1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
|
/* Definitions of target machine for GNU compiler for IA-32.
Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* The purpose of this file is to define the characteristics of the i386,
independent of assembler syntax or operating system.
Three other files build on this one to describe a specific assembler syntax:
bsd386.h, att386.h, and sun386.h.
The actual tm.h file for a particular system should include
this file, and then the file for the appropriate assembler syntax.
Many macros that specify assembler syntax are omitted entirely from
this file because they really belong in the files for particular
assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
that start with ASM_ or end in ASM_OP. */
/* Stubs for half-pic support if not OSF/1 reference platform. */
#ifndef HALF_PIC_P
#define HALF_PIC_P() 0
#define HALF_PIC_NUMBER_PTRS 0
#define HALF_PIC_NUMBER_REFS 0
#define HALF_PIC_ENCODE(DECL)
#define HALF_PIC_DECLARE(NAME)
#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
#define HALF_PIC_ADDRESS_P(X) 0
#define HALF_PIC_PTR(X) X
#define HALF_PIC_FINISH(STREAM)
#endif
/* Define the specific costs for a given cpu */
struct processor_costs {
int add; /* cost of an add instruction */
int lea; /* cost of a lea instruction */
int shift_var; /* variable shift costs */
int shift_const; /* constant shift costs */
int mult_init; /* cost of starting a multiply */
int mult_bit; /* cost of multiply per each bit set */
int divide; /* cost of a divide/mod */
int large_insn; /* insns larger than this cost more */
int move_ratio; /* The threshold of number of scalar
memory-to-memory move insns. */
int movzbl_load; /* cost of loading using movzbl */
int int_load[3]; /* cost of loading integer registers
in QImode, HImode and SImode relative
to reg-reg move (2). */
int int_store[3]; /* cost of storing integer register
in QImode, HImode and SImode */
int fp_move; /* cost of reg,reg fld/fst */
int fp_load[3]; /* cost of loading FP register
in SFmode, DFmode and XFmode */
int fp_store[3]; /* cost of storing FP register
in SFmode, DFmode and XFmode */
int mmx_move; /* cost of moving MMX register. */
int mmx_load[2]; /* cost of loading MMX register
in SImode and DImode */
int mmx_store[2]; /* cost of storing MMX register
in SImode and DImode */
int sse_move; /* cost of moving SSE register. */
int sse_load[3]; /* cost of loading SSE register
in SImode, DImode and TImode*/
int sse_store[3]; /* cost of storing SSE register
in SImode, DImode and TImode*/
int mmxsse_to_integer; /* cost of moving mmxsse register to
integer and vice versa. */
};
extern struct processor_costs *ix86_cost;
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* configure can arrange to make this 2, to force a 486. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
/* Masks for the -m switches */
#define MASK_80387 0x00000001 /* Hardware floating point */
#define MASK_RTD 0x00000002 /* Use ret that pops args */
#define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
#define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
#define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
#define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
#define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
#define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
#define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
#define MASK_NO_ALIGN_STROPS 0x00001000 /* Enable aligning of string ops. */
#define MASK_INLINE_ALL_STROPS 0x00002000 /* Inline stringops in all cases */
#define MASK_NO_PUSH_ARGS 0x00004000 /* Use push instructions */
#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00008000/* Accumulate outgoing args */
#define MASK_NO_ACCUMULATE_OUTGOING_ARGS 0x00010000
#define MASK_MMX 0x00020000 /* Support MMX regs/builtins */
#define MASK_SSE 0x00040000 /* Support SSE regs/builtins */
#define MASK_SSE2 0x00080000 /* Support SSE2 regs/builtins */
#define MASK_128BIT_LONG_DOUBLE 0x00100000 /* long double size is 128bit */
#define MASK_MIX_SSE_I387 0x00200000 /* Mix SSE and i387 instructions */
#define MASK_64BIT 0x00400000 /* Produce 64bit code */
#define MASK_NO_RED_ZONE 0x00800000 /* Do not use red zone */
/* Temporary codegen switches */
#define MASK_INTEL_SYNTAX 0x00000200
#define MASK_DEBUG_ARG 0x00000400 /* function_arg */
#define MASK_DEBUG_ADDR 0x00000800 /* GO_IF_LEGITIMATE_ADDRESS */
/* Use the floating point instructions */
#define TARGET_80387 (target_flags & MASK_80387)
/* Compile using ret insn that pops args.
