summaryrefslogtreecommitdiff
path: root/gcc/auto-profile.c
blob: 5fdd33f57ac12e608598bdd308358ef30f572d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
/* Read and annotate call graph profile from the auto profile data file.
   Copyright (C) 2014-2015 Free Software Foundation, Inc.
   Contributed by Dehao Chen (dehao@google.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"

#include <string.h>
#include <map>
#include <set>

#include "coretypes.h"
#include "alias.h"
#include "symtab.h"
#include "options.h"
#include "tree.h"
#include "fold-const.h"
#include "tree-pass.h"
#include "flags.h"
#include "predict.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
#include "basic-block.h"
#include "diagnostic-core.h"
#include "gcov-io.h"
#include "profile.h"
#include "langhooks.h"
#include "opts.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-ssa-alias.h"
#include "tree-cfg.h"
#include "tree-cfgcleanup.h"
#include "tree-ssa-operands.h"
#include "tree-into-ssa.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-ssa.h"
#include "cgraph.h"
#include "value-prof.h"
#include "coverage.h"
#include "params.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-inline.h"
#include "tree-inline.h"
#include "stringpool.h"
#include "auto-profile.h"

/* The following routines implements AutoFDO optimization.

   This optimization uses sampling profiles to annotate basic block counts
   and uses heuristics to estimate branch probabilities.

   There are three phases in AutoFDO:

   Phase 1: Read profile from the profile data file.
     The following info is read from the profile datafile:
        * string_table: a map between function name and its index.
        * autofdo_source_profile: a map from function_instance name to
          function_instance. This is represented as a forest of
          function_instances.
        * WorkingSet: a histogram of how many instructions are covered for a
          given percentage of total cycles. This is describing the binary
          level information (not source level). This info is used to help
          decide if we want aggressive optimizations that could increase
          code footprint (e.g. loop unroll etc.)
     A function instance is an instance of function that could either be a
     standalone symbol, or a clone of a function that is inlined into another
     function.

   Phase 2: Early inline + value profile transformation.
     Early inline uses autofdo_source_profile to find if a callsite is:
        * inlined in the profiled binary.
        * callee body is hot in the profiling run.
     If both condition satisfies, early inline will inline the callsite
     regardless of the code growth.
     Phase 2 is an iterative process. During each iteration, we also check
     if an indirect callsite is promoted and inlined in the profiling run.
     If yes, vpt will happen to force promote it and in the next iteration,
     einline will inline the promoted callsite in the next iteration.

   Phase 3: Annotate control flow graph.
     AutoFDO uses a separate pass to:
        * Annotate basic block count
        * Estimate branch probability

   After the above 3 phases, all profile is readily annotated on the GCC IR.
   AutoFDO tries to reuse all FDO infrastructure as much as possible to make
   use of the profile. E.g. it uses existing mechanism to calculate the basic
   block/edge frequency, as well as the cgraph node/edge count.
*/

#define DEFAULT_AUTO_PROFILE_FILE "fbdata.afdo"
#define AUTO_PROFILE_VERSION 1

namespace autofdo
{

/* Represent a source location: (function_decl, lineno).  */
typedef std::pair<tree, unsigned> decl_lineno;

/* Represent an inline stack. vector[0] is the leaf node.  */
typedef auto_vec<decl_lineno> inline_stack;

/* String array that stores function names.  */
typedef auto_vec<char *> string_vector;

/* Map from function name's index in string_table to target's
   execution count.  */
typedef std::map<unsigned, gcov_type> icall_target_map;

/* Set of gimple stmts. Used to track if the stmt has already been promoted
   to direct call.  */
typedef std::set<gimple> stmt_set;

/* Represent count info of an inline stack.  */
struct count_info
{
  /* Sampled count of the inline stack.  */
  gcov_type count;

  /* Map from indirect call target to its sample count.  */
  icall_target_map targets;

  /* Whether this inline stack is already used in annotation.

     Each inline stack should only be used to annotate IR once.
     This will be enforced when instruction-level discriminator
     is supported.  */
  bool annotated;
};

/* operator< for "const char *".  */
struct string_compare
{
  bool operator()(const char *a, const char *b) const
  {
    return strcmp (a, b) < 0;
  }
};

/* Store a string array, indexed by string position in the array.  */
class string_table
{
public:
  string_table ()
  {}

  ~string_table ();

  /* For a given string, returns its index.  */
  int get_index (const char *name) const;

  /* For a given decl, returns the index of the decl name.  */
  int get_index_by_decl (tree decl) const;

  /* For a given index, returns the string.  */
  const char *get_name (int index) const;

  /* Read profile, return TRUE on success.  */
  bool read ();

private:
  typedef std::map<const char *, unsigned, string_compare> string_index_map;
  string_vector vector_;
  string_index_map map_;
};

/* Profile of a function instance:
     1. total_count of the function.
     2. head_count (entry basic block count) of the function (only valid when
        function is a top-level function_instance, i.e. it is the original copy
        instead of the inlined copy).
     3. map from source location (decl_lineno) to profile (count_info).
     4. map from callsite to callee function_instance.  */
class function_instance
{
public:
  typedef auto_vec<function_instance *> function_instance_stack;

  /* Read the profile and return a function_instance with head count as
     HEAD_COUNT. Recursively read callsites to create nested function_instances
     too. STACK is used to track the recursive creation process.  */
  static function_instance *
  read_function_instance (function_instance_stack *stack,
                          gcov_type head_count);

  /* Recursively deallocate all callsites (nested function_instances).  */
  ~function_instance ();

  /* Accessors.  */
  int
  name () const
  {
    return name_;
  }
  gcov_type
  total_count () const
  {
    return total_count_;
  }
  gcov_type
  head_count () const
  {
    return head_count_;
  }

  /* Traverse callsites of the current function_instance to find one at the
     location of LINENO and callee name represented in DECL.  */
  function_instance *get_function_instance_by_decl (unsigned lineno,
                                                    tree decl) const;

  /* Store the profile info for LOC in INFO. Return TRUE if profile info
     is found.  */
  bool get_count_info (location_t loc, count_info *info) const;

  /* Read the inlined indirect call target profile for STMT and store it in
     MAP, return the total count for all inlined indirect calls.  */
  gcov_type find_icall_target_map (gcall *stmt, icall_target_map *map) const;

