1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
|
(* Common code for ARM NEON header file, documentation and test case
generators.
Copyright (C) 2006 Free Software Foundation, Inc.
Contributed by CodeSourcery.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. *)
(* Shorthand types for vector elements. *)
type elts = S8 | S16 | S32 | S64 | F32 | U8 | U16 | U32 | U64 | P8 | P16
| I8 | I16 | I32 | I64 | B8 | B16 | B32 | B64 | Conv of elts * elts
| Cast of elts * elts | NoElts
type eltclass = Signed | Unsigned | Float | Poly | Int | Bits
| ConvClass of eltclass * eltclass | NoType
(* These vector types correspond directly to C types. *)
type vectype = T_int8x8 | T_int8x16
| T_int16x4 | T_int16x8
| T_int32x2 | T_int32x4
| T_int64x1 | T_int64x2
| T_uint8x8 | T_uint8x16
| T_uint16x4 | T_uint16x8
| T_uint32x2 | T_uint32x4
| T_uint64x1 | T_uint64x2
| T_float32x2 | T_float32x4
| T_poly8x8 | T_poly8x16
| T_poly16x4 | T_poly16x8
| T_immediate of int * int
| T_int8 | T_int16
| T_int32 | T_int64
| T_uint8 | T_uint16
| T_uint32 | T_uint64
| T_poly8 | T_poly16
| T_float32 | T_arrayof of int * vectype
| T_ptrto of vectype | T_const of vectype
| T_void | T_intQI
| T_intHI | T_intSI
| T_intDI
(* The meanings of the following are:
TImode : "Tetra", two registers (four words).
EImode : "hExa", three registers (six words).
OImode : "Octa", four registers (eight words).
CImode : "dodeCa", six registers (twelve words).
XImode : "heXadeca", eight registers (sixteen words).
*)
type inttype = B_TImode | B_EImode | B_OImode | B_CImode | B_XImode
type shape_elt = Dreg | Qreg | Corereg | Immed | VecArray of int * shape_elt
| PtrTo of shape_elt | CstPtrTo of shape_elt
(* These next ones are used only in the test generator. *)
| Element_of_dreg (* Used for "lane" variants. *)
| Element_of_qreg (* Likewise. *)
| All_elements_of_dreg (* Used for "dup" variants. *)
type shape_form = All of int * shape_elt
| Long
| Long_noreg of shape_elt
| Wide
| Wide_noreg of shape_elt
| Narrow
| Long_imm
| Narrow_imm
| Binary_imm of shape_elt
| Use_operands of shape_elt array
| By_scalar of shape_elt
| Unary_scalar of shape_elt
| Wide_lane
| Wide_scalar
| Pair_result of shape_elt
type arity = Arity0 of vectype
| Arity1 of vectype * vectype
| Arity2 of vectype * vectype * vectype
| Arity3 of vectype * vectype * vectype * vectype
| Arity4 of vectype * vectype * vectype * vectype * vectype
type vecmode = V8QI | V4HI | V2SI | V2SF | DI
| V16QI | V8HI | V4SI | V4SF | V2DI
| QI | HI | SI | SF
type opcode =
(* Binary ops. *)
Vadd
| Vmul
| Vmla
| Vmls
| Vsub
| Vceq
| Vcge
| Vcgt
| Vcle
| Vclt
| Vcage
| Vcagt
| Vcale
| Vcalt
| Vtst
| Vabd
| Vaba
| Vmax
| Vmin
| Vpadd
| Vpada
| Vpmax
| Vpmin
| Vrecps
| Vrsqrts
| Vshl
| Vshr_n
| Vshl_n
| Vsra_n
| Vsri
| Vsli
(* Logic binops. *)
| Vand
| Vorr
| Veor
| Vbic
| Vorn
| Vbsl
(* Ops with scalar. *)
| Vmul_lane
| Vmla_lane
| Vmls_lane
| Vmul_n
| Vmla_n
| Vmls_n
| Vmull_n
| Vmull_lane
| Vqdmull_n
| Vqdmull_lane
| Vqdmulh_n
| Vqdmulh_lane
(* Unary ops. *)
| Vabs
| Vneg
| Vcls
| Vclz
| Vcnt
| Vrecpe
| Vrsqrte
| Vmvn
(* Vector extract. *)
| Vext
(* Reverse elements. *)
| Vrev64
| Vrev32
| Vrev16
(* Transposition ops. *)
| Vtrn
| Vzip
| Vuzp
(* Loads and stores (VLD1/VST1/VLD2...), elements and structures. *)
| Vldx of int
| Vstx of int
| Vldx_lane of int
| Vldx_dup of int
| Vstx_lane of int
(* Set/extract lanes from a vector. *)
| Vget_lane
| Vset_lane
(* Initialise vector from bit pattern. *)
| Vcreate
(* Set all lanes to same value. *)
| Vdup_n
| Vmov_n (* Is this the same? *)
(* Duplicate scalar to all lanes of vector. *)
| Vdup_lane
(* Combine vectors. *)
| Vcombine
(* Get quadword high/low parts. *)
| Vget_high
| Vget_low
(* Convert vectors. *)
| Vcvt
| Vcvt_n
(* Narrow/lengthen vectors. *)
| Vmovn
| Vmovl
(* Table lookup. *)
| Vtbl of int
| Vtbx of int
(* Reinterpret casts. *)
| Vreinterp
(* Features used for documentation, to distinguish between some instruction
variants, and to signal special requirements (e.g. swapping arguments). *)
type features =
Halving
| Rounding
| Saturating
| Dst_unsign
| High_half
| Doubling
| Flipped of string (* Builtin name to use with flipped arguments. *)
| InfoWord (* Pass an extra word for signage/rounding etc. (always passed
for All _, Long, Wide, Narrow shape_forms. *)
| ReturnPtr (* Pass explicit pointer to return value as first argument. *)
(* A specification as to the shape of instruction expected upon
disassembly, used if it differs from the shape used to build the
intrinsic prototype. Multiple entries in the constructor's argument
indicate that the intrinsic expands to more than one assembly
instruction, each with a corresponding shape specified here. *)
| Disassembles_as of shape_form list
| Builtin_name of string (* Override the name of the builtin. *)
(* Override the name of the instruction. If more than one name
is specified, it means that the instruction can have any of those
names. *)
| Instruction_name of string list
(* Mark that the intrinsic yields no instructions, or expands to yield
behaviour that the test generator cannot test. *)
| No_op
(* Mark that the intrinsic has constant arguments that cannot be set
to the defaults (zero for pointers and one otherwise) in the test
cases. The function supplied must return the integer to be written
into the testcase for the argument number (0-based) supplied to it. *)
| Const_valuator of (int -> int)
exception MixedMode of elts * elts
let rec elt_width = function
S8 | U8 | P8 | I8 | B8 -> 8
| S16 | U16 | P16 | I16 | B16 -> 16
| S32 | F32 | U32 | I32 | B32 -> 32
| S64 | U64 | I64 | B64 -> 64
| Conv (a, b) ->
let wa = elt_width a and wb = elt_width b in
if wa = wb then wa else failwith "element width?"
| Cast (a, b) -> raise (MixedMode (a, b))
| NoElts -> failwith "No elts"
let rec elt_class = function
S8 | S16 | S32 | S64 -> Signed
| U8 | U16 | U32 | U64 -> Unsigned
| P8 | P16 -> Poly
| F32 -> Float
| I8 | I16 | I32 | I64 -> Int
| B8 | B16 | B32 | B64 -> Bits
| Conv (a, b) | Cast (a, b) -> ConvClass (elt_class a, elt_class b)
| NoElts -> NoType
let elt_of_class_width c w =
match c, w with
Signed, 8 -> S8
| Signed, 16 -> S16
| Signed, 32 -> S32
| Signed, 64 -> S64
| Float, 32 -> F32
| Unsigned, 8 -> U8
| Unsigned, 16 -> U16
| Unsigned, 32 -> U32
| Unsigned, 64 -> U64
| Poly, 8 -> P8
| Poly, 16 -> P16
| Int, 8 -> I8
| Int, 16 -> I16
| Int, 32 -> I32
| Int, 64 -> I64
| Bits, 8 -> B8
| Bits, 16 -> B16
| Bits, 32 -> B32
| Bits, 64 -> B64
| _ -> failwith "Bad element type"
(* Return unsigned integer element the same width as argument. *)
let unsigned_of_elt elt =
elt_of_class_width Unsigned (elt_width elt)
let signed_of_elt elt =
elt_of_class_width Signed (elt_width elt)
(* Return untyped bits element the same width as argument. *)
let bits_of_elt elt =
elt_of_class_width Bits (elt_width elt)
let non_signed_variant = function
S8 -> I8
| S16 -> I16
| S32 -> I32
| S64 -> I64
| U8 -> I8
| U16 -> I16
| U32 -> I32
| U64 -> I64
| x -> x
let poly_unsigned_variant v =
let elclass = match elt_class v with
Poly -> Unsigned
| x -> x in
elt_of_class_width elclass (elt_width v)
let widen_elt elt =
let w = elt_width elt
and c = elt_class elt in
elt_of_class_width c (w * 2)
let narrow_elt elt =
let w = elt_width elt
and c = elt_class elt in
elt_of_class_width c (w / 2)
(* If we're trying to find a mode from a "Use_operands" instruction, use the
last vector operand as the dominant mode used to invoke the correct builtin.
