summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch6.adb
blob: 32323400b6d61d56aca845058753c95c98bda490 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ C H 6                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Checks;   use Checks;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Expander; use Expander;
with Exp_Ch6;  use Exp_Ch6;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Ch9;  use Exp_Ch9;
with Exp_Disp; use Exp_Disp;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname;    use Fname;
with Freeze;   use Freeze;
with Itypes;   use Itypes;
with Lib.Xref; use Lib.Xref;
with Layout;   use Layout;
with Namet;    use Namet;
with Lib;      use Lib;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Output;   use Output;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Cat;  use Sem_Cat;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch4;  use Sem_Ch4;
with Sem_Ch5;  use Sem_Ch5;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res;  use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinput;   use Sinput;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Snames;   use Snames;
with Stringt;  use Stringt;
with Style;
with Stylesw;  use Stylesw;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Urealp;   use Urealp;
with Validsw;  use Validsw;

package body Sem_Ch6 is

   May_Hide_Profile : Boolean := False;
   --  This flag is used to indicate that two formals in two subprograms being
   --  checked for conformance differ only in that one is an access parameter
   --  while the other is of a general access type with the same designated
   --  type. In this case, if the rest of the signatures match, a call to
   --  either subprogram may be ambiguous, which is worth a warning. The flag
   --  is set in Compatible_Types, and the warning emitted in
   --  New_Overloaded_Entity.

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Analyze_Return_Statement (N : Node_Id);
   --  Common processing for simple_ and extended_return_statements

   procedure Analyze_Function_Return (N : Node_Id);
   --  Subsidiary to Analyze_Return_Statement. Called when the return statement
   --  applies to a [generic] function.

   procedure Analyze_Return_Type (N : Node_Id);
   --  Subsidiary to Process_Formals: analyze subtype mark in function
   --  specification, in a context where the formals are visible and hide
   --  outer homographs.

   procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
   --  Does all the real work of Analyze_Subprogram_Body

   procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
   --  Analyze a generic subprogram body. N is the body to be analyzed, and
   --  Gen_Id is the defining entity Id for the corresponding spec.

   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
   --  If a subprogram has pragma Inline and inlining is active, use generic
   --  machinery to build an unexpanded body for the subprogram. This body is
   --  subsequently used for inline expansions at call sites. If subprogram can
   --  be inlined (depending on size and nature of local declarations) this
   --  function returns true. Otherwise subprogram body is treated normally.
   --  If proper warnings are enabled and the subprogram contains a construct
   --  that cannot be inlined, the offending construct is flagged accordingly.

   procedure Check_Conformance
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Ctype                    : Conformance_Type;
      Errmsg                   : Boolean;
      Conforms                 : out Boolean;
      Err_Loc                  : Node_Id := Empty;
      Get_Inst                 : Boolean := False;
      Skip_Controlling_Formals : Boolean := False);
   --  Given two entities, this procedure checks that the profiles associated
   --  with these entities meet the conformance criterion given by the third
   --  parameter. If they conform, Conforms is set True and control returns
   --  to the caller. If they do not conform, Conforms is set to False, and
   --  in addition, if Errmsg is True on the call, proper messages are output
   --  to complain about the conformance failure. If Err_Loc is non_Empty
   --  the error messages are placed on Err_Loc, if Err_Loc is empty, then
   --  error messages are placed on the appropriate part of the construct
   --  denoted by New_Id. If Get_Inst is true, then this is a mode conformance
   --  against a formal access-to-subprogram type so Get_Instance_Of must
   --  be called.

   procedure Check_Subprogram_Order (N : Node_Id);
   --  N is the N_Subprogram_Body node for a subprogram. This routine applies
   --  the alpha ordering rule for N if this ordering requirement applicable.

   procedure Check_Returns
     (HSS  : Node_Id;
      Mode : Character;
      Err  : out Boolean;
      Proc : Entity_Id := Empty);
   --  Called to check for missing return statements in a function body, or for
   --  returns present in a procedure body which has No_Return set. HSS is the
   --  handled statement sequence for the subprogram body. This procedure
   --  checks all flow paths to make sure they either have return (Mode = 'F',
   --  used for functions) or do not have a return (Mode = 'P', used for
   --  No_Return procedures). The flag Err is set if there are any control
   --  paths not explicitly terminated by a return in the function case, and is
   --  True otherwise. Proc is the entity for the procedure case and is used
   --  in posting the warning message.

   procedure Enter_Overloaded_Entity (S : Entity_Id);
   --  This procedure makes S, a new overloaded entity, into the first visible
   --  entity with that name.

   procedure Install_Entity (E : Entity_Id);
   --  Make single entity visible. Used for generic formals as well

   function Is_Non_Overriding_Operation
     (Prev_E : Entity_Id;
      New_E  : Entity_Id) return Boolean;
   --  Enforce the rule given in 12.3(18): a private operation in an instance
   --  overrides an inherited operation only if the corresponding operation
   --  was overriding in the generic. This can happen for primitive operations
   --  of types derived (in the generic unit) from formal private or formal
   --  derived types.

   procedure Make_Inequality_Operator (S : Entity_Id);
   --  Create the declaration for an inequality operator that is implicitly
   --  created by a user-defined equality operator that yields a boolean.

   procedure May_Need_Actuals (Fun : Entity_Id);
   --  Flag functions that can be called without parameters, i.e. those that
   --  have no parameters, or those for which defaults exist for all parameters

   procedure Process_PPCs
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id);
   --  Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
   --  conditions for the body and assembling and inserting the _postconditions
   --  procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
   --  the entities for the body and separate spec (if there is no separate
   --  spec, Spec_Id is Empty).

   procedure Set_Formal_Validity (Formal_Id : Entity_Id);
   --  Formal_Id is an formal parameter entity. This procedure deals with
   --  setting the proper validity status for this entity, which depends on
   --  the kind of parameter and the validity checking mode.

   ------------------------------
   -- Analyze_Return_Statement --
   ------------------------------

   procedure Analyze_Return_Statement (N : Node_Id) is

      pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
                                  N_Extended_Return_Statement));

      Returns_Object : constant Boolean :=
                         Nkind (N) = N_Extended_Return_Statement
                           or else
                            (Nkind (N) = N_Simple_Return_Statement
                              and then Present (Expression (N)));
      --  True if we're returning something; that is, "return <expression>;"
      --  or "return Result : T [:= ...]". False for "return;". Used for error
      --  checking: If Returns_Object is True, N should apply to a function
      --  body; otherwise N should apply to a procedure body, entry body,
      --  accept statement, or extended return statement.

      function Find_What_It_Applies_To return Entity_Id;
      --  Find the entity representing the innermost enclosing body, accept
      --  statement, or extended return statement. If the result is a callable
      --  construct or extended return statement, then this will be the value
      --  of the Return_Applies_To attribute. Otherwise, the program is
      --  illegal. See RM-6.5(4/2).

      -----------------------------
      -- Find_What_It_Applies_To --
      -----------------------------

      function Find_What_It_Applies_To return Entity_Id is
         Result : Entity_Id := Empty;

      begin
         --  Loop outward through the Scope_Stack, skipping blocks and loops

         for J in reverse 0 .. Scope_Stack.Last loop
            Result := Scope_Stack.Table (J).Entity;
            exit when Ekind (Result) /= E_Block and then
                      Ekind (Result) /= E_Loop;
         end loop;

         pragma Assert (Present (Result));
         return Result;
      end Find_What_It_Applies_To;

      --  Local declarations

      Scope_Id   : constant Entity_Id   := Find_What_It_Applies_To;
      Kind       : constant Entity_Kind := Ekind (Scope_Id);
      Loc        : constant Source_Ptr  := Sloc (N);
      Stm_Entity : constant Entity_Id   :=
                     New_Internal_Entity
                       (E_Return_Statement, Current_Scope, Loc, 'R');

   --  Start of processing for Analyze_Return_Statement

   begin
      Set_Return_Statement_Entity (N, Stm_Entity);

      Set_Etype (Stm_Entity, Standard_Void_Type);
      Set_Return_Applies_To (Stm_Entity, Scope_Id);

      --  Place Return entity on scope stack, to simplify enforcement of 6.5
      --  (4/2): an inner return statement will apply to this extended return.

      if Nkind (N) = N_Extended_Return_Statement then
         Push_Scope (Stm_Entity);
      end if;

      --  Check that pragma No_Return is obeyed. Don't complain about the
      --  implicitly-generated return that is placed at the end.

      if No_Return (Scope_Id) and then Comes_From_Source (N) then
         Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
      end if;

      --  Warn on any unassigned OUT parameters if in procedure

      if Ekind (Scope_Id) = E_Procedure then
         Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
      end if;

      --  Check that functions return objects, and other things do not

      if Kind = E_Function or else Kind = E_Generic_Function then
         if not Returns_Object then
            Error_Msg_N ("missing expression in return from function", N);
         end if;

      elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
         if Returns_Object then
            Error_Msg_N ("procedure cannot return value (use function)", N);
         end if;

      elsif Kind = E_Entry or else Kind = E_Entry_Family then
         if Returns_Object then
            if Is_Protected_Type (Scope (Scope_Id)) then
               Error_Msg_N ("entry body cannot return value", N);
            else
               Error_Msg_N ("accept statement cannot return value", N);
            end if;
         end if;

      elsif Kind = E_Return_Statement then

         --  We are nested within another return statement, which must be an
         --  extended_return_statement.

         if Returns_Object then
            Error_Msg_N
              ("extended_return_statement cannot return value; " &
               "use `""RETURN;""`", N);
         end if;

      else
         Error_Msg_N ("illegal context for return statement", N);
      end if;

      if Kind = E_Function or else Kind = E_Generic_Function then
         Analyze_Function_Return (N);
      end if;

      if Nkind (N) = N_Extended_Return_Statement then
         End_Scope;
      end if;

      Kill_Current_Values (Last_Assignment_Only => True);
      Check_Unreachable_Code (N);
   end Analyze_Return_Statement;

   ---------------------------------------------
   -- Analyze_Abstract_Subprogram_Declaration --
   ---------------------------------------------

   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
      Designator : constant Entity_Id :=
                     Analyze_Subprogram_Specification (Specification (N));
      Scop       : constant Entity_Id := Current_Scope;

   begin
      Generate_Definition (Designator);
      Set_Is_Abstract_Subprogram (Designator);
      New_Overloaded_Entity (Designator);
      Check_Delayed_Subprogram (Designator);

      Set_Categorization_From_Scope (Designator, Scop);

      if Ekind (Scope (Designator)) = E_Protected_Type then
         Error_Msg_N
           ("abstract subprogram not allowed in protected type", N);

      --  Issue a warning if the abstract subprogram is neither a dispatching
      --  operation nor an operation that overrides an inherited subprogram or
      --  predefined operator, since this most likely indicates a mistake.

      elsif Warn_On_Redundant_Constructs
        and then not Is_Dispatching_Operation (Designator)
        and then not Is_Overriding_Operation (Designator)
        and then (not Is_Operator_Symbol_Name (Chars (Designator))
                   or else Scop /= Scope (Etype (First_Formal (Designator))))
      then
         Error_Msg_N
           ("?abstract subprogram is not dispatching or overriding", N);
      end if;

      Generate_Reference_To_Formals (Designator);
      Check_Eliminated (Designator);
   end Analyze_Abstract_Subprogram_Declaration;

   ----------------------------------------
   -- Analyze_Extended_Return_Statement  --
   ----------------------------------------

   procedure Analyze_Extended_Return_Statement (N : Node_Id) is
   begin
      Analyze_Return_Statement (N);
   end Analyze_Extended_Return_Statement;

   ----------------------------
   -- Analyze_Function_Call  --
   ----------------------------

   procedure Analyze_Function_Call (N : Node_Id) is
      P      : constant Node_Id := Name (N);
      L      : constant List_Id := Parameter_Associations (N);
      Actual : Node_Id;

   begin
      Analyze (P);

      --  A call of the form A.B (X) may be an Ada05 call, which is rewritten
      --  as B (A, X). If the rewriting is successful, the call has been
      --  analyzed and we just return.

      if Nkind (P) = N_Selected_Component
        and then Name (N) /= P
        and then Is_Rewrite_Substitution (N)
        and then Present (Etype (N))
      then
         return;
      end if;

      --  If error analyzing name, then set Any_Type as result type and return

      if Etype (P) = Any_Type then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  Otherwise analyze the parameters

      if Present (L) then
         Actual := First (L);
         while Present (Actual) loop
            Analyze (Actual);
            Check_Parameterless_Call (Actual);
            Next (Actual);
         end loop;
      end if;

      Analyze_Call (N);
   end Analyze_Function_Call;

   -----------------------------
   -- Analyze_Function_Return --
   -----------------------------

   procedure Analyze_Function_Return (N : Node_Id) is
      Loc        : constant Source_Ptr  := Sloc (N);
      Stm_Entity : constant Entity_Id   := Return_Statement_Entity (N);
      Scope_Id   : constant Entity_Id   := Return_Applies_To (Stm_Entity);

      R_Type : constant Entity_Id := Etype (Scope_Id);
      --  Function result subtype

      procedure Check_Limited_Return (Expr : Node_Id);
      --  Check the appropriate (Ada 95 or Ada 2005) rules for returning
      --  limited types. Used only for simple return statements.
      --  Expr is the expression returned.

      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
      --  Check that the return_subtype_indication properly matches the result
      --  subtype of the function, as required by RM-6.5(5.1/2-5.3/2).

      --------------------------
      -- Check_Limited_Return --
      --------------------------

      procedure Check_Limited_Return (Expr : Node_Id) is
      begin
         --  Ada 2005 (AI-318-02): Return-by-reference types have been
         --  removed and replaced by anonymous access results. This is an
         --  incompatibility with Ada 95. Not clear whether this should be
         --  enforced yet or perhaps controllable with special switch. ???

         if Is_Limited_Type (R_Type)
           and then Comes_From_Source (N)
           and then not In_Instance_Body
           and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
         then
            --  Error in Ada 2005

            if Ada_Version >= Ada_05
              and then not Debug_Flag_Dot_L
              and then not GNAT_Mode
            then
               Error_Msg_N
                 ("(Ada 2005) cannot copy object of a limited type " &
                  "(RM-2005 6.5(5.5/2))", Expr);
               if Is_Inherently_Limited_Type (R_Type) then
                  Error_Msg_N
                    ("\return by reference not permitted in Ada 2005", Expr);
               end if;

            --  Warn in Ada 95 mode, to give folks a heads up about this
            --  incompatibility.

            --  In GNAT mode, this is just a warning, to allow it to be
            --  evilly turned off. Otherwise it is a real error.

            elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
               if Is_Inherently_Limited_Type (R_Type) then
                  Error_Msg_N
                    ("return by reference not permitted in Ada 2005 " &
                     "(RM-2005 6.5(5.5/2))?", Expr);
               else
                  Error_Msg_N
                    ("cannot copy object of a limited type in Ada 2005 " &
                     "(RM-2005 6.5(5.5/2))?", Expr);
               end if;

            --  Ada 95 mode, compatibility warnings disabled

            else
               return; --  skip continuation messages below
            end if;

            Error_Msg_N
              ("\consider switching to return of access type", Expr);
            Explain_Limited_Type (R_Type, Expr);
         end if;
      end Check_Limited_Return;

      -------------------------------------
      -- Check_Return_Subtype_Indication --
      -------------------------------------

      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
         Return_Obj  : constant Node_Id   := Defining_Identifier (Obj_Decl);
         R_Stm_Type  : constant Entity_Id := Etype (Return_Obj);
         --  Subtype given in the extended return statement;
         --  this must match R_Type.

         Subtype_Ind : constant Node_Id :=
                         Object_Definition (Original_Node (Obj_Decl));

         R_Type_Is_Anon_Access :
           constant Boolean :=
             Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
               or else
             Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
               or else
             Ekind (R_Type) = E_Anonymous_Access_Type;
         --  True if return type of the function is an anonymous access type
         --  Can't we make Is_Anonymous_Access_Type in einfo ???

         R_Stm_Type_Is_Anon_Access :
           constant Boolean :=
             Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
               or else
             Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
               or else
             Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
         --  True if type of the return object is an anonymous access type

      begin
         --  First, avoid cascade errors:

         if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
            return;
         end if;

         --  "return access T" case; check that the return statement also has
         --  "access T", and that the subtypes statically match:
         --   if this is an access to subprogram the signatures must match.

         if R_Type_Is_Anon_Access then
            if R_Stm_Type_Is_Anon_Access then
               if
                 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
               then
                  if Base_Type (Designated_Type (R_Stm_Type)) /=
                     Base_Type (Designated_Type (R_Type))
                    or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
                  then
                     Error_Msg_N
                      ("subtype must statically match function result subtype",
                       Subtype_Mark (Subtype_Ind));
                  end if;

               else
                  --  For two anonymous access to subprogram types, the
                  --  types themselves must be type conformant.

                  if not Conforming_Types
                    (R_Stm_Type, R_Type, Fully_Conformant)
                  then
                     Error_Msg_N
                      ("subtype must statically match function result subtype",
                         Subtype_Ind);
                  end if;
               end if;

            else
               Error_Msg_N ("must use anonymous access type", Subtype_Ind);
            end if;

         --  Subtype indication case: check that the return object's type is
         --  covered by the result type, and that the subtypes statically match
         --  when the result subtype is constrained. Also handle record types
         --  with unknown discriminants for which we have built the underlying
         --  record view. Coverage is needed to allow specific-type return
         --  objects when the result type is class-wide (see AI05-32).

         elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
           or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
                     and then
                       Covers
                         (Base_Type (R_Type),
                          Underlying_Record_View (Base_Type (R_Stm_Type))))
         then
            --  A null exclusion may be present on the return type, on the
            --  function specification, on the object declaration or on the
            --  subtype itself.

            if Is_Access_Type (R_Type)
              and then
               (Can_Never_Be_Null (R_Type)
                 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
                                              Can_Never_Be_Null (R_Stm_Type)
            then
               Error_Msg_N
                 ("subtype must statically match function result subtype",
                  Subtype_Ind);
            end if;

            if Is_Constrained (R_Type) then
               if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
                  Error_Msg_N
                    ("subtype must statically match function result subtype",
                     Subtype_Ind);
               end if;
            end if;

         elsif Etype (Base_Type (R_Type)) = R_Stm_Type
           and then Is_Null_Extension (Base_Type (R_Type))
         then
            null;

         else
            Error_Msg_N
              ("wrong type for return_subtype_indication", Subtype_Ind);
         end if;
      end Check_Return_Subtype_Indication;

      ---------------------
      -- Local Variables --
      ---------------------

      Expr : Node_Id;

   --  Start of processing for Analyze_Function_Return

   begin
      Set_Return_Present (Scope_Id);

      if Nkind (N) = N_Simple_Return_Statement then
         Expr := Expression (N);
         Analyze_And_Resolve (Expr, R_Type);
         Check_Limited_Return (Expr);

      else
         --  Analyze parts specific to extended_return_statement:

         declare
            Obj_Decl : constant Node_Id :=
                         Last (Return_Object_Declarations (N));

            HSS : constant Node_Id := Handled_Statement_Sequence (N);

         begin
            Expr := Expression (Obj_Decl);

            --  Note: The check for OK_For_Limited_Init will happen in
            --  Analyze_Object_Declaration; we treat it as a normal
            --  object declaration.

            Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
            Analyze (Obj_Decl);

            Check_Return_Subtype_Indication (Obj_Decl);

            if Present (HSS) then
               Analyze (HSS);

               if Present (Exception_Handlers (HSS)) then

                  --  ???Has_Nested_Block_With_Handler needs to be set.
                  --  Probably by creating an actual N_Block_Statement.
                  --  Probably in Expand.

                  null;
               end if;
            end if;

            --  Mark the return object as referenced, since the return is an
            --  implicit reference of the object.

            Set_Referenced (Defining_Identifier (Obj_Decl));

            Check_References (Stm_Entity);
         end;
      end if;

      --  Case of Expr present

      if Present (Expr)

         --  Defend against previous errors

        and then Nkind (Expr) /= N_Empty
        and then Present (Etype (Expr))
      then
         --  Apply constraint check. Note that this is done before the implicit
         --  conversion of the expression done for anonymous access types to
         --  ensure correct generation of the null-excluding check associated
         --  with null-excluding expressions found in return statements.

         Apply_Constraint_Check (Expr, R_Type);

         --  Ada 2005 (AI-318-02): When the result type is an anonymous access
         --  type, apply an implicit conversion of the expression to that type
         --  to force appropriate static and run-time accessibility checks.

         if Ada_Version >= Ada_05
           and then Ekind (R_Type) = E_Anonymous_Access_Type
         then
            Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
            Analyze_And_Resolve (Expr, R_Type);
         end if;

         --  If the result type is class-wide, then check that the return
         --  expression's type is not declared at a deeper level than the
         --  function (RM05-6.5(5.6/2)).

         if Ada_Version >= Ada_05
           and then Is_Class_Wide_Type (R_Type)
         then
            if Type_Access_Level (Etype (Expr)) >
                 Subprogram_Access_Level (Scope_Id)
            then
               Error_Msg_N
                 ("level of return expression type is deeper than " &
                  "class-wide function!", Expr);
            end if;
         end if;

         --  Check incorrect use of dynamically tagged expression

         if Is_Tagged_Type (R_Type) then
            Check_Dynamically_Tagged_Expression
              (Expr => Expr,
               Typ  => R_Type,
               Related_Nod => N);
         end if;

         --  ??? A real run-time accessibility check is needed in cases
         --  involving dereferences of access parameters. For now we just
         --  check the static cases.

         if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
           and then Is_Inherently_Limited_Type (Etype (Scope_Id))
           and then Object_Access_Level (Expr) >
                      Subprogram_Access_Level (Scope_Id)
         then
            Rewrite (N,
              Make_Raise_Program_Error (Loc,
                Reason => PE_Accessibility_Check_Failed));
            Analyze (N);

            Error_Msg_N
              ("cannot return a local value by reference?", N);
            Error_Msg_NE
              ("\& will be raised at run time?",
               N, Standard_Program_Error);
         end if;

         if Known_Null (Expr)
           and then Nkind (Parent (Scope_Id)) = N_Function_Specification
           and then Null_Exclusion_Present (Parent (Scope_Id))
         then
            Apply_Compile_Time_Constraint_Error
              (N      => Expr,
               Msg    => "(Ada 2005) null not allowed for "
                         & "null-excluding return?",
               Reason => CE_Null_Not_Allowed);
         end if;
      end if;
   end Analyze_Function_Return;

   -------------------------------------
   -- Analyze_Generic_Subprogram_Body --
   -------------------------------------

   procedure Analyze_Generic_Subprogram_Body
     (N      : Node_Id;
      Gen_Id : Entity_Id)
   is
      Gen_Decl : constant Node_Id     := Unit_Declaration_Node (Gen_Id);
      Kind     : constant Entity_Kind := Ekind (Gen_Id);
      Body_Id  : Entity_Id;
      New_N    : Node_Id;
      Spec     : Node_Id;

   begin
      --  Copy body and disable expansion while analyzing the generic For a
      --  stub, do not copy the stub (which would load the proper body), this
      --  will be done when the proper body is analyzed.

      if Nkind (N) /= N_Subprogram_Body_Stub then
         New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
         Rewrite (N, New_N);
         Start_Generic;
      end if;

      Spec := Specification (N);

      --  Within the body of the generic, the subprogram is callable, and
      --  behaves like the corresponding non-generic unit.

      Body_Id := Defining_Entity (Spec);

      if Kind = E_Generic_Procedure
        and then Nkind (Spec) /= N_Procedure_Specification
      then
         Error_Msg_N ("invalid body for generic procedure ", Body_Id);
         return;

      elsif Kind = E_Generic_Function
        and then Nkind (Spec) /= N_Function_Specification
      then
         Error_Msg_N ("invalid body for generic function ", Body_Id);
         return;
      end if;

      Set_Corresponding_Body (Gen_Decl, Body_Id);

      if Has_Completion (Gen_Id)
        and then Nkind (Parent (N)) /= N_Subunit
      then
         Error_Msg_N ("duplicate generic body", N);
         return;
      else
         Set_Has_Completion (Gen_Id);
      end if;

      if Nkind (N) = N_Subprogram_Body_Stub then
         Set_Ekind (Defining_Entity (Specification (N)), Kind);
      else
         Set_Corresponding_Spec (N, Gen_Id);
      end if;

      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
      end if;

      --  Make generic parameters immediately visible in the body. They are
      --  needed to process the formals declarations. Then make the formals
      --  visible in a separate step.

      Push_Scope (Gen_Id);

      declare
         E         : Entity_Id;
         First_Ent : Entity_Id;

      begin
         First_Ent := First_Entity (Gen_Id);

         E := First_Ent;
         while Present (E) and then not Is_Formal (E) loop
            Install_Entity (E);
            Next_Entity (E);
         end loop;

         Set_Use (Generic_Formal_Declarations (Gen_Decl));

         --  Now generic formals are visible, and the specification can be
         --  analyzed, for subsequent conformance check.

         Body_Id := Analyze_Subprogram_Specification (Spec);

         --  Make formal parameters visible

         if Present (E) then

            --  E is the first formal parameter, we loop through the formals
            --  installing them so that they will be visible.

            Set_First_Entity (Gen_Id, E);
            while Present (E) loop
               Install_Entity (E);
               Next_Formal (E);
            end loop;
         end if;

         --  Visible generic entity is callable within its own body

         Set_Ekind          (Gen_Id,  Ekind (Body_Id));
         Set_Ekind          (Body_Id, E_Subprogram_Body);
         Set_Convention     (Body_Id, Convention (Gen_Id));
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
         Set_Scope          (Body_Id, Scope (Gen_Id));
         Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);

         if Nkind (N) = N_Subprogram_Body_Stub then

            --  No body to analyze, so restore state of generic unit

            Set_Ekind (Gen_Id, Kind);
            Set_Ekind (Body_Id, Kind);

            if Present (First_Ent) then
               Set_First_Entity (Gen_Id, First_Ent);
            end if;

            End_Scope;
            return;
         end if;

         --  If this is a compilation unit, it must be made visible explicitly,
         --  because the compilation of the declaration, unlike other library
         --  unit declarations, does not. If it is not a unit, the following
         --  is redundant but harmless.

         Set_Is_Immediately_Visible (Gen_Id);
         Reference_Body_Formals (Gen_Id, Body_Id);

         if Is_Child_Unit (Gen_Id) then
            Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
         end if;

         Set_Actual_Subtypes (N, Current_Scope);
         Process_PPCs (N, Gen_Id, Body_Id);

         --  If the generic unit carries pre- or post-conditions, copy them
         --  to the original generic tree, so that they are properly added
         --  to any instantiation.

         declare
            Orig : constant Node_Id := Original_Node (N);
            Cond : Node_Id;

         begin
            Cond := First (Declarations (N));
            while Present (Cond) loop
               if Nkind (Cond) = N_Pragma
                 and then Pragma_Name (Cond) = Name_Check
               then
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));

               elsif Nkind (Cond) = N_Pragma
                 and then Pragma_Name (Cond) = Name_Postcondition
               then
                  Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));
               else
                  exit;
               end if;

               Next (Cond);
            end loop;
         end;

         Analyze_Declarations (Declarations (N));
         Check_Completion;
         Analyze (Handled_Statement_Sequence (N));

         Save_Global_References (Original_Node (N));

         --  Prior to exiting the scope, include generic formals again (if any
         --  are present) in the set of local entities.

         if Present (First_Ent) then
            Set_First_Entity (Gen_Id, First_Ent);
         end if;

         Check_References (Gen_Id);
      end;

      Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
      End_Scope;
      Check_Subprogram_Order (N);

      --  Outside of its body, unit is generic again

      Set_Ekind (Gen_Id, Kind);
      Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);

      if Style_Check then
         Style.Check_Identifier (Body_Id, Gen_Id);
      end if;
      End_Generic;
   end Analyze_Generic_Subprogram_Body;

   -----------------------------
   -- Analyze_Operator_Symbol --
   -----------------------------

   --  An operator symbol such as "+" or "and" may appear in context where the
   --  literal denotes an entity name, such as "+"(x, y) or in context when it
   --  is just a string, as in (conjunction = "or"). In these cases the parser
   --  generates this node, and the semantics does the disambiguation. Other
   --  such case are actuals in an instantiation, the generic unit in an
   --  instantiation, and pragma arguments.

   procedure Analyze_Operator_Symbol (N : Node_Id) is
      Par : constant Node_Id := Parent (N);

   begin
      if        (Nkind (Par) = N_Function_Call
                   and then N = Name (Par))
        or else  Nkind (Par) = N_Function_Instantiation
        or else (Nkind (Par) = N_Indexed_Component
                   and then N = Prefix (Par))
        or else (Nkind (Par) = N_Pragma_Argument_Association
                   and then not Is_Pragma_String_Literal (Par))
        or else  Nkind (Par) = N_Subprogram_Renaming_Declaration
        or else (Nkind (Par) = N_Attribute_Reference
                  and then Attribute_Name (Par) /= Name_Value)
      then
         Find_Direct_Name (N);

      else
         Change_Operator_Symbol_To_String_Literal (N);
         Analyze (N);
      end if;
   end Analyze_Operator_Symbol;

   -----------------------------------
   -- Analyze_Parameter_Association --
   -----------------------------------

   procedure Analyze_Parameter_Association (N : Node_Id) is
   begin
      Analyze (Explicit_Actual_Parameter (N));
   end Analyze_Parameter_Association;

   ----------------------------
   -- Analyze_Procedure_Call --
   ----------------------------

   procedure Analyze_Procedure_Call (N : Node_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      P       : constant Node_Id    := Name (N);
      Actuals : constant List_Id    := Parameter_Associations (N);
      Actual  : Node_Id;
      New_N   : Node_Id;

      procedure Analyze_Call_And_Resolve;
      --  Do Analyze and Resolve calls for procedure call

      ------------------------------
      -- Analyze_Call_And_Resolve --
      ------------------------------

      procedure Analyze_Call_And_Resolve is
      begin
         if Nkind (N) = N_Procedure_Call_Statement then
            Analyze_Call (N);
            Resolve (N, Standard_Void_Type);
         else
            Analyze (N);
         end if;
      end Analyze_Call_And_Resolve;

   --  Start of processing for Analyze_Procedure_Call

   begin
      --  The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
      --  a procedure call or an entry call. The prefix may denote an access
      --  to subprogram type, in which case an implicit dereference applies.
      --  If the prefix is an indexed component (without implicit dereference)
      --  then the construct denotes a call to a member of an entire family.
      --  If the prefix is a simple name, it may still denote a call to a
      --  parameterless member of an entry family. Resolution of these various
      --  interpretations is delicate.