  /* Sum of counts that is used during annotation.  */
  gcov_type total_annotated_count () const;

  /* Mark LOC as annotated.  */
  void mark_annotated (location_t loc);

private:
  /* Callsite, represented as (decl_lineno, callee_function_name_index).  */
  typedef std::pair<unsigned, unsigned> callsite;

  /* Map from callsite to callee function_instance.  */
  typedef std::map<callsite, function_instance *> callsite_map;

  function_instance (unsigned name, gcov_type head_count)
      : name_ (name), total_count_ (0), head_count_ (head_count)
  {
  }

  /* Map from source location (decl_lineno) to profile (count_info).  */
  typedef std::map<unsigned, count_info> position_count_map;

  /* function_instance name index in the string_table.  */
  unsigned name_;

  /* Total sample count.  */
  gcov_type total_count_;

  /* Entry BB's sample count.  */
  gcov_type head_count_;

  /* Map from callsite location to callee function_instance.  */
  callsite_map callsites;

  /* Map from source location to count_info.  */
  position_count_map pos_counts;
};

/* Profile for all functions.  */
class autofdo_source_profile
{
public:
  static autofdo_source_profile *
  create ()
  {
    autofdo_source_profile *map = new autofdo_source_profile ();

    if (map->read ())
      return map;
    delete map;
    return NULL;
  }

  ~autofdo_source_profile ();

  /* For a given DECL, returns the top-level function_instance.  */
  function_instance *get_function_instance_by_decl (tree decl) const;

  /* Find count_info for a given gimple STMT. If found, store the count_info
     in INFO and return true; otherwise return false.  */
  bool get_count_info (gimple stmt, count_info *info) const;

  /* Find total count of the callee of EDGE.  */
  gcov_type get_callsite_total_count (struct cgraph_edge *edge) const;

  /* Update value profile INFO for STMT from the inlined indirect callsite.
     Return true if INFO is updated.  */
  bool update_inlined_ind_target (gcall *stmt, count_info *info);

  /* Mark LOC as annotated.  */
  void mark_annotated (location_t loc);

private:
  /* Map from function_instance name index (in string_table) to
     function_instance.  */
  typedef std::map<unsigned, function_instance *> name_function_instance_map;

  autofdo_source_profile () {}

  /* Read AutoFDO profile and returns TRUE on success.  */
  bool read ();

  /* Return the function_instance in the profile that correspond to the
     inline STACK.  */
  function_instance *
  get_function_instance_by_inline_stack (const inline_stack &stack) const;

  name_function_instance_map map_;
};

/* Store the strings read from the profile data file.  */
static string_table *afdo_string_table;

/* Store the AutoFDO source profile.  */
static autofdo_source_profile *afdo_source_profile;

/* gcov_ctr_summary structure to store the profile_info.  */
static struct gcov_ctr_summary *afdo_profile_info;

/* Helper functions.  */

/* Return the original name of NAME: strip the suffix that starts
   with '.' Caller is responsible for freeing RET.  */

static char *
get_original_name (const char *name)
{
  char *ret = xstrdup (name);
  char *find = strchr (ret, '.');
  if (find != NULL)
    *find = 0;
  return ret;
}

/* Return the combined location, which is a 32bit integer in which
   higher 16 bits stores the line offset of LOC to the start lineno
   of DECL, The lower 16 bits stores the discriminator.  */

static unsigned
get_combined_location (location_t loc, tree decl)
{
  /* TODO: allow more bits for line and less bits for discriminator.  */
  if (LOCATION_LINE (loc) - DECL_SOURCE_LINE (decl) >= (1<<16))
    warning_at (loc, OPT_Woverflow, "Offset exceeds 16 bytes.");
  return ((LOCATION_LINE (loc) - DECL_SOURCE_LINE (decl)) << 16);
}

/* Return the function decl of a given lexical BLOCK.  */

static tree
get_function_decl_from_block (tree block)
{
  tree decl;

  if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block) == UNKNOWN_LOCATION))
    return NULL_TREE;

  for (decl = BLOCK_ABSTRACT_ORIGIN (block);
       decl && (TREE_CODE (decl) == BLOCK);
       decl = BLOCK_ABSTRACT_ORIGIN (decl))
    if (TREE_CODE (decl) == FUNCTION_DECL)
      break;
  return decl;
}

/* Store inline stack for STMT in STACK.  */

static void
get_inline_stack (location_t locus, inline_stack *stack)
{
  if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
    return;

  tree block = LOCATION_BLOCK (locus);
  if (block && TREE_CODE (block) == BLOCK)
    {
      int level = 0;
      for (block = BLOCK_SUPERCONTEXT (block);
           block && (TREE_CODE (block) == BLOCK);
           block = BLOCK_SUPERCONTEXT (block))
        {
          location_t tmp_locus = BLOCK_SOURCE_LOCATION (block);
          if (LOCATION_LOCUS (tmp_locus) == UNKNOWN_LOCATION)
            continue;

          tree decl = get_function_decl_from_block (block);
          stack->safe_push (
              std::make_pair (decl, get_combined_location (locus, decl)));
          locus = tmp_locus;
          level++;
        }
    }
  stack->safe_push (
      std::make_pair (current_function_decl,
                      get_combined_location (locus, current_function_decl)));
}

/* Return STMT's combined location, which is a 32bit integer in which
   higher 16 bits stores the line offset of LOC to the start lineno
   of DECL, The lower 16 bits stores the discriminator.  */

static unsigned
get_relative_location_for_stmt (gimple stmt)
{
  location_t locus = gimple_location (stmt);
  if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
    return UNKNOWN_LOCATION;

  for (tree block = gimple_block (stmt); block && (TREE_CODE (block) == BLOCK);
       block = BLOCK_SUPERCONTEXT (block))
    if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block)) != UNKNOWN_LOCATION)
      return get_combined_location (locus,
                                    get_function_decl_from_block (block));
  return get_combined_location (locus, current_function_decl);
}

/* Return true if BB contains indirect call.  */

static bool
has_indirect_call (basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) == GIMPLE_CALL && !gimple_call_internal_p (stmt)
          && (gimple_call_fn (stmt) == NULL
              || TREE_CODE (gimple_call_fn (stmt)) != FUNCTION_DECL))
        return true;
    }
  return false;
}