We must stick to this rule in neon.md. *)
let find_key_operand operands =
let rec scan opno =
match operands.(opno) with
Qreg -> Qreg
| Dreg -> Dreg
| VecArray (_, Qreg) -> Qreg
| VecArray (_, Dreg) -> Dreg
| _ -> scan (opno-1)
in
scan ((Array.length operands) - 1)
let rec mode_of_elt elt shape =
let flt = match elt_class elt with
Float | ConvClass(_, Float) -> true | _ -> false in
let idx =
match elt_width elt with
8 -> 0 | 16 -> 1 | 32 -> 2 | 64 -> 3
| _ -> failwith "Bad element width"
in match shape with
All (_, Dreg) | By_scalar Dreg | Pair_result Dreg | Unary_scalar Dreg
| Binary_imm Dreg | Long_noreg Dreg | Wide_noreg Dreg ->
[| V8QI; V4HI; if flt then V2SF else V2SI; DI |].(idx)
| All (_, Qreg) | By_scalar Qreg | Pair_result Qreg | Unary_scalar Qreg
| Binary_imm Qreg | Long_noreg Qreg | Wide_noreg Qreg ->
[| V16QI; V8HI; if flt then V4SF else V4SI; V2DI |].(idx)
| All (_, (Corereg | PtrTo _ | CstPtrTo _)) ->
[| QI; HI; if flt then SF else SI; DI |].(idx)
| Long | Wide | Wide_lane | Wide_scalar
| Long_imm ->
[| V8QI; V4HI; V2SI; DI |].(idx)
| Narrow | Narrow_imm -> [| V16QI; V8HI; V4SI; V2DI |].(idx)
| Use_operands ops -> mode_of_elt elt (All (0, (find_key_operand ops)))
| _ -> failwith "invalid shape"
(* Modify an element type dependent on the shape of the instruction and the
operand number. *)
let shapemap shape no =
let ident = fun x -> x in
match shape with
All _ | Use_operands _ | By_scalar _ | Pair_result _ | Unary_scalar _
| Binary_imm _ -> ident
| Long | Long_noreg _ | Wide_scalar | Long_imm ->
[| widen_elt; ident; ident |].(no)
| Wide | Wide_noreg _ -> [| widen_elt; widen_elt; ident |].(no)
| Wide_lane -> [| widen_elt; ident; ident; ident |].(no)
| Narrow | Narrow_imm -> [| narrow_elt; ident; ident |].(no)
(* Register type (D/Q) of an operand, based on shape and operand number. *)
let regmap shape no =
match shape with
All (_, reg) | Long_noreg reg | Wide_noreg reg -> reg
| Long -> [| Qreg; Dreg; Dreg |].(no)
| Wide -> [| Qreg; Qreg; Dreg |].(no)
| Narrow -> [| Dreg; Qreg; Qreg |].(no)
| Wide_lane -> [| Qreg; Dreg; Dreg; Immed |].(no)
| Wide_scalar -> [| Qreg; Dreg; Corereg |].(no)
| By_scalar reg -> [| reg; reg; Dreg; Immed |].(no)
| Unary_scalar reg -> [| reg; Dreg; Immed |].(no)
| Pair_result reg -> [| VecArray (2, reg); reg; reg |].(no)
| Binary_imm reg -> [| reg; reg; Immed |].(no)
| Long_imm -> [| Qreg; Dreg; Immed |].(no)
| Narrow_imm -> [| Dreg; Qreg; Immed |].(no)
| Use_operands these -> these.(no)
let type_for_elt shape elt no =
let elt = (shapemap shape no) elt in
let reg = regmap shape no in
let rec type_for_reg_elt reg elt =
match reg with
Dreg ->
begin match elt with
S8 -> T_int8x8
| S16 -> T_int16x4
| S32 -> T_int32x2
| S64 -> T_int64x1
| U8 -> T_uint8x8
| U16 -> T_uint16x4
| U32 -> T_uint32x2
| U64 -> T_uint64x1
| F32 -> T_float32x2
| P8 -> T_poly8x8
| P16 -> T_poly16x4
| _ -> failwith "Bad elt type"
end
| Qreg ->
begin match elt with
S8 -> T_int8x16
| S16 -> T_int16x8
| S32 -> T_int32x4
| S64 -> T_int64x2
| U8 -> T_uint8x16
| U16 -> T_uint16x8
| U32 -> T_uint32x4
| U64 -> T_uint64x2
| F32 -> T_float32x4
| P8 -> T_poly8x16
| P16 -> T_poly16x8
| _ -> failwith "Bad elt type"
end
| Corereg ->
begin match elt with
S8 -> T_int8
| S16 -> T_int16
| S32 -> T_int32
| S64 -> T_int64
| U8 -> T_uint8
| U16 -> T_uint16
| U32 -> T_uint32
| U64 -> T_uint64
| P8 -> T_poly8
| P16 -> T_poly16
| F32 -> T_float32
| _ -> failwith "Bad elt type"
end
| Immed ->
T_immediate (0, 0)
| VecArray (num, sub) ->
T_arrayof (num, type_for_reg_elt sub elt)
| PtrTo x ->
T_ptrto (type_for_reg_elt x elt)
| CstPtrTo x ->
T_ptrto (T_const (type_for_reg_elt x elt))
(* Anything else is solely for the use of the test generator. *)
| _ -> assert false
in
type_for_reg_elt reg elt
(* Return size of a vector type, in bits. *)
let vectype_size = function
T_int8x8 | T_int16x4 | T_int32x2 | T_int64x1
| T_uint8x8 | T_uint16x4 | T_uint32x2 | T_uint64x1
| T_float32x2 | T_poly8x8 | T_poly16x4 -> 64
| T_int8x16 | T_int16x8 | T_int32x4 | T_int64x2
| T_uint8x16 | T_uint16x8 | T_uint32x4 | T_uint64x2
| T_float32x4 | T_poly8x16 | T_poly16x8 -> 128
| _ -> raise Not_found
let inttype_for_array num elttype =
let eltsize = vectype_size elttype in
let numwords = (num * eltsize) / 32 in
match numwords with
4 -> B_TImode
| 6 -> B_EImode
| 8 -> B_OImode
| 12 -> B_CImode
| 16 -> B_XImode
| _ -> failwith ("no int type for size " ^ string_of_int numwords)
(* These functions return pairs of (internal, external) types, where "internal"
types are those seen by GCC, and "external" are those seen by the assembler.
These types aren't necessarily the same, since the intrinsics can munge more
than one C type into each assembler opcode. *)
let make_sign_invariant func shape elt =
let arity, elt' = func shape elt in
arity, non_signed_variant elt'
(* Don't restrict any types. *)
let elts_same make_arity shape elt =
let vtype = type_for_elt shape elt in
make_arity vtype, elt
(* As sign_invar_*, but when sign matters. *)
let elts_same_io_lane =
elts_same (fun vtype -> Arity4 (vtype 0, vtype 0, vtype 1, vtype 2, vtype 3))
let elts_same_io =
elts_same (fun vtype -> Arity3 (vtype 0, vtype 0, vtype 1, vtype 2))
let elts_same_2_lane =
elts_same (fun vtype -> Arity3 (vtype 0, vtype 1, vtype 2, vtype 3))
let elts_same_3 = elts_same_2_lane
let elts_same_2 =
elts_same (fun vtype -> Arity2 (vtype 0, vtype 1, vtype 2))
let elts_same_1 =
elts_same (fun vtype -> Arity1 (vtype 0, vtype 1))
(* Use for signed/unsigned invariant operations (i.e. where the operation
doesn't depend on the sign of the data. *)
let sign_invar_io_lane = make_sign_invariant elts_same_io_lane
let sign_invar_io = make_sign_invariant elts_same_io
let sign_invar_2_lane = make_sign_invariant elts_same_2_lane
let sign_invar_2 = make_sign_invariant elts_same_2
let sign_invar_1 = make_sign_invariant elts_same_1
(* Sign-sensitive comparison. *)
let cmp_sign_matters shape elt =
let vtype = type_for_elt shape elt
and rtype = type_for_elt shape (unsigned_of_elt elt) 0 in
Arity2 (rtype, vtype 1, vtype 2), elt
(* Signed/unsigned invariant comparison. *)
let cmp_sign_invar shape elt =
let shape', elt' = cmp_sign_matters shape elt in
let elt'' =
match non_signed_variant elt' with
P8 -> I8
| x -> x
in
shape', elt''
(* Comparison (VTST) where only the element width matters. *)
let cmp_bits shape elt =
let vtype = type_for_elt shape elt
and rtype = type_for_elt shape (unsigned_of_elt elt) 0
and bits_only = bits_of_elt elt in
Arity2 (rtype, vtype 1, vtype 2), bits_only
let reg_shift shape elt =
let vtype = type_for_elt shape elt
and op2type = type_for_elt shape (signed_of_elt elt) 2 in
Arity2 (vtype 0, vtype 1, op2type), elt
(* Genericised constant-shift type-generating function. *)
let const_shift mkimm ?arity ?result shape elt =
let op2type = (shapemap shape 2) elt in
let op2width = elt_width op2type in
let op2 = mkimm op2width
and op1 = type_for_elt shape elt 1
and r_elt =
match result with
None -> elt
| Some restriction -> restriction elt in