      Analyze (P);

      --  If this is a call of the form Obj.Op, the call may have been
      --  analyzed and possibly rewritten into a block, in which case
      --  we are done.

      if Analyzed (N) then
         return;
      end if;

      --  If error analyzing prefix, then set Any_Type as result and return

      if Etype (P) = Any_Type then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  Otherwise analyze the parameters

      if Present (Actuals) then
         Actual := First (Actuals);

         while Present (Actual) loop
            Analyze (Actual);
            Check_Parameterless_Call (Actual);
            Next (Actual);
         end loop;
      end if;

      --  Special processing for Elab_Spec and Elab_Body calls

      if Nkind (P) = N_Attribute_Reference
        and then (Attribute_Name (P) = Name_Elab_Spec
                   or else Attribute_Name (P) = Name_Elab_Body)
      then
         if Present (Actuals) then
            Error_Msg_N
              ("no parameters allowed for this call", First (Actuals));
            return;
         end if;

         Set_Etype (N, Standard_Void_Type);
         Set_Analyzed (N);

      elsif Is_Entity_Name (P)
        and then Is_Record_Type (Etype (Entity (P)))
        and then Remote_AST_I_Dereference (P)
      then
         return;

      elsif Is_Entity_Name (P)
        and then Ekind (Entity (P)) /= E_Entry_Family
      then
         if Is_Access_Type (Etype (P))
           and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
           and then No (Actuals)
           and then Comes_From_Source (N)
         then
            Error_Msg_N ("missing explicit dereference in call", N);
         end if;

         Analyze_Call_And_Resolve;

      --  If the prefix is the simple name of an entry family, this is
      --  a parameterless call from within the task body itself.

      elsif Is_Entity_Name (P)
        and then Nkind (P) = N_Identifier
        and then Ekind (Entity (P)) = E_Entry_Family
        and then Present (Actuals)
        and then No (Next (First (Actuals)))
      then
         --  Can be call to parameterless entry family. What appears to be the
         --  sole argument is in fact the entry index. Rewrite prefix of node
         --  accordingly. Source representation is unchanged by this
         --  transformation.

         New_N :=
           Make_Indexed_Component (Loc,
             Prefix =>
               Make_Selected_Component (Loc,
                 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
                 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
             Expressions => Actuals);
         Set_Name (N, New_N);
         Set_Etype (New_N, Standard_Void_Type);
         Set_Parameter_Associations (N, No_List);
         Analyze_Call_And_Resolve;

      elsif Nkind (P) = N_Explicit_Dereference then
         if Ekind (Etype (P)) = E_Subprogram_Type then
            Analyze_Call_And_Resolve;
         else
            Error_Msg_N ("expect access to procedure in call", P);
         end if;

      --  The name can be a selected component or an indexed component that
      --  yields an access to subprogram. Such a prefix is legal if the call
      --  has parameter associations.

      elsif Is_Access_Type (Etype (P))
        and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
      then
         if Present (Actuals) then
            Analyze_Call_And_Resolve;
         else
            Error_Msg_N ("missing explicit dereference in call ", N);
         end if;

      --  If not an access to subprogram, then the prefix must resolve to the
      --  name of an entry, entry family, or protected operation.

      --  For the case of a simple entry call, P is a selected component where
      --  the prefix is the task and the selector name is the entry. A call to
      --  a protected procedure will have the same syntax. If the protected
      --  object contains overloaded operations, the entity may appear as a
      --  function, the context will select the operation whose type is Void.

      elsif Nkind (P) = N_Selected_Component
        and then (Ekind (Entity (Selector_Name (P))) = E_Entry
                    or else
                  Ekind (Entity (Selector_Name (P))) = E_Procedure
                    or else
                  Ekind (Entity (Selector_Name (P))) = E_Function)
      then
         Analyze_Call_And_Resolve;

      elsif Nkind (P) = N_Selected_Component
        and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
        and then Present (Actuals)
        and then No (Next (First (Actuals)))
      then
         --  Can be call to parameterless entry family. What appears to be the
         --  sole argument is in fact the entry index. Rewrite prefix of node
         --  accordingly. Source representation is unchanged by this
         --  transformation.

         New_N :=
           Make_Indexed_Component (Loc,
             Prefix => New_Copy (P),
             Expressions => Actuals);
         Set_Name (N, New_N);
         Set_Etype (New_N, Standard_Void_Type);
         Set_Parameter_Associations (N, No_List);
         Analyze_Call_And_Resolve;

      --  For the case of a reference to an element of an entry family, P is
      --  an indexed component whose prefix is a selected component (task and
      --  entry family), and whose index is the entry family index.

      elsif Nkind (P) = N_Indexed_Component
        and then Nkind (Prefix (P)) = N_Selected_Component
        and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
      then
         Analyze_Call_And_Resolve;

      --  If the prefix is the name of an entry family, it is a call from
      --  within the task body itself.

      elsif Nkind (P) = N_Indexed_Component
        and then Nkind (Prefix (P)) = N_Identifier
        and then Ekind (Entity (Prefix (P))) = E_Entry_Family
      then
         New_N :=
           Make_Selected_Component (Loc,
             Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
             Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
         Rewrite (Prefix (P), New_N);
         Analyze (P);
         Analyze_Call_And_Resolve;

      --  Anything else is an error

      else
         Error_Msg_N ("invalid procedure or entry call", N);
      end if;
   end Analyze_Procedure_Call;

   -------------------------------------
   -- Analyze_Simple_Return_Statement --
   -------------------------------------

   procedure Analyze_Simple_Return_Statement (N : Node_Id) is
   begin
      if Present (Expression (N)) then
         Mark_Coextensions (N, Expression (N));
      end if;

      Analyze_Return_Statement (N);
   end Analyze_Simple_Return_Statement;

   -------------------------
   -- Analyze_Return_Type --
   -------------------------

   procedure Analyze_Return_Type (N : Node_Id) is
      Designator : constant Entity_Id := Defining_Entity (N);
      Typ        : Entity_Id := Empty;

   begin
      --  Normal case where result definition does not indicate an error

      if Result_Definition (N) /= Error then
         if Nkind (Result_Definition (N)) = N_Access_Definition then

            --  Ada 2005 (AI-254): Handle anonymous access to subprograms

            declare
               AD : constant Node_Id :=
                      Access_To_Subprogram_Definition (Result_Definition (N));
            begin
               if Present (AD) and then Protected_Present (AD) then
                  Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
               else
                  Typ := Access_Definition (N, Result_Definition (N));
               end if;
            end;

            Set_Parent (Typ, Result_Definition (N));
            Set_Is_Local_Anonymous_Access (Typ);
            Set_Etype (Designator, Typ);

            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion

            Null_Exclusion_Static_Checks (N);

         --  Subtype_Mark case

         else
            Find_Type (Result_Definition (N));
            Typ := Entity (Result_Definition (N));
            Set_Etype (Designator, Typ);

            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion

            Null_Exclusion_Static_Checks (N);

            --  If a null exclusion is imposed on the result type, then create
            --  a null-excluding itype (an access subtype) and use it as the
            --  function's Etype. Note that the null exclusion checks are done
            --  right before this, because they don't get applied to types that
            --  do not come from source.

            if Is_Access_Type (Typ)
              and then Null_Exclusion_Present (N)
            then
               Set_Etype  (Designator,
                 Create_Null_Excluding_Itype
                  (T           => Typ,
                   Related_Nod => N,
                   Scope_Id    => Scope (Current_Scope)));

               --  The new subtype must be elaborated before use because
               --  it is visible outside of the function. However its base
               --  type may not be frozen yet, so the reference that will
               --  force elaboration must be attached to the freezing of
               --  the base type.

               --  If the return specification appears on a proper body,
               --  the subtype will have been created already on the spec.

               if Is_Frozen (Typ) then
                  if Nkind (Parent (N)) = N_Subprogram_Body
                    and then Nkind (Parent (Parent (N))) = N_Subunit
                  then
                     null;
                  else
                     Build_Itype_Reference (Etype (Designator), Parent (N));
                  end if;

               else
                  Ensure_Freeze_Node (Typ);

                  declare
                     IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
                  begin
                     Set_Itype (IR, Etype (Designator));
                     Append_Freeze_Actions (Typ, New_List (IR));
                  end;
               end if;

            else
               Set_Etype (Designator, Typ);
            end if;

            if Ekind (Typ) = E_Incomplete_Type
              and then Is_Value_Type (Typ)
            then
               null;

            elsif Ekind (Typ) = E_Incomplete_Type
              or else (Is_Class_Wide_Type (Typ)
                         and then
                           Ekind (Root_Type (Typ)) = E_Incomplete_Type)
            then
               Error_Msg_NE
                 ("invalid use of incomplete type&", Designator, Typ);
            end if;
         end if;

      --  Case where result definition does indicate an error

      else
         Set_Etype (Designator, Any_Type);
      end if;
   end Analyze_Return_Type;

   -----------------------------
   -- Analyze_Subprogram_Body --
   -----------------------------

   procedure Analyze_Subprogram_Body (N : Node_Id) is
      Loc       : constant Source_Ptr := Sloc (N);
      Body_Spec : constant Node_Id    := Specification (N);
      Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);

   begin
      if Debug_Flag_C then
         Write_Str ("==> subprogram body ");
         Write_Name (Chars (Body_Id));
         Write_Str (" from ");
         Write_Location (Loc);
         Write_Eol;
         Indent;
      end if;

      Trace_Scope (N, Body_Id, " Analyze subprogram: ");

      --  The real work is split out into the helper, so it can do "return;"
      --  without skipping the debug output:

      Analyze_Subprogram_Body_Helper (N);

      if Debug_Flag_C then
         Outdent;
         Write_Str ("<== subprogram body ");
         Write_Name (Chars (Body_Id));
         Write_Str (" from ");
         Write_Location (Loc);
         Write_Eol;
      end if;
   end Analyze_Subprogram_Body;

   ------------------------------------
   -- Analyze_Subprogram_Body_Helper --
   ------------------------------------

   --  This procedure is called for regular subprogram bodies, generic bodies,
   --  and for subprogram stubs of both kinds. In the case of stubs, only the
   --  specification matters, and is used to create a proper declaration for
   --  the subprogram, or to perform conformance checks.

   procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
      Loc          : constant Source_Ptr := Sloc (N);
      Body_Deleted : constant Boolean    := False;
      Body_Spec    : constant Node_Id    := Specification (N);
      Body_Id      : Entity_Id           := Defining_Entity (Body_Spec);
      Prev_Id      : constant Entity_Id  := Current_Entity_In_Scope (Body_Id);
      Conformant   : Boolean;
      HSS          : Node_Id;
      Missing_Ret  : Boolean;
      P_Ent        : Entity_Id;
      Prot_Typ     : Entity_Id := Empty;
      Spec_Id      : Entity_Id;
      Spec_Decl    : Node_Id   := Empty;

      Last_Real_Spec_Entity : Entity_Id := Empty;
      --  When we analyze a separate spec, the entity chain ends up containing
      --  the formals, as well as any itypes generated during analysis of the
      --  default expressions for parameters, or the arguments of associated
      --  precondition/postcondition pragmas (which are analyzed in the context
      --  of the spec since they have visibility on formals).
      --
      --  These entities belong with the spec and not the body. However we do
      --  the analysis of the body in the context of the spec (again to obtain
      --  visibility to the formals), and all the entities generated during
      --  this analysis end up also chained to the entity chain of the spec.
      --  But they really belong to the body, and there is circuitry to move
      --  them from the spec to the body.
      --
      --  However, when we do this move, we don't want to move the real spec
      --  entities (first para above) to the body. The Last_Real_Spec_Entity
      --  variable points to the last real spec entity, so we only move those
      --  chained beyond that point. It is initialized to Empty to deal with
      --  the case where there is no separate spec.

      procedure Check_Anonymous_Return;
      --  Ada 2005: if a function returns an access type that denotes a task,
      --  or a type that contains tasks, we must create a master entity for
      --  the anonymous type, which typically will be used in an allocator
      --  in the body of the function.

      procedure Check_Inline_Pragma (Spec : in out Node_Id);
      --  Look ahead to recognize a pragma that may appear after the body.
      --  If there is a previous spec, check that it appears in the same
      --  declarative part. If the pragma is Inline_Always, perform inlining
      --  unconditionally, otherwise only if Front_End_Inlining is requested.
      --  If the body acts as a spec, and inlining is required, we create a
      --  subprogram declaration for it, in order to attach the body to inline.
      --  If pragma does not appear after the body, check whether there is
      --  an inline pragma before any local declarations.

      function Disambiguate_Spec return Entity_Id;
      --  When a primitive is declared between the private view and the full
      --  view of a concurrent type which implements an interface, a special
      --  mechanism is used to find the corresponding spec of the primitive
      --  body.

      function Is_Private_Concurrent_Primitive
        (Subp_Id : Entity_Id) return Boolean;
      --  Determine whether subprogram Subp_Id is a primitive of a concurrent
      --  type that implements an interface and has a private view.

      procedure Set_Trivial_Subprogram (N : Node_Id);
      --  Sets the Is_Trivial_Subprogram flag in both spec and body of the
      --  subprogram whose body is being analyzed. N is the statement node
      --  causing the flag to be set, if the following statement is a return
      --  of an entity, we mark the entity as set in source to suppress any
      --  warning on the stylized use of function stubs with a dummy return.

      procedure Verify_Overriding_Indicator;
      --  If there was a previous spec, the entity has been entered in the
      --  current scope previously. If the body itself carries an overriding
      --  indicator, check that it is consistent with the known status of the
      --  entity.

      ----------------------------
      -- Check_Anonymous_Return --
      ----------------------------

      procedure Check_Anonymous_Return is
         Decl : Node_Id;
         Par  : Node_Id;
         Scop : Entity_Id;

      begin
         if Present (Spec_Id) then
            Scop := Spec_Id;
         else
            Scop := Body_Id;
         end if;

         if Ekind (Scop) = E_Function
           and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
           and then not Is_Thunk (Scop)
           and then (Has_Task (Designated_Type (Etype (Scop)))
                      or else
                       (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
                          and then
                        Is_Limited_Record (Designated_Type (Etype (Scop)))))
           and then Expander_Active

            --  Avoid cases with no tasking support

           and then RTE_Available (RE_Current_Master)
           and then not Restriction_Active (No_Task_Hierarchy)
         then
            Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc, Name_uMaster),
                Constant_Present => True,
                Object_Definition =>
                  New_Reference_To (RTE (RE_Master_Id), Loc),
                Expression =>
                  Make_Explicit_Dereference (Loc,
                    New_Reference_To (RTE (RE_Current_Master), Loc)));

            if Present (Declarations (N)) then
               Prepend (Decl, Declarations (N));
            else
               Set_Declarations (N, New_List (Decl));
            end if;

            Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
            Set_Has_Master_Entity (Scop);

            --  Now mark the containing scope as a task master

            Par := N;
            while Nkind (Par) /= N_Compilation_Unit loop
               Par := Parent (Par);
               pragma Assert (Present (Par));

               --  If we fall off the top, we are at the outer level, and
               --  the environment task is our effective master, so nothing
               --  to mark.

               if Nkind_In
                   (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
               then
                  Set_Is_Task_Master (Par, True);
                  exit;
               end if;
            end loop;
         end if;
      end Check_Anonymous_Return;

      -------------------------
      -- Check_Inline_Pragma --
      -------------------------

      procedure Check_Inline_Pragma (Spec : in out Node_Id) is
         Prag  : Node_Id;
         Plist : List_Id;

         function Is_Inline_Pragma (N : Node_Id) return Boolean;
         --  True when N is a pragma Inline or Inline_Always that applies
         --  to this subprogram.

         -----------------------
         --  Is_Inline_Pragma --
         -----------------------

         function Is_Inline_Pragma (N : Node_Id) return Boolean is
         begin
            return
              Nkind (N) = N_Pragma
                and then
                   (Pragma_Name (N) = Name_Inline_Always
                     or else
                      (Front_End_Inlining
                        and then Pragma_Name (N) = Name_Inline))
                and then
                   Chars
                     (Expression (First (Pragma_Argument_Associations (N))))
                        = Chars (Body_Id);
         end Is_Inline_Pragma;

      --  Start of processing for Check_Inline_Pragma

      begin
         if not Expander_Active then
            return;
         end if;

         if Is_List_Member (N)
           and then Present (Next (N))
           and then Is_Inline_Pragma (Next (N))
         then
            Prag := Next (N);

         elsif Nkind (N) /= N_Subprogram_Body_Stub
           and then Present (Declarations (N))
           and then Is_Inline_Pragma (First (Declarations (N)))
         then
            Prag := First (Declarations (N));

         else
            Prag := Empty;
         end if;

         if Present (Prag) then
            if Present (Spec_Id) then
               if List_Containing (N) =
                 List_Containing (Unit_Declaration_Node (Spec_Id))
               then
                  Analyze (Prag);
               end if;

            else
               --  Create a subprogram declaration, to make treatment uniform

               declare
                  Subp : constant Entity_Id :=
                    Make_Defining_Identifier (Loc, Chars (Body_Id));
                  Decl : constant Node_Id :=
                    Make_Subprogram_Declaration (Loc,
                      Specification =>  New_Copy_Tree (Specification (N)));
               begin
                  Set_Defining_Unit_Name (Specification (Decl), Subp);

                  if Present (First_Formal (Body_Id)) then
                     Plist := Copy_Parameter_List (Body_Id);
                     Set_Parameter_Specifications
                       (Specification (Decl), Plist);
                  end if;

                  Insert_Before (N, Decl);
                  Analyze (Decl);
                  Analyze (Prag);
                  Set_Has_Pragma_Inline (Subp);

                  if Pragma_Name (Prag) = Name_Inline_Always then
                     Set_Is_Inlined (Subp);
                     Set_Has_Pragma_Inline_Always (Subp);
                  end if;

                  Spec := Subp;
               end;
            end if;
         end if;
      end Check_Inline_Pragma;

      -----------------------
      -- Disambiguate_Spec --
      -----------------------

      function Disambiguate_Spec return Entity_Id is
         Priv_Spec : Entity_Id;
         Spec_N    : Entity_Id;

         procedure Replace_Types (To_Corresponding : Boolean);
         --  Depending on the flag, replace the type of formal parameters of
         --  Body_Id if it is a concurrent type implementing interfaces with
         --  the corresponding record type or the other way around.

         procedure Replace_Types (To_Corresponding : Boolean) is
            Formal     : Entity_Id;
            Formal_Typ : Entity_Id;

         begin
            Formal := First_Formal (Body_Id);
            while Present (Formal) loop
               Formal_Typ := Etype (Formal);

               --  From concurrent type to corresponding record

               if To_Corresponding then
                  if Is_Concurrent_Type (Formal_Typ)
                    and then Present (Corresponding_Record_Type (Formal_Typ))
                    and then Present (Interfaces (
                               Corresponding_Record_Type (Formal_Typ)))
                  then
                     Set_Etype (Formal,
                       Corresponding_Record_Type (Formal_Typ));
                  end if;

               --  From corresponding record to concurrent type

               else
                  if Is_Concurrent_Record_Type (Formal_Typ)
                    and then Present (Interfaces (Formal_Typ))
                  then
                     Set_Etype (Formal,
                       Corresponding_Concurrent_Type (Formal_Typ));
                  end if;
               end if;

               Next_Formal (Formal);
            end loop;
         end Replace_Types;

      --  Start of processing for Disambiguate_Spec

      begin
         --  Try to retrieve the specification of the body as is. All error
         --  messages are suppressed because the body may not have a spec in
         --  its current state.

         Spec_N := Find_Corresponding_Spec (N, False);

         --  It is possible that this is the body of a primitive declared
         --  between a private and a full view of a concurrent type. The
         --  controlling parameter of the spec carries the concurrent type,
         --  not the corresponding record type as transformed by Analyze_
         --  Subprogram_Specification. In such cases, we undo the change
         --  made by the analysis of the specification and try to find the
         --  spec again.

         --  Note that wrappers already have their corresponding specs and
         --  bodies set during their creation, so if the candidate spec is
         --  a wrapper, then we definitely need to swap all types to their
         --  original concurrent status.

         if No (Spec_N)
           or else Is_Primitive_Wrapper (Spec_N)
         then
            --  Restore all references of corresponding record types to the
            --  original concurrent types.

            Replace_Types (To_Corresponding => False);
            Priv_Spec := Find_Corresponding_Spec (N, False);

            --  The current body truly belongs to a primitive declared between
            --  a private and a full view. We leave the modified body as is,
            --  and return the true spec.

            if Present (Priv_Spec)
              and then Is_Private_Primitive (Priv_Spec)
            then
               return Priv_Spec;
            end if;

            --  In case that this is some sort of error, restore the original
            --  state of the body.

            Replace_Types (To_Corresponding => True);
         end if;

         return Spec_N;
      end Disambiguate_Spec;

      -------------------------------------
      -- Is_Private_Concurrent_Primitive --
      -------------------------------------

      function Is_Private_Concurrent_Primitive
        (Subp_Id : Entity_Id) return Boolean
      is
         Formal_Typ : Entity_Id;

      begin
         if Present (First_Formal (Subp_Id)) then
            Formal_Typ := Etype (First_Formal (Subp_Id));

            if Is_Concurrent_Record_Type (Formal_Typ) then
               Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
            end if;

            --  The type of the first formal is a concurrent tagged type with
            --  a private view.

            return
              Is_Concurrent_Type (Formal_Typ)
                and then Is_Tagged_Type (Formal_Typ)
                and then Has_Private_Declaration (Formal_Typ);
         end if;

         return False;
      end Is_Private_Concurrent_Primitive;

      ----------------------------
      -- Set_Trivial_Subprogram --
      ----------------------------

      procedure Set_Trivial_Subprogram (N : Node_Id) is
         Nxt : constant Node_Id := Next (N);

      begin
         Set_Is_Trivial_Subprogram (Body_Id);

         if Present (Spec_Id) then
            Set_Is_Trivial_Subprogram (Spec_Id);
         end if;

         if Present (Nxt)
           and then Nkind (Nxt) = N_Simple_Return_Statement
           and then No (Next (Nxt))
           and then Present (Expression (Nxt))
           and then Is_Entity_Name (Expression (Nxt))
         then
            Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
         end if;
      end Set_Trivial_Subprogram;

      ---------------------------------
      -- Verify_Overriding_Indicator --
      ---------------------------------

      procedure Verify_Overriding_Indicator is
      begin
         if Must_Override (Body_Spec) then
            if Nkind (Spec_Id) = N_Defining_Operator_Symbol
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
            then
               null;

            elsif not Is_Overriding_Operation (Spec_Id) then
               Error_Msg_NE
                 ("subprogram& is not overriding", Body_Spec, Spec_Id);
            end if;

         elsif Must_Not_Override (Body_Spec) then
            if Is_Overriding_Operation (Spec_Id) then
               Error_Msg_NE
                 ("subprogram& overrides inherited operation",
                  Body_Spec, Spec_Id);

            elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
            then
               Error_Msg_NE
                 ("subprogram & overrides predefined operator ",
                    Body_Spec, Spec_Id);

            --  If this is not a primitive operation or protected subprogram,
            --  then the overriding indicator is altogether illegal.

            elsif not Is_Primitive (Spec_Id)
              and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
            then
               Error_Msg_N ("overriding indicator only allowed " &
                "if subprogram is primitive",
                Body_Spec);
            end if;

         elsif Style_Check --  ??? incorrect use of Style_Check!
           and then Is_Overriding_Operation (Spec_Id)
         then
            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
            Style.Missing_Overriding (N, Body_Id);
         end if;
      end Verify_Overriding_Indicator;

   --  Start of processing for Analyze_Subprogram_Body_Helper

   begin
      --  Generic subprograms are handled separately. They always have a
      --  generic specification. Determine whether current scope has a
      --  previous declaration.

      --  If the subprogram body is defined within an instance of the same
      --  name, the instance appears as a package renaming, and will be hidden
      --  within the subprogram.

      if Present (Prev_Id)
        and then not Is_Overloadable (Prev_Id)
        and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
                   or else Comes_From_Source (Prev_Id))
      then
         if Is_Generic_Subprogram (Prev_Id) then
            Spec_Id := Prev_Id;
            Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
            Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));

            Analyze_Generic_Subprogram_Body (N, Spec_Id);
            return;

         else
            --  Previous entity conflicts with subprogram name. Attempting to
            --  enter name will post error.

            Enter_Name (Body_Id);
            return;
         end if;

      --  Non-generic case, find the subprogram declaration, if one was seen,
      --  or enter new overloaded entity in the current scope. If the
      --  Current_Entity is the Body_Id itself, the unit is being analyzed as
      --  part of the context of one of its subunits. No need to redo the
      --  analysis.

      elsif Prev_Id = Body_Id
        and then Has_Completion (Body_Id)
      then
         return;

      else
         Body_Id := Analyze_Subprogram_Specification (Body_Spec);

         if Nkind (N) = N_Subprogram_Body_Stub
           or else No (Corresponding_Spec (N))
         then
            if Is_Private_Concurrent_Primitive (Body_Id) then
               Spec_Id := Disambiguate_Spec;
            else
               Spec_Id := Find_Corresponding_Spec (N);
            end if;

            --  If this is a duplicate body, no point in analyzing it

            if Error_Posted (N) then
               return;
            end if;

            --  A subprogram body should cause freezing of its own declaration,
            --  but if there was no previous explicit declaration, then the
            --  subprogram will get frozen too late (there may be code within
            --  the body that depends on the subprogram having been frozen,
            --  such as uses of extra formals), so we force it to be frozen
            --  here. Same holds if the body and spec are compilation units.
            --  Finally, if the return type is an anonymous access to protected
            --  subprogram, it must be frozen before the body because its
            --  expansion has generated an equivalent type that is used when
            --  elaborating the body.

            if No (Spec_Id) then
               Freeze_Before (N, Body_Id);

            elsif Nkind (Parent (N)) = N_Compilation_Unit then
               Freeze_Before (N, Spec_Id);

            elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
               Freeze_Before (N, Etype (Body_Id));
            end if;

         else
            Spec_Id := Corresponding_Spec (N);
         end if;
      end if;

      --  Do not inline any subprogram that contains nested subprograms, since
      --  the backend inlining circuit seems to generate uninitialized
      --  references in this case. We know this happens in the case of front
      --  end ZCX support, but it also appears it can happen in other cases as
      --  well. The backend often rejects attempts to inline in the case of
      --  nested procedures anyway, so little if anything is lost by this.
      --  Note that this is test is for the benefit of the back-end. There is
      --  a separate test for front-end inlining that also rejects nested
      --  subprograms.

      --  Do not do this test if errors have been detected, because in some
      --  error cases, this code blows up, and we don't need it anyway if
      --  there have been errors, since we won't get to the linker anyway.

      if Comes_From_Source (Body_Id)
        and then Serious_Errors_Detected = 0
      then
         P_Ent := Body_Id;
         loop
            P_Ent := Scope (P_Ent);
            exit when No (P_Ent) or else P_Ent = Standard_Standard;

            if Is_Subprogram (P_Ent) then
               Set_Is_Inlined (P_Ent, False);

               if Comes_From_Source (P_Ent)
                 and then Has_Pragma_Inline (P_Ent)
               then
                  Cannot_Inline
                    ("cannot inline& (nested subprogram)?",
                     N, P_Ent);
               end if;
            end if;
         end loop;
      end if;

      Check_Inline_Pragma (Spec_Id);

      --  Deal with special case of a fully private operation in the body of
      --  the protected type. We must create a declaration for the subprogram,
      --  in order to attach the protected subprogram that will be used in
      --  internal calls. We exclude compiler generated bodies from the
      --  expander since the issue does not arise for those cases.

      if No (Spec_Id)
        and then Comes_From_Source (N)
        and then Is_Protected_Type (Current_Scope)
      then
         declare
            Decl     : Node_Id;
            Plist    : List_Id;
            Formal   : Entity_Id;
            New_Spec : Node_Id;

         begin
            Formal := First_Formal (Body_Id);

            --  The protected operation always has at least one formal, namely
            --  the object itself, but it is only placed in the parameter list
            --  if expansion is enabled.

            if Present (Formal)
              or else Expander_Active
            then
               Plist := Copy_Parameter_List (Body_Id);
            else
               Plist := No_List;
            end if;

            if Nkind (Body_Spec) = N_Procedure_Specification then
               New_Spec :=
                 Make_Procedure_Specification (Loc,
                    Defining_Unit_Name =>
                      Make_Defining_Identifier (Sloc (Body_Id),
                        Chars => Chars (Body_Id)),
                    Parameter_Specifications => Plist);
            else
               New_Spec :=
                 Make_Function_Specification (Loc,
                    Defining_Unit_Name =>
                      Make_Defining_Identifier (Sloc (Body_Id),
                        Chars => Chars (Body_Id)),
                    Parameter_Specifications => Plist,
                    Result_Definition =>
                      New_Occurrence_Of (Etype (Body_Id), Loc));
            end if;

            Decl :=
              Make_Subprogram_Declaration (Loc,
                Specification => New_Spec);
            Insert_Before (N, Decl);
            Spec_Id := Defining_Unit_Name (New_Spec);

            --  Indicate that the entity comes from source, to ensure that
            --  cross-reference information is properly generated. The body
            --  itself is rewritten during expansion, and the body entity will
            --  not appear in calls to the operation.

            Set_Comes_From_Source (Spec_Id, True);
            Analyze (Decl);
            Set_Has_Completion (Spec_Id);
            Set_Convention (Spec_Id, Convention_Protected);
         end;
      end if;

      --  If a separate spec is present, then deal with freezing issues

      if Present (Spec_Id) then
         Spec_Decl := Unit_Declaration_Node (Spec_Id);
         Verify_Overriding_Indicator;

         --  In general, the spec will be frozen when we start analyzing the
         --  body. However, for internally generated operations, such as
         --  wrapper functions for inherited operations with controlling
         --  results, the spec may not have been frozen by the time we
         --  expand the freeze actions that include the bodies. In particular,
         --  extra formals for accessibility or for return-in-place may need
         --  to be generated. Freeze nodes, if any, are inserted before the
         --  current body.

         if not Is_Frozen (Spec_Id)
           and then Expander_Active
         then
            --  Force the generation of its freezing node to ensure proper
            --  management of access types in the backend.

            --  This is definitely needed for some cases, but it is not clear
            --  why, to be investigated further???

            Set_Has_Delayed_Freeze (Spec_Id);
            Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
         end if;
      end if;

      --  Mark presence of postcondition proc in current scope

      if Chars (Body_Id) = Name_uPostconditions then
         Set_Has_Postconditions (Current_Scope);
      end if;

      --  Place subprogram on scope stack, and make formals visible. If there
      --  is a spec, the visible entity remains that of the spec.

      if Present (Spec_Id) then
         Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);

         if Is_Child_Unit (Spec_Id) then
            Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
         end if;

         if Style_Check then
            Style.Check_Identifier (Body_Id, Spec_Id);
         end if;

         Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
         Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));

         if Is_Abstract_Subprogram (Spec_Id) then
            Error_Msg_N ("an abstract subprogram cannot have a body", N);
            return;

         else
            Set_Convention (Body_Id, Convention (Spec_Id));
            Set_Has_Completion (Spec_Id);

            if Is_Protected_Type (Scope (Spec_Id)) then
               Prot_Typ := Scope (Spec_Id);
            end if;

            --  If this is a body generated for a renaming, do not check for
            --  full conformance. The check is redundant, because the spec of
            --  the body is a copy of the spec in the renaming declaration,
            --  and the test can lead to spurious errors on nested defaults.

            if Present (Spec_Decl)
              and then not Comes_From_Source (N)
              and then
                (Nkind (Original_Node (Spec_Decl)) =
                                        N_Subprogram_Renaming_Declaration
                   or else (Present (Corresponding_Body (Spec_Decl))
                              and then
                                Nkind (Unit_Declaration_Node
                                        (Corresponding_Body (Spec_Decl))) =
                                           N_Subprogram_Renaming_Declaration))
            then
               Conformant := True;

            else
               Check_Conformance
                 (Body_Id, Spec_Id,
                  Fully_Conformant, True, Conformant, Body_Id);
            end if;

            --  If the body is not fully conformant, we have to decide if we
            --  should analyze it or not. If it has a really messed up profile
            --  then we probably should not analyze it, since we will get too
            --  many bogus messages.