/* Member functions for string_table.  */

/* Deconstructor.  */

string_table::~string_table ()
{
  for (unsigned i = 0; i < vector_.length (); i++)
    free (vector_[i]);
}


/* Return the index of a given function NAME. Return -1 if NAME is not
   found in string table.  */

int
string_table::get_index (const char *name) const
{
  if (name == NULL)
    return -1;
  string_index_map::const_iterator iter = map_.find (name);
  if (iter == map_.end ())
    return -1;

  return iter->second;
}

/* Return the index of a given function DECL. Return -1 if DECL is not 
   found in string table.  */

int
string_table::get_index_by_decl (tree decl) const
{
  char *name
      = get_original_name (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
  int ret = get_index (name);
  free (name);
  if (ret != -1)
    return ret;
  ret = get_index (lang_hooks.dwarf_name (decl, 0));
  if (ret != -1)
    return ret;
  if (DECL_ABSTRACT_ORIGIN (decl))
    return get_index_by_decl (DECL_ABSTRACT_ORIGIN (decl));

  return -1;
}

/* Return the function name of a given INDEX.  */

const char *
string_table::get_name (int index) const
{
  gcc_assert (index > 0 && index < (int)vector_.length ());
  return vector_[index];
}

/* Read the string table. Return TRUE if reading is successful.  */

bool
string_table::read ()
{
  if (gcov_read_unsigned () != GCOV_TAG_AFDO_FILE_NAMES)
    return false;
  /* Skip the length of the section.  */
  gcov_read_unsigned ();
  /* Read in the file name table.  */
  unsigned string_num = gcov_read_unsigned ();
  for (unsigned i = 0; i < string_num; i++)
    {
      vector_.safe_push (get_original_name (gcov_read_string ()));
      map_[vector_.last ()] = i;
    }
  return true;
}

/* Member functions for function_instance.  */

function_instance::~function_instance ()
{
  for (callsite_map::iterator iter = callsites.begin ();
       iter != callsites.end (); ++iter)
    delete iter->second;
}

/* Traverse callsites of the current function_instance to find one at the
   location of LINENO and callee name represented in DECL.  */

function_instance *
function_instance::get_function_instance_by_decl (unsigned lineno,
                                                  tree decl) const
{
  int func_name_idx = afdo_string_table->get_index_by_decl (decl);
  if (func_name_idx != -1)
    {
      callsite_map::const_iterator ret
          = callsites.find (std::make_pair (lineno, func_name_idx));
      if (ret != callsites.end ())
        return ret->second;
    }
  func_name_idx
      = afdo_string_table->get_index (lang_hooks.dwarf_name (decl, 0));
  if (func_name_idx != -1)
    {
      callsite_map::const_iterator ret
          = callsites.find (std::make_pair (lineno, func_name_idx));
      if (ret != callsites.end ())
        return ret->second;
    }
  if (DECL_ABSTRACT_ORIGIN (decl))
    return get_function_instance_by_decl (lineno, DECL_ABSTRACT_ORIGIN (decl));

  return NULL;
}

/* Store the profile info for LOC in INFO. Return TRUE if profile info
   is found.  */

bool
function_instance::get_count_info (location_t loc, count_info *info) const
{
  position_count_map::const_iterator iter = pos_counts.find (loc);
  if (iter == pos_counts.end ())
    return false;
  *info = iter->second;
  return true;
}

/* Mark LOC as annotated.  */

void
function_instance::mark_annotated (location_t loc)
{
  position_count_map::iterator iter = pos_counts.find (loc);
  if (iter == pos_counts.end ())
    return;
  iter->second.annotated = true;
}

/* Read the inlined indirect call target profile for STMT and store it in
   MAP, return the total count for all inlined indirect calls.  */

gcov_type
function_instance::find_icall_target_map (gcall *stmt,
                                          icall_target_map *map) const
{
  gcov_type ret = 0;
  unsigned stmt_offset = get_relative_location_for_stmt (stmt);

  for (callsite_map::const_iterator iter = callsites.begin ();
       iter != callsites.end (); ++iter)
    {
      unsigned callee = iter->second->name ();
      /* Check if callsite location match the stmt.  */
      if (iter->first.first != stmt_offset)
        continue;
      struct cgraph_node *node = cgraph_node::get_for_asmname (
          get_identifier (afdo_string_table->get_name (callee)));
      if (node == NULL)
        continue;
      if (!check_ic_target (stmt, node))
        continue;
      (*map)[callee] = iter->second->total_count ();
      ret += iter->second->total_count ();
    }
  return ret;
}

/* Read the profile and create a function_instance with head count as
   HEAD_COUNT. Recursively read callsites to create nested function_instances
   too. STACK is used to track the recursive creation process.  */

/* function instance profile format:

   ENTRY_COUNT: 8 bytes
   NAME_INDEX: 4 bytes
   NUM_POS_COUNTS: 4 bytes
   NUM_CALLSITES: 4 byte
   POS_COUNT_1:
     POS_1_OFFSET: 4 bytes
     NUM_TARGETS: 4 bytes
     COUNT: 8 bytes
     TARGET_1:
       VALUE_PROFILE_TYPE: 4 bytes
       TARGET_IDX: 8 bytes
       COUNT: 8 bytes
     TARGET_2
     ...
     TARGET_n
   POS_COUNT_2
   ...
   POS_COUNT_N
   CALLSITE_1:
     CALLSITE_1_OFFSET: 4 bytes
     FUNCTION_INSTANCE_PROFILE (nested)
   CALLSITE_2
   ...
   CALLSITE_n.  */

function_instance *
function_instance::read_function_instance (function_instance_stack *stack,
                                           gcov_type head_count)
{
  unsigned name = gcov_read_unsigned ();
  unsigned num_pos_counts = gcov_read_unsigned ();
  unsigned num_callsites = gcov_read_unsigned ();
  function_instance *s = new function_instance (name, head_count);
  stack->safe_push (s);

  for (unsigned i = 0; i < num_pos_counts; i++)
    {
      unsigned offset = gcov_read_unsigned () & 0xffff0000;
      unsigned num_targets = gcov_read_unsigned ();
      gcov_type count = gcov_read_counter ();
      s->pos_counts[offset].count = count;
      for (unsigned j = 0; j < stack->length (); j++)
        (*stack)[j]->total_count_ += count;
      for (unsigned j = 0; j < num_targets; j++)
        {
          /* Only indirect call target histogram is supported now.  */
          gcov_read_unsigned ();
          gcov_type target_idx = gcov_read_counter ();
          s->pos_counts[offset].targets[target_idx] = gcov_read_counter ();
        }
    }
  for (unsigned i = 0; i < num_callsites; i++)
    {
      unsigned offset = gcov_read_unsigned ();
      function_instance *callee_function_instance
          = read_function_instance (stack, 0);
      s->callsites[std::make_pair (offset, callee_function_instance->name ())]
          = callee_function_instance;
    }
  stack->pop ();
  return s;
}