let rtype = type_for_elt shape r_elt 0 in
match arity with
None -> Arity2 (rtype, op1, op2), elt
| Some mkarity -> mkarity rtype op1 op2, elt
(* Use for immediate right-shifts. *)
let shift_right shape elt =
const_shift (fun imm -> T_immediate (1, imm)) shape elt
let shift_right_acc shape elt =
const_shift (fun imm -> T_immediate (1, imm))
~arity:(fun dst op1 op2 -> Arity3 (dst, dst, op1, op2)) shape elt
(* Use for immediate right-shifts when the operation doesn't care about
signedness. *)
let shift_right_sign_invar =
make_sign_invariant shift_right
(* Immediate right-shift; result is unsigned even when operand is signed. *)
let shift_right_to_uns shape elt =
const_shift (fun imm -> T_immediate (1, imm)) ~result:unsigned_of_elt
shape elt
(* Immediate left-shift. *)
let shift_left shape elt =
const_shift (fun imm -> T_immediate (0, imm - 1)) shape elt
(* Immediate left-shift, unsigned result. *)
let shift_left_to_uns shape elt =
const_shift (fun imm -> T_immediate (0, imm - 1)) ~result:unsigned_of_elt
shape elt
(* Immediate left-shift, don't care about signs. *)
let shift_left_sign_invar =
make_sign_invariant shift_left
(* Shift left/right and insert: only element size matters. *)
let shift_insert shape elt =
let arity, elt =
const_shift (fun imm -> T_immediate (1, imm))
~arity:(fun dst op1 op2 -> Arity3 (dst, dst, op1, op2)) shape elt in
arity, bits_of_elt elt
(* Get/set lane. *)
let get_lane shape elt =
let vtype = type_for_elt shape elt in
Arity2 (vtype 0, vtype 1, vtype 2),
(match elt with P8 -> U8 | P16 -> U16 | x -> x)
let set_lane shape elt =
let vtype = type_for_elt shape elt in
Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), bits_of_elt elt
let set_lane_notype shape elt =
let vtype = type_for_elt shape elt in
Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), NoElts
let create_vector shape elt =
let vtype = type_for_elt shape U64 1
and rtype = type_for_elt shape elt 0 in
Arity1 (rtype, vtype), elt
let conv make_arity shape elt =
let edest, esrc = match elt with
Conv (edest, esrc) | Cast (edest, esrc) -> edest, esrc
| _ -> failwith "Non-conversion element in conversion" in
let vtype = type_for_elt shape esrc
and rtype = type_for_elt shape edest 0 in
make_arity rtype vtype, elt
let conv_1 = conv (fun rtype vtype -> Arity1 (rtype, vtype 1))
let conv_2 = conv (fun rtype vtype -> Arity2 (rtype, vtype 1, vtype 2))
(* Operation has an unsigned result even if operands are signed. *)
let dst_unsign make_arity shape elt =
let vtype = type_for_elt shape elt
and rtype = type_for_elt shape (unsigned_of_elt elt) 0 in
make_arity rtype vtype, elt
let dst_unsign_1 = dst_unsign (fun rtype vtype -> Arity1 (rtype, vtype 1))
let make_bits_only func shape elt =
let arity, elt' = func shape elt in
arity, bits_of_elt elt'
(* Extend operation. *)
let extend shape elt =
let vtype = type_for_elt shape elt in
Arity3 (vtype 0, vtype 1, vtype 2, vtype 3), bits_of_elt elt
(* Table look-up operations. Operand 2 is signed/unsigned for signed/unsigned
integer ops respectively, or unsigned for polynomial ops. *)
let table mkarity shape elt =
let vtype = type_for_elt shape elt in
let op2 = type_for_elt shape (poly_unsigned_variant elt) 2 in
mkarity vtype op2, bits_of_elt elt
let table_2 = table (fun vtype op2 -> Arity2 (vtype 0, vtype 1, op2))
let table_io = table (fun vtype op2 -> Arity3 (vtype 0, vtype 0, vtype 1, op2))
(* Operations where only bits matter. *)
let bits_1 = make_bits_only elts_same_1
let bits_2 = make_bits_only elts_same_2
let bits_3 = make_bits_only elts_same_3
(* Store insns. *)
let store_1 shape elt =
let vtype = type_for_elt shape elt in
Arity2 (T_void, vtype 0, vtype 1), bits_of_elt elt
let store_3 shape elt =
let vtype = type_for_elt shape elt in
Arity3 (T_void, vtype 0, vtype 1, vtype 2), bits_of_elt elt
let make_notype func shape elt =
let arity, _ = func shape elt in
arity, NoElts
let notype_1 = make_notype elts_same_1
let notype_2 = make_notype elts_same_2
let notype_3 = make_notype elts_same_3
(* Bit-select operations (first operand is unsigned int). *)
let bit_select shape elt =
let vtype = type_for_elt shape elt
and itype = type_for_elt shape (unsigned_of_elt elt) in
Arity3 (vtype 0, itype 1, vtype 2, vtype 3), NoElts
(* Common lists of supported element types. *)
let su_8_32 = [S8; S16; S32; U8; U16; U32]
let su_8_64 = S64 :: U64 :: su_8_32
let su_16_64 = [S16; S32; S64; U16; U32; U64]
let pf_su_8_32 = P8 :: P16 :: F32 :: su_8_32
let pf_su_8_64 = P8 :: P16 :: F32 :: su_8_64
let ops =
[
(* Addition. *)
Vadd, [], All (3, Dreg), "vadd", sign_invar_2, F32 :: su_8_64;
Vadd, [], All (3, Qreg), "vaddQ", sign_invar_2, F32 :: su_8_64;
Vadd, [], Long, "vaddl", elts_same_2, su_8_32;
Vadd, [], Wide, "vaddw", elts_same_2, su_8_32;
Vadd, [Halving], All (3, Dreg), "vhadd", elts_same_2, su_8_32;
Vadd, [Halving], All (3, Qreg), "vhaddQ", elts_same_2, su_8_32;
Vadd, [Instruction_name ["vrhadd"]; Rounding; Halving],
All (3, Dreg), "vRhadd", elts_same_2, su_8_32;
Vadd, [Instruction_name ["vrhadd"]; Rounding; Halving],
All (3, Qreg), "vRhaddQ", elts_same_2, su_8_32;
Vadd, [Saturating], All (3, Dreg), "vqadd", elts_same_2, su_8_64;
Vadd, [Saturating], All (3, Qreg), "vqaddQ", elts_same_2, su_8_64;
Vadd, [High_half], Narrow, "vaddhn", sign_invar_2, su_16_64;
Vadd, [Instruction_name ["vraddhn"]; Rounding; High_half],
Narrow, "vRaddhn", sign_invar_2, su_16_64;
(* Multiplication. *)
Vmul, [], All (3, Dreg), "vmul", sign_invar_2, P8 :: F32 :: su_8_32;
Vmul, [], All (3, Qreg), "vmulQ", sign_invar_2, P8 :: F32 :: su_8_32;
Vmul, [Saturating; Doubling; High_half], All (3, Dreg), "vqdmulh",
elts_same_2, [S16; S32];
Vmul, [Saturating; Doubling; High_half], All (3, Qreg), "vqdmulhQ",
elts_same_2, [S16; S32];
Vmul,
[Saturating; Rounding; Doubling; High_half;
Instruction_name ["vqrdmulh"]],
All (3, Dreg), "vqRdmulh",
elts_same_2, [S16; S32];
Vmul,
[Saturating; Rounding; Doubling; High_half;
Instruction_name ["vqrdmulh"]],
All (3, Qreg), "vqRdmulhQ",
elts_same_2, [S16; S32];
Vmul, [], Long, "vmull", elts_same_2, P8 :: su_8_32;
Vmul, [Saturating; Doubling], Long, "vqdmull", elts_same_2, [S16; S32];
(* Multiply-accumulate. *)
Vmla, [], All (3, Dreg), "vmla", sign_invar_io, F32 :: su_8_32;
Vmla, [], All (3, Qreg), "vmlaQ", sign_invar_io, F32 :: su_8_32;
Vmla, [], Long, "vmlal", elts_same_io, su_8_32;
Vmla, [Saturating; Doubling], Long, "vqdmlal", elts_same_io, [S16; S32];
(* Multiply-subtract. *)
Vmls, [], All (3, Dreg), "vmls", sign_invar_io, F32 :: su_8_32;
Vmls, [], All (3, Qreg), "vmlsQ", sign_invar_io, F32 :: su_8_32;
Vmls, [], Long, "vmlsl", elts_same_io, su_8_32;
Vmls, [Saturating; Doubling], Long, "vqdmlsl", elts_same_io, [S16; S32];
(* Subtraction. *)
Vsub, [], All (3, Dreg), "vsub", sign_invar_2, F32 :: su_8_64;
Vsub, [], All (3, Qreg), "vsubQ", sign_invar_2, F32 :: su_8_64;
Vsub, [], Long, "vsubl", elts_same_2, su_8_32;
Vsub, [], Wide, "vsubw", elts_same_2, su_8_32;
Vsub, [Halving], All (3, Dreg), "vhsub", elts_same_2, su_8_32;