This will not work unless you use prototypes at least
for all functions that can take varying numbers of args. */
#define TARGET_RTD (target_flags & MASK_RTD)
/* Align doubles to a two word boundary. This breaks compatibility with
the published ABI's for structures containing doubles, but produces
faster code on the pentium. */
#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
/* Use push instructions to save outgoing args. */
#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
/* Accumulate stack adjustments to prologue/epilogue. */
#define TARGET_ACCUMULATE_OUTGOING_ARGS \
(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
/* Put uninitialized locals into bss, not data.
Meaningful only on svr3. */
#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
/* Use IEEE floating point comparisons. These handle correctly the cases
where the result of a comparison is unordered. Normally SIGFPE is
generated in such cases, in which case this isn't needed. */
#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
/* Functions that return a floating point value may return that value
in the 387 FPU or in 386 integer registers. If set, this flag causes
the 387 to be used, which is compatible with most calling conventions. */
#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
/* Long double is 128bit instead of 96bit, even when only 80bits are used.
This mode wastes cache, but avoid missaligned data accesses and simplifies
address calculations. */
#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
/* Disable generation of FP sin, cos and sqrt operations for 387.
This is because FreeBSD lacks these in the math-emulator-code */
#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
/* Don't create frame pointers for leaf functions */
#define TARGET_OMIT_LEAF_FRAME_POINTER \
(target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
/* Debug GO_IF_LEGITIMATE_ADDRESS */
#define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
/* Debug FUNCTION_ARG macros */
#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
/* 64bit Sledgehammer mode */
#ifdef TARGET_BI_ARCH
#define TARGET_64BIT (target_flags & MASK_64BIT)
#else
#ifdef TARGET_64BIT_DEFAULT
#define TARGET_64BIT 1
#else
#define TARGET_64BIT 0
#endif
#endif
#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
#define CPUMASK (1 << ix86_cpu)
extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
extern const int x86_branch_hints, x86_unroll_strlen;
extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
extern const int x86_use_cltd, x86_read_modify_write;
extern const int x86_read_modify, x86_split_long_moves;
extern const int x86_promote_QImode, x86_single_stringop;
extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
extern const int x86_epilogue_using_move;
#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
/* For sane SSE instruction set generation we need fcomi instruction. It is
safe to enable all CMOVE instructions. */
#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
#define TARGET_MOVX (x86_movx & CPUMASK)
#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
#define ASSEMBLER_DIALECT ((target_flags & MASK_INTEL_SYNTAX) != 0)
#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
#define TARGET_MIX_SSE_I387 ((target_flags & MASK_MIX_SSE_I387) != 0)
#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
#define TARGET_SWITCHES \
{ { "80387", MASK_80387, N_("Use hardware fp") }, \
{ "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
{ "hard-float", MASK_80387, N_("Use hardware fp") }, \
{ "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
{ "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
{ "386", 0, N_("Same as -mcpu=i386") }, \
{ "486", 0, N_("Same as -mcpu=i486") }, \
{ "pentium", 0, N_("Same as -mcpu=pentium") }, \
{ "pentiumpro", 0, N_("Same as -mcpu=pentiumpro") }, \
{ "rtd", MASK_RTD, \
