain_Ordinary_Fixed (Def_Id, S);
when Float_Kind =>
Constrain_Float (Def_Id, S);
when Integer_Kind =>
Constrain_Integer (Def_Id, S);
when E_Record_Type |
E_Record_Subtype |
Class_Wide_Kind |
E_Incomplete_Type =>
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
when Private_Kind =>
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
Set_Private_Dependents (Def_Id, New_Elmt_List);
-- In case of an invalid constraint prevent further processing
-- since the type constructed is missing expected fields.
if Etype (Def_Id) = Any_Type then
return Def_Id;
end if;
-- If the full view is that of a task with discriminants,
-- we must constrain both the concurrent type and its
-- corresponding record type. Otherwise we will just propagate
-- the constraint to the full view, if available.
if Present (Full_View (Subtype_Mark_Id))
and then Has_Discriminants (Subtype_Mark_Id)
and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
then
Full_View_Id :=
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
Constrain_Concurrent (Full_View_Id, S,
Related_Nod, Related_Id, Suffix);
Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
Set_Full_View (Def_Id, Full_View_Id);
else
Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
end if;
when Concurrent_Kind =>
Constrain_Concurrent (Def_Id, S,
Related_Nod, Related_Id, Suffix);
when others =>
Error_Msg_N ("invalid subtype mark in subtype indication", S);
end case;
-- Size and Convention are always inherited from the base type
Set_Size_Info (Def_Id, (Subtype_Mark_Id));
Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
return Def_Id;
-- Case of no constraints present
else
Find_Type (S);
Check_Incomplete (S);
return Entity (S);
end if;
end Process_Subtype;
-----------------------------
-- Record_Type_Declaration --
-----------------------------
procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id) is
Def : constant Node_Id := Type_Definition (N);
Range_Checks_Suppressed_Flag : Boolean := False;
Is_Tagged : Boolean;
Tag_Comp : Entity_Id;
begin
-- The flag Is_Tagged_Type might have already been set by Find_Type_Name
-- if it detected an error for declaration T. This arises in the case of
-- private tagged types where the full view omits the word tagged.
Is_Tagged := Tagged_Present (Def)
or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
-- Records constitute a scope for the component declarations within.
-- The scope is created prior to the processing of these declarations.
-- Discriminants are processed first, so that they are visible when
-- processing the other components. The Ekind of the record type itself
-- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
-- Enter record scope
New_Scope (T);
-- These flags must be initialized before calling Process_Discriminants
-- because this routine makes use of them.
Set_Is_Tagged_Type (T, Is_Tagged);
Set_Is_Limited_Record (T, Limited_Present (Def));
-- Type is abstract if full declaration carries keyword, or if
-- previous partial view did.
Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
Set_Ekind (T, E_Record_Type);
Set_Etype (T, T);
Init_Size_Align (T);
Set_Girder_Constraint (T, No_Elist);
-- If an incomplete or private type declaration was already given for
-- the type, then this scope already exists, and the discriminants have
-- been declared within. We must verify that the full declaration
-- matches the incomplete one.
Check_Or_Process_Discriminants (N, T);
Set_Is_Constrained (T, not Has_Discriminants (T));
Set_Has_Delayed_Freeze (T, True);
-- For tagged types add a manually analyzed component corresponding
-- to the component _tag, the corresponding piece of tree will be
-- expanded as part of the freezing actions if it is not a CPP_Class.
if Is_Tagged then
-- Do not add the tag unless we are in expansion mode.
if Expander_Active then
Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
Enter_Name (Tag_Comp);
Set_Is_Tag (Tag_Comp);
Set_Ekind (Tag_Comp, E_Component);
Set_Etype (Tag_Comp, RTE (RE_Tag));
Set_DT_Entry_Count (Tag_Comp, No_Uint);
Set_Original_Record_Component (Tag_Comp, Tag_Comp);
Init_Component_Location (Tag_Comp);
end if;
Make_Class_Wide_Type (T);
Set_Primitive_Operations (T, New_Elmt_List);
end if;
-- We must suppress range checks when processing the components
-- of a record in the presence of discriminants, since we don't
-- want spurious checks to be generated during their analysis, but
-- must reset the Suppress_Range_Checks flags after having procesed
-- the record definition.