Vsub, [Halving], All (3, Qreg), "vhsubQ", elts_same_2, su_8_32;
Vsub, [Saturating], All (3, Dreg), "vqsub", elts_same_2, su_8_64;
Vsub, [Saturating], All (3, Qreg), "vqsubQ", elts_same_2, su_8_64;
Vsub, [High_half], Narrow, "vsubhn", sign_invar_2, su_16_64;
Vsub, [Instruction_name ["vrsubhn"]; Rounding; High_half],
Narrow, "vRsubhn", sign_invar_2, su_16_64;
(* Comparison, equal. *)
Vceq, [], All (3, Dreg), "vceq", cmp_sign_invar, P8 :: F32 :: su_8_32;
Vceq, [], All (3, Qreg), "vceqQ", cmp_sign_invar, P8 :: F32 :: su_8_32;
(* Comparison, greater-than or equal. *)
Vcge, [], All (3, Dreg), "vcge", cmp_sign_matters, F32 :: su_8_32;
Vcge, [], All (3, Qreg), "vcgeQ", cmp_sign_matters, F32 :: su_8_32;
(* Comparison, less-than or equal. *)
Vcle, [Flipped "vcge"], All (3, Dreg), "vcle", cmp_sign_matters,
F32 :: su_8_32;
Vcle, [Instruction_name ["vcge"]; Flipped "vcgeQ"],
All (3, Qreg), "vcleQ", cmp_sign_matters,
F32 :: su_8_32;
(* Comparison, greater-than. *)
Vcgt, [], All (3, Dreg), "vcgt", cmp_sign_matters, F32 :: su_8_32;
Vcgt, [], All (3, Qreg), "vcgtQ", cmp_sign_matters, F32 :: su_8_32;
(* Comparison, less-than. *)
Vclt, [Flipped "vcgt"], All (3, Dreg), "vclt", cmp_sign_matters,
F32 :: su_8_32;
Vclt, [Instruction_name ["vcgt"]; Flipped "vcgtQ"],
All (3, Qreg), "vcltQ", cmp_sign_matters,
F32 :: su_8_32;
(* Compare absolute greater-than or equal. *)
Vcage, [Instruction_name ["vacge"]],
All (3, Dreg), "vcage", cmp_sign_matters, [F32];
Vcage, [Instruction_name ["vacge"]],
All (3, Qreg), "vcageQ", cmp_sign_matters, [F32];
(* Compare absolute less-than or equal. *)
Vcale, [Instruction_name ["vacge"]; Flipped "vcage"],
All (3, Dreg), "vcale", cmp_sign_matters, [F32];
Vcale, [Instruction_name ["vacge"]; Flipped "vcageQ"],
All (3, Qreg), "vcaleQ", cmp_sign_matters, [F32];
(* Compare absolute greater-than or equal. *)
Vcagt, [Instruction_name ["vacgt"]],
All (3, Dreg), "vcagt", cmp_sign_matters, [F32];
Vcagt, [Instruction_name ["vacgt"]],
All (3, Qreg), "vcagtQ", cmp_sign_matters, [F32];
(* Compare absolute less-than or equal. *)
Vcalt, [Instruction_name ["vacgt"]; Flipped "vcagt"],
All (3, Dreg), "vcalt", cmp_sign_matters, [F32];
Vcalt, [Instruction_name ["vacgt"]; Flipped "vcagtQ"],
All (3, Qreg), "vcaltQ", cmp_sign_matters, [F32];
(* Test bits. *)
Vtst, [], All (3, Dreg), "vtst", cmp_bits, P8 :: su_8_32;
Vtst, [], All (3, Qreg), "vtstQ", cmp_bits, P8 :: su_8_32;
(* Absolute difference. *)
Vabd, [], All (3, Dreg), "vabd", elts_same_2, F32 :: su_8_32;
Vabd, [], All (3, Qreg), "vabdQ", elts_same_2, F32 :: su_8_32;
Vabd, [], Long, "vabdl", elts_same_2, su_8_32;
(* Absolute difference and accumulate. *)
Vaba, [], All (3, Dreg), "vaba", elts_same_io, su_8_32;
Vaba, [], All (3, Qreg), "vabaQ", elts_same_io, su_8_32;
Vaba, [], Long, "vabal", elts_same_io, su_8_32;
(* Max. *)
Vmax, [], All (3, Dreg), "vmax", elts_same_2, F32 :: su_8_32;
Vmax, [], All (3, Qreg), "vmaxQ", elts_same_2, F32 :: su_8_32;
(* Min. *)
Vmin, [], All (3, Dreg), "vmin", elts_same_2, F32 :: su_8_32;
Vmin, [], All (3, Qreg), "vminQ", elts_same_2, F32 :: su_8_32;
(* Pairwise add. *)
Vpadd, [], All (3, Dreg), "vpadd", sign_invar_2, F32 :: su_8_32;
Vpadd, [], Long_noreg Dreg, "vpaddl", elts_same_1, su_8_32;
Vpadd, [], Long_noreg Qreg, "vpaddlQ", elts_same_1, su_8_32;
(* Pairwise add, widen and accumulate. *)
Vpada, [], Wide_noreg Dreg, "vpadal", elts_same_2, su_8_32;
Vpada, [], Wide_noreg Qreg, "vpadalQ", elts_same_2, su_8_32;
(* Folding maximum, minimum. *)
Vpmax, [], All (3, Dreg), "vpmax", elts_same_2, F32 :: su_8_32;
Vpmin, [], All (3, Dreg), "vpmin", elts_same_2, F32 :: su_8_32;
(* Reciprocal step. *)
Vrecps, [], All (3, Dreg), "vrecps", elts_same_2, [F32];
Vrecps, [], All (3, Qreg), "vrecpsQ", elts_same_2, [F32];
Vrsqrts, [], All (3, Dreg), "vrsqrts", elts_same_2, [F32];
Vrsqrts, [], All (3, Qreg), "vrsqrtsQ", elts_same_2, [F32];
(* Vector shift left. *)
Vshl, [], All (3, Dreg), "vshl", reg_shift, su_8_64;
Vshl, [], All (3, Qreg), "vshlQ", reg_shift, su_8_64;
Vshl, [Instruction_name ["vrshl"]; Rounding],
All (3, Dreg), "vRshl", reg_shift, su_8_64;
Vshl, [Instruction_name ["vrshl"]; Rounding],
All (3, Qreg), "vRshlQ", reg_shift, su_8_64;
Vshl, [Saturating], All (3, Dreg), "vqshl", reg_shift, su_8_64;
Vshl, [Saturating], All (3, Qreg), "vqshlQ", reg_shift, su_8_64;
Vshl, [Instruction_name ["vqrshl"]; Saturating; Rounding],
All (3, Dreg), "vqRshl", reg_shift, su_8_64;
Vshl, [Instruction_name ["vqrshl"]; Saturating; Rounding],
All (3, Qreg), "vqRshlQ", reg_shift, su_8_64;
(* Vector shift right by constant. *)
Vshr_n, [], Binary_imm Dreg, "vshr_n", shift_right, su_8_64;
Vshr_n, [], Binary_imm Qreg, "vshrQ_n", shift_right, su_8_64;
Vshr_n, [Instruction_name ["vrshr"]; Rounding], Binary_imm Dreg,
"vRshr_n", shift_right, su_8_64;
Vshr_n, [Instruction_name ["vrshr"]; Rounding], Binary_imm Qreg,
"vRshrQ_n", shift_right, su_8_64;
Vshr_n, [], Narrow_imm, "vshrn_n", shift_right_sign_invar, su_16_64;
Vshr_n, [Instruction_name ["vrshrn"]; Rounding], Narrow_imm, "vRshrn_n",
shift_right_sign_invar, su_16_64;
Vshr_n, [Saturating], Narrow_imm, "vqshrn_n", shift_right, su_16_64;
Vshr_n, [Instruction_name ["vqrshrn"]; Saturating; Rounding], Narrow_imm,
"vqRshrn_n", shift_right, su_16_64;
Vshr_n, [Saturating; Dst_unsign], Narrow_imm, "vqshrun_n",
shift_right_to_uns, [S16; S32; S64];
Vshr_n, [Instruction_name ["vqrshrun"]; Saturating; Dst_unsign; Rounding],
Narrow_imm, "vqRshrun_n", shift_right_to_uns, [S16; S32; S64];
(* Vector shift left by constant. *)
Vshl_n, [], Binary_imm Dreg, "vshl_n", shift_left_sign_invar, su_8_64;
Vshl_n, [], Binary_imm Qreg, "vshlQ_n", shift_left_sign_invar, su_8_64;
Vshl_n, [Saturating], Binary_imm Dreg, "vqshl_n", shift_left, su_8_64;
Vshl_n, [Saturating], Binary_imm Qreg, "vqshlQ_n", shift_left, su_8_64;
Vshl_n, [Saturating; Dst_unsign], Binary_imm Dreg, "vqshlu_n",
shift_left_to_uns, [S8; S16; S32; S64];
Vshl_n, [Saturating; Dst_unsign], Binary_imm Qreg, "vqshluQ_n",
shift_left_to_uns, [S8; S16; S32; S64];
Vshl_n, [], Long_imm, "vshll_n", shift_left, su_8_32;
(* Vector shift right by constant and accumulate. *)
Vsra_n, [], Binary_imm Dreg, "vsra_n", shift_right_acc, su_8_64;
Vsra_n, [], Binary_imm Qreg, "vsraQ_n", shift_right_acc, su_8_64;
Vsra_n, [Instruction_name ["vrsra"]; Rounding], Binary_imm Dreg,
"vRsra_n", shift_right_acc, su_8_64;
Vsra_n, [Instruction_name ["vrsra"]; Rounding], Binary_imm Qreg,
"vRsraQ_n", shift_right_acc, su_8_64;
(* Vector shift right and insert. *)
Vsri, [], Use_operands [| Dreg; Dreg; Immed |], "vsri_n", shift_insert,
P8 :: P16 :: su_8_64;
Vsri, [], Use_operands [| Qreg; Qreg; Immed |], "vsriQ_n", shift_insert,
P8 :: P16 :: su_8_64;
(* Vector shift left and insert. *)
Vsli, [], Use_operands [| Dreg; Dreg; Immed |], "vsli_n", shift_insert,
P8 :: P16 :: su_8_64;
Vsli, [], Use_operands [| Qreg; Qreg; Immed |], "vsliQ_n", shift_insert,
P8 :: P16 :: su_8_64;
(* Absolute value. *)
Vabs, [], All (2, Dreg), "vabs", elts_same_1, [S8; S16; S32; F32];