N_("Alternate calling convention") }, \
{ "no-rtd", -MASK_RTD, \
N_("Use normal calling convention") }, \
{ "align-double", MASK_ALIGN_DOUBLE, \
N_("Align some doubles on dword boundary") }, \
{ "no-align-double", -MASK_ALIGN_DOUBLE, \
N_("Align doubles on word boundary") }, \
{ "svr3-shlib", MASK_SVR3_SHLIB, \
N_("Uninitialized locals in .bss") }, \
{ "no-svr3-shlib", -MASK_SVR3_SHLIB, \
N_("Uninitialized locals in .data") }, \
{ "ieee-fp", MASK_IEEE_FP, \
N_("Use IEEE math for fp comparisons") }, \
{ "no-ieee-fp", -MASK_IEEE_FP, \
N_("Do not use IEEE math for fp comparisons") }, \
{ "fp-ret-in-387", MASK_FLOAT_RETURNS, \
N_("Return values of functions in FPU registers") }, \
{ "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
N_("Do not return values of functions in FPU registers")}, \
{ "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
N_("Do not generate sin, cos, sqrt for FPU") }, \
{ "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
N_("Generate sin, cos, sqrt for FPU")}, \
{ "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
N_("Omit the frame pointer in leaf functions") }, \
{ "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
{ "debug-addr", MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
{ "no-debug-addr", -MASK_DEBUG_ADDR, 0 /* undocumented */ }, \
{ "debug-arg", MASK_DEBUG_ARG, 0 /* undocumented */ }, \
{ "no-debug-arg", -MASK_DEBUG_ARG, 0 /* undocumented */ }, \
{ "stack-arg-probe", MASK_STACK_PROBE, \
N_("Enable stack probing") }, \
{ "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
{ "windows", 0, 0 /* undocumented */ }, \
{ "dll", 0, 0 /* undocumented */ }, \
{ "intel-syntax", MASK_INTEL_SYNTAX, \
N_("Emit Intel syntax assembler opcodes") }, \
{ "no-intel-syntax", -MASK_INTEL_SYNTAX, "" }, \
{ "align-stringops", -MASK_NO_ALIGN_STROPS, \
N_("Align destination of the string operations") }, \
{ "no-align-stringops", MASK_NO_ALIGN_STROPS, \
N_("Do not align destination of the string operations") }, \
{ "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
N_("Inline all known string operations") }, \
{ "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
N_("Do not inline all known string operations") }, \
{ "push-args", -MASK_NO_PUSH_ARGS, \
N_("Use push instructions to save outgoing arguments") }, \
{ "no-push-args", MASK_NO_PUSH_ARGS, \
N_("Do not use push instructions to save outgoing arguments") }, \
{ "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
N_("Use push instructions to save outgoing arguments") }, \
{ "no-accumulate-outgoing-args",MASK_NO_ACCUMULATE_OUTGOING_ARGS, \
N_("Do not use push instructions to save outgoing arguments") }, \
{ "mmx", MASK_MMX, N_("Support MMX builtins") }, \
{ "no-mmx", -MASK_MMX, \
N_("Do not support MMX builtins") }, \
{ "sse", MASK_SSE, \
N_("Support MMX and SSE builtins and code generation") }, \
{ "no-sse", -MASK_SSE, \
N_("Do not support MMX and SSE builtins and code generation") }, \
{ "sse2", MASK_SSE2, \
N_("Support MMX, SSE and SSE2 builtins and code generation") }, \
{ "no-sse2", -MASK_SSE2, \
N_("Do not support MMX, SSE and SSE2 builtins and code generation") }, \
{ "mix-sse-i387", MASK_MIX_SSE_I387, \
N_("Use both SSE and i387 instruction sets for floating point arithmetics") },\
{ "no-mix-sse-i387", -MASK_MIX_SSE_I387, \
N_("Do not use both SSE and i387 instruction sets for floating point arithmetics") },\
{ "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
N_("sizeof(long double) is 16.") }, \
{ "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
N_("sizeof(long double) is 12.") }, \
{ "64", MASK_64BIT, \
N_("Generate 64bit x86-64 code") }, \
{ "32", -MASK_64BIT, \
N_("Generate 32bit i386 code") }, \
{ "red-zone", -MASK_NO_RED_ZONE, \
N_("Use red-zone in the x86-64 code") }, \
{ "no-red-zone", MASK_NO_RED_ZONE, \
N_("Do not use red-zone in the x86-64 code") }, \
SUBTARGET_SWITCHES \
{ "", TARGET_DEFAULT, 0 }}