/* Sum of counts that is used during annotation.  */

gcov_type
function_instance::total_annotated_count () const
{
  gcov_type ret = 0;
  for (callsite_map::const_iterator iter = callsites.begin ();
       iter != callsites.end (); ++iter)
    ret += iter->second->total_annotated_count ();
  for (position_count_map::const_iterator iter = pos_counts.begin ();
       iter != pos_counts.end (); ++iter)
    if (iter->second.annotated)
      ret += iter->second.count;
  return ret;
}

/* Member functions for autofdo_source_profile.  */

autofdo_source_profile::~autofdo_source_profile ()
{
  for (name_function_instance_map::const_iterator iter = map_.begin ();
       iter != map_.end (); ++iter)
    delete iter->second;
}

/* For a given DECL, returns the top-level function_instance.  */

function_instance *
autofdo_source_profile::get_function_instance_by_decl (tree decl) const
{
  int index = afdo_string_table->get_index_by_decl (decl);
  if (index == -1)
    return NULL;
  name_function_instance_map::const_iterator ret = map_.find (index);
  return ret == map_.end () ? NULL : ret->second;
}

/* Find count_info for a given gimple STMT. If found, store the count_info
   in INFO and return true; otherwise return false.  */

bool
autofdo_source_profile::get_count_info (gimple stmt, count_info *info) const
{
  if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
    return false;

  inline_stack stack;
  get_inline_stack (gimple_location (stmt), &stack);
  if (stack.length () == 0)
    return false;
  function_instance *s = get_function_instance_by_inline_stack (stack);
  if (s == NULL)
    return false;
  return s->get_count_info (stack[0].second, info);
}

/* Mark LOC as annotated.  */

void
autofdo_source_profile::mark_annotated (location_t loc)
{
  inline_stack stack;
  get_inline_stack (loc, &stack);
  if (stack.length () == 0)
    return;
  function_instance *s = get_function_instance_by_inline_stack (stack);
  if (s == NULL)
    return;
  s->mark_annotated (stack[0].second);
}

/* Update value profile INFO for STMT from the inlined indirect callsite.
   Return true if INFO is updated.  */

bool
autofdo_source_profile::update_inlined_ind_target (gcall *stmt,
                                                   count_info *info)
{
  if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
    return false;

  count_info old_info;
  get_count_info (stmt, &old_info);
  gcov_type total = 0;
  for (icall_target_map::const_iterator iter = old_info.targets.begin ();
       iter != old_info.targets.end (); ++iter)
    total += iter->second;

  /* Program behavior changed, original promoted (and inlined) target is not
     hot any more. Will avoid promote the original target.

     To check if original promoted target is still hot, we check the total
     count of the unpromoted targets (stored in old_info). If it is no less
     than half of the callsite count (stored in INFO), the original promoted
     target is considered not hot any more.  */
  if (total >= info->count / 2)
    return false;

  inline_stack stack;
  get_inline_stack (gimple_location (stmt), &stack);
  if (stack.length () == 0)
    return false;
  function_instance *s = get_function_instance_by_inline_stack (stack);
  if (s == NULL)
    return false;
  icall_target_map map;
  if (s->find_icall_target_map (stmt, &map) == 0)
    return false;
  for (icall_target_map::const_iterator iter = map.begin ();
       iter != map.end (); ++iter)
    info->targets[iter->first] = iter->second;
  return true;
}

/* Find total count of the callee of EDGE.  */

gcov_type
autofdo_source_profile::get_callsite_total_count (
    struct cgraph_edge *edge) const
{
  inline_stack stack;
  stack.safe_push (std::make_pair (edge->callee->decl, 0));
  get_inline_stack (gimple_location (edge->call_stmt), &stack);

  function_instance *s = get_function_instance_by_inline_stack (stack);
  if (s == NULL
      || afdo_string_table->get_index (IDENTIFIER_POINTER (
             DECL_ASSEMBLER_NAME (edge->callee->decl))) != s->name ())
    return 0;

  return s->total_count ();
}

/* Read AutoFDO profile and returns TRUE on success.  */

/* source profile format:

   GCOV_TAG_AFDO_FUNCTION: 4 bytes
   LENGTH: 4 bytes
   NUM_FUNCTIONS: 4 bytes
   FUNCTION_INSTANCE_1
   FUNCTION_INSTANCE_2
   ...
   FUNCTION_INSTANCE_N.  */

bool
autofdo_source_profile::read ()
{
  if (gcov_read_unsigned () != GCOV_TAG_AFDO_FUNCTION)
    {
      inform (0, "Not expected TAG.");
      return false;
    }

  /* Skip the length of the section.  */
  gcov_read_unsigned ();

  /* Read in the function/callsite profile, and store it in local
     data structure.  */
  unsigned function_num = gcov_read_unsigned ();
  for (unsigned i = 0; i < function_num; i++)
    {
      function_instance::function_instance_stack stack;
      function_instance *s = function_instance::read_function_instance (
          &stack, gcov_read_counter ());
      afdo_profile_info->sum_all += s->total_count ();
      map_[s->name ()] = s;
    }
  return true;
}