Vabs, [], All (2, Qreg), "vabsQ", elts_same_1, [S8; S16; S32; F32];
Vabs, [Saturating], All (2, Dreg), "vqabs", elts_same_1, [S8; S16; S32];
Vabs, [Saturating], All (2, Qreg), "vqabsQ", elts_same_1, [S8; S16; S32];
(* Negate. *)
Vneg, [], All (2, Dreg), "vneg", elts_same_1, [S8; S16; S32; F32];
Vneg, [], All (2, Qreg), "vnegQ", elts_same_1, [S8; S16; S32; F32];
Vneg, [Saturating], All (2, Dreg), "vqneg", elts_same_1, [S8; S16; S32];
Vneg, [Saturating], All (2, Qreg), "vqnegQ", elts_same_1, [S8; S16; S32];
(* Bitwise not. *)
Vmvn, [], All (2, Dreg), "vmvn", notype_1, P8 :: su_8_32;
Vmvn, [], All (2, Qreg), "vmvnQ", notype_1, P8 :: su_8_32;
(* Count leading sign bits. *)
Vcls, [], All (2, Dreg), "vcls", elts_same_1, [S8; S16; S32];
Vcls, [], All (2, Qreg), "vclsQ", elts_same_1, [S8; S16; S32];
(* Count leading zeros. *)
Vclz, [], All (2, Dreg), "vclz", sign_invar_1, su_8_32;
Vclz, [], All (2, Qreg), "vclzQ", sign_invar_1, su_8_32;
(* Count number of set bits. *)
Vcnt, [], All (2, Dreg), "vcnt", bits_1, [P8; S8; U8];
Vcnt, [], All (2, Qreg), "vcntQ", bits_1, [P8; S8; U8];
(* Reciprocal estimate. *)
Vrecpe, [], All (2, Dreg), "vrecpe", elts_same_1, [U32; F32];
Vrecpe, [], All (2, Qreg), "vrecpeQ", elts_same_1, [U32; F32];
(* Reciprocal square-root estimate. *)
Vrsqrte, [], All (2, Dreg), "vrsqrte", elts_same_1, [U32; F32];
Vrsqrte, [], All (2, Qreg), "vrsqrteQ", elts_same_1, [U32; F32];
(* Get lanes from a vector. *)
Vget_lane,
[InfoWord; Disassembles_as [Use_operands [| Corereg; Element_of_dreg |]];
Instruction_name ["vmov"]],
Use_operands [| Corereg; Dreg; Immed |],
"vget_lane", get_lane, pf_su_8_32;
Vget_lane,
[InfoWord;
Disassembles_as [Use_operands [| Corereg; Corereg; Dreg |]];
Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)],
Use_operands [| Corereg; Dreg; Immed |],
"vget_lane", notype_2, [S64; U64];
Vget_lane,
[InfoWord; Disassembles_as [Use_operands [| Corereg; Element_of_dreg |]];
Instruction_name ["vmov"]],
Use_operands [| Corereg; Qreg; Immed |],
"vgetQ_lane", get_lane, pf_su_8_32;
Vget_lane,
[InfoWord;
Disassembles_as [Use_operands [| Corereg; Corereg; Dreg |]];
Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)],
Use_operands [| Corereg; Qreg; Immed |],
"vgetQ_lane", notype_2, [S64; U64];
(* Set lanes in a vector. *)
Vset_lane, [Disassembles_as [Use_operands [| Element_of_dreg; Corereg |]];
Instruction_name ["vmov"]],
Use_operands [| Dreg; Corereg; Dreg; Immed |], "vset_lane",
set_lane, pf_su_8_32;
Vset_lane, [Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]];
Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)],
Use_operands [| Dreg; Corereg; Dreg; Immed |], "vset_lane",
set_lane_notype, [S64; U64];
Vset_lane, [Disassembles_as [Use_operands [| Element_of_dreg; Corereg |]];
Instruction_name ["vmov"]],
Use_operands [| Qreg; Corereg; Qreg; Immed |], "vsetQ_lane",
set_lane, pf_su_8_32;
Vset_lane, [Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]];
Instruction_name ["vmov"]; Const_valuator (fun _ -> 0)],
Use_operands [| Qreg; Corereg; Qreg; Immed |], "vsetQ_lane",
set_lane_notype, [S64; U64];
(* Create vector from literal bit pattern. *)
Vcreate,
[No_op], (* Not really, but it can yield various things that are too
hard for the test generator at this time. *)
Use_operands [| Dreg; Corereg |], "vcreate", create_vector,
pf_su_8_64;
(* Set all lanes to the same value. *)
Vdup_n, [],
Use_operands [| Dreg; Corereg |], "vdup_n", bits_1,
pf_su_8_32;
Vdup_n,
[Instruction_name ["vmov"];
Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]],
Use_operands [| Dreg; Corereg |], "vdup_n", notype_1,
[S64; U64];
Vdup_n, [],
Use_operands [| Qreg; Corereg |], "vdupQ_n", bits_1,
pf_su_8_32;
Vdup_n,
[Instruction_name ["vmov"];
Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |];
Use_operands [| Dreg; Corereg; Corereg |]]],
Use_operands [| Qreg; Corereg |], "vdupQ_n", notype_1,
[S64; U64];
(* These are just aliases for the above. *)
Vmov_n,
[Builtin_name "vdup_n"],
Use_operands [| Dreg; Corereg |],
"vmov_n", bits_1, pf_su_8_32;
Vmov_n,
[Builtin_name "vdup_n";
Instruction_name ["vmov"];
Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |]]],
Use_operands [| Dreg; Corereg |],
"vmov_n", notype_1, [S64; U64];
Vmov_n,
[Builtin_name "vdupQ_n"],
Use_operands [| Qreg; Corereg |],
"vmovQ_n", bits_1, pf_su_8_32;
Vmov_n,
[Builtin_name "vdupQ_n";
Instruction_name ["vmov"];
Disassembles_as [Use_operands [| Dreg; Corereg; Corereg |];
Use_operands [| Dreg; Corereg; Corereg |]]],
Use_operands [| Qreg; Corereg |],
"vmovQ_n", notype_1, [S64; U64];
(* Duplicate, lane version. We can't use Use_operands here because the
rightmost register (always Dreg) would be picked up by find_key_operand,
when we want the leftmost register to be used in this case (otherwise
the modes are indistinguishable in neon.md, etc. *)
Vdup_lane,
[Disassembles_as [Use_operands [| Dreg; Element_of_dreg |]]],
Unary_scalar Dreg, "vdup_lane", bits_2, pf_su_8_32;
Vdup_lane,
[No_op; Const_valuator (fun _ -> 0)],
Unary_scalar Dreg, "vdup_lane", bits_2, [S64; U64];
Vdup_lane,
[Disassembles_as [Use_operands [| Qreg; Element_of_dreg |]]],
Unary_scalar Qreg, "vdupQ_lane", bits_2, pf_su_8_32;
Vdup_lane,
[No_op; Const_valuator (fun _ -> 0)],
Unary_scalar Qreg, "vdupQ_lane", bits_2, [S64; U64];
(* Combining vectors. *)
Vcombine, [No_op],
Use_operands [| Qreg; Dreg; Dreg |], "vcombine", notype_2,
pf_su_8_64;
(* Splitting vectors. *)
Vget_high, [No_op],
Use_operands [| Dreg; Qreg |], "vget_high",
notype_1, pf_su_8_64;
Vget_low, [Instruction_name ["vmov"];
Disassembles_as [Use_operands [| Dreg; Dreg |]]],
Use_operands [| Dreg; Qreg |], "vget_low",
notype_1, pf_su_8_64;
(* Conversions. *)
Vcvt, [InfoWord], All (2, Dreg), "vcvt", conv_1,
[Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)];
Vcvt, [InfoWord], All (2, Qreg), "vcvtQ", conv_1,
[Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)];
Vcvt_n, [InfoWord], Use_operands [| Dreg; Dreg; Immed |], "vcvt_n", conv_2,
[Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)];
Vcvt_n, [InfoWord], Use_operands [| Qreg; Qreg; Immed |], "vcvtQ_n", conv_2,
[Conv (S32, F32); Conv (U32, F32); Conv (F32, S32); Conv (F32, U32)];
(* Move, narrowing. *)
Vmovn, [Disassembles_as [Use_operands [| Dreg; Qreg |]]],
Narrow, "vmovn", sign_invar_1, su_16_64;
Vmovn, [Disassembles_as [Use_operands [| Dreg; Qreg |]]; Saturating],
Narrow, "vqmovn", elts_same_1, su_16_64;
Vmovn,
[Disassembles_as [Use_operands [| Dreg; Qreg |]]; Saturating; Dst_unsign],
Narrow, "vqmovun", dst_unsign_1,
[S16; S32; S64];
(* Move, long. *)
Vmovl, [Disassembles_as [Use_operands [| Qreg; Dreg |]]],
Long, "vmovl", elts_same_1, su_8_32;
(* Table lookup. *)
Vtbl 1,
[Instruction_name ["vtbl"];
Disassembles_as [Use_operands [| Dreg; VecArray (1, Dreg); Dreg |]]],
Use_operands [| Dreg; Dreg; Dreg |], "vtbl1", table_2, [U8; S8; P8];
Vtbl 2, [Instruction_name ["vtbl"]],
Use_operands [| Dreg; VecArray (2, Dreg); Dreg |], "vtbl2", table_2,
