1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
;; ARM Cortex-A8 scheduling description.
;; Copyright (C) 2007-2019 Free Software Foundation, Inc.
;; Contributed by CodeSourcery.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
(define_automaton "cortex_a8")
;; Only one load/store instruction can be issued per cycle
;; (although reservation of this unit is only required for single
;; loads and stores -- see below).
(define_cpu_unit "cortex_a8_issue_ls" "cortex_a8")
;; Only one branch instruction can be issued per cycle.
(define_cpu_unit "cortex_a8_issue_branch" "cortex_a8")
;; The two ALU pipelines.
(define_cpu_unit "cortex_a8_alu0" "cortex_a8")
(define_cpu_unit "cortex_a8_alu1" "cortex_a8")
;; The usual flow of an instruction through the pipelines.
(define_reservation "cortex_a8_default"
"cortex_a8_alu0|cortex_a8_alu1")
;; The flow of a branch instruction through the pipelines.
(define_reservation "cortex_a8_branch"
"(cortex_a8_alu0+cortex_a8_issue_branch)|\
(cortex_a8_alu1+cortex_a8_issue_branch)")
;; The flow of a load or store instruction through the pipeline in
;; the case where that instruction consists of only one micro-op...
(define_reservation "cortex_a8_load_store_1"
"(cortex_a8_alu0+cortex_a8_issue_ls)|\
(cortex_a8_alu1+cortex_a8_issue_ls)")
;; ...and in the case of two micro-ops. Dual issue is altogether forbidden
;; during the issue cycle of the first micro-op. (Instead of modelling
;; a separate issue unit, we instead reserve alu0 and alu1 to
;; prevent any other instructions from being issued upon that first cycle.)
;; Even though the load/store pipeline is usually available in either
;; ALU pipe, multi-cycle instructions always issue in pipeline 0.
(define_reservation "cortex_a8_load_store_2"
"cortex_a8_alu0+cortex_a8_alu1+cortex_a8_issue_ls,\
cortex_a8_alu0+cortex_a8_issue_ls")
;; The flow of a single-cycle multiplication.
(define_reservation "cortex_a8_multiply"
"cortex_a8_alu0")
;; The flow of a multiplication instruction that gets decomposed into
;; two micro-ops. The two micro-ops will be issued to pipeline 0 on
;; successive cycles. Dual issue cannot happen at the same time as the
;; first of the micro-ops.
(define_reservation "cortex_a8_multiply_2"
"cortex_a8_alu0+cortex_a8_alu1,\
cortex_a8_alu0")
;; Similarly, the flow of a multiplication instruction that gets
;; decomposed into three micro-ops. Dual issue cannot occur except on
;; the cycle upon which the third micro-op is issued.
(define_reservation "cortex_a8_multiply_3"
"cortex_a8_alu0+cortex_a8_alu1,\
cortex_a8_alu0+cortex_a8_alu1,\
cortex_a8_alu0")
;; The model given here assumes that all instructions are unconditional.
;; Data processing instructions, but not move instructions.
;; We include CLZ with these since it has the same execution pattern
;; (source read in E2 and destination available at the end of that cycle).
(define_insn_reservation "cortex_a8_alu" 2
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
alu_sreg,alus_sreg,logic_reg,logics_reg,\
adc_imm,adcs_imm,adc_reg,adcs_reg,\
adr,bfm,clz,rbit,rev,alu_dsp_reg,\
shift_imm,shift_reg,\
multiple"))
"cortex_a8_default")
(define_insn_reservation "cortex_a8_alu_shift" 2
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "alu_shift_imm,alus_shift_imm,\
logic_shift_imm,logics_shift_imm,\
extend"))
"cortex_a8_default")
(define_insn_reservation "cortex_a8_alu_shift_reg" 2
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "alu_shift_reg,alus_shift_reg,\
logic_shift_reg,logics_shift_reg"))
"cortex_a8_default")
;; Move instructions.
(define_insn_reservation "cortex_a8_mov" 1
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "mov_imm,mov_reg,mov_shift,mov_shift_reg,\
mvn_imm,mvn_reg,mvn_shift,mvn_shift_reg,\
mrs"))
"cortex_a8_default")
;; Exceptions to the default latencies for data processing instructions.
;; A move followed by an ALU instruction with no early dep.
;; (Such a pair can be issued in parallel, hence latency zero.)
(define_bypass 0 "cortex_a8_mov" "cortex_a8_alu")
(define_bypass 0 "cortex_a8_mov" "cortex_a8_alu_shift"
"arm_no_early_alu_shift_dep")
(define_bypass 0 "cortex_a8_mov" "cortex_a8_alu_shift_reg"
"arm_no_early_alu_shift_value_dep")
;; An ALU instruction followed by an ALU instruction with no early dep.
(define_bypass 1 "cortex_a8_alu,cortex_a8_alu_shift,cortex_a8_alu_shift_reg"
"cortex_a8_alu")
(define_bypass 1 "cortex_a8_alu,cortex_a8_alu_shift,cortex_a8_alu_shift_reg"
"cortex_a8_alu_shift"
"arm_no_early_alu_shift_dep")
(define_bypass 1 "cortex_a8_alu,cortex_a8_alu_shift,cortex_a8_alu_shift_reg"
"cortex_a8_alu_shift_reg"
"arm_no_early_alu_shift_value_dep")
;; Multiplication instructions. These are categorized according to their
;; reservation behavior and the need below to distinguish certain
;; varieties for bypasses. Results are available at the E5 stage
;; (but some of these are multi-cycle instructions which explains the
;; latencies below).
