1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
|
/* Definitions of target machine for GNU compiler, Argonaut EPIPHANY cpu.
Copyright (C) 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005,
2007, 2009, 2011 Free Software Foundation, Inc.
Contributed by Embecosm on behalf of Adapteva, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_EPIPHANY_H
#define GCC_EPIPHANY_H
#undef LINK_SPEC
#undef STARTFILE_SPEC
#undef ENDFILE_SPEC
#undef SIZE_TYPE
#undef PTRDIFF_TYPE
#undef WCHAR_TYPE
#undef WCHAR_TYPE_SIZE
/* Names to predefine in the preprocessor for this target machine. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__epiphany__"); \
builtin_define ("__little_endian__"); \
builtin_define_with_int_value ("__EPIPHANY_STACK_OFFSET__", \
epiphany_stack_offset); \
builtin_assert ("cpu=epiphany"); \
builtin_assert ("machine=epiphany"); \
} while (0)
/* Pick up the libgloss library. One day we may do this by linker script, but
for now its static. */
#undef LIB_SPEC
#define LIB_SPEC "%{!shared:%{g*:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}} -lepiphany"
#define LINK_SPEC "%{v}"
#define STARTFILE_SPEC "%{!shared:crt0.o%s} crti.o%s " \
"%{mfp-mode=int:crtint.o%s} %{mfp-mode=truncate:crtrunc.o%s} " \
"%{m1reg-r43:crtm1reg-r43.o%s} %{m1reg-r63:crtm1reg-r63.o%s} " \
"crtbegin.o%s"
#define ENDFILE_SPEC "crtend.o%s crtn.o%s"
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
mov r0,%low(" USER_LABEL_PREFIX #FUNC")\n\
movt r0,%high(" USER_LABEL_PREFIX #FUNC")\n\
jalr r0\n\
.text");
#if 0 /* We would like to use Posix for profiling, but the simulator
interface still lacks mkdir. */
#define TARGET_POSIX_IO
#endif
/* Target machine storage layout. */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN 0
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
/* It is far faster to zero extend chars than to sign extend them */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
{ \
if (MODE == QImode) \
UNSIGNEDP = 1; \
else if (MODE == HImode) \
UNSIGNEDP = 1; \
(MODE) = SImode; \
}
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 64
/* ALIGN FRAMES on word boundaries */
#define EPIPHANY_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bit-field declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* No data type wants to be aligned rounder than this. */
/* This is bigger than currently necessary for the EPIPHANY. If 8 byte floats are
ever added it's not clear whether they'll need such alignment or not. For
now we assume they will. We can always relax it if necessary but the
reverse isn't true. */
#define BIGGEST_ALIGNMENT 64
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT 64
#define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
/* Make strings dword-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* Make arrays of chars dword-aligned for the same reasons.
Also, align arrays of SImode items. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT \
? FASTEST_ALIGNMENT \
: (TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == SImode \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT \
: (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
/* On the EPIPHANY the lower address bits are masked to 0 as necessary. The chip
won't croak when given an unaligned address, but the insn will still fail
to produce the correct result. */
#define STRICT_ALIGNMENT 1
/* layout_type overrides our ADJUST_ALIGNMENT settings from epiphany-modes.def
for vector modes, so we have to override it back. */
#define ROUND_TYPE_ALIGN(TYPE, MANGLED_ALIGN, SPECIFIED_ALIGN) \
(TREE_CODE (TYPE) == VECTOR_TYPE && !TYPE_USER_ALIGN (TYPE) \
&& SPECIFIED_ALIGN <= GET_MODE_ALIGNMENT (TYPE_MODE (TYPE)) \
? GET_MODE_ALIGNMENT (TYPE_MODE (TYPE)) \
: ((TREE_CODE (TYPE) == RECORD_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
&& !TYPE_PACKED (TYPE)) \
? epiphany_special_round_type_align ((TYPE), (MANGLED_ALIGN), \
(SPECIFIED_ALIGN)) \
: MAX ((MANGLED_ALIGN), (SPECIFIED_ALIGN)))
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
epiphany_adjust_field_align((FIELD), (COMPUTED))
/* Layout of source language data types. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define WCHAR_TYPE "unsigned int"
#define WCHAR_TYPE_SIZE BITS_PER_WORD
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 78
/* General purpose registers. */
#define GPR_FIRST 0 /* First gpr */
#define PIC_REGNO (GPR_FIRST + 28) /* PIC register. */
#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
#define CORE_CONTROL_FIRST CONFIG_REGNUM
#define CORE_CONTROL_LAST IRET_REGNUM
#define GPR_P(R) IN_RANGE (R, GPR_FIRST, GPR_LAST)
#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define FIXED_REGISTERS \
{ /* Integer Registers */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
0, 0, 0, 0, 0, 1, 0, 0, /* 008-015, gr8 - gr15 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
1, 1, 1, 1, 0, 0, 0, 0, /* 040-047, gr40 - gr47 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
/* Other registers */ \
1, /* 64 AP - fake arg ptr */ \
1, /* soft frame pointer */ \
1, /* CC_REGNUM - integer conditions */\
1, /* CCFP_REGNUM - fp conditions */\
1, 1, 1, 1, 1, 1, /* Core Control Registers. */ \
1, 1, 1, /* FP_{NEAREST,...}_REGNUM */\
1, /* UNKNOWN_REGNUM - placeholder. */\
}
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
general) by function calls as well as for fixed registers. This macro
therefore identifies the registers that are not available for general
allocation of values that must live across function calls.