if Has_Discriminants (T) and then not Suppress_Range_Checks (T) then
Set_Suppress_Range_Checks (T, True);
Range_Checks_Suppressed_Flag := True;
end if;
Record_Type_Definition (Def, T);
if Range_Checks_Suppressed_Flag then
Set_Suppress_Range_Checks (T, False);
Range_Checks_Suppressed_Flag := False;
end if;
-- Exit from record scope
End_Scope;
end Record_Type_Declaration;
----------------------------
-- Record_Type_Definition --
----------------------------
procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id) is
Component : Entity_Id;
Ctrl_Components : Boolean := False;
Final_Storage_Only : Boolean := not Is_Controlled (T);
begin
-- If the component list of a record type is defined by the reserved
-- word null and there is no discriminant part, then the record type has
-- no components and all records of the type are null records (RM 3.7)
-- This procedure is also called to process the extension part of a
-- record extension, in which case the current scope may have inherited
-- components.
if No (Def)
or else No (Component_List (Def))
or else Null_Present (Component_List (Def))
then
null;
else
Analyze_Declarations (Component_Items (Component_List (Def)));
if Present (Variant_Part (Component_List (Def))) then
Analyze (Variant_Part (Component_List (Def)));
end if;
end if;
-- After completing the semantic analysis of the record definition,
-- record components, both new and inherited, are accessible. Set
-- their kind accordingly.
Component := First_Entity (Current_Scope);
while Present (Component) loop
if Ekind (Component) = E_Void then
Set_Ekind (Component, E_Component);
Init_Component_Location (Component);
end if;
if Has_Task (Etype (Component)) then
Set_Has_Task (T);
end if;
if Ekind (Component) /= E_Component then
null;
elsif Has_Controlled_Component (Etype (Component))
or else (Chars (Component) /= Name_uParent
and then Is_Controlled (Etype (Component)))
then
Set_Has_Controlled_Component (T, True);
Final_Storage_Only := Final_Storage_Only
and then Finalize_Storage_Only (Etype (Component));
Ctrl_Components := True;
end if;
Next_Entity (Component);
end loop;
-- A type is Finalize_Storage_Only only if all its controlled
-- components are so.
if Ctrl_Components then
Set_Finalize_Storage_Only (T, Final_Storage_Only);
end if;
if Present (Def) then
Process_End_Label (Def, 'e', T);
end if;
end Record_Type_Definition;
------------------------
-- Replace_Components --
------------------------
procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
function Process (N : Node_Id) return Traverse_Result;
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
Comp : Entity_Id;
begin
if Nkind (N) = N_Discriminant_Specification then
Comp := First_Discriminant (Typ);
while Present (Comp) loop
if Chars (Comp) = Chars (Defining_Identifier (N)) then
Set_Defining_Identifier (N, Comp);
exit;
end if;
Next_Discriminant (Comp);
end loop;
elsif Nkind (N) = N_Component_Declaration then
Comp := First_Component (Typ);
while Present (Comp) loop
if Chars (Comp) = Chars (Defining_Identifier (N)) then
Set_Defining_Identifier (N, Comp);
exit;
end if;
Next_Component (Comp);
end loop;
end if;
return OK;
end Process;
procedure Replace is new Traverse_Proc (Process);
-- Start of processing for Replace_Components
begin
Replace (Decl);
end Replace_Components;
-------------------------------
-- Set_Completion_Referenced --
-------------------------------
procedure Set_Completion_Referenced (E : Entity_Id) is
begin
-- If in main unit, mark entity that is a completion as referenced,
-- warnings go on the partial view when needed.