[U8; S8; P8];
Vtbl 3, [Instruction_name ["vtbl"]],
Use_operands [| Dreg; VecArray (3, Dreg); Dreg |], "vtbl3", table_2,
[U8; S8; P8];
Vtbl 4, [Instruction_name ["vtbl"]],
Use_operands [| Dreg; VecArray (4, Dreg); Dreg |], "vtbl4", table_2,
[U8; S8; P8];
(* Extended table lookup. *)
Vtbx 1,
[Instruction_name ["vtbx"];
Disassembles_as [Use_operands [| Dreg; VecArray (1, Dreg); Dreg |]]],
Use_operands [| Dreg; Dreg; Dreg |], "vtbx1", table_io, [U8; S8; P8];
Vtbx 2, [Instruction_name ["vtbx"]],
Use_operands [| Dreg; VecArray (2, Dreg); Dreg |], "vtbx2", table_io,
[U8; S8; P8];
Vtbx 3, [Instruction_name ["vtbx"]],
Use_operands [| Dreg; VecArray (3, Dreg); Dreg |], "vtbx3", table_io,
[U8; S8; P8];
Vtbx 4, [Instruction_name ["vtbx"]],
Use_operands [| Dreg; VecArray (4, Dreg); Dreg |], "vtbx4", table_io,
[U8; S8; P8];
(* Multiply, lane. (note: these were undocumented at the time of
writing). *)
Vmul_lane, [], By_scalar Dreg, "vmul_lane", sign_invar_2_lane,
[S16; S32; U16; U32; F32];
Vmul_lane, [], By_scalar Qreg, "vmulQ_lane", sign_invar_2_lane,
[S16; S32; U16; U32; F32];
(* Multiply-accumulate, lane. *)
Vmla_lane, [], By_scalar Dreg, "vmla_lane", sign_invar_io_lane,
[S16; S32; U16; U32; F32];
Vmla_lane, [], By_scalar Qreg, "vmlaQ_lane", sign_invar_io_lane,
[S16; S32; U16; U32; F32];
Vmla_lane, [], Wide_lane, "vmlal_lane", elts_same_io_lane,
[S16; S32; U16; U32];
Vmla_lane, [Saturating; Doubling], Wide_lane, "vqdmlal_lane",
elts_same_io_lane, [S16; S32];
(* Multiply-subtract, lane. *)
Vmls_lane, [], By_scalar Dreg, "vmls_lane", sign_invar_io_lane,
[S16; S32; U16; U32; F32];
Vmls_lane, [], By_scalar Qreg, "vmlsQ_lane", sign_invar_io_lane,
[S16; S32; U16; U32; F32];
Vmls_lane, [], Wide_lane, "vmlsl_lane", elts_same_io_lane,
[S16; S32; U16; U32];
Vmls_lane, [Saturating; Doubling], Wide_lane, "vqdmlsl_lane",
elts_same_io_lane, [S16; S32];
(* Long multiply, lane. *)
Vmull_lane, [],
Wide_lane, "vmull_lane", elts_same_2_lane, [S16; S32; U16; U32];
(* Saturating doubling long multiply, lane. *)
Vqdmull_lane, [Saturating; Doubling],
Wide_lane, "vqdmull_lane", elts_same_2_lane, [S16; S32];
(* Saturating doubling long multiply high, lane. *)
Vqdmulh_lane, [Saturating; Halving],
By_scalar Qreg, "vqdmulhQ_lane", elts_same_2_lane, [S16; S32];
Vqdmulh_lane, [Saturating; Halving],
By_scalar Dreg, "vqdmulh_lane", elts_same_2_lane, [S16; S32];
Vqdmulh_lane, [Saturating; Halving; Rounding;
Instruction_name ["vqrdmulh"]],
By_scalar Qreg, "vqRdmulhQ_lane", elts_same_2_lane, [S16; S32];
Vqdmulh_lane, [Saturating; Halving; Rounding;
Instruction_name ["vqrdmulh"]],
By_scalar Dreg, "vqRdmulh_lane", elts_same_2_lane, [S16; S32];
(* Vector multiply by scalar. *)
Vmul_n, [InfoWord;
Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]],
Use_operands [| Dreg; Dreg; Corereg |], "vmul_n",
sign_invar_2, [S16; S32; U16; U32; F32];
Vmul_n, [InfoWord;
Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]],
Use_operands [| Qreg; Qreg; Corereg |], "vmulQ_n",
sign_invar_2, [S16; S32; U16; U32; F32];
(* Vector long multiply by scalar. *)
Vmull_n, [Instruction_name ["vmull"];
Disassembles_as [Use_operands [| Qreg; Dreg; Element_of_dreg |]]],
Wide_scalar, "vmull_n",
elts_same_2, [S16; S32; U16; U32];
(* Vector saturating doubling long multiply by scalar. *)
Vqdmull_n, [Saturating; Doubling;
Disassembles_as [Use_operands [| Qreg; Dreg;
Element_of_dreg |]]],
Wide_scalar, "vqdmull_n",
elts_same_2, [S16; S32];
(* Vector saturating doubling long multiply high by scalar. *)
Vqdmulh_n,
[Saturating; Halving; InfoWord;
Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]],
Use_operands [| Qreg; Qreg; Corereg |],
"vqdmulhQ_n", elts_same_2, [S16; S32];
Vqdmulh_n,
[Saturating; Halving; InfoWord;
Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]],
Use_operands [| Dreg; Dreg; Corereg |],
"vqdmulh_n", elts_same_2, [S16; S32];
Vqdmulh_n,
[Saturating; Halving; Rounding; InfoWord;
Instruction_name ["vqrdmulh"];
Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]],
Use_operands [| Qreg; Qreg; Corereg |],
"vqRdmulhQ_n", elts_same_2, [S16; S32];
Vqdmulh_n,
[Saturating; Halving; Rounding; InfoWord;
Instruction_name ["vqrdmulh"];
Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]],
Use_operands [| Dreg; Dreg; Corereg |],
"vqRdmulh_n", elts_same_2, [S16; S32];
(* Vector multiply-accumulate by scalar. *)
Vmla_n, [InfoWord;
Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]],
Use_operands [| Dreg; Dreg; Corereg |], "vmla_n",
sign_invar_io, [S16; S32; U16; U32; F32];
Vmla_n, [InfoWord;
Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]],
Use_operands [| Qreg; Qreg; Corereg |], "vmlaQ_n",
sign_invar_io, [S16; S32; U16; U32; F32];
Vmla_n, [], Wide_scalar, "vmlal_n", elts_same_io, [S16; S32; U16; U32];
Vmla_n, [Saturating; Doubling], Wide_scalar, "vqdmlal_n", elts_same_io,
[S16; S32];
(* Vector multiply subtract by scalar. *)
Vmls_n, [InfoWord;
Disassembles_as [Use_operands [| Dreg; Dreg; Element_of_dreg |]]],
Use_operands [| Dreg; Dreg; Corereg |], "vmls_n",
sign_invar_io, [S16; S32; U16; U32; F32];
Vmls_n, [InfoWord;
Disassembles_as [Use_operands [| Qreg; Qreg; Element_of_dreg |]]],
Use_operands [| Qreg; Qreg; Corereg |], "vmlsQ_n",
sign_invar_io, [S16; S32; U16; U32; F32];
Vmls_n, [], Wide_scalar, "vmlsl_n", elts_same_io, [S16; S32; U16; U32];
Vmls_n, [Saturating; Doubling], Wide_scalar, "vqdmlsl_n", elts_same_io,
[S16; S32];
(* Vector extract. *)
Vext, [Const_valuator (fun _ -> 0)],
Use_operands [| Dreg; Dreg; Dreg; Immed |], "vext", extend,
pf_su_8_64;
Vext, [Const_valuator (fun _ -> 0)],
Use_operands [| Qreg; Qreg; Qreg; Immed |], "vextQ", extend,
pf_su_8_64;
(* Reverse elements. *)
Vrev64, [], All (2, Dreg), "vrev64", bits_1, P8 :: P16 :: F32 :: su_8_32;
Vrev64, [], All (2, Qreg), "vrev64Q", bits_1, P8 :: P16 :: F32 :: su_8_32;
Vrev32, [], All (2, Dreg), "vrev32", bits_1, [P8; P16; S8; U8; S16; U16];
Vrev32, [], All (2, Qreg), "vrev32Q", bits_1, [P8; P16; S8; U8; S16; U16];
Vrev16, [], All (2, Dreg), "vrev16", bits_1, [P8; S8; U8];
Vrev16, [], All (2, Qreg), "vrev16Q", bits_1, [P8; S8; U8];
(* Bit selection. *)
Vbsl,
[Instruction_name ["vbsl"; "vbit"; "vbif"];
Disassembles_as [Use_operands [| Dreg; Dreg; Dreg |]]],
Use_operands [| Dreg; Dreg; Dreg; Dreg |], "vbsl", bit_select,
pf_su_8_64;
Vbsl,
[Instruction_name ["vbsl"; "vbit"; "vbif"];
Disassembles_as [Use_operands [| Qreg; Qreg; Qreg |]]],
Use_operands [| Qreg; Qreg; Qreg; Qreg |], "vbslQ", bit_select,
pf_su_8_64;
(* Transpose elements. **NOTE** ReturnPtr goes some of the way towards
generating good code for intrinsics which return structure types --
builtins work well by themselves (and understand that the values being
stored on e.g. the stack also reside in registers, so can optimise the
stores away entirely if the results are used immediately), but
intrinsics are very much less efficient. Maybe something can be improved
re: inlining, or tweaking the ABI used for intrinsics (a special call
attribute?).