            --  Our decision is to go ahead in the non-fully conformant case
            --  only if it is at least mode conformant with the spec. Note
            --  that the call to Check_Fully_Conformant has issued the proper
            --  error messages to complain about the lack of conformance.

            if not Conformant
              and then not Mode_Conformant (Body_Id, Spec_Id)
            then
               return;
            end if;
         end if;

         if Spec_Id /= Body_Id then
            Reference_Body_Formals (Spec_Id, Body_Id);
         end if;

         if Nkind (N) /= N_Subprogram_Body_Stub then
            Set_Corresponding_Spec (N, Spec_Id);

            --  Ada 2005 (AI-345): If the operation is a primitive operation
            --  of a concurrent type, the type of the first parameter has been
            --  replaced with the corresponding record, which is the proper
            --  run-time structure to use. However, within the body there may
            --  be uses of the formals that depend on primitive operations
            --  of the type (in particular calls in prefixed form) for which
            --  we need the original concurrent type. The operation may have
            --  several controlling formals, so the replacement must be done
            --  for all of them.

            if Comes_From_Source (Spec_Id)
              and then Present (First_Entity (Spec_Id))
              and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
              and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
              and then
                Present (Interfaces (Etype (First_Entity (Spec_Id))))
              and then
                Present
                  (Corresponding_Concurrent_Type
                     (Etype (First_Entity (Spec_Id))))
            then
               declare
                  Typ  : constant Entity_Id := Etype (First_Entity (Spec_Id));
                  Form : Entity_Id;

               begin
                  Form := First_Formal (Spec_Id);
                  while Present (Form) loop
                     if Etype (Form) = Typ then
                        Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
                     end if;

                     Next_Formal (Form);
                  end loop;
               end;
            end if;

            --  Make the formals visible, and place subprogram on scope stack.
            --  This is also the point at which we set Last_Real_Spec_Entity
            --  to mark the entities which will not be moved to the body.

            Install_Formals (Spec_Id);
            Last_Real_Spec_Entity := Last_Entity (Spec_Id);
            Push_Scope (Spec_Id);

            --  Make sure that the subprogram is immediately visible. For
            --  child units that have no separate spec this is indispensable.
            --  Otherwise it is safe albeit redundant.

            Set_Is_Immediately_Visible (Spec_Id);
         end if;

         Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
         Set_Ekind (Body_Id, E_Subprogram_Body);
         Set_Scope (Body_Id, Scope (Spec_Id));
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));

      --  Case of subprogram body with no previous spec

      else
         if Style_Check
           and then Comes_From_Source (Body_Id)
           and then not Suppress_Style_Checks (Body_Id)
           and then not In_Instance
         then
            Style.Body_With_No_Spec (N);
         end if;

         New_Overloaded_Entity (Body_Id);

         if Nkind (N) /= N_Subprogram_Body_Stub then
            Set_Acts_As_Spec (N);
            Generate_Definition (Body_Id);
            Generate_Reference
              (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
            Generate_Reference_To_Formals (Body_Id);
            Install_Formals (Body_Id);
            Push_Scope (Body_Id);
         end if;
      end if;

      --  If the return type is an anonymous access type whose designated type
      --  is the limited view of a class-wide type and the non-limited view is
      --  available, update the return type accordingly.

      if Ada_Version >= Ada_05
        and then Comes_From_Source (N)
      then
         declare
            Etyp : Entity_Id;
            Rtyp : Entity_Id;

         begin
            Rtyp := Etype (Current_Scope);

            if Ekind (Rtyp) = E_Anonymous_Access_Type then
               Etyp := Directly_Designated_Type (Rtyp);

               if Is_Class_Wide_Type (Etyp)
                 and then From_With_Type (Etyp)
               then
                  Set_Directly_Designated_Type
                    (Etype (Current_Scope), Available_View (Etyp));
               end if;
            end if;
         end;
      end if;

      --  If this is the proper body of a stub, we must verify that the stub
      --  conforms to the body, and to the previous spec if one was present.
      --  we know already that the body conforms to that spec. This test is
      --  only required for subprograms that come from source.

      if Nkind (Parent (N)) = N_Subunit
        and then Comes_From_Source (N)
        and then not Error_Posted (Body_Id)
        and then Nkind (Corresponding_Stub (Parent (N))) =
                                                N_Subprogram_Body_Stub
      then
         declare
            Old_Id : constant Entity_Id :=
                       Defining_Entity
                         (Specification (Corresponding_Stub (Parent (N))));

            Conformant : Boolean := False;

         begin
            if No (Spec_Id) then
               Check_Fully_Conformant (Body_Id, Old_Id);

            else
               Check_Conformance
                 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);

               if not Conformant then

                  --  The stub was taken to be a new declaration. Indicate
                  --  that it lacks a body.

                  Set_Has_Completion (Old_Id, False);
               end if;
            end if;
         end;
      end if;

      Set_Has_Completion (Body_Id);
      Check_Eliminated (Body_Id);

      if Nkind (N) = N_Subprogram_Body_Stub then
         return;

      elsif Present (Spec_Id)
        and then Expander_Active
        and then
          (Has_Pragma_Inline_Always (Spec_Id)
             or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
      then
         Build_Body_To_Inline (N, Spec_Id);
      end if;

      --  Ada 2005 (AI-262): In library subprogram bodies, after the analysis
      --  if its specification we have to install the private withed units.
      --  This holds for child units as well.

      if Is_Compilation_Unit (Body_Id)
        or else Nkind (Parent (N)) = N_Compilation_Unit
      then
         Install_Private_With_Clauses (Body_Id);
      end if;

      Check_Anonymous_Return;

      --  Set the Protected_Formal field of each extra formal of the protected
      --  subprogram to reference the corresponding extra formal of the
      --  subprogram that implements it. For regular formals this occurs when
      --  the protected subprogram's declaration is expanded, but the extra
      --  formals don't get created until the subprogram is frozen. We need to
      --  do this before analyzing the protected subprogram's body so that any
      --  references to the original subprogram's extra formals will be changed
      --  refer to the implementing subprogram's formals (see Expand_Formal).

      if Present (Spec_Id)
        and then Is_Protected_Type (Scope (Spec_Id))
        and then Present (Protected_Body_Subprogram (Spec_Id))
      then
         declare
            Impl_Subp       : constant Entity_Id :=
                                Protected_Body_Subprogram (Spec_Id);
            Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
            Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
         begin
            while Present (Prot_Ext_Formal) loop
               pragma Assert (Present (Impl_Ext_Formal));
               Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
               Next_Formal_With_Extras (Prot_Ext_Formal);
               Next_Formal_With_Extras (Impl_Ext_Formal);
            end loop;
         end;
      end if;

      --  Now we can go on to analyze the body

      HSS := Handled_Statement_Sequence (N);
      Set_Actual_Subtypes (N, Current_Scope);

      --  Deal with preconditions and postconditions

      Process_PPCs (N, Spec_Id, Body_Id);

      --  Add a declaration for the Protection object, renaming declarations
      --  for discriminals and privals and finally a declaration for the entry
      --  family index (if applicable). This form of early expansion is done
      --  when the Expander is active because Install_Private_Data_Declarations
      --  references entities which were created during regular expansion.

      if Expander_Active
        and then Comes_From_Source (N)
        and then Present (Prot_Typ)
        and then Present (Spec_Id)
        and then not Is_Eliminated (Spec_Id)
      then
         Install_Private_Data_Declarations
           (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
      end if;

      --  Analyze the declarations (this call will analyze the precondition
      --  Check pragmas we prepended to the list, as well as the declaration
      --  of the _Postconditions procedure).

      Analyze_Declarations (Declarations (N));

      --  Check completion, and analyze the statements

      Check_Completion;
      Inspect_Deferred_Constant_Completion (Declarations (N));
      Analyze (HSS);

      --  Deal with end of scope processing for the body

      Process_End_Label (HSS, 't', Current_Scope);
      End_Scope;
      Check_Subprogram_Order (N);
      Set_Analyzed (Body_Id);

      --  If we have a separate spec, then the analysis of the declarations
      --  caused the entities in the body to be chained to the spec id, but
      --  we want them chained to the body id. Only the formal parameters
      --  end up chained to the spec id in this case.

      if Present (Spec_Id) then

         --  We must conform to the categorization of our spec

         Validate_Categorization_Dependency (N, Spec_Id);

         --  And if this is a child unit, the parent units must conform

         if Is_Child_Unit (Spec_Id) then
            Validate_Categorization_Dependency
              (Unit_Declaration_Node (Spec_Id), Spec_Id);
         end if;

         --  Here is where we move entities from the spec to the body

         --  Case where there are entities that stay with the spec

         if Present (Last_Real_Spec_Entity) then

            --  No body entities (happens when the only real spec entities
            --  come from precondition and postcondition pragmas)

            if No (Last_Entity (Body_Id)) then
               Set_First_Entity
                 (Body_Id, Next_Entity (Last_Real_Spec_Entity));

            --  Body entities present (formals), so chain stuff past them

            else
               Set_Next_Entity
                 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
            end if;

            Set_Next_Entity (Last_Real_Spec_Entity, Empty);
            Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
            Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);

         --  Case where there are no spec entities, in this case there can
         --  be no body entities either, so just move everything.

         else
            pragma Assert (No (Last_Entity (Body_Id)));
            Set_First_Entity (Body_Id, First_Entity (Spec_Id));
            Set_Last_Entity  (Body_Id, Last_Entity (Spec_Id));
            Set_First_Entity (Spec_Id, Empty);
            Set_Last_Entity  (Spec_Id, Empty);
         end if;
      end if;

      --  If function, check return statements

      if Nkind (Body_Spec) = N_Function_Specification then
         declare
            Id : Entity_Id;

         begin
            if Present (Spec_Id) then
               Id := Spec_Id;
            else
               Id := Body_Id;
            end if;

            if Return_Present (Id) then
               Check_Returns (HSS, 'F', Missing_Ret);

               if Missing_Ret then
                  Set_Has_Missing_Return (Id);
               end if;

            elsif not Is_Machine_Code_Subprogram (Id)
              and then not Body_Deleted
            then
               Error_Msg_N ("missing RETURN statement in function body", N);
            end if;
         end;

      --  If procedure with No_Return, check returns

      elsif Nkind (Body_Spec) = N_Procedure_Specification
        and then Present (Spec_Id)
        and then No_Return (Spec_Id)
      then
         Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
      end if;

      --  Now we are going to check for variables that are never modified in
      --  the body of the procedure. But first we deal with a special case
      --  where we want to modify this check. If the body of the subprogram
      --  starts with a raise statement or its equivalent, or if the body
      --  consists entirely of a null statement, then it is pretty obvious
      --  that it is OK to not reference the parameters. For example, this
      --  might be the following common idiom for a stubbed function:
      --  statement of the procedure raises an exception. In particular this
      --  deals with the common idiom of a stubbed function, which might
      --  appear as something like

      --     function F (A : Integer) return Some_Type;
      --        X : Some_Type;
      --     begin
      --        raise Program_Error;
      --        return X;
      --     end F;

      --  Here the purpose of X is simply to satisfy the annoying requirement
      --  in Ada that there be at least one return, and we certainly do not
      --  want to go posting warnings on X that it is not initialized! On
      --  the other hand, if X is entirely unreferenced that should still
      --  get a warning.

      --  What we do is to detect these cases, and if we find them, flag the
      --  subprogram as being Is_Trivial_Subprogram and then use that flag to
      --  suppress unwanted warnings. For the case of the function stub above
      --  we have a special test to set X as apparently assigned to suppress
      --  the warning.

      declare
         Stm : Node_Id;

      begin
         --  Skip initial labels (for one thing this occurs when we are in
         --  front end ZCX mode, but in any case it is irrelevant), and also
         --  initial Push_xxx_Error_Label nodes, which are also irrelevant.

         Stm := First (Statements (HSS));
         while Nkind (Stm) = N_Label
           or else Nkind (Stm) in N_Push_xxx_Label
         loop
            Next (Stm);
         end loop;

         --  Do the test on the original statement before expansion

         declare
            Ostm : constant Node_Id := Original_Node (Stm);

         begin
            --  If explicit raise statement, turn on flag

            if Nkind (Ostm) = N_Raise_Statement then
               Set_Trivial_Subprogram (Stm);

            --  If null statement, and no following statements, turn on flag

            elsif Nkind (Stm) = N_Null_Statement
              and then Comes_From_Source (Stm)
              and then No (Next (Stm))
            then
               Set_Trivial_Subprogram (Stm);

            --  Check for explicit call cases which likely raise an exception

            elsif Nkind (Ostm) = N_Procedure_Call_Statement then
               if Is_Entity_Name (Name (Ostm)) then
                  declare
                     Ent : constant Entity_Id := Entity (Name (Ostm));

                  begin
                     --  If the procedure is marked No_Return, then likely it
                     --  raises an exception, but in any case it is not coming
                     --  back here, so turn on the flag.

                     if Ekind (Ent) = E_Procedure
                       and then No_Return (Ent)
                     then
                        Set_Trivial_Subprogram (Stm);
                     end if;
                  end;
               end if;
            end if;
         end;
      end;

      --  Check for variables that are never modified

      declare
         E1, E2 : Entity_Id;

      begin
         --  If there is a separate spec, then transfer Never_Set_In_Source
         --  flags from out parameters to the corresponding entities in the
         --  body. The reason we do that is we want to post error flags on
         --  the body entities, not the spec entities.

         if Present (Spec_Id) then
            E1 := First_Entity (Spec_Id);
            while Present (E1) loop
               if Ekind (E1) = E_Out_Parameter then
                  E2 := First_Entity (Body_Id);
                  while Present (E2) loop
                     exit when Chars (E1) = Chars (E2);
                     Next_Entity (E2);
                  end loop;

                  if Present (E2) then
                     Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
                  end if;
               end if;

               Next_Entity (E1);
            end loop;
         end if;

         --  Check references in body unless it was deleted. Note that the
         --  check of Body_Deleted here is not just for efficiency, it is
         --  necessary to avoid junk warnings on formal parameters.

         if not Body_Deleted then
            Check_References (Body_Id);
         end if;
      end;
   end Analyze_Subprogram_Body_Helper;

   ------------------------------------
   -- Analyze_Subprogram_Declaration --
   ------------------------------------

   procedure Analyze_Subprogram_Declaration (N : Node_Id) is
      Loc        : constant Source_Ptr := Sloc (N);
      Designator : Entity_Id;
      Form       : Node_Id;
      Scop       : constant Entity_Id := Current_Scope;
      Null_Body  : Node_Id := Empty;

   --  Start of processing for Analyze_Subprogram_Declaration

   begin
      --  For a null procedure, capture the profile before analysis, for
      --  expansion at the freeze point and at each point of call.
      --  The body will only be used if the procedure has preconditions.
      --  In that case the body is analyzed at the freeze point.

      if Nkind (Specification (N)) = N_Procedure_Specification
        and then Null_Present (Specification (N))
        and then Expander_Active
      then
         Null_Body :=
           Make_Subprogram_Body (Loc,
             Specification =>
               New_Copy_Tree (Specification (N)),
             Declarations =>
               New_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (Make_Null_Statement (Loc))));

         --  Create new entities for body and formals

         Set_Defining_Unit_Name (Specification (Null_Body),
           Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
         Set_Corresponding_Body (N, Defining_Entity (Null_Body));

         Form := First (Parameter_Specifications (Specification (Null_Body)));
         while Present (Form) loop
            Set_Defining_Identifier (Form,
              Make_Defining_Identifier (Loc,
                Chars (Defining_Identifier (Form))));
            Next (Form);
         end loop;

         if Is_Protected_Type (Current_Scope) then
            Error_Msg_N
              ("protected operation cannot be a null procedure", N);
         end if;
      end if;

      Designator :=  Analyze_Subprogram_Specification (Specification (N));
      Generate_Definition (Designator);

      if Debug_Flag_C then
         Write_Str ("==> subprogram spec ");
         Write_Name (Chars (Designator));
         Write_Str (" from ");
         Write_Location (Sloc (N));
         Write_Eol;
         Indent;
      end if;

      if Nkind (Specification (N)) = N_Procedure_Specification
        and then Null_Present (Specification (N))
      then
         Set_Has_Completion (Designator);

         if Present (Null_Body) then
            Set_Corresponding_Body (N, Defining_Entity (Null_Body));
            Set_Body_To_Inline (N, Null_Body);
            Set_Is_Inlined (Designator);
         end if;
      end if;

      Validate_RCI_Subprogram_Declaration (N);
      New_Overloaded_Entity (Designator);
      Check_Delayed_Subprogram (Designator);

      --  If the type of the first formal of the current subprogram is a
      --  nongeneric tagged private type, mark the subprogram as being a
      --  private primitive. Ditto if this is a function with controlling
      --  result, and the return type is currently private.

      if Has_Controlling_Result (Designator)
        and then Is_Private_Type (Etype (Designator))
        and then not Is_Generic_Actual_Type (Etype (Designator))
      then
         Set_Is_Private_Primitive (Designator);

      elsif Present (First_Formal (Designator)) then
         declare
            Formal_Typ : constant Entity_Id :=
                           Etype (First_Formal (Designator));
         begin
            Set_Is_Private_Primitive (Designator,
              Is_Tagged_Type (Formal_Typ)
                and then Is_Private_Type (Formal_Typ)
                and then not Is_Generic_Actual_Type (Formal_Typ));
         end;
      end if;

      --  Ada 2005 (AI-251): Abstract interface primitives must be abstract
      --  or null.

      if Ada_Version >= Ada_05
        and then Comes_From_Source (N)
        and then Is_Dispatching_Operation (Designator)
      then
         declare
            E    : Entity_Id;
            Etyp : Entity_Id;

         begin
            if Has_Controlling_Result (Designator) then
               Etyp := Etype (Designator);

            else
               E := First_Entity (Designator);
               while Present (E)
                 and then Is_Formal (E)
                 and then not Is_Controlling_Formal (E)
               loop
                  Next_Entity (E);
               end loop;

               Etyp := Etype (E);
            end if;

            if Is_Access_Type (Etyp) then
               Etyp := Directly_Designated_Type (Etyp);
            end if;

            if Is_Interface (Etyp)
              and then not Is_Abstract_Subprogram (Designator)
              and then not (Ekind (Designator) = E_Procedure
                              and then Null_Present (Specification (N)))
            then
               Error_Msg_Name_1 := Chars (Defining_Entity (N));
               Error_Msg_N
                 ("(Ada 2005) interface subprogram % must be abstract or null",
                  N);
            end if;
         end;
      end if;

      --  What is the following code for, it used to be

      --  ???   Set_Suppress_Elaboration_Checks
      --  ???     (Designator, Elaboration_Checks_Suppressed (Designator));

      --  The following seems equivalent, but a bit dubious

      if Elaboration_Checks_Suppressed (Designator) then
         Set_Kill_Elaboration_Checks (Designator);
      end if;

      if Scop /= Standard_Standard
        and then not Is_Child_Unit (Designator)
      then
         Set_Categorization_From_Scope (Designator, Scop);
      else
         --  For a compilation unit, check for library-unit pragmas

         Push_Scope (Designator);
         Set_Categorization_From_Pragmas (N);
         Validate_Categorization_Dependency (N, Designator);
         Pop_Scope;
      end if;

      --  For a compilation unit, set body required. This flag will only be
      --  reset if a valid Import or Interface pragma is processed later on.

      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Body_Required (Parent (N), True);

         if Ada_Version >= Ada_05
           and then Nkind (Specification (N)) = N_Procedure_Specification
           and then Null_Present (Specification (N))
         then
            Error_Msg_N
              ("null procedure cannot be declared at library level", N);
         end if;
      end if;

      Generate_Reference_To_Formals (Designator);
      Check_Eliminated (Designator);

      if Debug_Flag_C then
         Outdent;
         Write_Str ("<== subprogram spec ");
         Write_Name (Chars (Designator));
         Write_Str (" from ");
         Write_Location (Sloc (N));
         Write_Eol;
      end if;
   end Analyze_Subprogram_Declaration;

   --------------------------------------
   -- Analyze_Subprogram_Specification --
   --------------------------------------

   --  Reminder: N here really is a subprogram specification (not a subprogram
   --  declaration). This procedure is called to analyze the specification in
   --  both subprogram bodies and subprogram declarations (specs).

   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
      Designator : constant Entity_Id := Defining_Entity (N);
      Formals    : constant List_Id   := Parameter_Specifications (N);

   --  Start of processing for Analyze_Subprogram_Specification

   begin
      Generate_Definition (Designator);

      if Nkind (N) = N_Function_Specification then
         Set_Ekind (Designator, E_Function);
         Set_Mechanism (Designator, Default_Mechanism);

      else
         Set_Ekind (Designator, E_Procedure);
         Set_Etype (Designator, Standard_Void_Type);
      end if;

      --  Introduce new scope for analysis of the formals and the return type

      Set_Scope (Designator, Current_Scope);

      if Present (Formals) then
         Push_Scope (Designator);
         Process_Formals (Formals, N);

         --  Ada 2005 (AI-345): If this is an overriding operation of an
         --  inherited interface operation, and the controlling type is
         --  a synchronized type, replace the type with its corresponding
         --  record, to match the proper signature of an overriding operation.
         --  Same processing for an access parameter whose designated type is
         --  derived from a synchronized interface.

         if Ada_Version >= Ada_05 then
            declare
               Formal     : Entity_Id;
               Formal_Typ : Entity_Id;
               Rec_Typ    : Entity_Id;
               Desig_Typ  : Entity_Id;

            begin
               Formal := First_Formal (Designator);
               while Present (Formal) loop
                  Formal_Typ := Etype (Formal);

                  if Is_Concurrent_Type (Formal_Typ)
                    and then Present (Corresponding_Record_Type (Formal_Typ))
                  then
                     Rec_Typ := Corresponding_Record_Type (Formal_Typ);

                     if Present (Interfaces (Rec_Typ)) then
                        Set_Etype (Formal, Rec_Typ);
                     end if;

                  elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
                     Desig_Typ := Designated_Type (Formal_Typ);

                     if Is_Concurrent_Type (Desig_Typ)
                       and then Present (Corresponding_Record_Type (Desig_Typ))
                     then
                        Rec_Typ := Corresponding_Record_Type (Desig_Typ);

                        if Present (Interfaces (Rec_Typ)) then
                           Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
                        end if;
                     end if;
                  end if;

                  Next_Formal (Formal);
               end loop;
            end;
         end if;

         End_Scope;

      --  The subprogram scope is pushed and popped around the processing of
      --  the return type for consistency with call above to Process_Formals
      --  (which itself can call Analyze_Return_Type), and to ensure that any
      --  itype created for the return type will be associated with the proper
      --  scope.

      elsif Nkind (N) = N_Function_Specification then
         Push_Scope (Designator);

         Analyze_Return_Type (N);

         End_Scope;
      end if;

      if Nkind (N) = N_Function_Specification then
         if Nkind (Designator) = N_Defining_Operator_Symbol then
            Valid_Operator_Definition (Designator);
         end if;

         May_Need_Actuals (Designator);

         --  Ada 2005 (AI-251): If the return type is abstract, verify that
         --  the subprogram is abstract also. This does not apply to renaming
         --  declarations, where abstractness is inherited.
         --  In case of primitives associated with abstract interface types
         --  the check is applied later (see Analyze_Subprogram_Declaration).

         if Is_Abstract_Type (Etype (Designator))
           and then not Is_Interface (Etype (Designator))
           and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
           and then Nkind (Parent (N)) /=
                      N_Abstract_Subprogram_Declaration
           and then
             (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
         then
            Error_Msg_N
              ("function that returns abstract type must be abstract", N);
         end if;
      end if;

      return Designator;
   end Analyze_Subprogram_Specification;

   --------------------------
   -- Build_Body_To_Inline --
   --------------------------

   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
      Decl            : constant Node_Id := Unit_Declaration_Node (Subp);
      Original_Body   : Node_Id;
      Body_To_Analyze : Node_Id;
      Max_Size        : constant := 10;
      Stat_Count      : Integer := 0;

      function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
      --  Check for declarations that make inlining not worthwhile

      function Has_Excluded_Statement   (Stats : List_Id) return Boolean;
      --  Check for statements that make inlining not worthwhile: any tasking
      --  statement, nested at any level. Keep track of total number of
      --  elementary statements, as a measure of acceptable size.

      function Has_Pending_Instantiation return Boolean;
      --  If some enclosing body contains instantiations that appear before the
      --  corresponding generic body, the enclosing body has a freeze node so
      --  that it can be elaborated after the generic itself. This might
      --  conflict with subsequent inlinings, so that it is unsafe to try to
      --  inline in such a case.

      function Has_Single_Return return Boolean;
      --  In general we cannot inline functions that return unconstrained type.
      --  However, we can handle such functions if all return statements return
      --  a local variable that is the only declaration in the body of the
      --  function. In that case the call can be replaced by that local
      --  variable as is done for other inlined calls.

      procedure Remove_Pragmas;
      --  A pragma Unreferenced or pragma Unmodified that mentions a formal
      --  parameter has no meaning when the body is inlined and the formals
      --  are rewritten. Remove it from body to inline. The analysis of the
      --  non-inlined body will handle the pragma properly.

      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
      --  If the body of the subprogram includes a call that returns an
      --  unconstrained type, the secondary stack is involved, and it
      --  is not worth inlining.

      ------------------------------
      -- Has_Excluded_Declaration --
      ------------------------------

      function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
         D : Node_Id;

         function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
         --  Nested subprograms make a given body ineligible for inlining, but
         --  we make an exception for instantiations of unchecked conversion.
         --  The body has not been analyzed yet, so check the name, and verify
         --  that the visible entity with that name is the predefined unit.

         -----------------------------
         -- Is_Unchecked_Conversion --
         -----------------------------

         function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
            Id   : constant Node_Id := Name (D);
            Conv : Entity_Id;

         begin
            if Nkind (Id) = N_Identifier
              and then Chars (Id) = Name_Unchecked_Conversion
            then
               Conv := Current_Entity (Id);

            elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
              and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
            then
               Conv := Current_Entity (Selector_Name (Id));
            else
               return False;
            end if;

            return Present (Conv)
              and then Is_Predefined_File_Name
                         (Unit_File_Name (Get_Source_Unit (Conv)))
              and then Is_Intrinsic_Subprogram (Conv);
         end Is_Unchecked_Conversion;

      --  Start of processing for Has_Excluded_Declaration

      begin
         D := First (Decls);
         while Present (D) loop
            if (Nkind (D) = N_Function_Instantiation
                  and then not Is_Unchecked_Conversion (D))
              or else Nkind_In (D, N_Protected_Type_Declaration,
                                   N_Package_Declaration,
                                   N_Package_Instantiation,
                                   N_Subprogram_Body,
                                   N_Procedure_Instantiation,
                                   N_Task_Type_Declaration)
            then
               Cannot_Inline
                 ("cannot inline & (non-allowed declaration)?", D, Subp);
               return True;
            end if;

            Next (D);
         end loop;

         return False;
      end Has_Excluded_Declaration;

      ----------------------------
      -- Has_Excluded_Statement --
      ----------------------------

      function Has_Excluded_Statement (Stats : List_Id) return Boolean is
         S : Node_Id;
         E : Node_Id;

      begin
         S := First (Stats);
         while Present (S) loop
            Stat_Count := Stat_Count + 1;

            if Nkind_In (S, N_Abort_Statement,
                            N_Asynchronous_Select,
                            N_Conditional_Entry_Call,
                            N_Delay_Relative_Statement,
                            N_Delay_Until_Statement,
                            N_Selective_Accept,
                            N_Timed_Entry_Call)
            then
               Cannot_Inline
                 ("cannot inline & (non-allowed statement)?", S, Subp);
               return True;

            elsif Nkind (S) = N_Block_Statement then
               if Present (Declarations (S))
                 and then Has_Excluded_Declaration (Declarations (S))
               then
                  return True;

               elsif Present (Handled_Statement_Sequence (S))
                  and then
                    (Present
                      (Exception_Handlers (Handled_Statement_Sequence (S)))
                     or else
                       Has_Excluded_Statement
                         (Statements (Handled_Statement_Sequence (S))))
               then
                  return True;
               end if;

            elsif Nkind (S) = N_Case_Statement then
               E := First (Alternatives (S));
               while Present (E) loop
                  if Has_Excluded_Statement (Statements (E)) then
                     return True;
                  end if;

                  Next (E);
               end loop;

            elsif Nkind (S) = N_If_Statement then
               if Has_Excluded_Statement (Then_Statements (S)) then
                  return True;
               end if;

               if Present (Elsif_Parts (S)) then
                  E := First (Elsif_Parts (S));
                  while Present (E) loop
                     if Has_Excluded_Statement (Then_Statements (E)) then
                        return True;
                     end if;
                     Next (E);
                  end loop;
               end if;

               if Present (Else_Statements (S))
                 and then Has_Excluded_Statement (Else_Statements (S))
               then
                  return True;
               end if;

            elsif Nkind (S) = N_Loop_Statement
              and then Has_Excluded_Statement (Statements (S))
            then
               return True;
            end if;

            Next (S);
         end loop;

         return False;
      end Has_Excluded_Statement;

      -------------------------------
      -- Has_Pending_Instantiation --
      -------------------------------

      function Has_Pending_Instantiation return Boolean is
         S : Entity_Id;

      begin
         S := Current_Scope;
         while Present (S) loop
            if Is_Compilation_Unit (S)
              or else Is_Child_Unit (S)
            then
               return False;
            elsif Ekind (S) = E_Package
              and then Has_Forward_Instantiation (S)
            then
               return True;
            end if;

            S := Scope (S);
         end loop;

         return False;
      end Has_Pending_Instantiation;

      ------------------------
      --  Has_Single_Return --
      ------------------------

      function Has_Single_Return return Boolean is
         Return_Statement : Node_Id := Empty;

         function Check_Return (N : Node_Id) return Traverse_Result;

         ------------------
         -- Check_Return --
         ------------------

         function Check_Return (N : Node_Id) return Traverse_Result is
         begin
            if Nkind (N) = N_Simple_Return_Statement then
               if Present (Expression (N))
                 and then Is_Entity_Name (Expression (N))
               then
                  if No (Return_Statement) then
                     Return_Statement := N;
                     return OK;

                  elsif Chars (Expression (N)) =
                        Chars (Expression (Return_Statement))
                  then
                     return OK;

                  else
                     return Abandon;
                  end if;

               else
                  --  Expression has wrong form

                  return Abandon;
               end if;

            else
               return OK;
            end if;
         end Check_Return;

         function Check_All_Returns is new Traverse_Func (Check_Return);

      --  Start of processing for Has_Single_Return

      begin
         return Check_All_Returns (N) = OK
           and then Present (Declarations (N))
           and then Present (First (Declarations (N)))
           and then Chars (Expression (Return_Statement)) =
                    Chars (Defining_Identifier (First (Declarations (N))));
      end Has_Single_Return;

      --------------------
      -- Remove_Pragmas --
      --------------------

      procedure Remove_Pragmas is
         Decl : Node_Id;
         Nxt  : Node_Id;

      begin
         Decl := First (Declarations (Body_To_Analyze));
         while Present (Decl) loop
            Nxt := Next (Decl);

            if Nkind (Decl) = N_Pragma
              and then (Pragma_Name (Decl) = Name_Unreferenced
                          or else
                        Pragma_Name (Decl) = Name_Unmodified)
            then
               Remove (Decl);
            end if;

            Decl := Nxt;
         end loop;
      end Remove_Pragmas;

      --------------------------
      -- Uses_Secondary_Stack --
      --------------------------

      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
         function Check_Call (N : Node_Id) return Traverse_Result;
         --  Look for function calls that return an unconstrained type

         ----------------
         -- Check_Call --
         ----------------

         function Check_Call (N : Node_Id) return Traverse_Result is
         begin
            if Nkind (N) = N_Function_Call
              and then Is_Entity_Name (Name (N))
              and then Is_Composite_Type (Etype (Entity (Name (N))))
              and then not Is_Constrained (Etype (Entity (Name (N))))
            then
               Cannot_Inline
                 ("cannot inline & (call returns unconstrained type)?",
                    N, Subp);
               return Abandon;
            else
               return OK;
            end if;
         end Check_Call;

         function Check_Calls is new Traverse_Func (Check_Call);

      begin
         return Check_Calls (Bod) = Abandon;
      end Uses_Secondary_Stack;

   --  Start of processing for Build_Body_To_Inline

   begin
      --  Return immediately if done already

      if Nkind (Decl) = N_Subprogram_Declaration
        and then Present (Body_To_Inline (Decl))
      then
         return;

      --  Functions that return unconstrained composite types require
      --  secondary stack handling, and cannot currently be inlined, unless
      --  all return statements return a local variable that is the first
      --  local declaration in the body.

      elsif Ekind (Subp) = E_Function
        and then not Is_Scalar_Type (Etype (Subp))
        and then not Is_Access_Type (Etype (Subp))
        and then not Is_Constrained (Etype (Subp))
      then
         if not Has_Single_Return then
            Cannot_Inline
              ("cannot inline & (unconstrained return type)?", N, Subp);
            return;
         end if;

      --  Ditto for functions that return controlled types, where controlled
      --  actions interfere in complex ways with inlining.

      elsif Ekind (Subp) = E_Function
        and then Needs_Finalization (Etype (Subp))
      then
         Cannot_Inline
           ("cannot inline & (controlled return type)?", N, Subp);
         return;
      end if;

      if Present (Declarations (N))
        and then Has_Excluded_Declaration (Declarations (N))
      then
         return;
      end if;

      if Present (Handled_Statement_Sequence (N)) then
         if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
            Cannot_Inline
              ("cannot inline& (exception handler)?",
               First (Exception_Handlers (Handled_Statement_Sequence (N))),
               Subp);
            return;
         elsif
           Has_Excluded_Statement
             (Statements (Handled_Statement_Sequence (N)))
         then
            return;
         end if;
      end if;

      --  We do not inline a subprogram  that is too large, unless it is
      --  marked Inline_Always. This pragma does not suppress the other
      --  checks on inlining (forbidden declarations, handlers, etc).

      if Stat_Count > Max_Size
        and then not Has_Pragma_Inline_Always (Subp)
      then
         Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
         return;
      end if;

      if Has_Pending_Instantiation then
         Cannot_Inline
           ("cannot inline& (forward instance within enclosing body)?",
             N, Subp);
         return;
      end if;

      --  Within an instance, the body to inline must be treated as a nested
      --  generic, so that the proper global references are preserved.