If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
saves it on function entry and restores it on function exit, if the register
is used within the function. */
#define CALL_USED_REGISTERS \
{ /* Integer Registers */ \
1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
0, 0, 0, 0, 1, 1, 1, 0, /* 008-015, gr8 - gr15 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 016-023, gr16 - gr23 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr38 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 040-047, gr40 - gr47 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 048-055, gr48 - gr55 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 056-063, gr56 - gr63 */ \
1, /* 64 AP - fake arg ptr */ \
1, /* soft frame pointer */ \
1, /* 66 CC_REGNUM */ \
1, /* 67 CCFP_REGNUM */ \
1, 1, 1, 1, 1, 1, /* Core Control Registers. */ \
1, 1, 1, /* FP_{NEAREST,...}_REGNUM */\
1, /* UNKNOWN_REGNUM - placeholder. */\
}
#define REG_ALLOC_ORDER \
{ \
0, 1, 2, 3, /* Caller-saved 'small' registers. */ \
12, /* Caller-saved unpaired register. */ \
/* Caller-saved registers. */ \
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, \
56, 57, 58, 59, 60, 61, 62, 63, \
4, 5, 6, 7, /* Calle-saved 'small' registers. */ \
15, /* Calle-saved unpaired register. */ \
8, 9, 10, 11, /* Calle-saved registers. */ \
32, 33, 34, 35, 36, 37, 38, 39, \
14, 13, /* Link register, stack pointer. */ \
40, 41, 42, 43, /* Usually constant, but might be made callee-saved. */ \
/* Can't allocate, but must name these... */ \
28, 29, 30, 31, \
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77 \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
extern const unsigned int epiphany_hard_regno_mode_ok[];
extern unsigned int epiphany_mode_class[];
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
MODE2)' must be zero. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
/* Register classes and constants. */
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union.
It is important that any condition codes have class NO_REGS.
See `register_operand'. */
enum reg_class {
NO_REGS,
LR_REGS,
SHORT_INSN_REGS,
SIBCALL_REGS,
GENERAL_REGS,
CORE_CONTROL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"LR_REGS", \
"SHORT_INSN_REGS", \
"SIBCALL_REGS", \
"GENERAL_REGS", \
"CORE_CONTROL_REGS", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ /* r0-r31 r32-r63 ap/sfp/cc1/cc2/iret/status */ \
{ 0x00000000,0x00000000,0x0}, /* NO_REGS */ \
{ 0x00004000,0x00000000,0x0}, /* LR_REGS */ \
{ 0x000000ff,0x00000000,0x0}, /* SHORT_INSN_REGS */ \
{ 0xffff100f,0xffffff00,0x0}, /* SIBCALL_REGS */ \
{ 0xffffffff,0xffffffff,0x0003}, /* GENERAL_REGS */ \
{ 0x00000000,0x00000000,0x03f0}, /* CORE_CONTROL_REGS */ \
{ 0xffffffff,0xffffffff,0x3fff}, /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern enum reg_class epiphany_regno_reg_class[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) \
(epiphany_regno_reg_class[REGNO])
/* The class value for index registers, and the one for base regs. */
#define BASE_REG_CLASS GENERAL_REGS
#define INDEX_REG_CLASS GENERAL_REGS
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER || (unsigned) reg_renumber[REGNO] < FIRST_PSEUDO_REGISTER)
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER || (unsigned) reg_renumber[REGNO] < FIRST_PSEUDO_REGISTER)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
/* 'I' is used for 16 bit unsigned.