if In_Extended_Main_Source_Unit (E) then
Set_Referenced (E);
end if;
end Set_Completion_Referenced;
---------------------
-- Set_Fixed_Range --
---------------------
-- The range for fixed-point types is complicated by the fact that we
-- do not know the exact end points at the time of the declaration. This
-- is true for three reasons:
-- A size clause may affect the fudging of the end-points
-- A small clause may affect the values of the end-points
-- We try to include the end-points if it does not affect the size
-- This means that the actual end-points must be established at the
-- point when the type is frozen. Meanwhile, we first narrow the range
-- as permitted (so that it will fit if necessary in a small specified
-- size), and then build a range subtree with these narrowed bounds.
-- Set_Fixed_Range constructs the range from real literal values, and
-- sets the range as the Scalar_Range of the given fixed-point type
-- entity.
-- The parent of this range is set to point to the entity so that it
-- is properly hooked into the tree (unlike normal Scalar_Range entries
-- for other scalar types, which are just pointers to the range in the
-- original tree, this would otherwise be an orphan).
-- The tree is left unanalyzed. When the type is frozen, the processing
-- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
-- analyzed, and uses this as an indication that it should complete
-- work on the range (it will know the final small and size values).
procedure Set_Fixed_Range
(E : Entity_Id;
Loc : Source_Ptr;
Lo : Ureal;
Hi : Ureal)
is
S : constant Node_Id :=
Make_Range (Loc,
Low_Bound => Make_Real_Literal (Loc, Lo),
High_Bound => Make_Real_Literal (Loc, Hi));
begin
Set_Scalar_Range (E, S);
Set_Parent (S, E);
end Set_Fixed_Range;
--------------------------------------------------------
-- Set_Girder_Constraint_From_Discriminant_Constraint --
--------------------------------------------------------
procedure Set_Girder_Constraint_From_Discriminant_Constraint
(E : Entity_Id)
is
begin
-- Make sure set if encountered during
-- Expand_To_Girder_Constraint
Set_Girder_Constraint (E, No_Elist);
-- Give it the right value
if Is_Constrained (E) and then Has_Discriminants (E) then
Set_Girder_Constraint (E,
Expand_To_Girder_Constraint (E, Discriminant_Constraint (E)));
end if;
end Set_Girder_Constraint_From_Discriminant_Constraint;
----------------------------------
-- Set_Scalar_Range_For_Subtype --
----------------------------------
procedure Set_Scalar_Range_For_Subtype
(Def_Id : Entity_Id;
R : Node_Id;
Subt : Entity_Id)
is
Kind : constant Entity_Kind := Ekind (Def_Id);
begin
Set_Scalar_Range (Def_Id, R);
-- We need to link the range into the tree before resolving it so
-- that types that are referenced, including importantly the subtype
-- itself, are properly frozen (Freeze_Expression requires that the
-- expression be properly linked into the tree). Of course if it is
-- already linked in, then we do not disturb the current link.
if No (Parent (R)) then
Set_Parent (R, Def_Id);
end if;
-- Reset the kind of the subtype during analysis of the range, to
-- catch possible premature use in the bounds themselves.
Set_Ekind (Def_Id, E_Void);
Process_Range_Expr_In_Decl (R, Subt);
Set_Ekind (Def_Id, Kind);
end Set_Scalar_Range_For_Subtype;
-------------------------------------
-- Signed_Integer_Type_Declaration --
-------------------------------------
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
Implicit_Base : Entity_Id;
Base_Typ : Entity_Id;
Lo_Val : Uint;
Hi_Val : Uint;
Errs : Boolean := False;
Lo : Node_Id;
Hi : Node_Id;
function Can_Derive_From (E : Entity_Id) return Boolean;
-- Determine whether given bounds allow derivation from specified type
procedure Check_Bound (Expr : Node_Id);
-- Check bound to make sure it is integral and static. If not, post
-- appropriate error message and set Errs flag
function Can_Derive_From (E : Entity_Id) return Boolean is
Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
Hi : constant Uint := Expr_Value (Type_High_Bound (E));
begin
-- Note we check both bounds against both end values, to deal with
-- strange types like ones with a range of 0 .. -12341234.