      --  Note that we do not do this at the library level, because it is not
      --  needed, and furthermore this causes trouble if front end inlining
      --  is activated (-gnatN).

      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
         Save_Env (Scope (Current_Scope), Scope (Current_Scope));
         Original_Body := Copy_Generic_Node (N, Empty, True);
      else
         Original_Body := Copy_Separate_Tree (N);
      end if;

      --  We need to capture references to the formals in order to substitute
      --  the actuals at the point of inlining, i.e. instantiation. To treat
      --  the formals as globals to the body to inline, we nest it within
      --  a dummy parameterless subprogram, declared within the real one.
      --  To avoid generating an internal name (which is never public, and
      --  which affects serial numbers of other generated names), we use
      --  an internal symbol that cannot conflict with user declarations.

      Set_Parameter_Specifications (Specification (Original_Body), No_List);
      Set_Defining_Unit_Name
        (Specification (Original_Body),
          Make_Defining_Identifier (Sloc (N), Name_uParent));
      Set_Corresponding_Spec (Original_Body, Empty);

      Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);

      --  Set return type of function, which is also global and does not need
      --  to be resolved.

      if Ekind (Subp) = E_Function then
         Set_Result_Definition (Specification (Body_To_Analyze),
           New_Occurrence_Of (Etype (Subp), Sloc (N)));
      end if;

      if No (Declarations (N)) then
         Set_Declarations (N, New_List (Body_To_Analyze));
      else
         Append (Body_To_Analyze, Declarations (N));
      end if;

      Expander_Mode_Save_And_Set (False);
      Remove_Pragmas;

      Analyze (Body_To_Analyze);
      Push_Scope (Defining_Entity (Body_To_Analyze));
      Save_Global_References (Original_Body);
      End_Scope;
      Remove (Body_To_Analyze);

      Expander_Mode_Restore;

      --  Restore environment if previously saved

      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
         Restore_Env;
      end if;

      --  If secondary stk used there is no point in inlining. We have
      --  already issued the warning in this case, so nothing to do.

      if Uses_Secondary_Stack (Body_To_Analyze) then
         return;
      end if;

      Set_Body_To_Inline (Decl, Original_Body);
      Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
      Set_Is_Inlined (Subp);
   end Build_Body_To_Inline;

   -------------------
   -- Cannot_Inline --
   -------------------

   procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
   begin
      --  Do not emit warning if this is a predefined unit which is not
      --  the main unit. With validity checks enabled, some predefined
      --  subprograms may contain nested subprograms and become ineligible
      --  for inlining.

      if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
        and then not In_Extended_Main_Source_Unit (Subp)
      then
         null;

      elsif Has_Pragma_Inline_Always (Subp) then

         --  Remove last character (question mark) to make this into an error,
         --  because the Inline_Always pragma cannot be obeyed.

         Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);

      elsif Ineffective_Inline_Warnings then
         Error_Msg_NE (Msg, N, Subp);
      end if;
   end Cannot_Inline;

   -----------------------
   -- Check_Conformance --
   -----------------------

   procedure Check_Conformance
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Ctype                    : Conformance_Type;
      Errmsg                   : Boolean;
      Conforms                 : out Boolean;
      Err_Loc                  : Node_Id := Empty;
      Get_Inst                 : Boolean := False;
      Skip_Controlling_Formals : Boolean := False)
   is
      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
      --  Sets Conforms to False. If Errmsg is False, then that's all it does.
      --  If Errmsg is True, then processing continues to post an error message
      --  for conformance error on given node. Two messages are output. The
      --  first message points to the previous declaration with a general "no
      --  conformance" message. The second is the detailed reason, supplied as
      --  Msg. The parameter N provide information for a possible & insertion
      --  in the message, and also provides the location for posting the
      --  message in the absence of a specified Err_Loc location.

      -----------------------
      -- Conformance_Error --
      -----------------------

      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
         Enode : Node_Id;

      begin
         Conforms := False;

         if Errmsg then
            if No (Err_Loc) then
               Enode := N;
            else
               Enode := Err_Loc;
            end if;

            Error_Msg_Sloc := Sloc (Old_Id);

            case Ctype is
               when Type_Conformant =>
                  Error_Msg_N -- CODEFIX
                    ("not type conformant with declaration#!", Enode);

               when Mode_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N -- CODEFIX???
                       ("not mode conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N -- CODEFIX???
                       ("not mode conformant with declaration#!", Enode);
                  end if;

               when Subtype_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N -- CODEFIX???
                       ("not subtype conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N -- CODEFIX???
                       ("not subtype conformant with declaration#!", Enode);
                  end if;

               when Fully_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N -- CODEFIX
                       ("not fully conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N -- CODEFIX
                       ("not fully conformant with declaration#!", Enode);
                  end if;
            end case;

            Error_Msg_NE (Msg, Enode, N);
         end if;
      end Conformance_Error;

      --  Local Variables

      Old_Type           : constant Entity_Id := Etype (Old_Id);
      New_Type           : constant Entity_Id := Etype (New_Id);
      Old_Formal         : Entity_Id;
      New_Formal         : Entity_Id;
      Access_Types_Match : Boolean;
      Old_Formal_Base    : Entity_Id;
      New_Formal_Base    : Entity_Id;

   --  Start of processing for Check_Conformance

   begin
      Conforms := True;

      --  We need a special case for operators, since they don't appear
      --  explicitly.

      if Ctype = Type_Conformant then
         if Ekind (New_Id) = E_Operator
           and then Operator_Matches_Spec (New_Id, Old_Id)
         then
            return;
         end if;
      end if;

      --  If both are functions/operators, check return types conform

      if Old_Type /= Standard_Void_Type
        and then New_Type /= Standard_Void_Type
      then

         --  If we are checking interface conformance we omit controlling
         --  arguments and result, because we are only checking the conformance
         --  of the remaining parameters.

         if Has_Controlling_Result (Old_Id)
           and then Has_Controlling_Result (New_Id)
           and then Skip_Controlling_Formals
         then
            null;

         elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
            Conformance_Error ("\return type does not match!", New_Id);
            return;
         end if;

         --  Ada 2005 (AI-231): In case of anonymous access types check the
         --  null-exclusion and access-to-constant attributes match.

         if Ada_Version >= Ada_05
           and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
           and then
             (Can_Never_Be_Null (Old_Type)
                /= Can_Never_Be_Null (New_Type)
              or else Is_Access_Constant (Etype (Old_Type))
                        /= Is_Access_Constant (Etype (New_Type)))
         then
            Conformance_Error ("\return type does not match!", New_Id);
            return;
         end if;

      --  If either is a function/operator and the other isn't, error

      elsif Old_Type /= Standard_Void_Type
        or else New_Type /= Standard_Void_Type
      then
         Conformance_Error ("\functions can only match functions!", New_Id);
         return;
      end if;

      --  In subtype conformant case, conventions must match (RM 6.3.1(16)).
      --  If this is a renaming as body, refine error message to indicate that
      --  the conflict is with the original declaration. If the entity is not
      --  frozen, the conventions don't have to match, the one of the renamed
      --  entity is inherited.

      if Ctype >= Subtype_Conformant then
         if Convention (Old_Id) /= Convention (New_Id) then

            if not Is_Frozen (New_Id) then
               null;

            elsif Present (Err_Loc)
              and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
              and then Present (Corresponding_Spec (Err_Loc))
            then
               Error_Msg_Name_1 := Chars (New_Id);
               Error_Msg_Name_2 :=
                 Name_Ada + Convention_Id'Pos (Convention (New_Id));

               Conformance_Error ("\prior declaration for% has convention %!");

            else
               Conformance_Error ("\calling conventions do not match!");
            end if;

            return;

         elsif Is_Formal_Subprogram (Old_Id)
           or else Is_Formal_Subprogram (New_Id)
         then
            Conformance_Error ("\formal subprograms not allowed!");
            return;
         end if;
      end if;

      --  Deal with parameters

      --  Note: we use the entity information, rather than going directly
      --  to the specification in the tree. This is not only simpler, but
      --  absolutely necessary for some cases of conformance tests between
      --  operators, where the declaration tree simply does not exist!

      Old_Formal := First_Formal (Old_Id);
      New_Formal := First_Formal (New_Id);
      while Present (Old_Formal) and then Present (New_Formal) loop
         if Is_Controlling_Formal (Old_Formal)
           and then Is_Controlling_Formal (New_Formal)
           and then Skip_Controlling_Formals
         then
            --  The controlling formals will have different types when
            --  comparing an interface operation with its match, but both
            --  or neither must be access parameters.

            if Is_Access_Type (Etype (Old_Formal))
                 =
               Is_Access_Type (Etype (New_Formal))
            then
               goto Skip_Controlling_Formal;
            else
               Conformance_Error
                 ("\access parameter does not match!", New_Formal);
            end if;
         end if;

         if Ctype = Fully_Conformant then

            --  Names must match. Error message is more accurate if we do
            --  this before checking that the types of the formals match.

            if Chars (Old_Formal) /= Chars (New_Formal) then
               Conformance_Error ("\name & does not match!", New_Formal);

               --  Set error posted flag on new formal as well to stop
               --  junk cascaded messages in some cases.

               Set_Error_Posted (New_Formal);
               return;
            end if;
         end if;

         --  Ada 2005 (AI-423): Possible access [sub]type and itype match. This
         --  case occurs whenever a subprogram is being renamed and one of its
         --  parameters imposes a null exclusion. For example:

         --     type T is null record;
         --     type Acc_T is access T;
         --     subtype Acc_T_Sub is Acc_T;

         --     procedure P     (Obj : not null Acc_T_Sub);  --  itype
         --     procedure Ren_P (Obj :          Acc_T_Sub)   --  subtype
         --       renames P;

         Old_Formal_Base := Etype (Old_Formal);
         New_Formal_Base := Etype (New_Formal);

         if Get_Inst then
            Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
            New_Formal_Base := Get_Instance_Of (New_Formal_Base);
         end if;

         Access_Types_Match := Ada_Version >= Ada_05

            --  Ensure that this rule is only applied when New_Id is a
            --  renaming of Old_Id.

           and then Nkind (Parent (Parent (New_Id))) =
                      N_Subprogram_Renaming_Declaration
           and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
           and then Present (Entity (Name (Parent (Parent (New_Id)))))
           and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id

            --  Now handle the allowed access-type case

           and then Is_Access_Type (Old_Formal_Base)
           and then Is_Access_Type (New_Formal_Base)

            --  The type kinds must match. The only exception occurs with
            --  multiple generics of the form:

            --   generic                    generic
            --     type F is private;         type A is private;
            --     type F_Ptr is access F;    type A_Ptr is access A;
            --     with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
            --   package F_Pack is ...      package A_Pack is
            --                                package F_Inst is
            --                                  new F_Pack (A, A_Ptr, A_P);

            --  When checking for conformance between the parameters of A_P
            --  and F_P, the type kinds of F_Ptr and A_Ptr will not match
            --  because the compiler has transformed A_Ptr into a subtype of
            --  F_Ptr. We catch this case in the code below.

           and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
                  or else
                    (Is_Generic_Type (Old_Formal_Base)
                       and then Is_Generic_Type (New_Formal_Base)
                       and then Is_Internal (New_Formal_Base)
                       and then Etype (Etype (New_Formal_Base)) =
                                  Old_Formal_Base))
           and then Directly_Designated_Type (Old_Formal_Base) =
                      Directly_Designated_Type (New_Formal_Base)
           and then ((Is_Itype (Old_Formal_Base)
                       and then Can_Never_Be_Null (Old_Formal_Base))
                    or else
                     (Is_Itype (New_Formal_Base)
                       and then Can_Never_Be_Null (New_Formal_Base)));

         --  Types must always match. In the visible part of an instance,
         --  usual overloading rules for dispatching operations apply, and
         --  we check base types (not the actual subtypes).

         if In_Instance_Visible_Part
           and then Is_Dispatching_Operation (New_Id)
         then
            if not Conforming_Types
                     (T1       => Base_Type (Etype (Old_Formal)),
                      T2       => Base_Type (Etype (New_Formal)),
                      Ctype    => Ctype,
                      Get_Inst => Get_Inst)
               and then not Access_Types_Match
            then
               Conformance_Error ("\type of & does not match!", New_Formal);
               return;
            end if;

         elsif not Conforming_Types
                     (T1       => Old_Formal_Base,
                      T2       => New_Formal_Base,
                      Ctype    => Ctype,
                      Get_Inst => Get_Inst)
           and then not Access_Types_Match
         then
            --  Don't give error message if old type is Any_Type. This test
            --  avoids some cascaded errors, e.g. in case of a bad spec.

            if Errmsg and then Old_Formal_Base = Any_Type then
               Conforms := False;
            else
               Conformance_Error ("\type of & does not match!", New_Formal);
            end if;

            return;
         end if;

         --  For mode conformance, mode must match

         if Ctype >= Mode_Conformant then
            if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
               Conformance_Error ("\mode of & does not match!", New_Formal);
               return;

            --  Part of mode conformance for access types is having the same
            --  constant modifier.

            elsif Access_Types_Match
              and then Is_Access_Constant (Old_Formal_Base) /=
                       Is_Access_Constant (New_Formal_Base)
            then
               Conformance_Error
                 ("\constant modifier does not match!", New_Formal);
               return;
            end if;
         end if;

         if Ctype >= Subtype_Conformant then

            --  Ada 2005 (AI-231): In case of anonymous access types check
            --  the null-exclusion and access-to-constant attributes must
            --  match.

            if Ada_Version >= Ada_05
              and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
              and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
              and then
                (Can_Never_Be_Null (Old_Formal) /=
                 Can_Never_Be_Null (New_Formal)
                   or else
                 Is_Access_Constant (Etype (Old_Formal)) /=
                 Is_Access_Constant (Etype (New_Formal)))
            then
               --  It is allowed to omit the null-exclusion in case of stream
               --  attribute subprograms. We recognize stream subprograms
               --  through their TSS-generated suffix.

               declare
                  TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
               begin
                  if TSS_Name /= TSS_Stream_Read
                    and then TSS_Name /= TSS_Stream_Write
                    and then TSS_Name /= TSS_Stream_Input
                    and then TSS_Name /= TSS_Stream_Output
                  then
                     Conformance_Error
                       ("\type of & does not match!", New_Formal);
                     return;
                  end if;
               end;
            end if;
         end if;

         --  Full conformance checks

         if Ctype = Fully_Conformant then

            --  We have checked already that names match

            if Parameter_Mode (Old_Formal) = E_In_Parameter then

               --  Check default expressions for in parameters

               declare
                  NewD : constant Boolean :=
                           Present (Default_Value (New_Formal));
                  OldD : constant Boolean :=
                           Present (Default_Value (Old_Formal));
               begin
                  if NewD or OldD then

                     --  The old default value has been analyzed because the
                     --  current full declaration will have frozen everything
                     --  before. The new default value has not been analyzed,
                     --  so analyze it now before we check for conformance.

                     if NewD then
                        Push_Scope (New_Id);
                        Preanalyze_Spec_Expression
                          (Default_Value (New_Formal), Etype (New_Formal));
                        End_Scope;
                     end if;

                     if not (NewD and OldD)
                       or else not Fully_Conformant_Expressions
                                    (Default_Value (Old_Formal),
                                     Default_Value (New_Formal))
                     then
                        Conformance_Error
                          ("\default expression for & does not match!",
                           New_Formal);
                        return;
                     end if;
                  end if;
               end;
            end if;
         end if;

         --  A couple of special checks for Ada 83 mode. These checks are
         --  skipped if either entity is an operator in package Standard,
         --  or if either old or new instance is not from the source program.

         if Ada_Version = Ada_83
           and then Sloc (Old_Id) > Standard_Location
           and then Sloc (New_Id) > Standard_Location
           and then Comes_From_Source (Old_Id)
           and then Comes_From_Source (New_Id)
         then
            declare
               Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
               New_Param : constant Node_Id := Declaration_Node (New_Formal);

            begin
               --  Explicit IN must be present or absent in both cases. This
               --  test is required only in the full conformance case.

               if In_Present (Old_Param) /= In_Present (New_Param)
                 and then Ctype = Fully_Conformant
               then
                  Conformance_Error
                    ("\(Ada 83) IN must appear in both declarations",
                     New_Formal);
                  return;
               end if;

               --  Grouping (use of comma in param lists) must be the same
               --  This is where we catch a misconformance like:

               --    A, B : Integer
               --    A : Integer; B : Integer

               --  which are represented identically in the tree except
               --  for the setting of the flags More_Ids and Prev_Ids.

               if More_Ids (Old_Param) /= More_Ids (New_Param)
                 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
               then
                  Conformance_Error
                    ("\grouping of & does not match!", New_Formal);
                  return;
               end if;
            end;
         end if;

         --  This label is required when skipping controlling formals

         <<Skip_Controlling_Formal>>

         Next_Formal (Old_Formal);
         Next_Formal (New_Formal);
      end loop;

      if Present (Old_Formal) then
         Conformance_Error ("\too few parameters!");
         return;

      elsif Present (New_Formal) then
         Conformance_Error ("\too many parameters!", New_Formal);
         return;
      end if;
   end Check_Conformance;

   -----------------------
   -- Check_Conventions --
   -----------------------

   procedure Check_Conventions (Typ : Entity_Id) is
      Ifaces_List : Elist_Id;

      procedure Check_Convention (Op : Entity_Id);
      --  Verify that the convention of inherited dispatching operation Op is
      --  consistent among all subprograms it overrides. In order to minimize
      --  the search, Search_From is utilized to designate a specific point in
      --  the list rather than iterating over the whole list once more.

      ----------------------
      -- Check_Convention --
      ----------------------

      procedure Check_Convention (Op : Entity_Id) is
         Iface_Elmt      : Elmt_Id;
         Iface_Prim_Elmt : Elmt_Id;
         Iface_Prim      : Entity_Id;

      begin
         Iface_Elmt := First_Elmt (Ifaces_List);
         while Present (Iface_Elmt) loop
            Iface_Prim_Elmt :=
               First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
            while Present (Iface_Prim_Elmt) loop
               Iface_Prim := Node (Iface_Prim_Elmt);

               if Is_Interface_Conformant (Typ, Iface_Prim, Op)
                 and then Convention (Iface_Prim) /= Convention (Op)
               then
                  Error_Msg_N
                    ("inconsistent conventions in primitive operations", Typ);

                  Error_Msg_Name_1 := Chars (Op);
                  Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
                  Error_Msg_Sloc   := Sloc (Op);

                  if Comes_From_Source (Op) then
                     if not Is_Overriding_Operation (Op) then
                        Error_Msg_N ("\\primitive % defined #", Typ);
                     else
                        Error_Msg_N ("\\overriding operation % with " &
                                     "convention % defined #", Typ);
                     end if;

                  else pragma Assert (Present (Alias (Op)));
                     Error_Msg_Sloc := Sloc (Alias (Op));
                     Error_Msg_N ("\\inherited operation % with " &
                                  "convention % defined #", Typ);
                  end if;

                  Error_Msg_Name_1 := Chars (Op);
                  Error_Msg_Name_2 :=
                    Get_Convention_Name (Convention (Iface_Prim));
                  Error_Msg_Sloc := Sloc (Iface_Prim);
                  Error_Msg_N ("\\overridden operation % with " &
                               "convention % defined #", Typ);

                  --  Avoid cascading errors

                  return;
               end if;

               Next_Elmt (Iface_Prim_Elmt);
            end loop;

            Next_Elmt (Iface_Elmt);
         end loop;
      end Check_Convention;

      --  Local variables

      Prim_Op      : Entity_Id;
      Prim_Op_Elmt : Elmt_Id;

   --  Start of processing for Check_Conventions

   begin
      if not Has_Interfaces (Typ) then
         return;
      end if;

      Collect_Interfaces (Typ, Ifaces_List);

      --  The algorithm checks every overriding dispatching operation against
      --  all the corresponding overridden dispatching operations, detecting
      --  differences in conventions.

      Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
      while Present (Prim_Op_Elmt) loop
         Prim_Op := Node (Prim_Op_Elmt);

         --  A small optimization: skip the predefined dispatching operations
         --  since they always have the same convention.

         if not Is_Predefined_Dispatching_Operation (Prim_Op) then
            Check_Convention (Prim_Op);
         end if;

         Next_Elmt (Prim_Op_Elmt);
      end loop;
   end Check_Conventions;

   ------------------------------
   -- Check_Delayed_Subprogram --
   ------------------------------

   procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
      F : Entity_Id;

      procedure Possible_Freeze (T : Entity_Id);
      --  T is the type of either a formal parameter or of the return type.
      --  If T is not yet frozen and needs a delayed freeze, then the
      --  subprogram itself must be delayed. If T is the limited view of an
      --  incomplete type the subprogram must be frozen as well, because
      --  T may depend on local types that have not been frozen yet.

      ---------------------
      -- Possible_Freeze --
      ---------------------

      procedure Possible_Freeze (T : Entity_Id) is
      begin
         if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
            Set_Has_Delayed_Freeze (Designator);

         elsif Is_Access_Type (T)
           and then Has_Delayed_Freeze (Designated_Type (T))
           and then not Is_Frozen (Designated_Type (T))
         then
            Set_Has_Delayed_Freeze (Designator);

         elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
            Set_Has_Delayed_Freeze (Designator);
         end if;

      end Possible_Freeze;

   --  Start of processing for Check_Delayed_Subprogram

   begin
      --  Never need to freeze abstract subprogram

      if Ekind (Designator) /= E_Subprogram_Type
        and then Is_Abstract_Subprogram (Designator)
      then
         null;
      else
         --  Need delayed freeze if return type itself needs a delayed
         --  freeze and is not yet frozen.

         Possible_Freeze (Etype (Designator));
         Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???

         --  Need delayed freeze if any of the formal types themselves need
         --  a delayed freeze and are not yet frozen.

         F := First_Formal (Designator);
         while Present (F) loop
            Possible_Freeze (Etype (F));
            Possible_Freeze (Base_Type (Etype (F))); -- needed ???
            Next_Formal (F);
         end loop;
      end if;

      --  Mark functions that return by reference. Note that it cannot be
      --  done for delayed_freeze subprograms because the underlying
      --  returned type may not be known yet (for private types)

      if not Has_Delayed_Freeze (Designator)
        and then Expander_Active
      then
         declare
            Typ  : constant Entity_Id := Etype (Designator);
            Utyp : constant Entity_Id := Underlying_Type (Typ);

         begin
            if Is_Inherently_Limited_Type (Typ) then
               Set_Returns_By_Ref (Designator);

            elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
               Set_Returns_By_Ref (Designator);
            end if;
         end;
      end if;
   end Check_Delayed_Subprogram;

   ------------------------------------
   -- Check_Discriminant_Conformance --
   ------------------------------------

   procedure Check_Discriminant_Conformance
     (N        : Node_Id;
      Prev     : Entity_Id;
      Prev_Loc : Node_Id)
   is
      Old_Discr      : Entity_Id := First_Discriminant (Prev);
      New_Discr      : Node_Id   := First (Discriminant_Specifications (N));
      New_Discr_Id   : Entity_Id;
      New_Discr_Type : Entity_Id;

      procedure Conformance_Error (Msg : String; N : Node_Id);
      --  Post error message for conformance error on given node. Two messages
      --  are output. The first points to the previous declaration with a
      --  general "no conformance" message. The second is the detailed reason,
      --  supplied as Msg. The parameter N provide information for a possible
      --  & insertion in the message.

      -----------------------
      -- Conformance_Error --
      -----------------------

      procedure Conformance_Error (Msg : String; N : Node_Id) is
      begin
         Error_Msg_Sloc := Sloc (Prev_Loc);
         Error_Msg_N -- CODEFIX
           ("not fully conformant with declaration#!", N);
         Error_Msg_NE (Msg, N, N);
      end Conformance_Error;

   --  Start of processing for Check_Discriminant_Conformance

   begin
      while Present (Old_Discr) and then Present (New_Discr) loop

         New_Discr_Id := Defining_Identifier (New_Discr);

         --  The subtype mark of the discriminant on the full type has not
         --  been analyzed so we do it here. For an access discriminant a new
         --  type is created.

         if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
            New_Discr_Type :=
              Access_Definition (N, Discriminant_Type (New_Discr));

         else
            Analyze (Discriminant_Type (New_Discr));
            New_Discr_Type := Etype (Discriminant_Type (New_Discr));

            --  Ada 2005: if the discriminant definition carries a null
            --  exclusion, create an itype to check properly for consistency
            --  with partial declaration.

            if Is_Access_Type (New_Discr_Type)
                 and then Null_Exclusion_Present (New_Discr)
            then
               New_Discr_Type :=
                 Create_Null_Excluding_Itype
                   (T           => New_Discr_Type,
                    Related_Nod => New_Discr,
                    Scope_Id    => Current_Scope);
            end if;
         end if;

         if not Conforming_Types
                  (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
         then
            Conformance_Error ("type of & does not match!", New_Discr_Id);
            return;
         else
            --  Treat the new discriminant as an occurrence of the old one,
            --  for navigation purposes, and fill in some semantic
            --  information, for completeness.