'Cal' is used for long immediates (32 bits)
'K' is used for any constant up to 5 bits.
'L' is used for any 11 bit signed.
*/
#define IMM16(X) (IN_RANGE ((X), 0, 0xFFFF))
#define SIMM16(X) (IN_RANGE ((X), -65536, 65535))
#define SIMM11(X) (IN_RANGE ((X), -1024, 1023))
#define IMM5(X) (IN_RANGE ((X), 0, 0x1F))
typedef struct GTY (()) machine_function
{
unsigned args_parsed : 1;
unsigned pretend_args_odd : 1;
unsigned lr_clobbered : 1;
unsigned control_use_inserted : 1;
unsigned sw_entities_processed : 6;
long lr_slot_offset;
rtx and_mask;
rtx or_mask;
unsigned unknown_mode_uses;
unsigned unknown_mode_sets;
} machine_function_t;
#define MACHINE_FUNCTION(fun) (fun)->machine
#define INIT_EXPANDERS epiphany_init_expanders ()
/* Stack layout and stack pointer usage. */
/* Define this macro if pushing a word onto the stack moves the stack
pointer to a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET epiphany_stack_offset
/* Offset from the stack pointer register to the first location at which
outgoing arguments are placed. */
#define STACK_POINTER_OFFSET epiphany_stack_offset
/* Offset of first parameter from the argument pointer register value. */
/* 4 bytes for each of previous fp, return address, and previous gp.
4 byte reserved area for future considerations. */
#define FIRST_PARM_OFFSET(FNDECL) \
(epiphany_stack_offset \
+ (MACHINE_FUNCTION (DECL_STRUCT_FUNCTION (FNDECL))->pretend_args_odd \
? 4 : 0))
#define INCOMING_FRAME_SP_OFFSET epiphany_stack_offset
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM GPR_SP
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM GPR_FP
/* Register in which static-chain is passed to a function. This must
not be a register used by the prologue. */
#define STATIC_CHAIN_REGNUM GPR_IP
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
}
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
((OFFSET) = epiphany_initial_elimination_offset ((FROM), (TO)))
/* Function argument passing. */
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
`current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
((CUM) = 0)
/* The number of registers used for parameter passing. Local to this file. */
#define MAX_EPIPHANY_PARM_REGS 4
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) \
((unsigned) (N) < MAX_EPIPHANY_PARM_REGS)
/* Return boolean indicating arg of type TYPE and mode MODE will be passed in
a reg. This includes arguments that have to be passed by reference as the
pointer to them is passed in a reg if one is available (and that is what
we're given).
This macro is only used in this file. */
/* We must use partial argument passing because of the chosen mode
of varargs handling. */
#define PASS_IN_REG_P(CUM, MODE, TYPE) \
(ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < MAX_EPIPHANY_PARM_REGS)
/* Tell GCC to use TARGET_RETURN_IN_MEMORY. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
#define EPILOGUE_USES(REGNO) epiphany_epilogue_uses (REGNO)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO)
/* Given an rtx for the frame pointer,
return an rtx for the address of the frame. */
#define FRAME_ADDR_RTX(frame) \
((frame) == hard_frame_pointer_rtx ? arg_pointer_rtx : NULL)
/* This is not only for dwarf unwind info, but also for the benefit of
df-scan.c to tell it that LR is live at the function start. */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx_REG (Pmode, \
(current_function_decl != NULL \
&& epiphany_is_interrupt_p (current_function_decl) \
? IRET_REGNUM : GPR_LR))
/* However, we haven't implemented the rest needed for dwarf2 unwind info. */
#define DWARF2_UNWIND_INFO 0
#define RETURN_ADDR_RTX(count, frame) \
(count ? NULL_RTX \
: gen_rtx_UNSPEC (SImode, gen_rtvec (1, const0_rtx), UNSPEC_RETURN_ADDR))
/* Trampolines.
