1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
;; ARM Cortex-A5 pipeline description
;; Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
;; Contributed by CodeSourcery.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_automaton "cortex_a5")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The integer (ALU) pipeline. There are five DPU pipeline
;; stages. However the decode/issue stages operate the same for all
;; instructions, so do not model them. We only need to model the
;; first execute stage because instructions always advance one stage
;; per cycle in order. Only branch instructions may dual-issue, so a
;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
(define_cpu_unit "cortex_a5_ex1" "cortex_a5")
;; The branch pipeline. Branches can dual-issue with other instructions
;; (except when those instructions take multiple cycles to issue).
(define_cpu_unit "cortex_a5_branch" "cortex_a5")
;; Pseudo-unit for blocking the multiply pipeline when a double-precision
;; multiply is in progress.
(define_cpu_unit "cortex_a5_fpmul_pipe" "cortex_a5")
;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
;; of the add pipeline by fmac instructions, etc.
(define_cpu_unit "cortex_a5_fpadd_pipe" "cortex_a5")
;; Floating-point div/sqrt (long latency, out-of-order completion).
(define_cpu_unit "cortex_a5_fp_div_sqrt" "cortex_a5")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_alu" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "alu_reg,simple_alu_imm"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_alu_shift" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "simple_alu_shift,alu_shift,alu_shift_reg"))
"cortex_a5_ex1")
;; Forwarding path for unshifted operands.
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
"cortex_a5_alu")
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
"cortex_a5_alu_shift"
"arm_no_early_alu_shift_dep")
;; The multiplier pipeline can forward results from wr stage only so
;; there's no need to specify bypasses).
(define_insn_reservation "cortex_a5_mul" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "mult"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/store instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Address-generation happens in the issue stage, which is one stage behind
;; the ex1 stage (the first stage we care about for scheduling purposes). The
;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
(define_insn_reservation "cortex_a5_load1" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load_byte,load1"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store1" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store1"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load2" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load2"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store2" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store2"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load3" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store3" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1")
(define_insn_reservation "cortex_a5_load4" 5
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "load3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_store4" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "store3"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Direct branches are the only instructions we can dual-issue (also IT and
;; nop, but those aren't very interesting for scheduling). (The latency here
;; is meant to represent when the branch actually takes place, but may not be
;; entirely correct.)
(define_insn_reservation "cortex_a5_branch" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "branch,call"))
"cortex_a5_branch")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point arithmetic.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_fpalu" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fcpys, fmuls, f_cvt,\
fcmps, fcmpd"))
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
;; For fconsts and fconstd, 8-bit immediate data is passed directly from
;; f1 to f3 (which I think reduces the latency by one cycle).
(define_insn_reservation "cortex_a5_fconst" 3
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fconsts,fconstd"))
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
;; We should try not to attempt to issue a single-precision multiplication in
;; the middle of a double-precision multiplication operation (the usage of
;; cortex_a5_fpmul_pipe).
(define_insn_reservation "cortex_a5_fpmuls" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmuls"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe")
;; For single-precision multiply-accumulate, the add (accumulate) is issued
;; whilst the multiply is in F4. The multiply result can then be forwarded
;; from F5 to F1. The issue unit is only used once (when we first start
;; processing the instruction), but the usage of the FP add pipeline could
;; block other instructions attempting to use it simultaneously. We try to
;; avoid that using cortex_a5_fpadd_pipe.
(define_insn_reservation "cortex_a5_fpmacs" 8
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmacs"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
;; Non-multiply instructions can issue in the middle two instructions of a
;; double-precision multiply. Note that it isn't entirely clear when a branch
;; can dual-issue when a multi-cycle multiplication is in progress; we ignore
;; that for now though.
(define_insn_reservation "cortex_a5_fpmuld" 7
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmuld"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
cortex_a5_ex1+cortex_a5_fpmul_pipe")
(define_insn_reservation "cortex_a5_fpmacd" 11
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fmacd"))
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point divide/square root instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? Not sure if the 14 cycles taken for single-precision divide to complete
;; includes the time taken for the special instruction used to collect the
;; result to travel down the multiply pipeline, or not. Assuming so. (If
;; that's wrong, the latency should be increased by a few cycles.)
;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the
;; multiply pipeline to collect the divide/square-root result.
(define_insn_reservation "cortex_a5_fdivs" 14
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fdivs"))
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13")
;; ??? Similarly for fdivd.
(define_insn_reservation "cortex_a5_fdivd" 29
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "fdivd"))
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; FP loads take data from wr/rot/f3.
;; Core-to-VFP transfers use the multiply pipeline.
(define_insn_reservation "cortex_a5_r2f" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "r_2_f"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f2r" 2
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_2_r"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? The flag forwarding from fmstat to the ex2 stage of the second
;; instruction is not modeled at present.
(define_insn_reservation "cortex_a5_f_flags" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_flag"))
"cortex_a5_ex1")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; VFP load/store.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation "cortex_a5_f_loads" 4
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_loads"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_loadd" 5
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_loadd"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_stores" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_stores"))
"cortex_a5_ex1")
(define_insn_reservation "cortex_a5_f_stored" 0
(and (eq_attr "tune" "cortexa5")
(eq_attr "type" "f_stored"))
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
;; Load-to-use for floating-point values has a penalty of one cycle,
;; i.e. a latency of two.
(define_bypass 2 "cortex_a5_f_loads"
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
cortex_a5_f2r")
(define_bypass 3 "cortex_a5_f_loadd"
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
cortex_a5_f2r")
|