            Generate_Reference (Old_Discr, New_Discr_Id, 'r');
            Set_Etype (New_Discr_Id, Etype (Old_Discr));
            Set_Scope (New_Discr_Id, Scope (Old_Discr));
         end if;

         --  Names must match

         if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
            Conformance_Error ("name & does not match!", New_Discr_Id);
            return;
         end if;

         --  Default expressions must match

         declare
            NewD : constant Boolean :=
                     Present (Expression (New_Discr));
            OldD : constant Boolean :=
                     Present (Expression (Parent (Old_Discr)));

         begin
            if NewD or OldD then

               --  The old default value has been analyzed and expanded,
               --  because the current full declaration will have frozen
               --  everything before. The new default values have not been
               --  expanded, so expand now to check conformance.

               if NewD then
                  Preanalyze_Spec_Expression
                    (Expression (New_Discr), New_Discr_Type);
               end if;

               if not (NewD and OldD)
                 or else not Fully_Conformant_Expressions
                              (Expression (Parent (Old_Discr)),
                               Expression (New_Discr))

               then
                  Conformance_Error
                    ("default expression for & does not match!",
                     New_Discr_Id);
                  return;
               end if;
            end if;
         end;

         --  In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)

         if Ada_Version = Ada_83 then
            declare
               Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);

            begin
               --  Grouping (use of comma in param lists) must be the same
               --  This is where we catch a misconformance like:

               --    A,B : Integer
               --    A : Integer; B : Integer

               --  which are represented identically in the tree except
               --  for the setting of the flags More_Ids and Prev_Ids.

               if More_Ids (Old_Disc) /= More_Ids (New_Discr)
                 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
               then
                  Conformance_Error
                    ("grouping of & does not match!", New_Discr_Id);
                  return;
               end if;
            end;
         end if;

         Next_Discriminant (Old_Discr);
         Next (New_Discr);
      end loop;

      if Present (Old_Discr) then
         Conformance_Error ("too few discriminants!", Defining_Identifier (N));
         return;

      elsif Present (New_Discr) then
         Conformance_Error
           ("too many discriminants!", Defining_Identifier (New_Discr));
         return;
      end if;
   end Check_Discriminant_Conformance;

   ----------------------------
   -- Check_Fully_Conformant --
   ----------------------------

   procedure Check_Fully_Conformant
     (New_Id  : Entity_Id;
      Old_Id  : Entity_Id;
      Err_Loc : Node_Id := Empty)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
   end Check_Fully_Conformant;

   ---------------------------
   -- Check_Mode_Conformant --
   ---------------------------

   procedure Check_Mode_Conformant
     (New_Id   : Entity_Id;
      Old_Id   : Entity_Id;
      Err_Loc  : Node_Id := Empty;
      Get_Inst : Boolean := False)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
   end Check_Mode_Conformant;

   --------------------------------
   -- Check_Overriding_Indicator --
   --------------------------------

   procedure Check_Overriding_Indicator
     (Subp            : Entity_Id;
      Overridden_Subp : Entity_Id;
      Is_Primitive    : Boolean)
   is
      Decl : Node_Id;
      Spec : Node_Id;

   begin
      --  No overriding indicator for literals

      if Ekind (Subp) = E_Enumeration_Literal then
         return;

      elsif Ekind (Subp) = E_Entry then
         Decl := Parent (Subp);

         --  No point in analyzing a malformed operator

      elsif Nkind (Subp) = N_Defining_Operator_Symbol
        and then Error_Posted (Subp)
      then
         return;

      else
         Decl := Unit_Declaration_Node (Subp);
      end if;

      if Nkind_In (Decl, N_Subprogram_Body,
                         N_Subprogram_Body_Stub,
                         N_Subprogram_Declaration,
                         N_Abstract_Subprogram_Declaration,
                         N_Subprogram_Renaming_Declaration)
      then
         Spec := Specification (Decl);

      elsif Nkind (Decl) = N_Entry_Declaration then
         Spec := Decl;

      else
         return;
      end if;

      --  The overriding operation is type conformant with the overridden one,
      --  but the names of the formals are not required to match. If the names
      --  appear permuted in the overriding operation, this is a possible
      --  source of confusion that is worth diagnosing. Controlling formals
      --  often carry names that reflect the type, and it is not worthwhile
      --  requiring that their names match.

      if Present (Overridden_Subp)
        and then Nkind (Subp) /= N_Defining_Operator_Symbol
      then
         declare
            Form1 : Entity_Id;
            Form2 : Entity_Id;

         begin
            Form1 := First_Formal (Subp);
            Form2 := First_Formal (Overridden_Subp);

            --  If the overriding operation is a synchronized operation, skip
            --  the first parameter of the overridden operation, which is
            --  implicit in the new one. If the operation is declared in the
            --  body it is not primitive and all formals must match.

            if Is_Concurrent_Type (Scope (Subp))
              and then Is_Tagged_Type (Scope (Subp))
              and then not Has_Completion (Scope (Subp))
            then
               Form2 := Next_Formal (Form2);
            end if;

            if Present (Form1) then
               Form1 := Next_Formal (Form1);
               Form2 := Next_Formal (Form2);
            end if;

            while Present (Form1) loop
               if not Is_Controlling_Formal (Form1)
                 and then Present (Next_Formal (Form2))
                 and then Chars (Form1) = Chars (Next_Formal (Form2))
               then
                  Error_Msg_Node_2 := Alias (Overridden_Subp);
                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
                  Error_Msg_NE ("& does not match corresponding formal of&#",
                     Form1, Form1);
                  exit;
               end if;

               Next_Formal (Form1);
               Next_Formal (Form2);
            end loop;
         end;
      end if;

      if Present (Overridden_Subp) then
         if Must_Not_Override (Spec) then
            Error_Msg_Sloc := Sloc (Overridden_Subp);

            if Ekind (Subp) = E_Entry then
               Error_Msg_NE
                 ("entry & overrides inherited operation #", Spec, Subp);
            else
               Error_Msg_NE
                 ("subprogram & overrides inherited operation #", Spec, Subp);
            end if;

         elsif Is_Subprogram (Subp) then
            Set_Is_Overriding_Operation (Subp);
         end if;

         --  If primitive flag is set or this is a protected operation, then
         --  the operation is overriding at the point of its declaration, so
         --  warn if necessary. Otherwise it may have been declared before the
         --  operation it overrides and no check is required.

         if Style_Check
           and then not Must_Override (Spec)
           and then (Is_Primitive
                      or else Ekind (Scope (Subp)) = E_Protected_Type)
         then
            Style.Missing_Overriding (Decl, Subp);
         end if;

      --  If Subp is an operator, it may override a predefined operation, if
      --  it is defined in the same scope as the type to which it applies.
      --  In that case overridden_subp is empty because of our implicit
      --  representation for predefined operators. We have to check whether the
      --  signature of Subp matches that of a predefined operator. Note that
      --  first argument provides the name of the operator, and the second
      --  argument the signature that may match that of a standard operation.
      --  If the indicator is overriding, then the operator must match a
      --  predefined signature, because we know already that there is no
      --  explicit overridden operation.

      elsif Nkind (Subp) = N_Defining_Operator_Symbol then
         declare
            Typ : constant Entity_Id :=
              Base_Type (Etype (First_Formal (Subp)));

            Can_Override : constant Boolean :=
                             Operator_Matches_Spec (Subp, Subp)
                               and then Scope (Subp) = Scope (Typ)
                               and then not Is_Class_Wide_Type (Typ);

         begin
            if Must_Not_Override (Spec) then

               --  If this is not a primitive or a protected subprogram, then
               --  "not overriding" is illegal.

               if not Is_Primitive
                 and then Ekind (Scope (Subp)) /= E_Protected_Type
               then
                  Error_Msg_N
                    ("overriding indicator only allowed "
                     & "if subprogram is primitive", Subp);

               elsif Can_Override then
                  Error_Msg_NE
                    ("subprogram & overrides predefined operator ",
                       Spec, Subp);
               end if;

            elsif Must_Override (Spec) then
               if Is_Overriding_Operation (Subp) then
                  Set_Is_Overriding_Operation (Subp);

               elsif not Can_Override then
                  Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
               end if;

            elsif not Error_Posted (Subp)
              and then Style_Check
              and then Can_Override
              and then
                not Is_Predefined_File_Name
                      (Unit_File_Name (Get_Source_Unit (Subp)))
            then
               Set_Is_Overriding_Operation (Subp);

               --  If style checks are enabled, indicate that the indicator is
               --  missing. However, at the point of declaration, the type of
               --  which this is a primitive operation may be private, in which
               --  case the indicator would be premature.

               if Has_Private_Declaration (Etype (Subp))
                 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
               then
                  null;
               else
                  Style.Missing_Overriding (Decl, Subp);
               end if;
            end if;
         end;

      elsif Must_Override (Spec) then
         if Ekind (Subp) = E_Entry then
            Error_Msg_NE ("entry & is not overriding", Spec, Subp);
         else
            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
         end if;

      --  If the operation is marked "not overriding" and it's not primitive
      --  then an error is issued, unless this is an operation of a task or
      --  protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
      --  has been specified have already been checked above.

      elsif Must_Not_Override (Spec)
        and then not Is_Primitive
        and then Ekind (Subp) /= E_Entry
        and then Ekind (Scope (Subp)) /= E_Protected_Type
      then
         Error_Msg_N
           ("overriding indicator only allowed if subprogram is primitive",
            Subp);
         return;
      end if;
   end Check_Overriding_Indicator;

   -------------------
   -- Check_Returns --
   -------------------

   --  Note: this procedure needs to know far too much about how the expander
   --  messes with exceptions. The use of the flag Exception_Junk and the
   --  incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
   --  works, but is not very clean. It would be better if the expansion
   --  routines would leave Original_Node working nicely, and we could use
   --  Original_Node here to ignore all the peculiar expander messing ???

   procedure Check_Returns
     (HSS  : Node_Id;
      Mode : Character;
      Err  : out Boolean;
      Proc : Entity_Id := Empty)
   is
      Handler : Node_Id;

      procedure Check_Statement_Sequence (L : List_Id);
      --  Internal recursive procedure to check a list of statements for proper
      --  termination by a return statement (or a transfer of control or a
      --  compound statement that is itself internally properly terminated).

      ------------------------------
      -- Check_Statement_Sequence --
      ------------------------------

      procedure Check_Statement_Sequence (L : List_Id) is
         Last_Stm : Node_Id;
         Stm      : Node_Id;
         Kind     : Node_Kind;

         Raise_Exception_Call : Boolean;
         --  Set True if statement sequence terminated by Raise_Exception call
         --  or a Reraise_Occurrence call.

      begin
         Raise_Exception_Call := False;

         --  Get last real statement

         Last_Stm := Last (L);

         --  Deal with digging out exception handler statement sequences that
         --  have been transformed by the local raise to goto optimization.
         --  See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
         --  optimization has occurred, we are looking at something like:

         --  begin
         --     original stmts in block

         --  exception            \
         --     when excep1 =>     |
         --        goto L1;        | omitted if No_Exception_Propagation
         --     when excep2 =>     |
         --        goto L2;       /
         --  end;

         --  goto L3;      -- skip handler when exception not raised

         --  <<L1>>        -- target label for local exception
         --     begin
         --        estmts1
         --     end;

         --     goto L3;

         --  <<L2>>
         --     begin
         --        estmts2
         --     end;

         --  <<L3>>

         --  and what we have to do is to dig out the estmts1 and estmts2
         --  sequences (which were the original sequences of statements in
         --  the exception handlers) and check them.

         if Nkind (Last_Stm) = N_Label
           and then Exception_Junk (Last_Stm)
         then
            Stm := Last_Stm;
            loop
               Prev (Stm);
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Block_Statement;
               exit when not Exception_Junk (Stm);
               Prev (Stm);
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Label;
               exit when not Exception_Junk (Stm);
               Check_Statement_Sequence
                 (Statements (Handled_Statement_Sequence (Next (Stm))));

               Prev (Stm);
               Last_Stm := Stm;
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Goto_Statement;
               exit when not Exception_Junk (Stm);
            end loop;
         end if;

         --  Don't count pragmas

         while Nkind (Last_Stm) = N_Pragma

         --  Don't count call to SS_Release (can happen after Raise_Exception)

           or else
             (Nkind (Last_Stm) = N_Procedure_Call_Statement
                and then
              Nkind (Name (Last_Stm)) = N_Identifier
                and then
              Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))

         --  Don't count exception junk

           or else
             (Nkind_In (Last_Stm, N_Goto_Statement,
                                   N_Label,
                                   N_Object_Declaration)
                and then Exception_Junk (Last_Stm))
           or else Nkind (Last_Stm) in N_Push_xxx_Label
           or else Nkind (Last_Stm) in N_Pop_xxx_Label
         loop
            Prev (Last_Stm);
         end loop;

         --  Here we have the "real" last statement

         Kind := Nkind (Last_Stm);

         --  Transfer of control, OK. Note that in the No_Return procedure
         --  case, we already diagnosed any explicit return statements, so
         --  we can treat them as OK in this context.

         if Is_Transfer (Last_Stm) then
            return;

         --  Check cases of explicit non-indirect procedure calls

         elsif Kind = N_Procedure_Call_Statement
           and then Is_Entity_Name (Name (Last_Stm))
         then
            --  Check call to Raise_Exception procedure which is treated
            --  specially, as is a call to Reraise_Occurrence.

            --  We suppress the warning in these cases since it is likely that
            --  the programmer really does not expect to deal with the case
            --  of Null_Occurrence, and thus would find a warning about a
            --  missing return curious, and raising Program_Error does not
            --  seem such a bad behavior if this does occur.

            --  Note that in the Ada 2005 case for Raise_Exception, the actual
            --  behavior will be to raise Constraint_Error (see AI-329).

            if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
                 or else
               Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
            then
               Raise_Exception_Call := True;

               --  For Raise_Exception call, test first argument, if it is
               --  an attribute reference for a 'Identity call, then we know
               --  that the call cannot possibly return.

               declare
                  Arg : constant Node_Id :=
                          Original_Node (First_Actual (Last_Stm));
               begin
                  if Nkind (Arg) = N_Attribute_Reference
                    and then Attribute_Name (Arg) = Name_Identity
                  then
                     return;
                  end if;
               end;
            end if;

         --  If statement, need to look inside if there is an else and check
         --  each constituent statement sequence for proper termination.

         elsif Kind = N_If_Statement
           and then Present (Else_Statements (Last_Stm))
         then
            Check_Statement_Sequence (Then_Statements (Last_Stm));
            Check_Statement_Sequence (Else_Statements (Last_Stm));

            if Present (Elsif_Parts (Last_Stm)) then
               declare
                  Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));

               begin
                  while Present (Elsif_Part) loop
                     Check_Statement_Sequence (Then_Statements (Elsif_Part));
                     Next (Elsif_Part);
                  end loop;
               end;
            end if;

            return;

         --  Case statement, check each case for proper termination

         elsif Kind = N_Case_Statement then
            declare
               Case_Alt : Node_Id;
            begin
               Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
               while Present (Case_Alt) loop
                  Check_Statement_Sequence (Statements (Case_Alt));
                  Next_Non_Pragma (Case_Alt);
               end loop;
            end;

            return;

         --  Block statement, check its handled sequence of statements

         elsif Kind = N_Block_Statement then
            declare
               Err1 : Boolean;

            begin
               Check_Returns
                 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);

               if Err1 then
                  Err := True;
               end if;

               return;
            end;

         --  Loop statement. If there is an iteration scheme, we can definitely
         --  fall out of the loop. Similarly if there is an exit statement, we
         --  can fall out. In either case we need a following return.

         elsif Kind = N_Loop_Statement then
            if Present (Iteration_Scheme (Last_Stm))
              or else Has_Exit (Entity (Identifier (Last_Stm)))
            then
               null;

            --  A loop with no exit statement or iteration scheme is either
            --  an infinite loop, or it has some other exit (raise/return).
            --  In either case, no warning is required.

            else
               return;
            end if;

         --  Timed entry call, check entry call and delay alternatives

         --  Note: in expanded code, the timed entry call has been converted
         --  to a set of expanded statements on which the check will work
         --  correctly in any case.

         elsif Kind = N_Timed_Entry_Call then
            declare
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
               DCA : constant Node_Id := Delay_Alternative      (Last_Stm);

            begin
               --  If statement sequence of entry call alternative is missing,
               --  then we can definitely fall through, and we post the error
               --  message on the entry call alternative itself.

               if No (Statements (ECA)) then
                  Last_Stm := ECA;

               --  If statement sequence of delay alternative is missing, then
               --  we can definitely fall through, and we post the error
               --  message on the delay alternative itself.

               --  Note: if both ECA and DCA are missing the return, then we
               --  post only one message, should be enough to fix the bugs.
               --  If not we will get a message next time on the DCA when the
               --  ECA is fixed!

               elsif No (Statements (DCA)) then
                  Last_Stm := DCA;

               --  Else check both statement sequences

               else
                  Check_Statement_Sequence (Statements (ECA));
                  Check_Statement_Sequence (Statements (DCA));
                  return;
               end if;
            end;

         --  Conditional entry call, check entry call and else part

         --  Note: in expanded code, the conditional entry call has been
         --  converted to a set of expanded statements on which the check
         --  will work correctly in any case.

         elsif Kind = N_Conditional_Entry_Call then
            declare
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);

            begin
               --  If statement sequence of entry call alternative is missing,
               --  then we can definitely fall through, and we post the error
               --  message on the entry call alternative itself.

               if No (Statements (ECA)) then
                  Last_Stm := ECA;

               --  Else check statement sequence and else part

               else
                  Check_Statement_Sequence (Statements (ECA));
                  Check_Statement_Sequence (Else_Statements (Last_Stm));
                  return;
               end if;
            end;
         end if;

         --  If we fall through, issue appropriate message

         if Mode = 'F' then
            if not Raise_Exception_Call then
               Error_Msg_N
                 ("?RETURN statement missing following this statement!",
                  Last_Stm);
               Error_Msg_N
                 ("\?Program_Error may be raised at run time!",
                  Last_Stm);
            end if;

            --  Note: we set Err even though we have not issued a warning
            --  because we still have a case of a missing return. This is
            --  an extremely marginal case, probably will never be noticed
            --  but we might as well get it right.

            Err := True;

         --  Otherwise we have the case of a procedure marked No_Return

         else
            if not Raise_Exception_Call then
               Error_Msg_N
                 ("?implied return after this statement " &
                  "will raise Program_Error",
                  Last_Stm);
               Error_Msg_NE
                 ("\?procedure & is marked as No_Return!",
                  Last_Stm, Proc);
            end if;

            declare
               RE : constant Node_Id :=
                      Make_Raise_Program_Error (Sloc (Last_Stm),
                        Reason => PE_Implicit_Return);
            begin
               Insert_After (Last_Stm, RE);
               Analyze (RE);
            end;
         end if;
      end Check_Statement_Sequence;

   --  Start of processing for Check_Returns

   begin
      Err := False;
      Check_Statement_Sequence (Statements (HSS));

      if Present (Exception_Handlers (HSS)) then
         Handler := First_Non_Pragma (Exception_Handlers (HSS));
         while Present (Handler) loop
            Check_Statement_Sequence (Statements (Handler));
            Next_Non_Pragma (Handler);
         end loop;
      end if;
   end Check_Returns;

   ----------------------------
   -- Check_Subprogram_Order --
   ----------------------------

   procedure Check_Subprogram_Order (N : Node_Id) is

      function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
      --  This is used to check if S1 > S2 in the sense required by this
      --  test, for example nameab < namec, but name2 < name10.

      -----------------------------
      -- Subprogram_Name_Greater --
      -----------------------------

      function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
         L1, L2 : Positive;
         N1, N2 : Natural;

      begin
         --  Remove trailing numeric parts

         L1 := S1'Last;
         while S1 (L1) in '0' .. '9' loop
            L1 := L1 - 1;
         end loop;

         L2 := S2'Last;
         while S2 (L2) in '0' .. '9' loop
            L2 := L2 - 1;
         end loop;

         --  If non-numeric parts non-equal, that's decisive

         if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
            return False;

         elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
            return True;

         --  If non-numeric parts equal, compare suffixed numeric parts. Note
         --  that a missing suffix is treated as numeric zero in this test.

         else
            N1 := 0;
            while L1 < S1'Last loop
               L1 := L1 + 1;
               N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
            end loop;

            N2 := 0;
            while L2 < S2'Last loop
               L2 := L2 + 1;
               N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
            end loop;

            return N1 > N2;
         end if;
      end Subprogram_Name_Greater;

   --  Start of processing for Check_Subprogram_Order

   begin
      --  Check body in alpha order if this is option

      if Style_Check
        and then Style_Check_Order_Subprograms
        and then Nkind (N) = N_Subprogram_Body
        and then Comes_From_Source (N)
        and then In_Extended_Main_Source_Unit (N)
      then
         declare
            LSN : String_Ptr
                    renames Scope_Stack.Table
                              (Scope_Stack.Last).Last_Subprogram_Name;

            Body_Id : constant Entity_Id :=
                        Defining_Entity (Specification (N));

         begin
            Get_Decoded_Name_String (Chars (Body_Id));

            if LSN /= null then
               if Subprogram_Name_Greater
                    (LSN.all, Name_Buffer (1 .. Name_Len))
               then
                  Style.Subprogram_Not_In_Alpha_Order (Body_Id);
               end if;

               Free (LSN);
            end if;

            LSN := new String'(Name_Buffer (1 .. Name_Len));
         end;
      end if;
   end Check_Subprogram_Order;

   ------------------------------
   -- Check_Subtype_Conformant --
   ------------------------------

   procedure Check_Subtype_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Err_Loc                  : Node_Id := Empty;
      Skip_Controlling_Formals : Boolean := False)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
         Skip_Controlling_Formals => Skip_Controlling_Formals);
   end Check_Subtype_Conformant;

   ---------------------------
   -- Check_Type_Conformant --
   ---------------------------

   procedure Check_Type_Conformant
     (New_Id  : Entity_Id;
      Old_Id  : Entity_Id;
      Err_Loc : Node_Id := Empty)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
   end Check_Type_Conformant;

   ----------------------
   -- Conforming_Types --
   ----------------------

   function Conforming_Types
     (T1       : Entity_Id;
      T2       : Entity_Id;
      Ctype    : Conformance_Type;
      Get_Inst : Boolean := False) return Boolean
   is
      Type_1 : Entity_Id := T1;
      Type_2 : Entity_Id := T2;
      Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;

      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
      --  If neither T1 nor T2 are generic actual types, or if they are in
      --  different scopes (e.g. parent and child instances), then verify that
      --  the base types are equal. Otherwise T1 and T2 must be on the same
      --  subtype chain. The whole purpose of this procedure is to prevent
      --  spurious ambiguities in an instantiation that may arise if two
      --  distinct generic types are instantiated with the same actual.

      function Find_Designated_Type (T : Entity_Id) return Entity_Id;
      --  An access parameter can designate an incomplete type. If the
      --  incomplete type is the limited view of a type from a limited_
      --  with_clause, check whether the non-limited view is available. If
      --  it is a (non-limited) incomplete type, get the full view.

      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
      --  Returns True if and only if either T1 denotes a limited view of T2
      --  or T2 denotes a limited view of T1. This can arise when the limited
      --  with view of a type is used in a subprogram declaration and the
      --  subprogram body is in the scope of a regular with clause for the
      --  same unit. In such a case, the two type entities can be considered
      --  identical for purposes of conformance checking.

      ----------------------
      -- Base_Types_Match --
      ----------------------

      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
      begin
         if T1 = T2 then
            return True;

         elsif Base_Type (T1) = Base_Type (T2) then

            --  The following is too permissive. A more precise test should
            --  check that the generic actual is an ancestor subtype of the
            --  other ???.

            return not Is_Generic_Actual_Type (T1)
              or else not Is_Generic_Actual_Type (T2)
              or else Scope (T1) /= Scope (T2);

         else
            return False;
         end if;
      end Base_Types_Match;

      --------------------------
      -- Find_Designated_Type --
      --------------------------

      function Find_Designated_Type (T : Entity_Id) return Entity_Id is
         Desig : Entity_Id;

      begin
         Desig := Directly_Designated_Type (T);

         if Ekind (Desig) = E_Incomplete_Type then

            --  If regular incomplete type, get full view if available

            if Present (Full_View (Desig)) then
               Desig := Full_View (Desig);

            --  If limited view of a type, get non-limited view if available,
            --  and check again for a regular incomplete type.

            elsif Present (Non_Limited_View (Desig)) then
               Desig := Get_Full_View (Non_Limited_View (Desig));
            end if;
         end if;

         return Desig;
      end Find_Designated_Type;

      -------------------------------
      -- Matches_Limited_With_View --
      -------------------------------

      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
      begin
         --  In some cases a type imported through a limited_with clause, and
         --  its nonlimited view are both visible, for example in an anonymous
         --  access-to-class-wide type in a formal. Both entities designate the
         --  same type.

         if From_With_Type (T1)
           and then T2 = Available_View (T1)
         then
            return True;

         elsif From_With_Type (T2)
           and then T1 = Available_View (T2)
         then
            return True;

         else
            return False;
         end if;
      end Matches_Limited_With_View;

   --  Start of processing for Conforming_Types

   begin
      --  The context is an instance association for a formal
      --  access-to-subprogram type; the formal parameter types require
      --  mapping because they may denote other formal parameters of the
      --  generic unit.

      if Get_Inst then
         Type_1 := Get_Instance_Of (T1);
         Type_2 := Get_Instance_Of (T2);
      end if;

      --  If one of the types is a view of the other introduced by a limited
      --  with clause, treat these as conforming for all purposes.

      if Matches_Limited_With_View (T1, T2) then
         return True;

      elsif Base_Types_Match (Type_1, Type_2) then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Type_2);

      elsif Is_Incomplete_Or_Private_Type (Type_1)
        and then Present (Full_View (Type_1))
        and then Base_Types_Match (Full_View (Type_1), Type_2)
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);

      elsif Ekind (Type_2) = E_Incomplete_Type
        and then Present (Full_View (Type_2))
        and then Base_Types_Match (Type_1, Full_View (Type_2))
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));

      elsif Is_Private_Type (Type_2)
        and then In_Instance
        and then Present (Full_View (Type_2))
        and then Base_Types_Match (Type_1, Full_View (Type_2))
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
      end if;

      --  Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
      --  treated recursively because they carry a signature.

      Are_Anonymous_Access_To_Subprogram_Types :=
        Ekind (Type_1) = Ekind (Type_2)
          and then
            (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
             or else
               Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);

      --  Test anonymous access type case. For this case, static subtype
      --  matching is required for mode conformance (RM 6.3.1(15)). We check
      --  the base types because we may have built internal subtype entities
      --  to handle null-excluding types (see Process_Formals).

      if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
            and then
          Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
        or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
      then
         declare
            Desig_1 : Entity_Id;
            Desig_2 : Entity_Id;

         begin
            --  In Ada2005, access constant indicators must match for
            --  subtype conformance.

            if Ada_Version >= Ada_05
              and then Ctype >= Subtype_Conformant
              and then
                Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
            then
               return False;
            end if;

            Desig_1 := Find_Designated_Type (Type_1);

            Desig_2 := Find_Designated_Type (Type_2);

            --  If the context is an instance association for a formal
            --  access-to-subprogram type; formal access parameter designated
            --  types require mapping because they may denote other formal
            --  parameters of the generic unit.

            if Get_Inst then
               Desig_1 := Get_Instance_Of (Desig_1);
               Desig_2 := Get_Instance_Of (Desig_2);
            end if;

            --  It is possible for a Class_Wide_Type to be introduced for an
            --  incomplete type, in which case there is a separate class_ wide
            --  type for the full view. The types conform if their Etypes
            --  conform, i.e. one may be the full view of the other. This can
            --  only happen in the context of an access parameter, other uses
            --  of an incomplete Class_Wide_Type are illegal.

            if Is_Class_Wide_Type (Desig_1)
              and then Is_Class_Wide_Type (Desig_2)
            then
               return
                 Conforming_Types
                   (Etype (Base_Type (Desig_1)),
                    Etype (Base_Type (Desig_2)), Ctype);

            elsif Are_Anonymous_Access_To_Subprogram_Types then
               if Ada_Version < Ada_05 then
                  return Ctype = Type_Conformant
                    or else
                      Subtypes_Statically_Match (Desig_1, Desig_2);

               --  We must check the conformance of the signatures themselves

               else
                  declare
                     Conformant : Boolean;
                  begin
                     Check_Conformance
                       (Desig_1, Desig_2, Ctype, False, Conformant);
                     return Conformant;
                  end;
               end if;

            else
               return Base_Type (Desig_1) = Base_Type (Desig_2)
                and then (Ctype = Type_Conformant
                            or else
                          Subtypes_Statically_Match (Desig_1, Desig_2));
            end if;
         end;

      --  Otherwise definitely no match

      else
         if ((Ekind (Type_1) = E_Anonymous_Access_Type
               and then Is_Access_Type (Type_2))
            or else (Ekind (Type_2) = E_Anonymous_Access_Type
                       and then Is_Access_Type (Type_1)))
           and then
             Conforming_Types
               (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
         then
            May_Hide_Profile := True;
         end if;

         return False;
      end if;
   end Conforming_Types;

   --------------------------
   -- Create_Extra_Formals --
   --------------------------

   procedure Create_Extra_Formals (E : Entity_Id) is
      Formal      : Entity_Id;
      First_Extra : Entity_Id := Empty;
      Last_Extra  : Entity_Id;
      Formal_Type : Entity_Id;
      P_Formal    : Entity_Id := Empty;

      function Add_Extra_Formal
        (Assoc_Entity : Entity_Id;
         Typ          : Entity_Id;
         Scope        : Entity_Id;
         Suffix       : String) return Entity_Id;
      --  Add an extra formal to the current list of formals and extra formals.
      --  The extra formal is added to the end of the list of extra formals,
      --  and also returned as the result. These formals are always of mode IN.
      --  The new formal has the type Typ, is declared in Scope, and its name
      --  is given by a concatenation of the name of Assoc_Entity and Suffix.

      ----------------------
      -- Add_Extra_Formal --
      ----------------------

      function Add_Extra_Formal
        (Assoc_Entity : Entity_Id;
         Typ          : Entity_Id;
         Scope        : Entity_Id;
         Suffix       : String) return Entity_Id
      is
         EF : constant Entity_Id :=
                Make_Defining_Identifier (Sloc (Assoc_Entity),
                  Chars  => New_External_Name (Chars (Assoc_Entity),
                                               Suffix => Suffix));

      begin
         --  A little optimization. Never generate an extra formal for the
         --  _init operand of an initialization procedure, since it could
         --  never be used.

         if Chars (Formal) = Name_uInit then
            return Empty;
         end if;

         Set_Ekind           (EF, E_In_Parameter);
         Set_Actual_Subtype  (EF, Typ);
         Set_Etype           (EF, Typ);
         Set_Scope           (EF, Scope);
         Set_Mechanism       (EF, Default_Mechanism);
         Set_Formal_Validity (EF);

         if No (First_Extra) then
            First_Extra := EF;
            Set_Extra_Formals (Scope, First_Extra);
         end if;

         if Present (Last_Extra) then
            Set_Extra_Formal (Last_Extra, EF);
         end if;

         Last_Extra := EF;

         return EF;
      end Add_Extra_Formal;

   --  Start of processing for Create_Extra_Formals

   begin
      --  We never generate extra formals if expansion is not active
      --  because we don't need them unless we are generating code.

      if not Expander_Active then
         return;
      end if;

      --  If this is a derived subprogram then the subtypes of the parent
      --  subprogram's formal parameters will be used to determine the need
      --  for extra formals.

      if Is_Overloadable (E) and then Present (Alias (E)) then
         P_Formal := First_Formal (Alias (E));
      end if;

      Last_Extra := Empty;
      Formal := First_Formal (E);
      while Present (Formal) loop
         Last_Extra := Formal;
         Next_Formal (Formal);
      end loop;

      --  If Extra_formals were already created, don't do it again. This
      --  situation may arise for subprogram types created as part of
      --  dispatching calls (see Expand_Dispatching_Call)

      if Present (Last_Extra) and then
        Present (Extra_Formal (Last_Extra))
      then
         return;
      end if;

      --  If the subprogram is a predefined dispatching subprogram then don't
      --  generate any extra constrained or accessibility level formals. In
      --  general we suppress these for internal subprograms (by not calling
      --  Freeze_Subprogram and Create_Extra_Formals at all), but internally
      --  generated stream attributes do get passed through because extra
      --  build-in-place formals are needed in some cases (limited 'Input).

      if Is_Predefined_Dispatching_Operation (E) then
         goto Test_For_BIP_Extras;
      end if;

      Formal := First_Formal (E);
      while Present (Formal) loop

         --  Create extra formal for supporting the attribute 'Constrained.
         --  The case of a private type view without discriminants also
         --  requires the extra formal if the underlying type has defaulted
         --  discriminants.

         if Ekind (Formal) /= E_In_Parameter then
            if Present (P_Formal) then
               Formal_Type := Etype (P_Formal);
            else
               Formal_Type := Etype (Formal);
            end if;

            --  Do not produce extra formals for Unchecked_Union parameters.
            --  Jump directly to the end of the loop.

            if Is_Unchecked_Union (Base_Type (Formal_Type)) then
               goto Skip_Extra_Formal_Generation;
            end if;

            if not Has_Discriminants (Formal_Type)
              and then Ekind (Formal_Type) in Private_Kind
              and then Present (Underlying_Type (Formal_Type))
            then
               Formal_Type := Underlying_Type (Formal_Type);
            end if;

            if Has_Discriminants (Formal_Type)
              and then not Is_Constrained (Formal_Type)
              and then not Is_Indefinite_Subtype (Formal_Type)
            then
               Set_Extra_Constrained
                 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
            end if;
         end if;

         --  Create extra formal for supporting accessibility checking. This
         --  is done for both anonymous access formals and formals of named
         --  access types that are marked as controlling formals. The latter
         --  case can occur when Expand_Dispatching_Call creates a subprogram
         --  type and substitutes the types of access-to-class-wide actuals
         --  for the anonymous access-to-specific-type of controlling formals.
         --  Base_Type is applied because in cases where there is a null
         --  exclusion the formal may have an access subtype.