/* Return the function_instance in the profile that correspond to the
   inline STACK.  */

function_instance *
autofdo_source_profile::get_function_instance_by_inline_stack (
    const inline_stack &stack) const
{
  name_function_instance_map::const_iterator iter = map_.find (
      afdo_string_table->get_index_by_decl (stack[stack.length () - 1].first));
  if (iter == map_.end())
    return NULL;
  function_instance *s = iter->second;
  for (unsigned i = stack.length() - 1; i > 0; i--)
    {
      s = s->get_function_instance_by_decl (
          stack[i].second, stack[i - 1].first);
      if (s == NULL)
        return NULL;
    }
  return s;
}

/* Module profile is only used by LIPO. Here we simply ignore it.  */

static void
fake_read_autofdo_module_profile ()
{
  /* Read in the module info.  */
  gcov_read_unsigned ();

  /* Skip the length of the section.  */
  gcov_read_unsigned ();

  /* Read in the file name table.  */
  unsigned total_module_num = gcov_read_unsigned ();
  gcc_assert (total_module_num == 0);
}

/* Read data from profile data file.  */

static void
read_profile (void)
{
  if (gcov_open (auto_profile_file, 1) == 0)
    error ("Cannot open profile file %s.", auto_profile_file);

  if (gcov_read_unsigned () != GCOV_DATA_MAGIC)
    error ("AutoFDO profile magic number does not mathch.");

  /* Skip the version number.  */
  unsigned version = gcov_read_unsigned ();
  if (version != AUTO_PROFILE_VERSION)
    error ("AutoFDO profile version %u does match %u.",
           version, AUTO_PROFILE_VERSION);

  /* Skip the empty integer.  */
  gcov_read_unsigned ();

  /* string_table.  */
  afdo_string_table = new string_table ();
  if (!afdo_string_table->read())
    error ("Cannot read string table from %s.", auto_profile_file);

  /* autofdo_source_profile.  */
  afdo_source_profile = autofdo_source_profile::create ();
  if (afdo_source_profile == NULL)
    error ("Cannot read function profile from %s.", auto_profile_file);

  /* autofdo_module_profile.  */
  fake_read_autofdo_module_profile ();

  /* Read in the working set.  */
  if (gcov_read_unsigned () != GCOV_TAG_AFDO_WORKING_SET)
    error ("Cannot read working set from %s.", auto_profile_file);

  /* Skip the length of the section.  */
  gcov_read_unsigned ();
  gcov_working_set_t set[128];
  for (unsigned i = 0; i < 128; i++)
    {
      set[i].num_counters = gcov_read_unsigned ();
      set[i].min_counter = gcov_read_counter ();
    }
  add_working_set (set);
}

/* From AutoFDO profiles, find values inside STMT for that we want to measure
   histograms for indirect-call optimization.

   This function is actually served for 2 purposes:
     * before annotation, we need to mark histogram, promote and inline
     * after annotation, we just need to mark, and let follow-up logic to
       decide if it needs to promote and inline.  */

static void
afdo_indirect_call (gimple_stmt_iterator *gsi, const icall_target_map &map,
                    bool transform)
{
  gimple gs = gsi_stmt (*gsi);
  tree callee;

  if (map.size () == 0)
    return;
  gcall *stmt = dyn_cast <gcall *> (gs);
  if ((!stmt) || gimple_call_fndecl (stmt) != NULL_TREE)
    return;

  callee = gimple_call_fn (stmt);

  histogram_value hist = gimple_alloc_histogram_value (
      cfun, HIST_TYPE_INDIR_CALL, stmt, callee);
  hist->n_counters = 3;
  hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
  gimple_add_histogram_value (cfun, stmt, hist);

  gcov_type total = 0;
  icall_target_map::const_iterator max_iter = map.end ();

  for (icall_target_map::const_iterator iter = map.begin ();
       iter != map.end (); ++iter)
    {
      total += iter->second;
      if (max_iter == map.end () || max_iter->second < iter->second)
        max_iter = iter;
    }

  hist->hvalue.counters[0]
      = (unsigned long long)afdo_string_table->get_name (max_iter->first);
  hist->hvalue.counters[1] = max_iter->second;
  hist->hvalue.counters[2] = total;

  if (!transform)
    return;

  struct cgraph_edge *indirect_edge
      = cgraph_node::get (current_function_decl)->get_edge (stmt);
  struct cgraph_node *direct_call = cgraph_node::get_for_asmname (
      get_identifier ((const char *) hist->hvalue.counters[0]));

  if (direct_call == NULL || !check_ic_target (stmt, direct_call))
    return;
  if (DECL_STRUCT_FUNCTION (direct_call->decl) == NULL)
    return;
  struct cgraph_edge *new_edge
      = indirect_edge->make_speculative (direct_call, 0, 0);
  new_edge->redirect_call_stmt_to_callee ();
  gimple_remove_histogram_value (cfun, stmt, hist);
  inline_call (new_edge, true, NULL, NULL, false);
}

/* From AutoFDO profiles, find values inside STMT for that we want to measure
   histograms and adds them to list VALUES.  */

static void
afdo_vpt (gimple_stmt_iterator *gsi, const icall_target_map &map,
          bool transform)
{
  afdo_indirect_call (gsi, map, transform);
}

typedef std::set<basic_block> bb_set;
typedef std::set<edge> edge_set;

static bool
is_bb_annotated (const basic_block bb, const bb_set &annotated)
{
  return annotated.find (bb) != annotated.end ();
}

static void
set_bb_annotated (basic_block bb, bb_set *annotated)
{
  annotated->insert (bb);
}

static bool
is_edge_annotated (const edge e, const edge_set &annotated)
{
  return annotated.find (e) != annotated.end ();
}

static void
set_edge_annotated (edge e, edge_set *annotated)
{
  annotated->insert (e);
}