*)
Vtrn, [ReturnPtr], Pair_result Dreg, "vtrn", bits_2, pf_su_8_32;
Vtrn, [ReturnPtr], Pair_result Qreg, "vtrnQ", bits_2, pf_su_8_32;
(* Zip elements. *)
Vzip, [ReturnPtr], Pair_result Dreg, "vzip", bits_2, pf_su_8_32;
Vzip, [ReturnPtr], Pair_result Qreg, "vzipQ", bits_2, pf_su_8_32;
(* Unzip elements. *)
Vuzp, [ReturnPtr], Pair_result Dreg, "vuzp", bits_2, pf_su_8_32;
Vuzp, [ReturnPtr], Pair_result Qreg, "vuzpQ", bits_2, pf_su_8_32;
(* Element/structure loads. VLD1 variants. *)
Vldx 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| Dreg; CstPtrTo Corereg |], "vld1", bits_1,
pf_su_8_64;
Vldx 1, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q", bits_1,
pf_su_8_64;
Vldx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| Dreg; CstPtrTo Corereg; Dreg; Immed |],
"vld1_lane", bits_3, pf_su_8_32;
Vldx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]];
Const_valuator (fun _ -> 0)],
Use_operands [| Dreg; CstPtrTo Corereg; Dreg; Immed |],
"vld1_lane", bits_3, [S64; U64];
Vldx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| Qreg; CstPtrTo Corereg; Qreg; Immed |],
"vld1Q_lane", bits_3, pf_su_8_32;
Vldx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| Qreg; CstPtrTo Corereg; Qreg; Immed |],
"vld1Q_lane", bits_3, [S64; U64];
Vldx_dup 1,
[Disassembles_as [Use_operands [| VecArray (1, All_elements_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| Dreg; CstPtrTo Corereg |], "vld1_dup",
bits_1, pf_su_8_32;
Vldx_dup 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| Dreg; CstPtrTo Corereg |], "vld1_dup",
bits_1, [S64; U64];
Vldx_dup 1,
[Disassembles_as [Use_operands [| VecArray (2, All_elements_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q_dup",
bits_1, pf_su_8_32;
Vldx_dup 1,
[Disassembles_as [Use_operands [| VecArray (2, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| Qreg; CstPtrTo Corereg |], "vld1Q_dup",
bits_1, [S64; U64];
(* VST1 variants. *)
Vstx 1, [Disassembles_as [Use_operands [| VecArray (1, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; Dreg |], "vst1",
store_1, pf_su_8_64;
Vstx 1, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; Qreg |], "vst1Q",
store_1, pf_su_8_64;
Vstx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; Dreg; Immed |],
"vst1_lane", store_3, pf_su_8_32;
Vstx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]];
Const_valuator (fun _ -> 0)],
Use_operands [| PtrTo Corereg; Dreg; Immed |],
"vst1_lane", store_3, [U64; S64];
Vstx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; Qreg; Immed |],
"vst1Q_lane", store_3, pf_su_8_32;
Vstx_lane 1,
[Disassembles_as [Use_operands [| VecArray (1, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; Qreg; Immed |],
"vst1Q_lane", store_3, [U64; S64];
(* VLD2 variants. *)
Vldx 2, [], Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |],
"vld2", bits_1, pf_su_8_32;
Vldx 2, [Instruction_name ["vld1"]],
Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |],
"vld2", bits_1, [S64; U64];
Vldx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
CstPtrTo Corereg |];
Use_operands [| VecArray (2, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (2, Qreg); CstPtrTo Corereg |],
"vld2Q", bits_1, pf_su_8_32;
Vldx_lane 2,
[Disassembles_as [Use_operands
[| VecArray (2, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg;
VecArray (2, Dreg); Immed |],
"vld2_lane", bits_3, P8 :: P16 :: F32 :: su_8_32;
Vldx_lane 2,
[Disassembles_as [Use_operands
[| VecArray (2, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (2, Qreg); CstPtrTo Corereg;
VecArray (2, Qreg); Immed |],
"vld2Q_lane", bits_3, [P16; F32; U16; U32; S16; S32];
Vldx_dup 2,
[Disassembles_as [Use_operands
[| VecArray (2, All_elements_of_dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |],
"vld2_dup", bits_1, pf_su_8_32;
Vldx_dup 2,
[Instruction_name ["vld1"]; Disassembles_as [Use_operands
[| VecArray (2, Dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (2, Dreg); CstPtrTo Corereg |],
"vld2_dup", bits_1, [S64; U64];
(* VST2 variants. *)
Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (2, Dreg) |], "vst2",
store_1, pf_su_8_32;
Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
PtrTo Corereg |]];
Instruction_name ["vst1"]],
Use_operands [| PtrTo Corereg; VecArray (2, Dreg) |], "vst2",
store_1, [S64; U64];
Vstx 2, [Disassembles_as [Use_operands [| VecArray (2, Dreg);
PtrTo Corereg |];
Use_operands [| VecArray (2, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (2, Qreg) |], "vst2Q",
store_1, pf_su_8_32;
Vstx_lane 2,
[Disassembles_as [Use_operands
[| VecArray (2, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (2, Dreg); Immed |], "vst2_lane",
store_3, P8 :: P16 :: F32 :: su_8_32;
Vstx_lane 2,
[Disassembles_as [Use_operands
[| VecArray (2, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (2, Qreg); Immed |], "vst2Q_lane",
store_3, [P16; F32; U16; U32; S16; S32];
(* VLD3 variants. *)
Vldx 3, [], Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |],
"vld3", bits_1, pf_su_8_32;
Vldx 3, [Instruction_name ["vld1"]],
Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |],
"vld3", bits_1, [S64; U64];
Vldx 3, [Disassembles_as [Use_operands [| VecArray (3, Dreg);
CstPtrTo Corereg |];
Use_operands [| VecArray (3, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (3, Qreg); CstPtrTo Corereg |],
"vld3Q", bits_1, P8 :: P16 :: F32 :: su_8_32;
Vldx_lane 3,
[Disassembles_as [Use_operands
[| VecArray (3, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg;
VecArray (3, Dreg); Immed |],
"vld3_lane", bits_3, P8 :: P16 :: F32 :: su_8_32;
Vldx_lane 3,
[Disassembles_as [Use_operands
[| VecArray (3, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (3, Qreg); CstPtrTo Corereg;
VecArray (3, Qreg); Immed |],
"vld3Q_lane", bits_3, [P16; F32; U16; U32; S16; S32];
Vldx_dup 3,
[Disassembles_as [Use_operands
[| VecArray (3, All_elements_of_dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |],
"vld3_dup", bits_1, pf_su_8_32;
Vldx_dup 3,
[Instruction_name ["vld1"]; Disassembles_as [Use_operands
[| VecArray (3, Dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (3, Dreg); CstPtrTo Corereg |],
"vld3_dup", bits_1, [S64; U64];
(* VST3 variants. *)
Vstx 3, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (3, Dreg) |], "vst3",
store_1, pf_su_8_32;
Vstx 3, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |]];
Instruction_name ["vst1"]],
Use_operands [| PtrTo Corereg; VecArray (3, Dreg) |], "vst3",
store_1, [S64; U64];
Vstx 3, [Disassembles_as [Use_operands [| VecArray (3, Dreg);
PtrTo Corereg |];
Use_operands [| VecArray (3, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (3, Qreg) |], "vst3Q",
store_1, pf_su_8_32;
Vstx_lane 3,
[Disassembles_as [Use_operands
[| VecArray (3, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (3, Dreg); Immed |], "vst3_lane",
store_3, P8 :: P16 :: F32 :: su_8_32;
Vstx_lane 3,
[Disassembles_as [Use_operands
[| VecArray (3, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (3, Qreg); Immed |], "vst3Q_lane",
store_3, [P16; F32; U16; U32; S16; S32];
(* VLD4/VST4 variants. *)
Vldx 4, [], Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |],
"vld4", bits_1, pf_su_8_32;
Vldx 4, [Instruction_name ["vld1"]],
Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |],
"vld4", bits_1, [S64; U64];
Vldx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
CstPtrTo Corereg |];
Use_operands [| VecArray (4, Dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (4, Qreg); CstPtrTo Corereg |],
"vld4Q", bits_1, P8 :: P16 :: F32 :: su_8_32;
Vldx_lane 4,
[Disassembles_as [Use_operands
[| VecArray (4, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg;
VecArray (4, Dreg); Immed |],
"vld4_lane", bits_3, P8 :: P16 :: F32 :: su_8_32;
Vldx_lane 4,
[Disassembles_as [Use_operands
[| VecArray (4, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| VecArray (4, Qreg); CstPtrTo Corereg;
VecArray (4, Qreg); Immed |],
"vld4Q_lane", bits_3, [P16; F32; U16; U32; S16; S32];
Vldx_dup 4,
[Disassembles_as [Use_operands
[| VecArray (4, All_elements_of_dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |],
"vld4_dup", bits_1, pf_su_8_32;
Vldx_dup 4,
[Instruction_name ["vld1"]; Disassembles_as [Use_operands
[| VecArray (4, Dreg); CstPtrTo Corereg |]]],