         --  This is suppressed if we specifically suppress accessibility
         --  checks at the package level for either the subprogram, or the
         --  package in which it resides. However, we do not suppress it
         --  simply if the scope has accessibility checks suppressed, since
         --  this could cause trouble when clients are compiled with a
         --  different suppression setting. The explicit checks at the
         --  package level are safe from this point of view.

         if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
              or else (Is_Controlling_Formal (Formal)
                        and then Is_Access_Type (Base_Type (Etype (Formal)))))
           and then not
             (Explicit_Suppress (E, Accessibility_Check)
               or else
              Explicit_Suppress (Scope (E), Accessibility_Check))
           and then
             (No (P_Formal)
               or else Present (Extra_Accessibility (P_Formal)))
         then
            Set_Extra_Accessibility
              (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
         end if;

         --  This label is required when skipping extra formal generation for
         --  Unchecked_Union parameters.

         <<Skip_Extra_Formal_Generation>>

         if Present (P_Formal) then
            Next_Formal (P_Formal);
         end if;

         Next_Formal (Formal);
      end loop;

      <<Test_For_BIP_Extras>>

      --  Ada 2005 (AI-318-02): In the case of build-in-place functions, add
      --  appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.

      if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
         declare
            Result_Subt : constant Entity_Id := Etype (E);

            Discard : Entity_Id;
            pragma Warnings (Off, Discard);

         begin
            --  In the case of functions with unconstrained result subtypes,
            --  add a 3-state formal indicating whether the return object is
            --  allocated by the caller (0), or should be allocated by the
            --  callee on the secondary stack (1) or in the global heap (2).
            --  For the moment we just use Natural for the type of this formal.
            --  Note that this formal isn't usually needed in the case where
            --  the result subtype is constrained, but it is needed when the
            --  function has a tagged result, because generally such functions
            --  can be called in a dispatching context and such calls must be
            --  handled like calls to a class-wide function.

            if not Is_Constrained (Underlying_Type (Result_Subt))
              or else Is_Tagged_Type (Underlying_Type (Result_Subt))
            then
               Discard :=
                 Add_Extra_Formal
                   (E, Standard_Natural,
                    E, BIP_Formal_Suffix (BIP_Alloc_Form));
            end if;

            --  In the case of functions whose result type has controlled
            --  parts, we have an extra formal of type
            --  System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
            --  is, we are passing a pointer to a finalization list (which is
            --  itself a pointer). This extra formal is then passed along to
            --  Move_Final_List in case of successful completion of a return
            --  statement. We cannot pass an 'in out' parameter, because we
            --  need to update the finalization list during an abort-deferred
            --  region, rather than using copy-back after the function
            --  returns. This is true even if we are able to get away with
            --  having 'in out' parameters, which are normally illegal for
            --  functions. This formal is also needed when the function has
            --  a tagged result.

            if Needs_BIP_Final_List (E) then
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Finalizable_Ptr_Ptr),
                    E, BIP_Formal_Suffix (BIP_Final_List));
            end if;

            --  If the result type contains tasks, we have two extra formals:
            --  the master of the tasks to be created, and the caller's
            --  activation chain.

            if Has_Task (Result_Subt) then
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Master_Id),
                    E, BIP_Formal_Suffix (BIP_Master));
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Activation_Chain_Access),
                    E, BIP_Formal_Suffix (BIP_Activation_Chain));
            end if;

            --  All build-in-place functions get an extra formal that will be
            --  passed the address of the return object within the caller.

            declare
               Formal_Type : constant Entity_Id :=
                               Create_Itype
                                 (E_Anonymous_Access_Type, E,
                                  Scope_Id => Scope (E));
            begin
               Set_Directly_Designated_Type (Formal_Type, Result_Subt);
               Set_Etype (Formal_Type, Formal_Type);
               Set_Depends_On_Private
                 (Formal_Type, Has_Private_Component (Formal_Type));
               Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
               Set_Is_Access_Constant (Formal_Type, False);

               --  Ada 2005 (AI-50217): Propagate the attribute that indicates
               --  the designated type comes from the limited view (for
               --  back-end purposes).

               Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));

               Layout_Type (Formal_Type);

               Discard :=
                 Add_Extra_Formal
                   (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
            end;
         end;
      end if;
   end Create_Extra_Formals;

   -----------------------------
   -- Enter_Overloaded_Entity --
   -----------------------------

   procedure Enter_Overloaded_Entity (S : Entity_Id) is
      E   : Entity_Id := Current_Entity_In_Scope (S);
      C_E : Entity_Id := Current_Entity (S);

   begin
      if Present (E) then
         Set_Has_Homonym (E);
         Set_Has_Homonym (S);
      end if;

      Set_Is_Immediately_Visible (S);
      Set_Scope (S, Current_Scope);

      --  Chain new entity if front of homonym in current scope, so that
      --  homonyms are contiguous.

      if Present (E)
        and then E /= C_E
      then
         while Homonym (C_E) /= E loop
            C_E := Homonym (C_E);
         end loop;

         Set_Homonym (C_E, S);

      else
         E := C_E;
         Set_Current_Entity (S);
      end if;

      Set_Homonym (S, E);

      Append_Entity (S, Current_Scope);
      Set_Public_Status (S);

      if Debug_Flag_E then
         Write_Str ("New overloaded entity chain: ");
         Write_Name (Chars (S));

         E := S;
         while Present (E) loop
            Write_Str (" "); Write_Int (Int (E));
            E := Homonym (E);
         end loop;

         Write_Eol;
      end if;

      --  Generate warning for hiding

      if Warn_On_Hiding
        and then Comes_From_Source (S)
        and then In_Extended_Main_Source_Unit (S)
      then
         E := S;
         loop
            E := Homonym (E);
            exit when No (E);

            --  Warn unless genuine overloading

            if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
                  and then (Is_Immediately_Visible (E)
                              or else
                            Is_Potentially_Use_Visible (S))
            then
               Error_Msg_Sloc := Sloc (E);
               Error_Msg_N ("declaration of & hides one#?", S);
            end if;
         end loop;
      end if;
   end Enter_Overloaded_Entity;

   -----------------------------
   -- Find_Corresponding_Spec --
   -----------------------------

   function Find_Corresponding_Spec
     (N          : Node_Id;
      Post_Error : Boolean := True) return Entity_Id
   is
      Spec       : constant Node_Id   := Specification (N);
      Designator : constant Entity_Id := Defining_Entity (Spec);

      E : Entity_Id;

   begin
      E := Current_Entity (Designator);
      while Present (E) loop

         --  We are looking for a matching spec. It must have the same scope,
         --  and the same name, and either be type conformant, or be the case
         --  of a library procedure spec and its body (which belong to one
         --  another regardless of whether they are type conformant or not).

         if Scope (E) = Current_Scope then
            if Current_Scope = Standard_Standard
              or else (Ekind (E) = Ekind (Designator)
                         and then Type_Conformant (E, Designator))
            then
               --  Within an instantiation, we know that spec and body are
               --  subtype conformant, because they were subtype conformant
               --  in the generic. We choose the subtype-conformant entity
               --  here as well, to resolve spurious ambiguities in the
               --  instance that were not present in the generic (i.e. when
               --  two different types are given the same actual). If we are
               --  looking for a spec to match a body, full conformance is
               --  expected.

               if In_Instance then
                  Set_Convention (Designator, Convention (E));

                  if Nkind (N) = N_Subprogram_Body
                    and then Present (Homonym (E))
                    and then not Fully_Conformant (E, Designator)
                  then
                     goto Next_Entity;

                  elsif not Subtype_Conformant (E, Designator) then
                     goto Next_Entity;
                  end if;
               end if;

               if not Has_Completion (E) then
                  if Nkind (N) /= N_Subprogram_Body_Stub then
                     Set_Corresponding_Spec (N, E);
                  end if;

                  Set_Has_Completion (E);
                  return E;

               elsif Nkind (Parent (N)) = N_Subunit then

                  --  If this is the proper body of a subunit, the completion
                  --  flag is set when analyzing the stub.

                  return E;

               --  If E is an internal function with a controlling result
               --  that was created for an operation inherited by a null
               --  extension, it may be overridden by a body without a previous
               --  spec (one more reason why these should be shunned). In that
               --  case remove the generated body, because the current one is
               --  the explicit overriding.

               elsif Ekind (E) = E_Function
                 and then Ada_Version >= Ada_05
                 and then not Comes_From_Source (E)
                 and then Has_Controlling_Result (E)
                 and then Is_Null_Extension (Etype (E))
                 and then Comes_From_Source (Spec)
               then
                  Set_Has_Completion (E, False);

                  if Expander_Active then
                     Remove
                       (Unit_Declaration_Node
                         (Corresponding_Body (Unit_Declaration_Node (E))));
                     return E;

                  --  If expansion is disabled, the wrapper function has not
                  --  been generated, and this is the standard case of a late
                  --  body overriding an inherited operation.

                  else
                     return Empty;
                  end if;

               --  If the body already exists, then this is an error unless
               --  the previous declaration is the implicit declaration of a
               --  derived subprogram, or this is a spurious overloading in an
               --  instance.

               elsif No (Alias (E))
                 and then not Is_Intrinsic_Subprogram (E)
                 and then not In_Instance
                 and then Post_Error
               then
                  Error_Msg_Sloc := Sloc (E);

                  if Is_Imported (E) then
                     Error_Msg_NE
                      ("body not allowed for imported subprogram & declared#",
                        N, E);
                  else
                     Error_Msg_NE ("duplicate body for & declared#", N, E);
                  end if;
               end if;

            --  Child units cannot be overloaded, so a conformance mismatch
            --  between body and a previous spec is an error.

            elsif Is_Child_Unit (E)
              and then
                Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
              and then
                Nkind (Parent (Unit_Declaration_Node (Designator))) =
                  N_Compilation_Unit
              and then Post_Error
            then
               Error_Msg_N
                 ("body of child unit does not match previous declaration", N);
            end if;
         end if;

         <<Next_Entity>>
            E := Homonym (E);
      end loop;

      --  On exit, we know that no previous declaration of subprogram exists

      return Empty;
   end Find_Corresponding_Spec;

   ----------------------
   -- Fully_Conformant --
   ----------------------

   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
      return Result;
   end Fully_Conformant;

   ----------------------------------
   -- Fully_Conformant_Expressions --
   ----------------------------------

   function Fully_Conformant_Expressions
     (Given_E1 : Node_Id;
      Given_E2 : Node_Id) return Boolean
   is
      E1 : constant Node_Id := Original_Node (Given_E1);
      E2 : constant Node_Id := Original_Node (Given_E2);
      --  We always test conformance on original nodes, since it is possible
      --  for analysis and/or expansion to make things look as though they
      --  conform when they do not, e.g. by converting 1+2 into 3.

      function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
        renames Fully_Conformant_Expressions;

      function FCL (L1, L2 : List_Id) return Boolean;
      --  Compare elements of two lists for conformance. Elements have to
      --  be conformant, and actuals inserted as default parameters do not
      --  match explicit actuals with the same value.

      function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
      --  Compare an operator node with a function call

      ---------
      -- FCL --
      ---------

      function FCL (L1, L2 : List_Id) return Boolean is
         N1, N2 : Node_Id;

      begin
         if L1 = No_List then
            N1 := Empty;
         else
            N1 := First (L1);
         end if;

         if L2 = No_List then
            N2 := Empty;
         else
            N2 := First (L2);
         end if;

         --  Compare two lists, skipping rewrite insertions (we want to
         --  compare the original trees, not the expanded versions!)

         loop
            if Is_Rewrite_Insertion (N1) then
               Next (N1);
            elsif Is_Rewrite_Insertion (N2) then
               Next (N2);
            elsif No (N1) then
               return No (N2);
            elsif No (N2) then
               return False;
            elsif not FCE (N1, N2) then
               return False;
            else
               Next (N1);
               Next (N2);
            end if;
         end loop;
      end FCL;

      ---------
      -- FCO --
      ---------

      function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
         Actuals : constant List_Id := Parameter_Associations (Call_Node);
         Act     : Node_Id;

      begin
         if No (Actuals)
            or else Entity (Op_Node) /= Entity (Name (Call_Node))
         then
            return False;

         else
            Act := First (Actuals);

            if Nkind (Op_Node) in N_Binary_Op then
               if not FCE (Left_Opnd (Op_Node), Act) then
                  return False;
               end if;

               Next (Act);
            end if;

            return Present (Act)
              and then FCE (Right_Opnd (Op_Node), Act)
              and then No (Next (Act));
         end if;
      end FCO;

   --  Start of processing for Fully_Conformant_Expressions

   begin
      --  Non-conformant if paren count does not match. Note: if some idiot
      --  complains that we don't do this right for more than 3 levels of
      --  parentheses, they will be treated with the respect they deserve!

      if Paren_Count (E1) /= Paren_Count (E2) then
         return False;

      --  If same entities are referenced, then they are conformant even if
      --  they have different forms (RM 8.3.1(19-20)).

      elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
         if Present (Entity (E1)) then
            return Entity (E1) = Entity (E2)
              or else (Chars (Entity (E1)) = Chars (Entity (E2))
                        and then Ekind (Entity (E1)) = E_Discriminant
                        and then Ekind (Entity (E2)) = E_In_Parameter);

         elsif Nkind (E1) = N_Expanded_Name
           and then Nkind (E2) = N_Expanded_Name
           and then Nkind (Selector_Name (E1)) = N_Character_Literal
           and then Nkind (Selector_Name (E2)) = N_Character_Literal
         then
            return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));

         else
            --  Identifiers in component associations don't always have
            --  entities, but their names must conform.

            return Nkind  (E1) = N_Identifier
              and then Nkind (E2) = N_Identifier
              and then Chars (E1) = Chars (E2);
         end if;

      elsif Nkind (E1) = N_Character_Literal
        and then Nkind (E2) = N_Expanded_Name
      then
         return Nkind (Selector_Name (E2)) = N_Character_Literal
           and then Chars (E1) = Chars (Selector_Name (E2));

      elsif Nkind (E2) = N_Character_Literal
        and then Nkind (E1) = N_Expanded_Name
      then
         return Nkind (Selector_Name (E1)) = N_Character_Literal
           and then Chars (E2) = Chars (Selector_Name (E1));

      elsif Nkind (E1) in N_Op
        and then Nkind (E2) = N_Function_Call
      then
         return FCO (E1, E2);

      elsif Nkind (E2) in N_Op
        and then Nkind (E1) = N_Function_Call
      then
         return FCO (E2, E1);

      --  Otherwise we must have the same syntactic entity

      elsif Nkind (E1) /= Nkind (E2) then
         return False;

      --  At this point, we specialize by node type

      else
         case Nkind (E1) is

            when N_Aggregate =>
               return
                 FCL (Expressions (E1), Expressions (E2))
                   and then FCL (Component_Associations (E1),
                                 Component_Associations (E2));

            when N_Allocator =>
               if Nkind (Expression (E1)) = N_Qualified_Expression
                    or else
                  Nkind (Expression (E2)) = N_Qualified_Expression
               then
                  return FCE (Expression (E1), Expression (E2));

               --  Check that the subtype marks and any constraints
               --  are conformant

               else
                  declare
                     Indic1 : constant Node_Id := Expression (E1);
                     Indic2 : constant Node_Id := Expression (E2);
                     Elt1   : Node_Id;
                     Elt2   : Node_Id;

                  begin
                     if Nkind (Indic1) /= N_Subtype_Indication then
                        return
                          Nkind (Indic2) /= N_Subtype_Indication
                            and then Entity (Indic1) = Entity (Indic2);

                     elsif Nkind (Indic2) /= N_Subtype_Indication then
                        return
                          Nkind (Indic1) /= N_Subtype_Indication
                            and then Entity (Indic1) = Entity (Indic2);

                     else
                        if Entity (Subtype_Mark (Indic1)) /=
                          Entity (Subtype_Mark (Indic2))
                        then
                           return False;
                        end if;

                        Elt1 := First (Constraints (Constraint (Indic1)));
                        Elt2 := First (Constraints (Constraint (Indic2)));
                        while Present (Elt1) and then Present (Elt2) loop
                           if not FCE (Elt1, Elt2) then
                              return False;
                           end if;

                           Next (Elt1);
                           Next (Elt2);
                        end loop;

                        return True;
                     end if;
                  end;
               end if;

            when N_Attribute_Reference =>
               return
                 Attribute_Name (E1) = Attribute_Name (E2)
                   and then FCL (Expressions (E1), Expressions (E2));

            when N_Binary_Op =>
               return
                 Entity (E1) = Entity (E2)
                   and then FCE (Left_Opnd  (E1), Left_Opnd  (E2))
                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Short_Circuit | N_Membership_Test =>
               return
                 FCE (Left_Opnd  (E1), Left_Opnd  (E2))
                   and then
                 FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Character_Literal =>
               return
                 Char_Literal_Value (E1) = Char_Literal_Value (E2);

            when N_Component_Association =>
               return
                 FCL (Choices (E1), Choices (E2))
                   and then FCE (Expression (E1), Expression (E2));

            when N_Conditional_Expression =>
               return
                 FCL (Expressions (E1), Expressions (E2));

            when N_Explicit_Dereference =>
               return
                 FCE (Prefix (E1), Prefix (E2));

            when N_Extension_Aggregate =>
               return
                 FCL (Expressions (E1), Expressions (E2))
                   and then Null_Record_Present (E1) =
                            Null_Record_Present (E2)
                   and then FCL (Component_Associations (E1),
                               Component_Associations (E2));

            when N_Function_Call =>
               return
                 FCE (Name (E1), Name (E2))
                   and then FCL (Parameter_Associations (E1),
                                 Parameter_Associations (E2));

            when N_Indexed_Component =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then FCL (Expressions (E1), Expressions (E2));

            when N_Integer_Literal =>
               return (Intval (E1) = Intval (E2));

            when N_Null =>
               return True;

            when N_Operator_Symbol =>
               return
                 Chars (E1) = Chars (E2);

            when N_Others_Choice =>
               return True;

            when N_Parameter_Association =>
               return
                 Chars (Selector_Name (E1))  = Chars (Selector_Name (E2))
                   and then FCE (Explicit_Actual_Parameter (E1),
                                 Explicit_Actual_Parameter (E2));

            when N_Qualified_Expression =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then FCE (Expression (E1), Expression (E2));

            when N_Range =>
               return
                 FCE (Low_Bound (E1), Low_Bound (E2))
                   and then FCE (High_Bound (E1), High_Bound (E2));

            when N_Real_Literal =>
               return (Realval (E1) = Realval (E2));

            when N_Selected_Component =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then FCE (Selector_Name (E1), Selector_Name (E2));

            when N_Slice =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then FCE (Discrete_Range (E1), Discrete_Range (E2));

            when N_String_Literal =>
               declare
                  S1 : constant String_Id := Strval (E1);
                  S2 : constant String_Id := Strval (E2);
                  L1 : constant Nat       := String_Length (S1);
                  L2 : constant Nat       := String_Length (S2);

               begin
                  if L1 /= L2 then
                     return False;

                  else
                     for J in 1 .. L1 loop
                        if Get_String_Char (S1, J) /=
                           Get_String_Char (S2, J)
                        then
                           return False;
                        end if;
                     end loop;

                     return True;
                  end if;
               end;

            when N_Type_Conversion =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then FCE (Expression (E1), Expression (E2));

            when N_Unary_Op =>
               return
                 Entity (E1) = Entity (E2)
                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Unchecked_Type_Conversion =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then FCE (Expression (E1), Expression (E2));

            --  All other node types cannot appear in this context. Strictly
            --  we should raise a fatal internal error. Instead we just ignore
            --  the nodes. This means that if anyone makes a mistake in the
            --  expander and mucks an expression tree irretrievably, the
            --  result will be a failure to detect a (probably very obscure)
            --  case of non-conformance, which is better than bombing on some
            --  case where two expressions do in fact conform.

            when others =>
               return True;

         end case;
      end if;
   end Fully_Conformant_Expressions;

   ----------------------------------------
   -- Fully_Conformant_Discrete_Subtypes --
   ----------------------------------------

   function Fully_Conformant_Discrete_Subtypes
     (Given_S1 : Node_Id;
      Given_S2 : Node_Id) return Boolean
   is
      S1 : constant Node_Id := Original_Node (Given_S1);
      S2 : constant Node_Id := Original_Node (Given_S2);

      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
      --  Special-case for a bound given by a discriminant, which in the body
      --  is replaced with the discriminal of the enclosing type.

      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
      --  Check both bounds

      -----------------------
      -- Conforming_Bounds --
      -----------------------

      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
      begin
         if Is_Entity_Name (B1)
           and then Is_Entity_Name (B2)
           and then Ekind (Entity (B1)) = E_Discriminant
         then
            return Chars (B1) = Chars (B2);

         else
            return Fully_Conformant_Expressions (B1, B2);
         end if;
      end Conforming_Bounds;

      -----------------------
      -- Conforming_Ranges --
      -----------------------

      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
      begin
         return
           Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
             and then
           Conforming_Bounds (High_Bound (R1), High_Bound (R2));
      end Conforming_Ranges;

   --  Start of processing for Fully_Conformant_Discrete_Subtypes

   begin
      if Nkind (S1) /= Nkind (S2) then
         return False;

      elsif Is_Entity_Name (S1) then
         return Entity (S1) = Entity (S2);

      elsif Nkind (S1) = N_Range then
         return Conforming_Ranges (S1, S2);

      elsif Nkind (S1) = N_Subtype_Indication then
         return
            Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
              and then
            Conforming_Ranges
              (Range_Expression (Constraint (S1)),
               Range_Expression (Constraint (S2)));
      else
         return True;
      end if;
   end Fully_Conformant_Discrete_Subtypes;

   --------------------
   -- Install_Entity --
   --------------------

   procedure Install_Entity (E : Entity_Id) is
      Prev : constant Entity_Id := Current_Entity (E);
   begin
      Set_Is_Immediately_Visible (E);
      Set_Current_Entity (E);
      Set_Homonym (E, Prev);
   end Install_Entity;

   ---------------------
   -- Install_Formals --
   ---------------------

   procedure Install_Formals (Id : Entity_Id) is
      F : Entity_Id;
   begin
      F := First_Formal (Id);
      while Present (F) loop
         Install_Entity (F);
         Next_Formal (F);
      end loop;
   end Install_Formals;

   -----------------------------
   -- Is_Interface_Conformant --
   -----------------------------

   function Is_Interface_Conformant
     (Tagged_Type : Entity_Id;
      Iface_Prim  : Entity_Id;
      Prim        : Entity_Id) return Boolean
   is
      Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
      Typ   : constant Entity_Id := Find_Dispatching_Type (Prim);

   begin
      pragma Assert (Is_Subprogram (Iface_Prim)
        and then Is_Subprogram (Prim)
        and then Is_Dispatching_Operation (Iface_Prim)
        and then Is_Dispatching_Operation (Prim));

      pragma Assert (Is_Interface (Iface)
        or else (Present (Alias (Iface_Prim))
                   and then
                     Is_Interface
                       (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));

      if Prim = Iface_Prim
        or else not Is_Subprogram (Prim)
        or else Ekind (Prim) /= Ekind (Iface_Prim)
        or else not Is_Dispatching_Operation (Prim)
        or else Scope (Prim) /= Scope (Tagged_Type)
        or else No (Typ)
        or else Base_Type (Typ) /= Tagged_Type
        or else not Primitive_Names_Match (Iface_Prim, Prim)
      then
         return False;

      --  Case of a procedure, or a function that does not have a controlling
      --  result (I or access I).

      elsif Ekind (Iface_Prim) = E_Procedure
        or else Etype (Prim) = Etype (Iface_Prim)
        or else not Has_Controlling_Result (Prim)
      then
         return Type_Conformant (Prim, Iface_Prim,
                  Skip_Controlling_Formals => True);

      --  Case of a function returning an interface, or an access to one.
      --  Check that the return types correspond.

      elsif Implements_Interface (Typ, Iface) then
         if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
              /=
            (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
         then
            return False;
         else
            return
              Type_Conformant (Prim, Iface_Prim,
                Skip_Controlling_Formals => True);
         end if;

      else
         return False;
      end if;
   end Is_Interface_Conformant;

   ---------------------------------
   -- Is_Non_Overriding_Operation --
   ---------------------------------

   function Is_Non_Overriding_Operation
     (Prev_E : Entity_Id;
      New_E  : Entity_Id) return Boolean
   is
      Formal : Entity_Id;
      F_Typ  : Entity_Id;
      G_Typ  : Entity_Id := Empty;

      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
      --  If F_Type is a derived type associated with a generic actual subtype,
      --  then return its Generic_Parent_Type attribute, else return Empty.

      function Types_Correspond
        (P_Type : Entity_Id;
         N_Type : Entity_Id) return Boolean;
      --  Returns true if and only if the types (or designated types in the
      --  case of anonymous access types) are the same or N_Type is derived
      --  directly or indirectly from P_Type.

      -----------------------------
      -- Get_Generic_Parent_Type --
      -----------------------------

      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
         G_Typ : Entity_Id;
         Indic : Node_Id;

      begin
         if Is_Derived_Type (F_Typ)
           and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
         then
            --  The tree must be traversed to determine the parent subtype in
            --  the generic unit, which unfortunately isn't always available
            --  via semantic attributes. ??? (Note: The use of Original_Node
            --  is needed for cases where a full derived type has been
            --  rewritten.)

            Indic := Subtype_Indication
                       (Type_Definition (Original_Node (Parent (F_Typ))));

            if Nkind (Indic) = N_Subtype_Indication then
               G_Typ := Entity (Subtype_Mark (Indic));
            else
               G_Typ := Entity (Indic);
            end if;

            if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
              and then Present (Generic_Parent_Type (Parent (G_Typ)))
            then
               return Generic_Parent_Type (Parent (G_Typ));
            end if;
         end if;

         return Empty;
      end Get_Generic_Parent_Type;

      ----------------------
      -- Types_Correspond --
      ----------------------

      function Types_Correspond
        (P_Type : Entity_Id;
         N_Type : Entity_Id) return Boolean
      is
         Prev_Type : Entity_Id := Base_Type (P_Type);
         New_Type  : Entity_Id := Base_Type (N_Type);

      begin
         if Ekind (Prev_Type) = E_Anonymous_Access_Type then
            Prev_Type := Designated_Type (Prev_Type);
         end if;

         if Ekind (New_Type) = E_Anonymous_Access_Type then
            New_Type := Designated_Type (New_Type);
         end if;

         if Prev_Type = New_Type then
            return True;

         elsif not Is_Class_Wide_Type (New_Type) then
            while Etype (New_Type) /= New_Type loop
               New_Type := Etype (New_Type);
               if New_Type = Prev_Type then
                  return True;
               end if;
            end loop;
         end if;
         return False;
      end Types_Correspond;

   --  Start of processing for Is_Non_Overriding_Operation

   begin
      --  In the case where both operations are implicit derived subprograms
      --  then neither overrides the other. This can only occur in certain
      --  obscure cases (e.g., derivation from homographs created in a generic
      --  instantiation).

      if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
         return True;

      elsif Ekind (Current_Scope) = E_Package
        and then Is_Generic_Instance (Current_Scope)
        and then In_Private_Part (Current_Scope)
        and then Comes_From_Source (New_E)
      then
         --  We examine the formals and result subtype of the inherited
         --  operation, to determine whether their type is derived from (the
         --  instance of) a generic type.