/* For a given BB, set its execution count. Attach value profile if a stmt
   is not in PROMOTED, because we only want to promote an indirect call once.
   Return TRUE if BB is annotated.  */

static bool
afdo_set_bb_count (basic_block bb, const stmt_set &promoted)
{
  gimple_stmt_iterator gsi;
  edge e;
  edge_iterator ei;
  gcov_type max_count = 0;
  bool has_annotated = false;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      count_info info;
      gimple stmt = gsi_stmt (gsi);
      if (gimple_clobber_p (stmt) || is_gimple_debug (stmt))
        continue;
      if (afdo_source_profile->get_count_info (stmt, &info))
        {
          if (info.count > max_count)
            max_count = info.count;
          has_annotated = true;
          if (info.targets.size () > 0
              && promoted.find (stmt) == promoted.end ())
            afdo_vpt (&gsi, info.targets, false);
        }
    }

  if (!has_annotated)
    return false;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    afdo_source_profile->mark_annotated (gimple_location (gsi_stmt (gsi)));
  for (gphi_iterator gpi = gsi_start_phis (bb);
       !gsi_end_p (gpi);
       gsi_next (&gpi))
    {
      gphi *phi = gpi.phi ();
      size_t i;
      for (i = 0; i < gimple_phi_num_args (phi); i++)
        afdo_source_profile->mark_annotated (gimple_phi_arg_location (phi, i));
    }
  FOR_EACH_EDGE (e, ei, bb->succs)
  afdo_source_profile->mark_annotated (e->goto_locus);

  bb->count = max_count;
  return true;
}

/* BB1 and BB2 are in an equivalent class iff:
   1. BB1 dominates BB2.
   2. BB2 post-dominates BB1.
   3. BB1 and BB2 are in the same loop nest.
   This function finds the equivalent class for each basic block, and
   stores a pointer to the first BB in its equivalent class. Meanwhile,
   set bb counts for the same equivalent class to be idenical. Update
   ANNOTATED_BB for the first BB in its equivalent class.  */

static void
afdo_find_equiv_class (bb_set *annotated_bb)
{
  basic_block bb;

  FOR_ALL_BB_FN (bb, cfun)
  bb->aux = NULL;

  FOR_ALL_BB_FN (bb, cfun)
  {
    vec<basic_block> dom_bbs;
    basic_block bb1;
    int i;

    if (bb->aux != NULL)
      continue;
    bb->aux = bb;
    dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
    FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
      if (bb1->aux == NULL && dominated_by_p (CDI_POST_DOMINATORS, bb, bb1)
	  && bb1->loop_father == bb->loop_father)
	{
	  bb1->aux = bb;
	  if (bb1->count > bb->count && is_bb_annotated (bb1, *annotated_bb))
	    {
	      bb->count = bb1->count;
	      set_bb_annotated (bb, annotated_bb);
	    }
	}
    dom_bbs = get_dominated_by (CDI_POST_DOMINATORS, bb);
    FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
      if (bb1->aux == NULL && dominated_by_p (CDI_DOMINATORS, bb, bb1)
	  && bb1->loop_father == bb->loop_father)
	{
	  bb1->aux = bb;
	  if (bb1->count > bb->count && is_bb_annotated (bb1, *annotated_bb))
	    {
	      bb->count = bb1->count;
	      set_bb_annotated (bb, annotated_bb);
	    }
	}
  }
}

/* If a basic block's count is known, and only one of its in/out edges' count
   is unknown, its count can be calculated. Meanwhile, if all of the in/out
   edges' counts are known, then the basic block's unknown count can also be
   calculated.
   IS_SUCC is true if out edges of a basic blocks are examined.
   Update ANNOTATED_BB and ANNOTATED_EDGE accordingly.
   Return TRUE if any basic block/edge count is changed.  */

static bool
afdo_propagate_edge (bool is_succ, bb_set *annotated_bb,
                     edge_set *annotated_edge)
{
  basic_block bb;
  bool changed = false;

  FOR_EACH_BB_FN (bb, cfun)
  {
    edge e, unknown_edge = NULL;
    edge_iterator ei;
    int num_unknown_edge = 0;
    gcov_type total_known_count = 0;

    FOR_EACH_EDGE (e, ei, is_succ ? bb->succs : bb->preds)
      if (!is_edge_annotated (e, *annotated_edge))
	num_unknown_edge++, unknown_edge = e;
      else
	total_known_count += e->count;

    if (num_unknown_edge == 0)
      {
        if (total_known_count > bb->count)
          {
            bb->count = total_known_count;
            changed = true;
          }
        if (!is_bb_annotated (bb, *annotated_bb))
          {
            set_bb_annotated (bb, annotated_bb);
            changed = true;
          }
      }
    else if (num_unknown_edge == 1 && is_bb_annotated (bb, *annotated_bb))
      {
        if (bb->count >= total_known_count)
          unknown_edge->count = bb->count - total_known_count;
        else
          unknown_edge->count = 0;
        set_edge_annotated (unknown_edge, annotated_edge);
        changed = true;
      }
  }
  return changed;
}

/* Special propagation for circuit expressions. Because GCC translates
   control flow into data flow for circuit expressions. E.g.
   BB1:
   if (a && b)
     BB2
   else
     BB3

   will be translated into:

   BB1:
     if (a)
       goto BB.t1
     else
       goto BB.t3
   BB.t1:
     if (b)
       goto BB.t2
     else
       goto BB.t3
   BB.t2:
     goto BB.t3
   BB.t3:
     tmp = PHI (0 (BB1), 0 (BB.t1), 1 (BB.t2)
     if (tmp)
       goto BB2
     else
       goto BB3

   In this case, we need to propagate through PHI to determine the edge
   count of BB1->BB.t1, BB.t1->BB.t2.
   Update ANNOTATED_EDGE accordingly.  */

static void
afdo_propagate_circuit (const bb_set &annotated_bb, edge_set *annotated_edge)
{
  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
  {
    gimple def_stmt;
    tree cmp_rhs, cmp_lhs;
    gimple cmp_stmt = last_stmt (bb);
    edge e;
    edge_iterator ei;

    if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
      continue;
    cmp_rhs = gimple_cond_rhs (cmp_stmt);
    cmp_lhs = gimple_cond_lhs (cmp_stmt);
    if (!TREE_CONSTANT (cmp_rhs)
        || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
      continue;
    if (TREE_CODE (cmp_lhs) != SSA_NAME)
      continue;
    if (!is_bb_annotated (bb, annotated_bb))
      continue;
    def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
    while (def_stmt && gimple_code (def_stmt) == GIMPLE_ASSIGN
           && gimple_assign_single_p (def_stmt)
           && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
      def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt));
    if (!def_stmt)
      continue;
    gphi *phi_stmt = dyn_cast <gphi *> (def_stmt);
    if (!phi_stmt)
      continue;
    FOR_EACH_EDGE (e, ei, bb->succs)
    {
      unsigned i, total = 0;
      edge only_one;
      bool check_value_one = (((integer_onep (cmp_rhs))
                               ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
                              ^ ((e->flags & EDGE_TRUE_VALUE) != 0));
      if (!is_edge_annotated (e, *annotated_edge))
        continue;
      for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
        {
          tree val = gimple_phi_arg_def (phi_stmt, i);
          edge ep = gimple_phi_arg_edge (phi_stmt, i);