#ifdef TARGET_64BIT_DEFAULT
#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
#else
#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
#endif
/* Which processor to schedule for. The cpu attribute defines a list that
mirrors this list, so changes to i386.md must be made at the same time. */
enum processor_type
{
PROCESSOR_I386, /* 80386 */
PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
PROCESSOR_PENTIUM,
PROCESSOR_PENTIUMPRO,
PROCESSOR_K6,
PROCESSOR_ATHLON,
PROCESSOR_PENTIUM4,
PROCESSOR_max
};
extern enum processor_type ix86_cpu;
extern int ix86_arch;
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable. The
variable, type `char *', is set to the variable part of the given
option if the fixed part matches. The actual option name is made
by appending `-m' to the specified name. */
#define TARGET_OPTIONS \
{ { "cpu=", &ix86_cpu_string, \
N_("Schedule code for given CPU")}, \
{ "arch=", &ix86_arch_string, \
N_("Generate code for given CPU")}, \
{ "regparm=", &ix86_regparm_string, \
N_("Number of registers used to pass integer arguments") }, \
{ "align-loops=", &ix86_align_loops_string, \
N_("Loop code aligned to this power of 2") }, \
{ "align-jumps=", &ix86_align_jumps_string, \
N_("Jump targets are aligned to this power of 2") }, \
{ "align-functions=", &ix86_align_funcs_string, \
N_("Function starts are aligned to this power of 2") }, \
{ "preferred-stack-boundary=", \
&ix86_preferred_stack_boundary_string, \
N_("Attempt to keep stack aligned to this power of 2") }, \
{ "branch-cost=", &ix86_branch_cost_string, \
N_("Branches are this expensive (1-5, arbitrary units)") }, \
{ "cmodel=", &ix86_cmodel_string, \
N_("Use given x86-64 code model") }, \
SUBTARGET_OPTIONS \
}
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
#define OVERRIDE_OPTIONS override_options ()
/* These are meant to be redefined in the host dependent files */
#define SUBTARGET_SWITCHES
#define SUBTARGET_OPTIONS
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
/* Specs for the compiler proper */
#ifndef CC1_CPU_SPEC
#define CC1_CPU_SPEC "\
%{!mcpu*: \
%{m386:-mcpu=i386 \
%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
%{m486:-mcpu=i486 \
%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
%{mpentium:-mcpu=pentium \
%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
%{mpentiumpro:-mcpu=pentiumpro \
%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}}"
#endif
#ifndef CPP_CPU_DEFAULT_SPEC
#if TARGET_CPU_DEFAULT == 1
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
#endif
#if TARGET_CPU_DEFAULT == 2
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
#endif
#if TARGET_CPU_DEFAULT == 3
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
#endif
#if TARGET_CPU_DEFAULT == 4
#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
#endif
#if TARGET_CPU_DEFAULT == 5
#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
#endif
#if TARGET_CPU_DEFAULT == 6
#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
#endif
#ifndef CPP_CPU_DEFAULT_SPEC
#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
#endif
#endif /* CPP_CPU_DEFAULT_SPEC */
#ifdef NO_BUILTIN_SIZE_TYPE
#define CPP_CPU32_SIZE_TYPE_SPEC \
" -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
#define CPP_CPU64_SIZE_TYPE_SPEC \
" -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
#else
#define CPP_CPU32_SIZE_TYPE_SPEC ""
#define CPP_CPU64_SIZE_TYPE_SPEC ""
#endif
#define CPP_CPU32_SPEC \
"-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
-D__i386__ %(cpp_cpu32sizet)"
#define CPP_CPU64_SPEC \
"-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
#define CPP_CPUCOMMON_SPEC "\
%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
%{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
-D__pentiumpro -D__pentiumpro__ \
%{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
%{march=athlon:-D__athlon -D__athlon__ %{!mcpu*:-D__tune_athlon__ }}\