(define_insn_reservation "cortex_a8_mul" 6
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "mul,smulxy,smmul"))
"cortex_a8_multiply_2")
(define_insn_reservation "cortex_a8_mla" 6
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "mla,smlaxy,smlawy,smmla,smlad,smlsd"))
"cortex_a8_multiply_2")
(define_insn_reservation "cortex_a8_mull" 7
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "smull,umull,smlal,umlal,umaal,smlalxy"))
"cortex_a8_multiply_3")
(define_insn_reservation "cortex_a8_smulwy" 5
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "smulwy,smuad,smusd"))
"cortex_a8_multiply")
;; smlald and smlsld are multiply-accumulate instructions but do not
;; received bypassed data from other multiplication results; thus, they
;; cannot go in cortex_a8_mla above. (See below for bypass details.)
(define_insn_reservation "cortex_a8_smlald" 6
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "smlald,smlsld"))
"cortex_a8_multiply_2")
;; A multiply with a single-register result or an MLA, followed by an
;; MLA with an accumulator dependency, has its result forwarded so two
;; such instructions can issue back-to-back.
(define_bypass 1 "cortex_a8_mul,cortex_a8_mla,cortex_a8_smulwy"
"cortex_a8_mla"
"arm_mac_accumulator_is_mul_result")
;; A multiply followed by an ALU instruction needing the multiply
;; result only at E2 has lower latency than one needing it at E1.
(define_bypass 4 "cortex_a8_mul,cortex_a8_mla,cortex_a8_mull,\
cortex_a8_smulwy,cortex_a8_smlald"
"cortex_a8_alu")
(define_bypass 4 "cortex_a8_mul,cortex_a8_mla,cortex_a8_mull,\
cortex_a8_smulwy,cortex_a8_smlald"
"cortex_a8_alu_shift"
"arm_no_early_alu_shift_dep")
(define_bypass 4 "cortex_a8_mul,cortex_a8_mla,cortex_a8_mull,\
cortex_a8_smulwy,cortex_a8_smlald"
"cortex_a8_alu_shift_reg"
"arm_no_early_alu_shift_value_dep")
;; Load instructions.
;; The presence of any register writeback is ignored here.
;; A load result has latency 3 unless the dependent instruction has
;; no early dep, in which case it is only latency two.
;; We assume 64-bit alignment for doubleword loads.
(define_insn_reservation "cortex_a8_load1_2" 3
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "load_4,load_8,load_byte"))
"cortex_a8_load_store_1")
(define_bypass 2 "cortex_a8_load1_2"
"cortex_a8_alu")
(define_bypass 2 "cortex_a8_load1_2"
"cortex_a8_alu_shift"
"arm_no_early_alu_shift_dep")
(define_bypass 2 "cortex_a8_load1_2"
"cortex_a8_alu_shift_reg"
"arm_no_early_alu_shift_value_dep")
;; We do not currently model the fact that loads with scaled register
;; offsets that are not LSL #2 have an extra cycle latency (they issue
;; as two micro-ops).
;; A load multiple of three registers is usually issued as two micro-ops.
;; The first register will be available at E3 of the first iteration,
;; the second at E3 of the second iteration, and the third at E4 of
;; the second iteration. A load multiple of four registers is usually
;; issued as two micro-ops.
(define_insn_reservation "cortex_a8_load3_4" 5
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "load_12,load_16"))
"cortex_a8_load_store_2")
(define_bypass 4 "cortex_a8_load3_4"
"cortex_a8_alu")
(define_bypass 4 "cortex_a8_load3_4"
"cortex_a8_alu_shift"
"arm_no_early_alu_shift_dep")
(define_bypass 4 "cortex_a8_load3_4"
"cortex_a8_alu_shift_reg"
"arm_no_early_alu_shift_value_dep")
;; Store instructions.
;; Writeback is again ignored.
(define_insn_reservation "cortex_a8_store1_2" 0
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "store_4,store_8"))
"cortex_a8_load_store_1")
(define_insn_reservation "cortex_a8_store3_4" 0
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "store_12,store_16"))
"cortex_a8_load_store_2")
;; An ALU instruction acting as a producer for a store instruction
;; that only uses the result as the value to be stored (as opposed to
;; using it to calculate the address) has latency zero; the store
;; reads the value to be stored at the start of E3 and the ALU insn
;; writes it at the end of E2. Move instructions actually produce the
;; result at the end of E1, but since we don't have delay slots, the
;; scheduling behavior will be the same.
(define_bypass 0 "cortex_a8_alu,cortex_a8_alu_shift,\
cortex_a8_alu_shift_reg,cortex_a8_mov"
"cortex_a8_store1_2,cortex_a8_store3_4"
"arm_no_early_store_addr_dep")
;; Branch instructions
(define_insn_reservation "cortex_a8_branch" 0
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "branch"))
"cortex_a8_branch")
;; Call latencies are not predictable. A semi-arbitrary very large
;; number is used as "positive infinity" so that everything should be
;; finished by the time of return.
(define_insn_reservation "cortex_a8_call" 32
(and (eq_attr "tune" "cortexa8")
(eq_attr "type" "call"))
"cortex_a8_issue_branch")
;; NEON (including VFP) instructions.
(include "cortex-a8-neon.md")
|