Use_operands [| VecArray (4, Dreg); CstPtrTo Corereg |],
"vld4_dup", bits_1, [S64; U64];
Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (4, Dreg) |], "vst4",
store_1, pf_su_8_32;
Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |]];
Instruction_name ["vst1"]],
Use_operands [| PtrTo Corereg; VecArray (4, Dreg) |], "vst4",
store_1, [S64; U64];
Vstx 4, [Disassembles_as [Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |];
Use_operands [| VecArray (4, Dreg);
PtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (4, Qreg) |], "vst4Q",
store_1, pf_su_8_32;
Vstx_lane 4,
[Disassembles_as [Use_operands
[| VecArray (4, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (4, Dreg); Immed |], "vst4_lane",
store_3, P8 :: P16 :: F32 :: su_8_32;
Vstx_lane 4,
[Disassembles_as [Use_operands
[| VecArray (4, Element_of_dreg);
CstPtrTo Corereg |]]],
Use_operands [| PtrTo Corereg; VecArray (4, Qreg); Immed |], "vst4Q_lane",
store_3, [P16; F32; U16; U32; S16; S32];
(* Logical operations. And. *)
Vand, [], All (3, Dreg), "vand", notype_2, su_8_64;
Vand, [], All (3, Qreg), "vandQ", notype_2, su_8_64;
(* Or. *)
Vorr, [], All (3, Dreg), "vorr", notype_2, su_8_64;
Vorr, [], All (3, Qreg), "vorrQ", notype_2, su_8_64;
(* Eor. *)
Veor, [], All (3, Dreg), "veor", notype_2, su_8_64;
Veor, [], All (3, Qreg), "veorQ", notype_2, su_8_64;
(* Bic (And-not). *)
Vbic, [], All (3, Dreg), "vbic", notype_2, su_8_64;
Vbic, [], All (3, Qreg), "vbicQ", notype_2, su_8_64;
(* Or-not. *)
Vorn, [], All (3, Dreg), "vorn", notype_2, su_8_64;
Vorn, [], All (3, Qreg), "vornQ", notype_2, su_8_64;
]
let reinterp =
let elems = P8 :: P16 :: F32 :: su_8_64 in
List.fold_right
(fun convto acc ->
let types = List.fold_right
(fun convfrom acc ->
if convfrom <> convto then
Cast (convto, convfrom) :: acc
else
acc)
elems
[]
in
let dconv = Vreinterp, [No_op], Use_operands [| Dreg; Dreg |],
"vreinterpret", conv_1, types
and qconv = Vreinterp, [No_op], Use_operands [| Qreg; Qreg |],
"vreinterpretQ", conv_1, types in
dconv :: qconv :: acc)
elems
[]
(* Output routines. *)
let rec string_of_elt = function
S8 -> "s8" | S16 -> "s16" | S32 -> "s32" | S64 -> "s64"
| U8 -> "u8" | U16 -> "u16" | U32 -> "u32" | U64 -> "u64"
| I8 -> "i8" | I16 -> "i16" | I32 -> "i32" | I64 -> "i64"
| B8 -> "8" | B16 -> "16" | B32 -> "32" | B64 -> "64"
| F32 -> "f32" | P8 -> "p8" | P16 -> "p16"
| Conv (a, b) | Cast (a, b) -> string_of_elt a ^ "_" ^ string_of_elt b
| NoElts -> failwith "No elts"
let string_of_elt_dots elt =
match elt with
Conv (a, b) | Cast (a, b) -> string_of_elt a ^ "." ^ string_of_elt b
| _ -> string_of_elt elt
let string_of_vectype vt =
let rec name affix = function
T_int8x8 -> affix "int8x8"
| T_int8x16 -> affix "int8x16"
| T_int16x4 -> affix "int16x4"
| T_int16x8 -> affix "int16x8"
| T_int32x2 -> affix "int32x2"
| T_int32x4 -> affix "int32x4"
| T_int64x1 -> affix "int64x1"
| T_int64x2 -> affix "int64x2"
| T_uint8x8 -> affix "uint8x8"
| T_uint8x16 -> affix "uint8x16"
| T_uint16x4 -> affix "uint16x4"
| T_uint16x8 -> affix "uint16x8"
| T_uint32x2 -> affix "uint32x2"
| T_uint32x4 -> affix "uint32x4"
| T_uint64x1 -> affix "uint64x1"
| T_uint64x2 -> affix "uint64x2"
| T_float32x2 -> affix "float32x2"
| T_float32x4 -> affix "float32x4"
| T_poly8x8 -> affix "poly8x8"
| T_poly8x16 -> affix "poly8x16"
| T_poly16x4 -> affix "poly16x4"
| T_poly16x8 -> affix "poly16x8"
| T_int8 -> affix "int8"
| T_int16 -> affix "int16"
| T_int32 -> affix "int32"
| T_int64 -> affix "int64"
| T_uint8 -> affix "uint8"
| T_uint16 -> affix "uint16"
| T_uint32 -> affix "uint32"
| T_uint64 -> affix "uint64"
| T_poly8 -> affix "poly8"
| T_poly16 -> affix "poly16"
| T_float32 -> affix "float32"
| T_immediate _ -> "const int"
| T_void -> "void"
| T_intQI -> "__builtin_neon_qi"
| T_intHI -> "__builtin_neon_hi"
| T_intSI -> "__builtin_neon_si"
| T_intDI -> "__builtin_neon_di"
| T_arrayof (num, base) ->
let basename = name (fun x -> x) base in
affix (Printf.sprintf "%sx%d" basename num)
| T_ptrto x ->
let basename = name affix x in
Printf.sprintf "%s *" basename
| T_const x ->
let basename = name affix x in
Printf.sprintf "const %s" basename
in
name (fun x -> x ^ "_t") vt
let string_of_inttype = function
B_TImode -> "__builtin_neon_ti"
| B_EImode -> "__builtin_neon_ei"
| B_OImode -> "__builtin_neon_oi"
| B_CImode -> "__builtin_neon_ci"
| B_XImode -> "__builtin_neon_xi"
let string_of_mode = function
V8QI -> "v8qi" | V4HI -> "v4hi" | V2SI -> "v2si" | V2SF -> "v2sf"
| DI -> "di" | V16QI -> "v16qi" | V8HI -> "v8hi" | V4SI -> "v4si"
| V4SF -> "v4sf" | V2DI -> "v2di" | QI -> "qi" | HI -> "hi" | SI -> "si"
| SF -> "sf"
(* Use uppercase chars for letters which form part of the intrinsic name, but
should be omitted from the builtin name (the info is passed in an extra
argument, instead). *)
let intrinsic_name name = String.lowercase name
(* Allow the name of the builtin to be overridden by things (e.g. Flipped)
found in the features list. *)
let builtin_name features name =
let name = List.fold_right
(fun el name ->
match el with
Flipped x | Builtin_name x -> x
| _ -> name)
features name in
let islower x = let str = String.make 1 x in (String.lowercase str) = str
and buf = Buffer.create (String.length name) in
String.iter (fun c -> if islower c then Buffer.add_char buf c) name;
Buffer.contents buf
(* Transform an arity into a list of strings. *)
let strings_of_arity a =
match a with
| Arity0 vt -> [string_of_vectype vt]
| Arity1 (vt1, vt2) -> [string_of_vectype vt1; string_of_vectype vt2]
| Arity2 (vt1, vt2, vt3) -> [string_of_vectype vt1;
string_of_vectype vt2;
string_of_vectype vt3]
| Arity3 (vt1, vt2, vt3, vt4) -> [string_of_vectype vt1;
string_of_vectype vt2;
string_of_vectype vt3;
string_of_vectype vt4]
| Arity4 (vt1, vt2, vt3, vt4, vt5) -> [string_of_vectype vt1;
string_of_vectype vt2;
string_of_vectype vt3;
string_of_vectype vt4;
string_of_vectype vt5]
(* Suffixes on the end of builtin names that are to be stripped in order
to obtain the name used as an instruction. They are only stripped if
preceded immediately by an underscore. *)
let suffixes_to_strip = [ "n"; "lane"; "dup" ]
(* Get the possible names of an instruction corresponding to a "name" from the
ops table. This is done by getting the equivalent builtin name and
stripping any suffixes from the list at the top of this file, unless
the features list presents with an Instruction_name entry, in which
case that is used; or unless the features list presents with a Flipped
entry, in which case that is used. If both such entries are present,
the first in the list will be chosen. *)
let get_insn_names features name =
let names = try
begin
match List.find (fun feature -> match feature with
Instruction_name _ -> true
| Flipped _ -> true
| _ -> false) features
with
Instruction_name names -> names
| Flipped name -> [name]
| _ -> assert false
end
with Not_found -> [builtin_name features name]
in
begin
List.map (fun name' ->
try
let underscore = String.rindex name' '_' in
let our_suffix = String.sub name' (underscore + 1)
((String.length name') - underscore - 1)
in
let rec strip remaining_suffixes =
match remaining_suffixes with
[] -> name'
| s::ss when our_suffix = s -> String.sub name' 0 underscore
| _::ss -> strip ss
in
strip suffixes_to_strip
with (Not_found | Invalid_argument _) -> name') names
end
(* Apply a function to each element of a list and then comma-separate
the resulting strings. *)
let rec commas f elts acc =
match elts with
[] -> acc
| [elt] -> acc ^ (f elt)
| elt::elts ->
commas f elts (acc ^ (f elt) ^ ", ")
(* Given a list of features and the shape specified in the "ops" table, apply
a function to each possible shape that the instruction may have.
By default, this is the "shape" entry in "ops". If the features list
contains a Disassembles_as entry, the shapes contained in that entry are
mapped to corresponding outputs and returned in a list. If there is more
than one Disassembles_as entry, only the first is used. *)
let analyze_all_shapes features shape f =
try
match List.find (fun feature ->
match feature with Disassembles_as _ -> true
| _ -> false)
features with
Disassembles_as shapes -> List.map f shapes
| _ -> assert false
with Not_found -> [f shape]
|