return Lo <= Lo_Val and then Lo_Val <= Hi
and then
Lo <= Hi_Val and then Hi_Val <= Hi;
end Can_Derive_From;
procedure Check_Bound (Expr : Node_Id) is
begin
-- If a range constraint is used as an integer type definition, each
-- bound of the range must be defined by a static expression of some
-- integer type, but the two bounds need not have the same integer
-- type (Negative bounds are allowed.) (RM 3.5.4)
if not Is_Integer_Type (Etype (Expr)) then
Error_Msg_N
("integer type definition bounds must be of integer type", Expr);
Errs := True;
elsif not Is_OK_Static_Expression (Expr) then
Error_Msg_N
("non-static expression used for integer type bound", Expr);
Errs := True;
-- The bounds are folded into literals, and we set their type to be
-- universal, to avoid typing difficulties: we cannot set the type
-- of the literal to the new type, because this would be a forward
-- reference for the back end, and if the original type is user-
-- defined this can lead to spurious semantic errors (e.g. 2928-003).
else
if Is_Entity_Name (Expr) then
Fold_Uint (Expr, Expr_Value (Expr));
end if;
Set_Etype (Expr, Universal_Integer);
end if;
end Check_Bound;
-- Start of processing for Signed_Integer_Type_Declaration
begin
-- Create an anonymous base type
Implicit_Base :=
Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
-- Analyze and check the bounds, they can be of any integer type
Lo := Low_Bound (Def);
Hi := High_Bound (Def);
-- Arbitrarily use Integer as the type if either bound had an error
if Hi = Error or else Lo = Error then
Base_Typ := Any_Integer;
Set_Error_Posted (T, True);
-- Here both bounds are OK expressions
else
Analyze_And_Resolve (Lo, Any_Integer);
Analyze_And_Resolve (Hi, Any_Integer);
Check_Bound (Lo);
Check_Bound (Hi);
if Errs then
Hi := Type_High_Bound (Standard_Long_Long_Integer);
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
end if;
-- Find type to derive from
Lo_Val := Expr_Value (Lo);
Hi_Val := Expr_Value (Hi);
if Can_Derive_From (Standard_Short_Short_Integer) then
Base_Typ := Base_Type (Standard_Short_Short_Integer);
elsif Can_Derive_From (Standard_Short_Integer) then
Base_Typ := Base_Type (Standard_Short_Integer);
elsif Can_Derive_From (Standard_Integer) then
Base_Typ := Base_Type (Standard_Integer);
elsif Can_Derive_From (Standard_Long_Integer) then
Base_Typ := Base_Type (Standard_Long_Integer);
elsif Can_Derive_From (Standard_Long_Long_Integer) then
Base_Typ := Base_Type (Standard_Long_Long_Integer);
else
Base_Typ := Base_Type (Standard_Long_Long_Integer);
Error_Msg_N ("integer type definition bounds out of range", Def);
Hi := Type_High_Bound (Standard_Long_Long_Integer);
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
end if;
end if;
-- Complete both implicit base and declared first subtype entities
Set_Etype (Implicit_Base, Base_Typ);
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
Set_Size_Info (Implicit_Base, (Base_Typ));
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
Set_Ekind (T, E_Signed_Integer_Subtype);
Set_Etype (T, Implicit_Base);
Set_Size_Info (T, (Implicit_Base));
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
Set_Scalar_Range (T, Def);
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
Set_Is_Constrained (T);
end Signed_Integer_Type_Declaration;
end Sem_Ch3;
|