          if (!TREE_CONSTANT (val)
              || !(integer_zerop (val) || integer_onep (val)))
            continue;
          if (check_value_one ^ integer_onep (val))
            continue;
          total++;
          only_one = ep;
          if (e->probability == 0 && !is_edge_annotated (ep, *annotated_edge))
            {
              ep->probability = 0;
              ep->count = 0;
              set_edge_annotated (ep, annotated_edge);
            }
        }
      if (total == 1 && !is_edge_annotated (only_one, *annotated_edge))
        {
          only_one->probability = e->probability;
          only_one->count = e->count;
          set_edge_annotated (only_one, annotated_edge);
        }
    }
  }
}

/* Propagate the basic block count and edge count on the control flow
   graph. We do the propagation iteratively until stablize.  */

static void
afdo_propagate (bb_set *annotated_bb, edge_set *annotated_edge)
{
  basic_block bb;
  bool changed = true;
  int i = 0;

  FOR_ALL_BB_FN (bb, cfun)
  {
    bb->count = ((basic_block)bb->aux)->count;
    if (is_bb_annotated ((const basic_block)bb->aux, *annotated_bb))
      set_bb_annotated (bb, annotated_bb);
  }

  while (changed && i++ < 10)
    {
      changed = false;

      if (afdo_propagate_edge (true, annotated_bb, annotated_edge))
        changed = true;
      if (afdo_propagate_edge (false, annotated_bb, annotated_edge))
        changed = true;
      afdo_propagate_circuit (*annotated_bb, annotated_edge);
    }
}

/* Propagate counts on control flow graph and calculate branch
   probabilities.  */

static void
afdo_calculate_branch_prob (bb_set *annotated_bb, edge_set *annotated_edge)
{
  basic_block bb;
  bool has_sample = false;

  FOR_EACH_BB_FN (bb, cfun)
  {
    if (bb->count > 0)
      {
	has_sample = true;
	break;
      }
  }

  if (!has_sample)
    return;

  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  loop_optimizer_init (0);

  afdo_find_equiv_class (annotated_bb);
  afdo_propagate (annotated_bb, annotated_edge);

  FOR_EACH_BB_FN (bb, cfun)
  {
    edge e;
    edge_iterator ei;
    int num_unknown_succ = 0;
    gcov_type total_count = 0;

    FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if (!is_edge_annotated (e, *annotated_edge))
        num_unknown_succ++;
      else
        total_count += e->count;
    }
    if (num_unknown_succ == 0 && total_count > 0)
      {
        FOR_EACH_EDGE (e, ei, bb->succs)
        e->probability = (double)e->count * REG_BR_PROB_BASE / total_count;
      }
  }
  FOR_ALL_BB_FN (bb, cfun)
  {
    edge e;
    edge_iterator ei;

    FOR_EACH_EDGE (e, ei, bb->succs)
      e->count = (double)bb->count * e->probability / REG_BR_PROB_BASE;
    bb->aux = NULL;
  }

  loop_optimizer_finalize ();
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
}

/* Perform value profile transformation using AutoFDO profile. Add the
   promoted stmts to PROMOTED_STMTS. Return TRUE if there is any
   indirect call promoted.  */

static bool
afdo_vpt_for_early_inline (stmt_set *promoted_stmts)
{
  basic_block bb;
  if (afdo_source_profile->get_function_instance_by_decl (
          current_function_decl) == NULL)
    return false;

  compute_inline_parameters (cgraph_node::get (current_function_decl), true);

  bool has_vpt = false;
  FOR_EACH_BB_FN (bb, cfun)
  {
    if (!has_indirect_call (bb))
      continue;
    gimple_stmt_iterator gsi;

    gcov_type bb_count = 0;
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      {
        count_info info;
        gimple stmt = gsi_stmt (gsi);
        if (afdo_source_profile->get_count_info (stmt, &info))
          bb_count = MAX (bb_count, info.count);
      }

    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      {
        gcall *stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
        /* IC_promotion and early_inline_2 is done in multiple iterations.
           No need to promoted the stmt if its in promoted_stmts (means
           it is already been promoted in the previous iterations).  */
        if ((!stmt) || gimple_call_fn (stmt) == NULL
            || TREE_CODE (gimple_call_fn (stmt)) == FUNCTION_DECL
            || promoted_stmts->find (stmt) != promoted_stmts->end ())
          continue;

        count_info info;
        afdo_source_profile->get_count_info (stmt, &info);
        info.count = bb_count;
        if (afdo_source_profile->update_inlined_ind_target (stmt, &info))
          {
            /* Promote the indirect call and update the promoted_stmts.  */
            promoted_stmts->insert (stmt);
            afdo_vpt (&gsi, info.targets, true);
            has_vpt = true;
          }
      }
  }

  if (has_vpt)
    {
      optimize_inline_calls (current_function_decl);
      return true;
    }

  return false;
}

/* Annotate auto profile to the control flow graph. Do not annotate value
   profile for stmts in PROMOTED_STMTS.  */

static void
afdo_annotate_cfg (const stmt_set &promoted_stmts)
{
  basic_block bb;
  bb_set annotated_bb;
  edge_set annotated_edge;
  const function_instance *s
      = afdo_source_profile->get_function_instance_by_decl (
          current_function_decl);

  if (s == NULL)
    return;
  cgraph_node::get (current_function_decl)->count = s->head_count ();
  ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = s->head_count ();
  gcov_type max_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;