An epiphany trampoline looks like this:
mov r16,%low(fnaddr)
movt r16,%high(fnaddr)
mov ip,%low(cxt)
movt ip,%high(cxt)
jr r16 */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 20
/* Addressing modes, and classification of registers for them. */
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* We have post_modify (load/store with update). */
#define HAVE_POST_INCREMENT TARGET_POST_INC
#define HAVE_POST_DECREMENT TARGET_POST_INC
#define HAVE_POST_MODIFY_DISP TARGET_POST_MODIFY
#define HAVE_POST_MODIFY_REG TARGET_POST_MODIFY
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
#define RTX_OK_FOR_OFFSET_P(MODE, X) \
RTX_OK_FOR_OFFSET_1 (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
&& epiphany_vect_align == 4 ? SImode : (MODE), X)
#define RTX_OK_FOR_OFFSET_1(MODE, X) \
(GET_CODE (X) == CONST_INT \
&& !(INTVAL (X) & (GET_MODE_SIZE (MODE) - 1)) \
&& INTVAL (X) >= -2047 * (int) GET_MODE_SIZE (MODE) \
&& INTVAL (X) <= 2047 * (int) GET_MODE_SIZE (MODE))
/* Frame offsets cannot be evaluated till the frame pointer is eliminated. */
#define RTX_FRAME_OFFSET_P(X) \
((X) == frame_pointer_rtx \
|| (GET_CODE (X) == PLUS && XEXP ((X), 0) == frame_pointer_rtx \
&& CONST_INT_P (XEXP ((X), 1))))
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
#define SELECT_CC_MODE(OP, X, Y) \
epiphany_select_cc_mode (OP, X, Y)
/* Return nonzero if SELECT_CC_MODE will never return MODE for a
floating point inequality comparison. */
#define REVERSE_CONDITION(CODE, MODE) \
((MODE) == CC_FPmode || (MODE) == CC_FP_EQmode || (MODE) == CC_FP_GTEmode \
|| (MODE) == CC_FP_ORDmode || (MODE) == CC_FP_UNEQmode \
? reverse_condition_maybe_unordered (CODE) \
: (MODE) == CCmode ? reverse_condition (CODE) \
: UNKNOWN)
/* We can reverse all CCmodes with REVERSE_CONDITION. */
#define REVERSIBLE_CC_MODE(MODE) \
((MODE) == CCmode || (MODE) == CC_FPmode || (MODE) == CC_FP_EQmode \
|| (MODE) == CC_FP_GTEmode || (MODE) == CC_FP_ORDmode \
|| (MODE) == CC_FP_UNEQmode)
/* Costs. */
/* The cost of a branch insn. */
/* ??? What's the right value here? Branches are certainly more
expensive than reg->reg moves. */
#define BRANCH_COST(speed_p, predictable_p) \
(speed_p ? epiphany_branch_cost : 1)
/* Nonzero if access to memory by bytes is slow and undesirable.
For RISC chips, it means that access to memory by bytes is no
better than access by words when possible, so grab a whole word
and maybe make use of that. */
#define SLOW_BYTE_ACCESS 1
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
/* On the EPIPHANY, calling through registers is slow. */
#define NO_FUNCTION_CSE
/* Section selection. */
/* WARNING: These section names also appear in dwarf2out.c. */
#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#undef READONLY_DATA_SECTION_ASM_OP
#define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
#define BSS_SECTION_ASM_OP "\t.section .bss"
/* Define this macro if jump tables (for tablejump insns) should be
output in the text section, along with the assembler instructions.
Otherwise, the readonly data section is used.
This macro is irrelevant if there is no separate readonly data section. */
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
/* PIC */
/* The register number of the register used to address a table of static
data addresses in memory. In some cases this register is defined by a
processor's ``application binary interface'' (ABI). When this macro
is defined, RTL is generated for this register once, as with the stack
pointer and frame pointer registers. If this macro is not defined, it
is up to the machine-dependent files to allocate such a register (if
necessary). */
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REGNO : INVALID_REGNUM)
/* Control the assembler format that we output. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will
end at the end of the line. */
#define ASM_COMMENT_START ";"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global\t"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "fp", "ip", "sp", "lr", "r15", \
"r16", "r17","r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
"ap", "sfp", "cc1", "cc2", \
"config", "status", "lc", "ls", "le", "iret", \
"fp_near", "fp_trunc", "fp_anyfp", "unknown" \
}
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
epiphany_final_prescan_insn (INSN, OPVEC, NOPERANDS)
#define LOCAL_LABEL_PREFIX "."