         Formal := First_Formal (Prev_E);

         while Present (Formal) loop
            F_Typ := Base_Type (Etype (Formal));

            if Ekind (F_Typ) = E_Anonymous_Access_Type then
               F_Typ := Designated_Type (F_Typ);
            end if;

            G_Typ := Get_Generic_Parent_Type (F_Typ);

            Next_Formal (Formal);
         end loop;

         if No (G_Typ) and then Ekind (Prev_E) = E_Function then
            G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
         end if;

         if No (G_Typ) then
            return False;
         end if;

         --  If the generic type is a private type, then the original operation
         --  was not overriding in the generic, because there was no primitive
         --  operation to override.

         if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
           and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
                      N_Formal_Private_Type_Definition
         then
            return True;

         --  The generic parent type is the ancestor of a formal derived
         --  type declaration. We need to check whether it has a primitive
         --  operation that should be overridden by New_E in the generic.

         else
            declare
               P_Formal : Entity_Id;
               N_Formal : Entity_Id;
               P_Typ    : Entity_Id;
               N_Typ    : Entity_Id;
               P_Prim   : Entity_Id;
               Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));

            begin
               while Present (Prim_Elt) loop
                  P_Prim := Node (Prim_Elt);

                  if Chars (P_Prim) = Chars (New_E)
                    and then Ekind (P_Prim) = Ekind (New_E)
                  then
                     P_Formal := First_Formal (P_Prim);
                     N_Formal := First_Formal (New_E);
                     while Present (P_Formal) and then Present (N_Formal) loop
                        P_Typ := Etype (P_Formal);
                        N_Typ := Etype (N_Formal);

                        if not Types_Correspond (P_Typ, N_Typ) then
                           exit;
                        end if;

                        Next_Entity (P_Formal);
                        Next_Entity (N_Formal);
                     end loop;

                     --  Found a matching primitive operation belonging to the
                     --  formal ancestor type, so the new subprogram is
                     --  overriding.

                     if No (P_Formal)
                       and then No (N_Formal)
                       and then (Ekind (New_E) /= E_Function
                                  or else
                                 Types_Correspond
                                   (Etype (P_Prim), Etype (New_E)))
                     then
                        return False;
                     end if;
                  end if;

                  Next_Elmt (Prim_Elt);
               end loop;

               --  If no match found, then the new subprogram does not
               --  override in the generic (nor in the instance).

               return True;
            end;
         end if;
      else
         return False;
      end if;
   end Is_Non_Overriding_Operation;

   ------------------------------
   -- Make_Inequality_Operator --
   ------------------------------

   --  S is the defining identifier of an equality operator. We build a
   --  subprogram declaration with the right signature. This operation is
   --  intrinsic, because it is always expanded as the negation of the
   --  call to the equality function.

   procedure Make_Inequality_Operator (S : Entity_Id) is
      Loc     : constant Source_Ptr := Sloc (S);
      Decl    : Node_Id;
      Formals : List_Id;
      Op_Name : Entity_Id;

      FF : constant Entity_Id := First_Formal (S);
      NF : constant Entity_Id := Next_Formal (FF);

   begin
      --  Check that equality was properly defined, ignore call if not

      if No (NF) then
         return;
      end if;

      declare
         A : constant Entity_Id :=
               Make_Defining_Identifier (Sloc (FF),
                 Chars => Chars (FF));

         B : constant Entity_Id :=
               Make_Defining_Identifier (Sloc (NF),
                 Chars => Chars (NF));

      begin
         Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);

         Formals := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => A,
             Parameter_Type      =>
               New_Reference_To (Etype (First_Formal (S)),
                 Sloc (Etype (First_Formal (S))))),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => B,
             Parameter_Type      =>
               New_Reference_To (Etype (Next_Formal (First_Formal (S))),
                 Sloc (Etype (Next_Formal (First_Formal (S)))))));

         Decl :=
           Make_Subprogram_Declaration (Loc,
             Specification =>
               Make_Function_Specification (Loc,
                 Defining_Unit_Name       => Op_Name,
                 Parameter_Specifications => Formals,
                 Result_Definition        =>
                   New_Reference_To (Standard_Boolean, Loc)));

         --  Insert inequality right after equality if it is explicit or after
         --  the derived type when implicit. These entities are created only
         --  for visibility purposes, and eventually replaced in the course of
         --  expansion, so they do not need to be attached to the tree and seen
         --  by the back-end. Keeping them internal also avoids spurious
         --  freezing problems. The declaration is inserted in the tree for
         --  analysis, and removed afterwards. If the equality operator comes
         --  from an explicit declaration, attach the inequality immediately
         --  after. Else the equality is inherited from a derived type
         --  declaration, so insert inequality after that declaration.

         if No (Alias (S)) then
            Insert_After (Unit_Declaration_Node (S), Decl);
         elsif Is_List_Member (Parent (S)) then
            Insert_After (Parent (S), Decl);
         else
            Insert_After (Parent (Etype (First_Formal (S))), Decl);
         end if;

         Mark_Rewrite_Insertion (Decl);
         Set_Is_Intrinsic_Subprogram (Op_Name);
         Analyze (Decl);
         Remove (Decl);
         Set_Has_Completion (Op_Name);
         Set_Corresponding_Equality (Op_Name, S);
         Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
      end;
   end Make_Inequality_Operator;

   ----------------------
   -- May_Need_Actuals --
   ----------------------

   procedure May_Need_Actuals (Fun : Entity_Id) is
      F : Entity_Id;
      B : Boolean;

   begin
      F := First_Formal (Fun);
      B := True;
      while Present (F) loop
         if No (Default_Value (F)) then
            B := False;
            exit;
         end if;

         Next_Formal (F);
      end loop;

      Set_Needs_No_Actuals (Fun, B);
   end May_Need_Actuals;

   ---------------------
   -- Mode_Conformant --
   ---------------------

   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
      return Result;
   end Mode_Conformant;

   ---------------------------
   -- New_Overloaded_Entity --
   ---------------------------

   procedure New_Overloaded_Entity
     (S            : Entity_Id;
      Derived_Type : Entity_Id := Empty)
   is
      Overridden_Subp : Entity_Id := Empty;
      --  Set if the current scope has an operation that is type-conformant
      --  with S, and becomes hidden by S.

      Is_Primitive_Subp : Boolean;
      --  Set to True if the new subprogram is primitive

      E : Entity_Id;
      --  Entity that S overrides

      Prev_Vis : Entity_Id := Empty;
      --  Predecessor of E in Homonym chain

      procedure Check_For_Primitive_Subprogram
        (Is_Primitive  : out Boolean;
         Is_Overriding : Boolean := False);
      --  If the subprogram being analyzed is a primitive operation of the type
      --  of a formal or result, set the Has_Primitive_Operations flag on the
      --  type, and set Is_Primitive to True (otherwise set to False). Set the
      --  corresponding flag on the entity itself for later use.

      procedure Check_Synchronized_Overriding
        (Def_Id          : Entity_Id;
         Overridden_Subp : out Entity_Id);
      --  First determine if Def_Id is an entry or a subprogram either defined
      --  in the scope of a task or protected type, or is a primitive of such
      --  a type. Check whether Def_Id overrides a subprogram of an interface
      --  implemented by the synchronized type, return the overridden entity
      --  or Empty.

      function Is_Private_Declaration (E : Entity_Id) return Boolean;
      --  Check that E is declared in the private part of the current package,
      --  or in the package body, where it may hide a previous declaration.
      --  We can't use In_Private_Part by itself because this flag is also
      --  set when freezing entities, so we must examine the place of the
      --  declaration in the tree, and recognize wrapper packages as well.

      function Is_Overriding_Alias
        (Old_E : Entity_Id;
         New_E : Entity_Id) return Boolean;
      --  Check whether new subprogram and old subprogram are both inherited
      --  from subprograms that have distinct dispatch table entries. This can
      --  occur with derivations from instances with accidental homonyms.
      --  The function is conservative given that the converse is only true
      --  within instances that contain accidental overloadings.

      ------------------------------------
      -- Check_For_Primitive_Subprogram --
      ------------------------------------

      procedure Check_For_Primitive_Subprogram
        (Is_Primitive  : out Boolean;
         Is_Overriding : Boolean := False)
      is
         Formal : Entity_Id;
         F_Typ  : Entity_Id;
         B_Typ  : Entity_Id;

         function Visible_Part_Type (T : Entity_Id) return Boolean;
         --  Returns true if T is declared in the visible part of the current
         --  package scope; otherwise returns false. Assumes that T is declared
         --  in a package.

         procedure Check_Private_Overriding (T : Entity_Id);
         --  Checks that if a primitive abstract subprogram of a visible
         --  abstract type is declared in a private part, then it must override
         --  an abstract subprogram declared in the visible part. Also checks
         --  that if a primitive function with a controlling result is declared
         --  in a private part, then it must override a function declared in
         --  the visible part.

         ------------------------------
         -- Check_Private_Overriding --
         ------------------------------

         procedure Check_Private_Overriding (T : Entity_Id) is
         begin
            if Is_Package_Or_Generic_Package (Current_Scope)
              and then In_Private_Part (Current_Scope)
              and then Visible_Part_Type (T)
              and then not In_Instance
            then
               if Is_Abstract_Type (T)
                 and then Is_Abstract_Subprogram (S)
                 and then (not Is_Overriding
                            or else not Is_Abstract_Subprogram (E))
               then
                  Error_Msg_N ("abstract subprograms must be visible "
                                   & "(RM 3.9.3(10))!", S);

               elsif Ekind (S) = E_Function
                 and then Is_Tagged_Type (T)
                 and then T = Base_Type (Etype (S))
                 and then not Is_Overriding
               then
                  Error_Msg_N
                    ("private function with tagged result must"
                     & " override visible-part function", S);
                  Error_Msg_N
                    ("\move subprogram to the visible part"
                     & " (RM 3.9.3(10))", S);
               end if;
            end if;
         end Check_Private_Overriding;

         -----------------------
         -- Visible_Part_Type --
         -----------------------

         function Visible_Part_Type (T : Entity_Id) return Boolean is
            P : constant Node_Id := Unit_Declaration_Node (Scope (T));
            N : Node_Id;

         begin
            --  If the entity is a private type, then it must be declared in a
            --  visible part.

            if Ekind (T) in Private_Kind then
               return True;
            end if;

            --  Otherwise, we traverse the visible part looking for its
            --  corresponding declaration. We cannot use the declaration
            --  node directly because in the private part the entity of a
            --  private type is the one in the full view, which does not
            --  indicate that it is the completion of something visible.

            N := First (Visible_Declarations (Specification (P)));
            while Present (N) loop
               if Nkind (N) = N_Full_Type_Declaration
                 and then Present (Defining_Identifier (N))
                 and then T = Defining_Identifier (N)
               then
                  return True;

               elsif Nkind_In (N, N_Private_Type_Declaration,
                                  N_Private_Extension_Declaration)
                 and then Present (Defining_Identifier (N))
                 and then T = Full_View (Defining_Identifier (N))
               then
                  return True;
               end if;

               Next (N);
            end loop;

            return False;
         end Visible_Part_Type;

      --  Start of processing for Check_For_Primitive_Subprogram

      begin
         Is_Primitive := False;

         if not Comes_From_Source (S) then
            null;

         --  If subprogram is at library level, it is not primitive operation

         elsif Current_Scope = Standard_Standard then
            null;

         elsif (Is_Package_Or_Generic_Package (Current_Scope)
                 and then not In_Package_Body (Current_Scope))
           or else Is_Overriding
         then
            --  For function, check return type

            if Ekind (S) = E_Function then
               if Ekind (Etype (S)) = E_Anonymous_Access_Type then
                  F_Typ := Designated_Type (Etype (S));
               else
                  F_Typ := Etype (S);
               end if;

               B_Typ := Base_Type (F_Typ);

               if Scope (B_Typ) = Current_Scope
                 and then not Is_Class_Wide_Type (B_Typ)
                 and then not Is_Generic_Type (B_Typ)
               then
                  Is_Primitive := True;
                  Set_Has_Primitive_Operations (B_Typ);
                  Set_Is_Primitive (S);
                  Check_Private_Overriding (B_Typ);
               end if;
            end if;

            --  For all subprograms, check formals

            Formal := First_Formal (S);
            while Present (Formal) loop
               if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
                  F_Typ := Designated_Type (Etype (Formal));
               else
                  F_Typ := Etype (Formal);
               end if;

               B_Typ := Base_Type (F_Typ);

               if Ekind (B_Typ) = E_Access_Subtype then
                  B_Typ := Base_Type (B_Typ);
               end if;

               if Scope (B_Typ) = Current_Scope
                 and then not Is_Class_Wide_Type (B_Typ)
                 and then not Is_Generic_Type (B_Typ)
               then
                  Is_Primitive := True;
                  Set_Is_Primitive (S);
                  Set_Has_Primitive_Operations (B_Typ);
                  Check_Private_Overriding (B_Typ);
               end if;

               Next_Formal (Formal);
            end loop;
         end if;
      end Check_For_Primitive_Subprogram;

      -----------------------------------
      -- Check_Synchronized_Overriding --
      -----------------------------------

      procedure Check_Synchronized_Overriding
        (Def_Id          : Entity_Id;
         Overridden_Subp : out Entity_Id)
      is
         Ifaces_List : Elist_Id;
         In_Scope    : Boolean;
         Typ         : Entity_Id;

         function Matches_Prefixed_View_Profile
           (Prim_Params  : List_Id;
            Iface_Params : List_Id) return Boolean;
         --  Determine whether a subprogram's parameter profile Prim_Params
         --  matches that of a potentially overridden interface subprogram
         --  Iface_Params. Also determine if the type of first parameter of
         --  Iface_Params is an implemented interface.

         -----------------------------------
         -- Matches_Prefixed_View_Profile --
         -----------------------------------

         function Matches_Prefixed_View_Profile
           (Prim_Params  : List_Id;
            Iface_Params : List_Id) return Boolean
         is
            Iface_Id     : Entity_Id;
            Iface_Param  : Node_Id;
            Iface_Typ    : Entity_Id;
            Prim_Id      : Entity_Id;
            Prim_Param   : Node_Id;
            Prim_Typ     : Entity_Id;

            function Is_Implemented
              (Ifaces_List : Elist_Id;
               Iface       : Entity_Id) return Boolean;
            --  Determine if Iface is implemented by the current task or
            --  protected type.

            --------------------
            -- Is_Implemented --
            --------------------

            function Is_Implemented
              (Ifaces_List : Elist_Id;
               Iface       : Entity_Id) return Boolean
            is
               Iface_Elmt : Elmt_Id;

            begin
               Iface_Elmt := First_Elmt (Ifaces_List);
               while Present (Iface_Elmt) loop
                  if Node (Iface_Elmt) = Iface then
                     return True;
                  end if;

                  Next_Elmt (Iface_Elmt);
               end loop;

               return False;
            end Is_Implemented;

         --  Start of processing for Matches_Prefixed_View_Profile

         begin
            Iface_Param := First (Iface_Params);
            Iface_Typ   := Etype (Defining_Identifier (Iface_Param));

            if Is_Access_Type (Iface_Typ) then
               Iface_Typ := Designated_Type (Iface_Typ);
            end if;

            Prim_Param := First (Prim_Params);

            --  The first parameter of the potentially overridden subprogram
            --  must be an interface implemented by Prim.

            if not Is_Interface (Iface_Typ)
              or else not Is_Implemented (Ifaces_List, Iface_Typ)
            then
               return False;
            end if;

            --  The checks on the object parameters are done, move onto the
            --  rest of the parameters.

            if not In_Scope then
               Prim_Param := Next (Prim_Param);
            end if;

            Iface_Param := Next (Iface_Param);
            while Present (Iface_Param) and then Present (Prim_Param) loop
               Iface_Id  := Defining_Identifier (Iface_Param);
               Iface_Typ := Find_Parameter_Type (Iface_Param);

               Prim_Id  := Defining_Identifier (Prim_Param);
               Prim_Typ := Find_Parameter_Type (Prim_Param);

               if Ekind (Iface_Typ) = E_Anonymous_Access_Type
                 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
                 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
               then
                  Iface_Typ := Designated_Type (Iface_Typ);
                  Prim_Typ := Designated_Type (Prim_Typ);
               end if;

               --  Case of multiple interface types inside a parameter profile

               --     (Obj_Param : in out Iface; ...; Param : Iface)

               --  If the interface type is implemented, then the matching type
               --  in the primitive should be the implementing record type.

               if Ekind (Iface_Typ) = E_Record_Type
                 and then Is_Interface (Iface_Typ)
                 and then Is_Implemented (Ifaces_List, Iface_Typ)
               then
                  if Prim_Typ /= Typ then
                     return False;
                  end if;

               --  The two parameters must be both mode and subtype conformant

               elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
                 or else not
                   Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
               then
                  return False;
               end if;

               Next (Iface_Param);
               Next (Prim_Param);
            end loop;

            --  One of the two lists contains more parameters than the other

            if Present (Iface_Param) or else Present (Prim_Param) then
               return False;
            end if;

            return True;
         end Matches_Prefixed_View_Profile;

      --  Start of processing for Check_Synchronized_Overriding

      begin
         Overridden_Subp := Empty;

         --  Def_Id must be an entry or a subprogram. We should skip predefined
         --  primitives internally generated by the frontend; however at this
         --  stage predefined primitives are still not fully decorated. As a
         --  minor optimization we skip here internally generated subprograms.

         if (Ekind (Def_Id) /= E_Entry
              and then Ekind (Def_Id) /= E_Function
              and then Ekind (Def_Id) /= E_Procedure)
           or else not Comes_From_Source (Def_Id)
         then
            return;
         end if;

         --  Search for the concurrent declaration since it contains the list
         --  of all implemented interfaces. In this case, the subprogram is
         --  declared within the scope of a protected or a task type.

         if Present (Scope (Def_Id))
           and then Is_Concurrent_Type (Scope (Def_Id))
           and then not Is_Generic_Actual_Type (Scope (Def_Id))
         then
            Typ := Scope (Def_Id);
            In_Scope := True;

         --  The enclosing scope is not a synchronized type and the subprogram
         --  has no formals

         elsif No (First_Formal (Def_Id)) then
            return;

         --  The subprogram has formals and hence it may be a primitive of a
         --  concurrent type

         else
            Typ := Etype (First_Formal (Def_Id));

            if Is_Access_Type (Typ) then
               Typ := Directly_Designated_Type (Typ);
            end if;

            if Is_Concurrent_Type (Typ)
              and then not Is_Generic_Actual_Type (Typ)
            then
               In_Scope := False;

            --  This case occurs when the concurrent type is declared within
            --  a generic unit. As a result the corresponding record has been
            --  built and used as the type of the first formal, we just have
            --  to retrieve the corresponding concurrent type.

            elsif Is_Concurrent_Record_Type (Typ)
              and then Present (Corresponding_Concurrent_Type (Typ))
            then
               Typ := Corresponding_Concurrent_Type (Typ);
               In_Scope := False;

            else
               return;
            end if;
         end if;

         --  There is no overriding to check if is an inherited operation in a
         --  type derivation on for a generic actual.

         Collect_Interfaces (Typ, Ifaces_List);

         if Is_Empty_Elmt_List (Ifaces_List) then
            return;
         end if;

         --  Determine whether entry or subprogram Def_Id overrides a primitive
         --  operation that belongs to one of the interfaces in Ifaces_List.

         declare
            Candidate : Entity_Id := Empty;
            Hom       : Entity_Id := Empty;
            Iface_Typ : Entity_Id;
            Subp      : Entity_Id := Empty;

         begin
            --  Traverse the homonym chain, looking at a potentially
            --  overridden subprogram that belongs to an implemented
            --  interface.

            Hom := Current_Entity_In_Scope (Def_Id);
            while Present (Hom) loop
               Subp := Hom;

               if Subp = Def_Id
                 or else not Is_Overloadable (Subp)
                 or else not Is_Primitive (Subp)
                 or else not Is_Dispatching_Operation (Subp)
                 or else not Present (Find_Dispatching_Type (Subp))
                 or else not Is_Interface (Find_Dispatching_Type (Subp))
               then
                  null;

               --  Entries and procedures can override abstract or null
               --  interface procedures

               elsif (Ekind (Def_Id) = E_Procedure
                        or else Ekind (Def_Id) = E_Entry)
                 and then Ekind (Subp) = E_Procedure
                 and then Matches_Prefixed_View_Profile
                            (Parameter_Specifications (Parent (Def_Id)),
                             Parameter_Specifications (Parent (Subp)))
               then
                  Candidate := Subp;

                  --  For an overridden subprogram Subp, check whether the mode
                  --  of its first parameter is correct depending on the kind
                  --  of synchronized type.

                  declare
                     Formal : constant Node_Id := First_Formal (Candidate);

                  begin
                     --  In order for an entry or a protected procedure to
                     --  override, the first parameter of the overridden
                     --  routine must be of mode "out", "in out" or
                     --  access-to-variable.

                     if (Ekind (Candidate) = E_Entry
                         or else Ekind (Candidate) = E_Procedure)
                       and then Is_Protected_Type (Typ)
                       and then Ekind (Formal) /= E_In_Out_Parameter
                       and then Ekind (Formal) /= E_Out_Parameter
                       and then Nkind (Parameter_Type (Parent (Formal)))
                                  /= N_Access_Definition
                     then
                        null;

                     --  All other cases are OK since a task entry or routine
                     --  does not have a restriction on the mode of the first
                     --  parameter of the overridden interface routine.

                     else
                        Overridden_Subp := Candidate;
                        return;
                     end if;
                  end;

               --  Functions can override abstract interface functions

               elsif Ekind (Def_Id) = E_Function
                 and then Ekind (Subp) = E_Function
                 and then Matches_Prefixed_View_Profile
                            (Parameter_Specifications (Parent (Def_Id)),
                             Parameter_Specifications (Parent (Subp)))
                 and then Etype (Result_Definition (Parent (Def_Id))) =
                          Etype (Result_Definition (Parent (Subp)))
               then
                  Overridden_Subp := Subp;
                  return;
               end if;

               Hom := Homonym (Hom);
            end loop;

            --  After examining all candidates for overriding, we are
            --  left with the best match which is a mode incompatible
            --  interface routine. Do not emit an error if the Expander
            --  is active since this error will be detected later on
            --  after all concurrent types are expanded and all wrappers
            --  are built. This check is meant for spec-only
            --  compilations.

            if Present (Candidate)
              and then not Expander_Active
            then
               Iface_Typ :=
                 Find_Parameter_Type (Parent (First_Formal (Candidate)));

               --  Def_Id is primitive of a protected type, declared
               --  inside the type, and the candidate is primitive of a
               --  limited or synchronized interface.

               if In_Scope
                 and then Is_Protected_Type (Typ)
                 and then
                   (Is_Limited_Interface (Iface_Typ)
                      or else Is_Protected_Interface (Iface_Typ)
                      or else Is_Synchronized_Interface (Iface_Typ)
                      or else Is_Task_Interface (Iface_Typ))
               then
                  --  Must reword this message, comma before to in -gnatj
                  --  mode ???

                  Error_Msg_NE
                    ("first formal of & must be of mode `OUT`, `IN OUT`"
                      & " or access-to-variable", Typ, Candidate);
                  Error_Msg_N
                    ("\to be overridden by protected procedure or entry "
                      & "(RM 9.4(11.9/2))", Typ);
               end if;
            end if;

            Overridden_Subp := Candidate;
            return;
         end;
      end Check_Synchronized_Overriding;

      ----------------------------
      -- Is_Private_Declaration --
      ----------------------------

      function Is_Private_Declaration (E : Entity_Id) return Boolean is
         Priv_Decls : List_Id;
         Decl       : constant Node_Id := Unit_Declaration_Node (E);

      begin
         if Is_Package_Or_Generic_Package (Current_Scope)
           and then In_Private_Part (Current_Scope)
         then
            Priv_Decls :=
              Private_Declarations (
                Specification (Unit_Declaration_Node (Current_Scope)));

            return In_Package_Body (Current_Scope)
              or else
                (Is_List_Member (Decl)
                   and then List_Containing (Decl) = Priv_Decls)
              or else (Nkind (Parent (Decl)) = N_Package_Specification
                         and then not
                           Is_Compilation_Unit
                             (Defining_Entity (Parent (Decl)))
                         and then List_Containing (Parent (Parent (Decl)))
                                    = Priv_Decls);
         else
            return False;
         end if;
      end Is_Private_Declaration;

      --------------------------
      -- Is_Overriding_Alias --
      --------------------------

      function Is_Overriding_Alias
        (Old_E : Entity_Id;
         New_E : Entity_Id) return Boolean
      is
         AO : constant Entity_Id := Alias (Old_E);
         AN : constant Entity_Id := Alias (New_E);

      begin
         return Scope (AO) /= Scope (AN)
           or else No (DTC_Entity (AO))
           or else No (DTC_Entity (AN))
           or else DT_Position (AO) = DT_Position (AN);
      end Is_Overriding_Alias;

   --  Start of processing for New_Overloaded_Entity

   begin
      --  We need to look for an entity that S may override. This must be a
      --  homonym in the current scope, so we look for the first homonym of
      --  S in the current scope as the starting point for the search.

      E := Current_Entity_In_Scope (S);

      --  If there is no homonym then this is definitely not overriding

      if No (E) then
         Enter_Overloaded_Entity (S);
         Check_Dispatching_Operation (S, Empty);
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);

         --  If subprogram has an explicit declaration, check whether it
         --  has an overriding indicator.

         if Comes_From_Source (S) then
            Check_Synchronized_Overriding (S, Overridden_Subp);
            Check_Overriding_Indicator
              (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
         end if;

      --  If there is a homonym that is not overloadable, then we have an
      --  error, except for the special cases checked explicitly below.

      elsif not Is_Overloadable (E) then

         --  Check for spurious conflict produced by a subprogram that has the
         --  same name as that of the enclosing generic package. The conflict
         --  occurs within an instance, between the subprogram and the renaming
         --  declaration for the package. After the subprogram, the package
         --  renaming declaration becomes hidden.

         if Ekind (E) = E_Package
           and then Present (Renamed_Object (E))
           and then Renamed_Object (E) = Current_Scope
           and then Nkind (Parent (Renamed_Object (E))) =
                                                     N_Package_Specification
           and then Present (Generic_Parent (Parent (Renamed_Object (E))))
         then
            Set_Is_Hidden (E);
            Set_Is_Immediately_Visible (E, False);
            Enter_Overloaded_Entity (S);
            Set_Homonym (S, Homonym (E));
            Check_Dispatching_Operation (S, Empty);
            Check_Overriding_Indicator (S, Empty, Is_Primitive => False);

         --  If the subprogram is implicit it is hidden by the previous
         --  declaration. However if it is dispatching, it must appear in the
         --  dispatch table anyway, because it can be dispatched to even if it
         --  cannot be called directly.

         elsif Present (Alias (S))
           and then not Comes_From_Source (S)
         then
            Set_Scope (S, Current_Scope);

            if Is_Dispatching_Operation (Alias (S)) then
               Check_Dispatching_Operation (S, Empty);
            end if;

            return;

         else
            Error_Msg_Sloc := Sloc (E);

            --  Generate message, with useful additional warning if in generic

            if Is_Generic_Unit (E) then
               Error_Msg_N ("previous generic unit cannot be overloaded", S);
               Error_Msg_N ("\& conflicts with declaration#", S);
            else
               Error_Msg_N ("& conflicts with declaration#", S);
            end if;

            return;
         end if;

      --  E exists and is overloadable

      else
         --  Ada 2005 (AI-251): Derivation of abstract interface primitives
         --  need no check against the homonym chain. They are directly added
         --  to the list of primitive operations of Derived_Type.

         if Ada_Version >= Ada_05
           and then Present (Derived_Type)
           and then Is_Dispatching_Operation (Alias (S))
           and then Present (Find_Dispatching_Type (Alias (S)))
           and then Is_Interface (Find_Dispatching_Type (Alias (S)))
         then
            goto Add_New_Entity;
         end if;

         Check_Synchronized_Overriding (S, Overridden_Subp);

         --  Loop through E and its homonyms to determine if any of them is
         --  the candidate for overriding by S.

         while Present (E) loop

            --  Definitely not interesting if not in the current scope

            if Scope (E) /= Current_Scope then
               null;

            --  Check if we have type conformance

            elsif Type_Conformant (E, S) then

               --  If the old and new entities have the same profile and one
               --  is not the body of the other, then this is an error, unless
               --  one of them is implicitly declared.

               --  There are some cases when both can be implicit, for example
               --  when both a literal and a function that overrides it are
               --  inherited in a derivation, or when an inherited operation
               --  of a tagged full type overrides the inherited operation of
               --  a private extension. Ada 83 had a special rule for the
               --  literal case. In Ada95, the later implicit operation hides
               --  the former, and the literal is always the former. In the
               --  odd case where both are derived operations declared at the
               --  same point, both operations should be declared, and in that
               --  case we bypass the following test and proceed to the next
               --  part. This can only occur for certain obscure cases in
               --  instances, when an operation on a type derived from a formal
               --  private type does not override a homograph inherited from
               --  the actual. In subsequent derivations of such a type, the
               --  DT positions of these operations remain distinct, if they
               --  have been set.

               if Present (Alias (S))
                 and then (No (Alias (E))
                            or else Comes_From_Source (E)
                            or else Is_Abstract_Subprogram (S)
                            or else
                              (Is_Dispatching_Operation (E)
                                 and then Is_Overriding_Alias (E, S)))
                 and then Ekind (E) /= E_Enumeration_Literal
               then
                  --  When an derived operation is overloaded it may be due to
                  --  the fact that the full view of a private extension
                  --  re-inherits. It has to be dealt with.

                  if Is_Package_Or_Generic_Package (Current_Scope)
                    and then In_Private_Part (Current_Scope)
                  then
                     Check_Operation_From_Private_View (S, E);
                  end if;

                  --  In any case the implicit operation remains hidden by
                  --  the existing declaration, which is overriding.

                  Set_Is_Overriding_Operation (E);

                  if Comes_From_Source (E) then
                     Check_Overriding_Indicator (E, S, Is_Primitive => False);

                     --  Indicate that E overrides the operation from which
                     --  S is inherited.

                     if Present (Alias (S)) then
                        Set_Overridden_Operation (E, Alias (S));
                     else
                        Set_Overridden_Operation (E, S);
                     end if;
                  end if;

                  return;

               --  Within an instance, the renaming declarations for actual
               --  subprograms may become ambiguous, but they do not hide each
               --  other.

               elsif Ekind (E) /= E_Entry
                 and then not Comes_From_Source (E)
                 and then not Is_Generic_Instance (E)
                 and then (Present (Alias (E))
                            or else Is_Intrinsic_Subprogram (E))
                 and then (not In_Instance
                            or else No (Parent (E))
                            or else Nkind (Unit_Declaration_Node (E)) /=
                                      N_Subprogram_Renaming_Declaration)
               then
                  --  A subprogram child unit is not allowed to override an
                  --  inherited subprogram (10.1.1(20)).

                  if Is_Child_Unit (S) then
                     Error_Msg_N
                       ("child unit overrides inherited subprogram in parent",
                        S);
                     return;
                  end if;

                  if Is_Non_Overriding_Operation (E, S) then
                     Enter_Overloaded_Entity (S);

                     if No (Derived_Type)
                       or else Is_Tagged_Type (Derived_Type)
                     then
                        Check_Dispatching_Operation (S, Empty);
                     end if;

                     return;
                  end if;

                  --  E is a derived operation or an internal operator which
                  --  is being overridden. Remove E from further visibility.
                  --  Furthermore, if E is a dispatching operation, it must be
                  --  replaced in the list of primitive operations of its type
                  --  (see Override_Dispatching_Operation).

                  Overridden_Subp := E;

                  declare
                     Prev : Entity_Id;

                  begin
                     Prev := First_Entity (Current_Scope);
                     while Present (Prev)
                       and then Next_Entity (Prev) /= E
                     loop
                        Next_Entity (Prev);
                     end loop;

                     --  It is possible for E to be in the current scope and
                     --  yet not in the entity chain. This can only occur in a
                     --  generic context where E is an implicit concatenation
                     --  in the formal part, because in a generic body the
                     --  entity chain starts with the formals.

                     pragma Assert
                       (Present (Prev) or else Chars (E) = Name_Op_Concat);

                     --  E must be removed both from the entity_list of the
                     --  current scope, and from the visibility chain

                     if Debug_Flag_E then
                        Write_Str ("Override implicit operation ");
                        Write_Int (Int (E));
                        Write_Eol;
                     end if;

                     --  If E is a predefined concatenation, it stands for four
                     --  different operations. As a result, a single explicit
                     --  declaration does not hide it. In a possible ambiguous
                     --  situation, Disambiguate chooses the user-defined op,
                     --  so it is correct to retain the previous internal one.

                     if Chars (E) /= Name_Op_Concat
                       or else Ekind (E) /= E_Operator
                     then
                        --  For nondispatching derived operations that are
                        --  overridden by a subprogram declared in the private
                        --  part of a package, we retain the derived subprogram
                        --  but mark it as not immediately visible. If the
                        --  derived operation was declared in the visible part
                        --  then this ensures that it will still be visible
                        --  outside the package with the proper signature
                        --  (calls from outside must also be directed to this
                        --  version rather than the overriding one, unlike the
                        --  dispatching case). Calls from inside the package
                        --  will still resolve to the overriding subprogram
                        --  since the derived one is marked as not visible
                        --  within the package.

                        --  If the private operation is dispatching, we achieve
                        --  the overriding by keeping the implicit operation
                        --  but setting its alias to be the overriding one. In
                        --  this fashion the proper body is executed in all
                        --  cases, but the original signature is used outside
                        --  of the package.

                        --  If the overriding is not in the private part, we
                        --  remove the implicit operation altogether.