  FOR_EACH_BB_FN (bb, cfun)
  {
    edge e;
    edge_iterator ei;

    bb->count = 0;
    FOR_EACH_EDGE (e, ei, bb->succs)
      e->count = 0;

    if (afdo_set_bb_count (bb, promoted_stmts))
      set_bb_annotated (bb, &annotated_bb);
    if (bb->count > max_count)
      max_count = bb->count;
  }
  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count
      > ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->count)
    {
      ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->count
          = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
      set_bb_annotated (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, &annotated_bb);
    }
  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count
      > EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->count)
    {
      EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->count
          = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
      set_bb_annotated (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb, &annotated_bb);
    }
  afdo_source_profile->mark_annotated (
      DECL_SOURCE_LOCATION (current_function_decl));
  afdo_source_profile->mark_annotated (cfun->function_start_locus);
  afdo_source_profile->mark_annotated (cfun->function_end_locus);
  if (max_count > 0)
    {
      afdo_calculate_branch_prob (&annotated_bb, &annotated_edge);
      counts_to_freqs ();
      profile_status_for_fn (cfun) = PROFILE_READ;
    }
  if (flag_value_profile_transformations)
    {
      gimple_value_profile_transformations ();
      free_dominance_info (CDI_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      update_ssa (TODO_update_ssa);
    }
}

/* Wrapper function to invoke early inliner.  */

static void
early_inline ()
{
  compute_inline_parameters (cgraph_node::get (current_function_decl), true);
  unsigned todo = early_inliner (cfun);
  if (todo & TODO_update_ssa_any)
    update_ssa (TODO_update_ssa);
}

/* Use AutoFDO profile to annoate the control flow graph.
   Return the todo flag.  */

static unsigned int
auto_profile (void)
{
  struct cgraph_node *node;

  if (symtab->state == FINISHED)
    return 0;

  init_node_map (true);
  profile_info = autofdo::afdo_profile_info;

  FOR_EACH_FUNCTION (node)
  {
    if (!gimple_has_body_p (node->decl))
      continue;

    /* Don't profile functions produced for builtin stuff.  */
    if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
      continue;

    push_cfun (DECL_STRUCT_FUNCTION (node->decl));

    /* First do indirect call promotion and early inline to make the
       IR match the profiled binary before actual annotation.

       This is needed because an indirect call might have been promoted
       and inlined in the profiled binary. If we do not promote and
       inline these indirect calls before annotation, the profile for
       these promoted functions will be lost.

       e.g. foo() --indirect_call--> bar()
       In profiled binary, the callsite is promoted and inlined, making
       the profile look like:

       foo: {
         loc_foo_1: count_1
         bar@loc_foo_2: {
           loc_bar_1: count_2
           loc_bar_2: count_3
         }
       }

       Before AutoFDO pass, loc_foo_2 is not promoted thus not inlined.
       If we perform annotation on it, the profile inside bar@loc_foo2
       will be wasted.

       To avoid this, we promote loc_foo_2 and inline the promoted bar
       function before annotation, so the profile inside bar@loc_foo2
       will be useful.  */
    autofdo::stmt_set promoted_stmts;
    for (int i = 0; i < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS); i++)
      {
        if (!flag_value_profile_transformations
            || !autofdo::afdo_vpt_for_early_inline (&promoted_stmts))
          break;
        early_inline ();
      }

    early_inline ();
    autofdo::afdo_annotate_cfg (promoted_stmts);
    compute_function_frequency ();

    /* Local pure-const may imply need to fixup the cfg.  */
    if (execute_fixup_cfg () & TODO_cleanup_cfg)
      cleanup_tree_cfg ();

    free_dominance_info (CDI_DOMINATORS);
    free_dominance_info (CDI_POST_DOMINATORS);
    cgraph_edge::rebuild_edges ();
    compute_inline_parameters (cgraph_node::get (current_function_decl), true);
    pop_cfun ();
  }

  return TODO_rebuild_cgraph_edges;
}
} /* namespace autofdo.  */

/* Read the profile from the profile data file.  */

void
read_autofdo_file (void)
{
  if (auto_profile_file == NULL)
    auto_profile_file = DEFAULT_AUTO_PROFILE_FILE;

  autofdo::afdo_profile_info = (struct gcov_ctr_summary *)xcalloc (
      1, sizeof (struct gcov_ctr_summary));
  autofdo::afdo_profile_info->runs = 1;
  autofdo::afdo_profile_info->sum_max = 0;
  autofdo::afdo_profile_info->sum_all = 0;

  /* Read the profile from the profile file.  */
  autofdo::read_profile ();
}

/* Free the resources.  */

void
end_auto_profile (void)
{
  delete autofdo::afdo_source_profile;
  delete autofdo::afdo_string_table;
  profile_info = NULL;
}

/* Returns TRUE if EDGE is hot enough to be inlined early.  */

bool
afdo_callsite_hot_enough_for_early_inline (struct cgraph_edge *edge)
{
  gcov_type count
      = autofdo::afdo_source_profile->get_callsite_total_count (edge);

  if (count > 0)
    {
      bool is_hot;
      const struct gcov_ctr_summary *saved_profile_info = profile_info;
      /* At early inline stage, profile_info is not set yet. We need to
         temporarily set it to afdo_profile_info to calculate hotness.  */
      profile_info = autofdo::afdo_profile_info;
      is_hot = maybe_hot_count_p (NULL, count);
      profile_info = saved_profile_info;
      return is_hot;
    }

  return false;
}

namespace
{

const pass_data pass_data_ipa_auto_profile = {
  SIMPLE_IPA_PASS, "afdo", /* name */
  OPTGROUP_NONE,           /* optinfo_flags */
  TV_IPA_AUTOFDO,          /* tv_id */
  0,                       /* properties_required */
  0,                       /* properties_provided */
  0,                       /* properties_destroyed */
  0,                       /* todo_flags_start */
  0,                       /* todo_flags_finish */
};

class pass_ipa_auto_profile : public simple_ipa_opt_pass
{
public:
  pass_ipa_auto_profile (gcc::context *ctxt)
      : simple_ipa_opt_pass (pass_data_ipa_auto_profile, ctxt)
  {
  }

  /* opt_pass methods: */
  virtual bool
  gate (function *)
  {
    return flag_auto_profile;
  }
  virtual unsigned int
  execute (function *)
  {
    return autofdo::auto_profile ();
  }
}; // class pass_ipa_auto_profile

} // anon namespace

simple_ipa_opt_pass *
make_pass_ipa_auto_profile (gcc::context *ctxt)
{
  return new pass_ipa_auto_profile (ctxt);
}