/* A C expression which evaluates to true if CODE is a valid
punctuation character for use in the `PRINT_OPERAND' macro. */
extern char epiphany_punct_chars[256];
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
epiphany_punct_chars[(unsigned char) (CHAR)]
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { \
if (CASE_VECTOR_MODE == Pmode) \
asm_fprintf ((FILE), "\t.word %LL%d\n", (VALUE)); \
else \
asm_fprintf ((FILE), "\t.short %LL%d\n", (VALUE)); \
} while (0)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { \
if (CASE_VECTOR_MODE == Pmode) \
asm_fprintf ((FILE), "\t.word"); \
else \
asm_fprintf ((FILE), "\t.short"); \
asm_fprintf ((FILE), " %LL%d-%LL%d\n", (VALUE), (REL)); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do { if ((LOG) != 0) fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); } while (0)
/* Debugging information. */
/* Generate DBX and DWARF debugging information. */
#define DBX_DEBUGGING_INFO 1
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
/* Turn off splitting of long stabs. */
#define DBX_CONTIN_LENGTH 0
/* Miscellaneous. */
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_SMALL16 && optimize_size ? HImode : Pmode)
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, UNKNOWN if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction. */
#define FUNCTION_MODE SImode
/* EPIPHANY function types. */
enum epiphany_function_type
{
EPIPHANY_FUNCTION_UNKNOWN, EPIPHANY_FUNCTION_NORMAL,
/* These are interrupt handlers. The name corresponds to the register
name that contains the return address. */
EPIPHANY_FUNCTION_ILINK1, EPIPHANY_FUNCTION_ILINK2,
/* These are interrupt handlers. The name corresponds to which type
of interrupt handler we're dealing with. */
EPIPHANY_FUNCTION_RESET, EPIPHANY_FUNCTION_SOFTWARE_EXCEPTION,
EPIPHANY_FUNCTION_TIMER, EPIPHANY_FUNCTION_DMA0,
EPIPHANY_FUNCTION_DMA1, EPIPHANY_FUNCTION_STATIC_FLAG,
EPIPHANY_FUNCTION_SWI
};
#define EPIPHANY_INTERRUPT_P(TYPE) \
((TYPE) >= EPIPHANY_FUNCTION_RESET && (TYPE) <= EPIPHANY_FUNCTION_SWI)
/* Compute the type of a function from its DECL. */
#define IMMEDIATE_PREFIX "#"
#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
(epiphany_optimize_mode_switching (ENTITY))
/* We have two fake entities for lazy code motion of the mask constants,
one entity each for round-to-nearest / truncating
with a different idea what FP_MODE_ROUND_UNKNOWN will be, and
finally an entity that runs in a second mode switching pass to
resolve FP_MODE_ROUND_UNKNOWN. */
#define NUM_MODES_FOR_MODE_SWITCHING \
{ 2, 2, FP_MODE_NONE, FP_MODE_NONE, FP_MODE_NONE, FP_MODE_NONE, FP_MODE_NONE }
#define MODE_NEEDED(ENTITY, INSN) epiphany_mode_needed((ENTITY), (INSN))
#define MODE_PRIORITY_TO_MODE(ENTITY, N) \
(epiphany_mode_priority_to_mode ((ENTITY), (N)))
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
emit_set_fp_mode ((ENTITY), (MODE), (HARD_REGS_LIVE))
#define MODE_ENTRY(ENTITY) (epiphany_mode_entry_exit ((ENTITY), false))
#define MODE_EXIT(ENTITY) (epiphany_mode_entry_exit ((ENTITY), true))
#define MODE_AFTER(LAST_MODE, INSN) \
(epiphany_mode_after (e, (LAST_MODE), (INSN)))
#define TARGET_INSERT_MODE_SWITCH_USE epiphany_insert_mode_switch_use
/* Mode switching entities. */
enum
{
EPIPHANY_MSW_ENTITY_AND,
EPIPHANY_MSW_ENTITY_OR,
EPIPHANY_MSW_ENTITY_NEAREST,
EPIPHANY_MSW_ENTITY_TRUNC,
EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN,
EPIPHANY_MSW_ENTITY_ROUND_KNOWN,
EPIPHANY_MSW_ENTITY_FPU_OMNIBUS
};
extern int epiphany_normal_fp_rounding;
extern struct rtl_opt_pass pass_mode_switch_use;
extern struct rtl_opt_pass pass_resolve_sw_modes;
/* This will need to be adjusted when FP_CONTRACT_ON is properly
implemented. */
#define TARGET_FUSED_MADD (flag_fp_contract_mode == FP_CONTRACT_FAST)
#endif /* !GCC_EPIPHANY_H */
|