                        if Is_Private_Declaration (S) then
                           if not Is_Dispatching_Operation (E) then
                              Set_Is_Immediately_Visible (E, False);
                           else
                              --  Work done in Override_Dispatching_Operation,
                              --  so nothing else need to be done here.

                              null;
                           end if;

                        else
                           --  Find predecessor of E in Homonym chain

                           if E = Current_Entity (E) then
                              Prev_Vis := Empty;
                           else
                              Prev_Vis := Current_Entity (E);
                              while Homonym (Prev_Vis) /= E loop
                                 Prev_Vis := Homonym (Prev_Vis);
                              end loop;
                           end if;

                           if Prev_Vis /= Empty then

                              --  Skip E in the visibility chain

                              Set_Homonym (Prev_Vis, Homonym (E));

                           else
                              Set_Name_Entity_Id (Chars (E), Homonym (E));
                           end if;

                           Set_Next_Entity (Prev, Next_Entity (E));

                           if No (Next_Entity (Prev)) then
                              Set_Last_Entity (Current_Scope, Prev);
                           end if;

                        end if;
                     end if;

                     Enter_Overloaded_Entity (S);
                     Set_Is_Overriding_Operation (S);
                     Check_Overriding_Indicator (S, E, Is_Primitive => True);

                     --  If S is a user-defined subprogram or a null procedure
                     --  expanded to override an inherited null procedure, then
                     --  indicate that E overrides the operation from which S
                     --  is inherited. It seems odd that Overridden_Operation
                     --  isn't set in all cases where Is_Overriding_Operation
                     --  is true, but doing so causes infinite loops in the
                     --  compiler for implicit overriding subprograms. ???

                     if Comes_From_Source (S)
                       or else
                         (Present (Parent (S))
                           and then
                             Nkind (Parent (S)) = N_Procedure_Specification
                           and then
                             Null_Present (Parent (S)))
                     then
                        if Present (Alias (E)) then
                           Set_Overridden_Operation (S, Alias (E));
                        else
                           Set_Overridden_Operation (S, E);
                        end if;
                     end if;

                     if Is_Dispatching_Operation (E) then

                        --  An overriding dispatching subprogram inherits the
                        --  convention of the overridden subprogram (by
                        --  AI-117).

                        Set_Convention (S, Convention (E));
                        Check_Dispatching_Operation (S, E);

                     else
                        Check_Dispatching_Operation (S, Empty);
                     end if;

                     Check_For_Primitive_Subprogram
                       (Is_Primitive_Subp, Is_Overriding => True);
                     goto Check_Inequality;
                  end;

               --  Apparent redeclarations in instances can occur when two
               --  formal types get the same actual type. The subprograms in
               --  in the instance are legal,  even if not callable from the
               --  outside. Calls from within are disambiguated elsewhere.
               --  For dispatching operations in the visible part, the usual
               --  rules apply, and operations with the same profile are not
               --  legal (B830001).

               elsif (In_Instance_Visible_Part
                       and then not Is_Dispatching_Operation (E))
                 or else In_Instance_Not_Visible
               then
                  null;

               --  Here we have a real error (identical profile)

               else
                  Error_Msg_Sloc := Sloc (E);

                  --  Avoid cascaded errors if the entity appears in
                  --  subsequent calls.

                  Set_Scope (S, Current_Scope);

                  --  Generate error, with extra useful warning for the case
                  --  of a generic instance with no completion.

                  if Is_Generic_Instance (S)
                    and then not Has_Completion (E)
                  then
                     Error_Msg_N
                       ("instantiation cannot provide body for&", S);
                     Error_Msg_N ("\& conflicts with declaration#", S);
                  else
                     Error_Msg_N ("& conflicts with declaration#", S);
                  end if;

                  return;
               end if;

            else
               --  If one subprogram has an access parameter and the other
               --  a parameter of an access type, calls to either might be
               --  ambiguous. Verify that parameters match except for the
               --  access parameter.

               if May_Hide_Profile then
                  declare
                     F1 : Entity_Id;
                     F2 : Entity_Id;

                  begin
                     F1 := First_Formal (S);
                     F2 := First_Formal (E);
                     while Present (F1) and then Present (F2) loop
                        if Is_Access_Type (Etype (F1)) then
                           if not Is_Access_Type (Etype (F2))
                              or else not Conforming_Types
                                (Designated_Type (Etype (F1)),
                                 Designated_Type (Etype (F2)),
                                 Type_Conformant)
                           then
                              May_Hide_Profile := False;
                           end if;

                        elsif
                          not Conforming_Types
                            (Etype (F1), Etype (F2), Type_Conformant)
                        then
                           May_Hide_Profile := False;
                        end if;

                        Next_Formal (F1);
                        Next_Formal (F2);
                     end loop;

                     if May_Hide_Profile
                       and then No (F1)
                       and then No (F2)
                     then
                        Error_Msg_NE ("calls to& may be ambiguous?", S, S);
                     end if;
                  end;
               end if;
            end if;

            E := Homonym (E);
         end loop;

         <<Add_New_Entity>>

         --  On exit, we know that S is a new entity

         Enter_Overloaded_Entity (S);
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
         Check_Overriding_Indicator
           (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);

         --  If S is a derived operation for an untagged type then by
         --  definition it's not a dispatching operation (even if the parent
         --  operation was dispatching), so we don't call
         --  Check_Dispatching_Operation in that case.

         if No (Derived_Type)
           or else Is_Tagged_Type (Derived_Type)
         then
            Check_Dispatching_Operation (S, Empty);
         end if;
      end if;

      --  If this is a user-defined equality operator that is not a derived
      --  subprogram, create the corresponding inequality. If the operation is
      --  dispatching, the expansion is done elsewhere, and we do not create
      --  an explicit inequality operation.

      <<Check_Inequality>>
         if Chars (S) = Name_Op_Eq
           and then Etype (S) = Standard_Boolean
           and then Present (Parent (S))
           and then not Is_Dispatching_Operation (S)
         then
            Make_Inequality_Operator (S);
         end if;
   end New_Overloaded_Entity;

   ---------------------
   -- Process_Formals --
   ---------------------

   procedure Process_Formals
     (T           : List_Id;
      Related_Nod : Node_Id)
   is
      Param_Spec  : Node_Id;
      Formal      : Entity_Id;
      Formal_Type : Entity_Id;
      Default     : Node_Id;
      Ptype       : Entity_Id;

      Num_Out_Params  : Nat       := 0;
      First_Out_Param : Entity_Id := Empty;
      --  Used for setting Is_Only_Out_Parameter

      function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
      --  Determine whether an access type designates a type coming from a
      --  limited view.

      function Is_Class_Wide_Default (D : Node_Id) return Boolean;
      --  Check whether the default has a class-wide type. After analysis the
      --  default has the type of the formal, so we must also check explicitly
      --  for an access attribute.

      -------------------------------
      -- Designates_From_With_Type --
      -------------------------------

      function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
         Desig : Entity_Id := Typ;

      begin
         if Is_Access_Type (Desig) then
            Desig := Directly_Designated_Type (Desig);
         end if;

         if Is_Class_Wide_Type (Desig) then
            Desig := Root_Type (Desig);
         end if;

         return
           Ekind (Desig) = E_Incomplete_Type
             and then From_With_Type (Desig);
      end Designates_From_With_Type;

      ---------------------------
      -- Is_Class_Wide_Default --
      ---------------------------

      function Is_Class_Wide_Default (D : Node_Id) return Boolean is
      begin
         return Is_Class_Wide_Type (Designated_Type (Etype (D)))
           or else (Nkind (D) =  N_Attribute_Reference
                      and then Attribute_Name (D) = Name_Access
                      and then Is_Class_Wide_Type (Etype (Prefix (D))));
      end Is_Class_Wide_Default;

   --  Start of processing for Process_Formals

   begin
      --  In order to prevent premature use of the formals in the same formal
      --  part, the Ekind is left undefined until all default expressions are
      --  analyzed. The Ekind is established in a separate loop at the end.

      Param_Spec := First (T);
      while Present (Param_Spec) loop
         Formal := Defining_Identifier (Param_Spec);
         Set_Never_Set_In_Source (Formal, True);
         Enter_Name (Formal);

         --  Case of ordinary parameters

         if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
            Find_Type (Parameter_Type (Param_Spec));
            Ptype := Parameter_Type (Param_Spec);

            if Ptype = Error then
               goto Continue;
            end if;

            Formal_Type := Entity (Ptype);

            if Is_Incomplete_Type (Formal_Type)
              or else
               (Is_Class_Wide_Type (Formal_Type)
                  and then Is_Incomplete_Type (Root_Type (Formal_Type)))
            then
               --  Ada 2005 (AI-326): Tagged incomplete types allowed in
               --  primitive operations, as long as their completion is
               --  in the same declarative part. If in the private part
               --  this means that the type cannot be a Taft-amendment type.
               --  Check is done on package exit. For access to subprograms,
               --  the use is legal for Taft-amendment types.

               if Is_Tagged_Type (Formal_Type) then
                  if Ekind (Scope (Current_Scope)) = E_Package
                    and then In_Private_Part (Scope (Current_Scope))
                    and then not From_With_Type (Formal_Type)
                    and then not Is_Class_Wide_Type (Formal_Type)
                  then
                     if not Nkind_In
                       (Parent (T), N_Access_Function_Definition,
                                    N_Access_Procedure_Definition)
                     then
                        Append_Elmt
                          (Current_Scope,
                             Private_Dependents (Base_Type (Formal_Type)));
                     end if;
                  end if;

               --  Special handling of Value_Type for CIL case

               elsif Is_Value_Type (Formal_Type) then
                  null;

               elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
                                               N_Access_Procedure_Definition)
               then
                  Error_Msg_NE
                    ("invalid use of incomplete type&",
                       Param_Spec, Formal_Type);

                  --  Further checks on the legality of incomplete types
                  --  in formal parts must be delayed until the freeze point
                  --  of the enclosing subprogram or access to subprogram.
               end if;

            elsif Ekind (Formal_Type) = E_Void then
               Error_Msg_NE ("premature use of&",
                 Parameter_Type (Param_Spec), Formal_Type);
            end if;

            --  Ada 2005 (AI-231): Create and decorate an internal subtype
            --  declaration corresponding to the null-excluding type of the
            --  formal in the enclosing scope. Finally, replace the parameter
            --  type of the formal with the internal subtype.

            if Ada_Version >= Ada_05
              and then Null_Exclusion_Present (Param_Spec)
            then
               if not Is_Access_Type (Formal_Type) then
                  Error_Msg_N
                    ("`NOT NULL` allowed only for an access type", Param_Spec);

               else
                  if Can_Never_Be_Null (Formal_Type)
                    and then Comes_From_Source (Related_Nod)
                  then
                     Error_Msg_NE
                       ("`NOT NULL` not allowed (& already excludes null)",
                        Param_Spec,
                        Formal_Type);
                  end if;

                  Formal_Type :=
                    Create_Null_Excluding_Itype
                      (T           => Formal_Type,
                       Related_Nod => Related_Nod,
                       Scope_Id    => Scope (Current_Scope));

                  --  If the designated type of the itype is an itype we
                  --  decorate it with the Has_Delayed_Freeze attribute to
                  --  avoid problems with the backend.

                  --  Example:
                  --     type T is access procedure;
                  --     procedure Op (O : not null T);

                  if Is_Itype (Directly_Designated_Type (Formal_Type)) then
                     Set_Has_Delayed_Freeze (Formal_Type);
                  end if;
               end if;
            end if;

         --  An access formal type

         else
            Formal_Type :=
              Access_Definition (Related_Nod, Parameter_Type (Param_Spec));

            --  No need to continue if we already notified errors

            if not Present (Formal_Type) then
               return;
            end if;

            --  Ada 2005 (AI-254)

            declare
               AD : constant Node_Id :=
                      Access_To_Subprogram_Definition
                        (Parameter_Type (Param_Spec));
            begin
               if Present (AD) and then Protected_Present (AD) then
                  Formal_Type :=
                    Replace_Anonymous_Access_To_Protected_Subprogram
                      (Param_Spec);
               end if;
            end;
         end if;

         Set_Etype (Formal, Formal_Type);
         Default := Expression (Param_Spec);

         if Present (Default) then
            if Out_Present (Param_Spec) then
               Error_Msg_N
                 ("default initialization only allowed for IN parameters",
                  Param_Spec);
            end if;

            --  Do the special preanalysis of the expression (see section on
            --  "Handling of Default Expressions" in the spec of package Sem).

            Preanalyze_Spec_Expression (Default, Formal_Type);

            --  An access to constant cannot be the default for
            --  an access parameter that is an access to variable.

            if Ekind (Formal_Type) = E_Anonymous_Access_Type
              and then not Is_Access_Constant (Formal_Type)
              and then Is_Access_Type (Etype (Default))
              and then Is_Access_Constant (Etype (Default))
            then
               Error_Msg_N
                 ("formal that is access to variable cannot be initialized " &
                    "with an access-to-constant expression", Default);
            end if;

            --  Check that the designated type of an access parameter's default
            --  is not a class-wide type unless the parameter's designated type
            --  is also class-wide.

            if Ekind (Formal_Type) = E_Anonymous_Access_Type
              and then not Designates_From_With_Type (Formal_Type)
              and then Is_Class_Wide_Default (Default)
              and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
            then
               Error_Msg_N
                 ("access to class-wide expression not allowed here", Default);
            end if;

            --  Check incorrect use of dynamically tagged expressions

            if Is_Tagged_Type (Formal_Type) then
               Check_Dynamically_Tagged_Expression
                 (Expr        => Default,
                  Typ         => Formal_Type,
                  Related_Nod => Default);
            end if;
         end if;

         --  Ada 2005 (AI-231): Static checks

         if Ada_Version >= Ada_05
           and then Is_Access_Type (Etype (Formal))
           and then Can_Never_Be_Null (Etype (Formal))
         then
            Null_Exclusion_Static_Checks (Param_Spec);
         end if;

      <<Continue>>
         Next (Param_Spec);
      end loop;

      --  If this is the formal part of a function specification, analyze the
      --  subtype mark in the context where the formals are visible but not
      --  yet usable, and may hide outer homographs.

      if Nkind (Related_Nod) = N_Function_Specification then
         Analyze_Return_Type (Related_Nod);
      end if;

      --  Now set the kind (mode) of each formal

      Param_Spec := First (T);

      while Present (Param_Spec) loop
         Formal := Defining_Identifier (Param_Spec);
         Set_Formal_Mode (Formal);

         if Ekind (Formal) = E_In_Parameter then
            Set_Default_Value (Formal, Expression (Param_Spec));

            if Present (Expression (Param_Spec)) then
               Default :=  Expression (Param_Spec);

               if Is_Scalar_Type (Etype (Default)) then
                  if Nkind
                       (Parameter_Type (Param_Spec)) /= N_Access_Definition
                  then
                     Formal_Type := Entity (Parameter_Type (Param_Spec));

                  else
                     Formal_Type := Access_Definition
                       (Related_Nod, Parameter_Type (Param_Spec));
                  end if;

                  Apply_Scalar_Range_Check (Default, Formal_Type);
               end if;
            end if;

         elsif Ekind (Formal) = E_Out_Parameter then
            Num_Out_Params := Num_Out_Params + 1;

            if Num_Out_Params = 1 then
               First_Out_Param := Formal;
            end if;

         elsif Ekind (Formal) = E_In_Out_Parameter then
            Num_Out_Params := Num_Out_Params + 1;
         end if;

         Next (Param_Spec);
      end loop;

      if Present (First_Out_Param) and then Num_Out_Params = 1 then
         Set_Is_Only_Out_Parameter (First_Out_Param);
      end if;
   end Process_Formals;

   ------------------
   -- Process_PPCs --
   ------------------

   procedure Process_PPCs
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id)
   is
      Loc   : constant Source_Ptr := Sloc (N);
      Prag  : Node_Id;
      Plist : List_Id := No_List;
      Subp  : Entity_Id;
      Parms : List_Id;

      function Grab_PPC (Nam : Name_Id) return Node_Id;
      --  Prag contains an analyzed precondition or postcondition pragma.
      --  This function copies the pragma, changes it to the corresponding
      --  Check pragma and returns the Check pragma as the result. The
      --  argument Nam is either Name_Precondition or Name_Postcondition.

      --------------
      -- Grab_PPC --
      --------------

      function Grab_PPC (Nam : Name_Id) return Node_Id is
         CP : constant Node_Id := New_Copy_Tree (Prag);

      begin
         --  Set Analyzed to false, since we want to reanalyze the check
         --  procedure. Note that it is only at the outer level that we
         --  do this fiddling, for the spec cases, the already preanalyzed
         --  parameters are not affected.

         --  For a postcondition pragma within a generic, preserve the pragma
         --  for later expansion.

         Set_Analyzed (CP, False);

         if Nam = Name_Postcondition
           and then not Expander_Active
         then
            return CP;
         end if;

         --  Change pragma into corresponding pragma Check

         Prepend_To (Pragma_Argument_Associations (CP),
           Make_Pragma_Argument_Association (Sloc (Prag),
             Expression =>
               Make_Identifier (Loc,
                 Chars => Nam)));
         Set_Pragma_Identifier (CP,
           Make_Identifier (Sloc (Prag),
             Chars => Name_Check));

         return CP;
      end Grab_PPC;

   --  Start of processing for Process_PPCs

   begin
      --  Nothing to do if we are not generating code

      if Operating_Mode /= Generate_Code then
         return;
      end if;

      --  Grab preconditions from spec

      if Present (Spec_Id) then

         --  Loop through PPC pragmas from spec. Note that preconditions from
         --  the body will be analyzed and converted when we scan the body
         --  declarations below.

         Prag := Spec_PPC_List (Spec_Id);
         while Present (Prag) loop
            if Pragma_Name (Prag) = Name_Precondition
              and then PPC_Enabled (Prag)
            then
               --  Add pragma Check at the start of the declarations of N.
               --  Note that this processing reverses the order of the list,
               --  which is what we want since new entries were chained to
               --  the head of the list.

               Prepend (Grab_PPC (Name_Precondition), Declarations (N));
            end if;

            Prag := Next_Pragma (Prag);
         end loop;
      end if;

      --  Build postconditions procedure if needed and prepend the following
      --  declaration to the start of the declarations for the subprogram.

      --     procedure _postconditions [(_Result : resulttype)] is
      --     begin
      --        pragma Check (Postcondition, condition [,message]);
      --        pragma Check (Postcondition, condition [,message]);
      --        ...
      --     end;

      --  First we deal with the postconditions in the body

      if Is_Non_Empty_List (Declarations (N)) then

         --  Loop through declarations

         Prag := First (Declarations (N));
         while Present (Prag) loop
            if Nkind (Prag) = N_Pragma then

               --  If pragma, capture if enabled postcondition, else ignore

               if Pragma_Name (Prag) = Name_Postcondition
                 and then Check_Enabled (Name_Postcondition)
               then
                  if Plist = No_List then
                     Plist := Empty_List;
                  end if;

                  Analyze (Prag);

                  --  If expansion is disabled, as in a generic unit,
                  --  save pragma for later expansion.

                  if not Expander_Active then
                     Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
                  else
                     Append (Grab_PPC (Name_Postcondition), Plist);
                  end if;
               end if;

               Next (Prag);

            --  Not a pragma, if comes from source, then end scan

            elsif Comes_From_Source (Prag) then
               exit;

            --  Skip stuff not coming from source

            else
               Next (Prag);
            end if;
         end loop;
      end if;

      --  Now deal with any postconditions from the spec

      if Present (Spec_Id) then

         --  Loop through PPC pragmas from spec

         Prag := Spec_PPC_List (Spec_Id);
         while Present (Prag) loop
            if Pragma_Name (Prag) = Name_Postcondition
              and then PPC_Enabled (Prag)
            then
               if Plist = No_List then
                  Plist := Empty_List;
               end if;

               if not Expander_Active then
                  Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
               else
                  Append (Grab_PPC (Name_Postcondition), Plist);
               end if;
            end if;

            Prag := Next_Pragma (Prag);
         end loop;
      end if;

      --  If we had any postconditions and expansion is enabled, build
      --  the _Postconditions procedure.

      if Present (Plist)
        and then Expander_Active
      then
         Subp := Defining_Entity (N);

         if Etype (Subp) /= Standard_Void_Type then
            Parms := New_List (
              Make_Parameter_Specification (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc,
                    Chars => Name_uResult),
                Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
         else
            Parms := No_List;
         end if;

         declare
            Post_Proc : constant Entity_Id :=
                   Make_Defining_Identifier (Loc,
                     Chars => Name_uPostconditions);
            --  The entity for the _Postconditions procedure
         begin
            Prepend_To (Declarations (N),
              Make_Subprogram_Body (Loc,
                Specification =>
                  Make_Procedure_Specification (Loc,
                    Defining_Unit_Name => Post_Proc,
                    Parameter_Specifications => Parms),

                Declarations => Empty_List,

                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements => Plist)));

            --  If this is a procedure, set the Postcondition_Proc attribute

            if Etype (Subp) = Standard_Void_Type then
               Set_Postcondition_Proc (Spec_Id, Post_Proc);
            end if;
         end;

         if Present (Spec_Id) then
            Set_Has_Postconditions (Spec_Id);
         else
            Set_Has_Postconditions (Body_Id);
         end if;
      end if;
   end Process_PPCs;

   ----------------------------
   -- Reference_Body_Formals --
   ----------------------------

   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
      Fs : Entity_Id;
      Fb : Entity_Id;

   begin
      if Error_Posted (Spec) then
         return;
      end if;

      --  Iterate over both lists. They may be of different lengths if the two
      --  specs are not conformant.

      Fs := First_Formal (Spec);
      Fb := First_Formal (Bod);
      while Present (Fs) and then Present (Fb) loop
         Generate_Reference (Fs, Fb, 'b');

         if Style_Check then
            Style.Check_Identifier (Fb, Fs);
         end if;

         Set_Spec_Entity (Fb, Fs);
         Set_Referenced (Fs, False);
         Next_Formal (Fs);
         Next_Formal (Fb);
      end loop;
   end Reference_Body_Formals;

   -------------------------
   -- Set_Actual_Subtypes --
   -------------------------

   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
      Loc            : constant Source_Ptr := Sloc (N);
      Decl           : Node_Id;
      Formal         : Entity_Id;
      T              : Entity_Id;
      First_Stmt     : Node_Id := Empty;
      AS_Needed      : Boolean;

   begin
      --  If this is an empty initialization procedure, no need to create
      --  actual subtypes (small optimization).

      if Ekind (Subp) = E_Procedure
        and then Is_Null_Init_Proc (Subp)
      then
         return;
      end if;

      Formal := First_Formal (Subp);
      while Present (Formal) loop
         T := Etype (Formal);

         --  We never need an actual subtype for a constrained formal

         if Is_Constrained (T) then
            AS_Needed := False;

         --  If we have unknown discriminants, then we do not need an actual
         --  subtype, or more accurately we cannot figure it out! Note that
         --  all class-wide types have unknown discriminants.

         elsif Has_Unknown_Discriminants (T) then
            AS_Needed := False;

         --  At this stage we have an unconstrained type that may need an
         --  actual subtype. For sure the actual subtype is needed if we have
         --  an unconstrained array type.

         elsif Is_Array_Type (T) then
            AS_Needed := True;

         --  The only other case needing an actual subtype is an unconstrained
         --  record type which is an IN parameter (we cannot generate actual
         --  subtypes for the OUT or IN OUT case, since an assignment can
         --  change the discriminant values. However we exclude the case of
         --  initialization procedures, since discriminants are handled very
         --  specially in this context, see the section entitled "Handling of
         --  Discriminants" in Einfo.

         --  We also exclude the case of Discrim_SO_Functions (functions used
         --  in front end layout mode for size/offset values), since in such
         --  functions only discriminants are referenced, and not only are such
         --  subtypes not needed, but they cannot always be generated, because
         --  of order of elaboration issues.

         elsif Is_Record_Type (T)
           and then Ekind (Formal) = E_In_Parameter
           and then Chars (Formal) /= Name_uInit
           and then not Is_Unchecked_Union (T)
           and then not Is_Discrim_SO_Function (Subp)
         then
            AS_Needed := True;

         --  All other cases do not need an actual subtype

         else
            AS_Needed := False;
         end if;

         --  Generate actual subtypes for unconstrained arrays and
         --  unconstrained discriminated records.

         if AS_Needed then
            if Nkind (N) = N_Accept_Statement then

               --  If expansion is active, The formal is replaced by a local
               --  variable that renames the corresponding entry of the
               --  parameter block, and it is this local variable that may
               --  require an actual subtype.

               if Expander_Active then
                  Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
               else
                  Decl := Build_Actual_Subtype (T, Formal);
               end if;

               if Present (Handled_Statement_Sequence (N)) then
                  First_Stmt :=
                    First (Statements (Handled_Statement_Sequence (N)));
                  Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
                  Mark_Rewrite_Insertion (Decl);
               else
                  --  If the accept statement has no body, there will be no
                  --  reference to the actuals, so no need to compute actual
                  --  subtypes.

                  return;
               end if;

            else
               Decl := Build_Actual_Subtype (T, Formal);
               Prepend (Decl, Declarations (N));
               Mark_Rewrite_Insertion (Decl);
            end if;

            --  The declaration uses the bounds of an existing object, and
            --  therefore needs no constraint checks.

            Analyze (Decl, Suppress => All_Checks);

            --  We need to freeze manually the generated type when it is
            --  inserted anywhere else than in a declarative part.

            if Present (First_Stmt) then
               Insert_List_Before_And_Analyze (First_Stmt,
                 Freeze_Entity (Defining_Identifier (Decl), Loc));
            end if;

            if Nkind (N) = N_Accept_Statement
              and then Expander_Active
            then
               Set_Actual_Subtype (Renamed_Object (Formal),
                 Defining_Identifier (Decl));
            else
               Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
            end if;
         end if;

         Next_Formal (Formal);
      end loop;
   end Set_Actual_Subtypes;

   ---------------------
   -- Set_Formal_Mode --
   ---------------------

   procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
      Spec : constant Node_Id := Parent (Formal_Id);

   begin
      --  Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
      --  since we ensure that corresponding actuals are always valid at the
      --  point of the call.

      if Out_Present (Spec) then
         if Ekind (Scope (Formal_Id)) = E_Function
           or else Ekind (Scope (Formal_Id)) = E_Generic_Function
         then
            Error_Msg_N ("functions can only have IN parameters", Spec);
            Set_Ekind (Formal_Id, E_In_Parameter);

         elsif In_Present (Spec) then
            Set_Ekind (Formal_Id, E_In_Out_Parameter);

         else
            Set_Ekind               (Formal_Id, E_Out_Parameter);
            Set_Never_Set_In_Source (Formal_Id, True);
            Set_Is_True_Constant    (Formal_Id, False);
            Set_Current_Value       (Formal_Id, Empty);
         end if;

      else
         Set_Ekind (Formal_Id, E_In_Parameter);
      end if;

      --  Set Is_Known_Non_Null for access parameters since the language
      --  guarantees that access parameters are always non-null. We also set
      --  Can_Never_Be_Null, since there is no way to change the value.

      if Nkind (Parameter_Type (Spec)) = N_Access_Definition then

         --  Ada 2005 (AI-231): In Ada95, access parameters are always non-
         --  null; In Ada 2005, only if then null_exclusion is explicit.

         if Ada_Version < Ada_05
           or else Can_Never_Be_Null (Etype (Formal_Id))
         then
            Set_Is_Known_Non_Null (Formal_Id);
            Set_Can_Never_Be_Null (Formal_Id);
         end if;

      --  Ada 2005 (AI-231): Null-exclusion access subtype

      elsif Is_Access_Type (Etype (Formal_Id))
        and then Can_Never_Be_Null (Etype (Formal_Id))
      then
         Set_Is_Known_Non_Null (Formal_Id);
      end if;

      Set_Mechanism (Formal_Id, Default_Mechanism);
      Set_Formal_Validity (Formal_Id);
   end Set_Formal_Mode;

   -------------------------
   -- Set_Formal_Validity --
   -------------------------

   procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
   begin
      --  If no validity checking, then we cannot assume anything about the
      --  validity of parameters, since we do not know there is any checking
      --  of the validity on the call side.

      if not Validity_Checks_On then
         return;

      --  If validity checking for parameters is enabled, this means we are
      --  not supposed to make any assumptions about argument values.

      elsif Validity_Check_Parameters then
         return;

      --  If we are checking in parameters, we will assume that the caller is
      --  also checking parameters, so we can assume the parameter is valid.

      elsif Ekind (Formal_Id) = E_In_Parameter
        and then Validity_Check_In_Params
      then
         Set_Is_Known_Valid (Formal_Id, True);

      --  Similar treatment for IN OUT parameters

      elsif Ekind (Formal_Id) = E_In_Out_Parameter
        and then Validity_Check_In_Out_Params
      then
         Set_Is_Known_Valid (Formal_Id, True);
      end if;
   end Set_Formal_Validity;

   ------------------------
   -- Subtype_Conformant --
   ------------------------

   function Subtype_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Skip_Controlling_Formals : Boolean := False) return Boolean
   is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
        Skip_Controlling_Formals => Skip_Controlling_Formals);
      return Result;
   end Subtype_Conformant;

   ---------------------
   -- Type_Conformant --
   ---------------------

   function Type_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Skip_Controlling_Formals : Boolean := False) return Boolean
   is
      Result : Boolean;
   begin
      May_Hide_Profile := False;

      Check_Conformance
        (New_Id, Old_Id, Type_Conformant, False, Result,
         Skip_Controlling_Formals => Skip_Controlling_Formals);
      return Result;
   end Type_Conformant;

   -------------------------------
   -- Valid_Operator_Definition --
   -------------------------------

   procedure Valid_Operator_Definition (Designator : Entity_Id) is
      N    : Integer := 0;
      F    : Entity_Id;
      Id   : constant Name_Id := Chars (Designator);
      N_OK : Boolean;

   begin
      F := First_Formal (Designator);
      while Present (F) loop
         N := N + 1;

         if Present (Default_Value (F)) then
            Error_Msg_N
              ("default values not allowed for operator parameters",
               Parent (F));
         end if;

         Next_Formal (F);
      end loop;

      --  Verify that user-defined operators have proper number of arguments
      --  First case of operators which can only be unary

      if Id = Name_Op_Not
        or else Id = Name_Op_Abs
      then
         N_OK := (N = 1);

      --  Case of operators which can be unary or binary

      elsif Id = Name_Op_Add
        or Id = Name_Op_Subtract
      then
         N_OK := (N in 1 .. 2);

      --  All other operators can only be binary

      else
         N_OK := (N = 2);
      end if;

      if not N_OK then
         Error_Msg_N
           ("incorrect number of arguments for operator", Designator);
      end if;

      if Id = Name_Op_Ne
        and then Base_Type (Etype (Designator)) = Standard_Boolean
        and then not Is_Intrinsic_Subprogram (Designator)
      then
         Error_Msg_N
            ("explicit definition of inequality not allowed", Designator);
      end if;
   end Valid_Operator_Definition;

end Sem_Ch6;