%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
%{m386|mcpu=i386:-D__tune_i386__ }\
%{m486|mcpu=i486:-D__tune_i486__ }\
%{mpentium|mcpu=pentium|mcpu=i586:-D__tune_i586__ -D__tune_pentium__ }\
%{mpentiumpro|mcpu=pentiumpro|mcpu=i686:-D__tune_i686__ -D__tune_pentiumpro__ }\
%{mcpu=k6:-D__tune_k6__ }\
%{mcpu=athlon:-D__tune_athlon__ }\
%{mcpu=pentium4:-D__tune_pentium4__ }\
%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
#ifndef CPP_CPU_SPEC
#ifdef TARGET_BI_ARCH
#ifdef TARGET_64BIT_DEFAULT
#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
#else
#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
#endif
#else
#ifdef TARGET_64BIT_DEFAULT
#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
#else
#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
#endif
#endif
#endif
#ifndef CC1_SPEC
#define CC1_SPEC "%(cc1_cpu) "
#endif
/* This macro defines names of additional specifications to put in the
specs that can be used in various specifications like CC1_SPEC. Its
definition is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define EXTRA_SPECS \
{ "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
{ "cpp_cpu", CPP_CPU_SPEC }, \
{ "cpp_cpu32", CPP_CPU32_SPEC }, \
{ "cpp_cpu64", CPP_CPU64_SPEC }, \
{ "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
{ "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
{ "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
{ "cc1_cpu", CC1_CPU_SPEC }, \
SUBTARGET_EXTRA_SPECS
/* target machine storage layout */
/* Define for XFmode or TFmode extended real floating point support.
This will automatically cause REAL_ARITHMETIC to be defined.
The XFmode is specified by i386 ABI, while TFmode may be faster
due to alignment and simplifications in the address calculations.
*/
#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
#define MAX_LONG_DOUBLE_TYPE_SIZE 128
#ifdef __x86_64__
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
#else
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
#endif
/* Tell real.c that this is the 80-bit Intel extended float format
packaged in a 128-bit or 96bit entity. */
#define INTEL_EXTENDED_IEEE_FORMAT 1
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define FLOAT_TYPE_SIZE 32
#define LONG_TYPE_SIZE BITS_PER_WORD
#define MAX_WCHAR_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_LONG_TYPE_SIZE 64
#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
#define MAX_BITS_PER_WORD 64
#define MAX_LONG_TYPE_SIZE 64
#else
#define MAX_BITS_PER_WORD 32
#define MAX_LONG_TYPE_SIZE 32
#endif
/* Define if you don't want extended real, but do want to use the
software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
/* #define REAL_ARITHMETIC */
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on the 80386. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is not true on the 80386. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is the lowest
numbered. */
/* Not true for 80386 */
#define WORDS_BIG_ENDIAN 0
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 80386, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#define MIN_UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE BITS_PER_WORD
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY BITS_PER_WORD
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY BITS_PER_WORD
/* Boundary (in *bits*) on which the stack pointer preferrs to be
aligned; the compiler cannot rely on having this alignment. */
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
/* As of July 2001, many runtimes to not align the stack properly when
entering main. This causes expand_main_function to forcably align
the stack, which results in aligned frames for functions called from
main, though it does nothing for the alignment of main itself. */
#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
(ix86_preferred_stack_boundary > STACK_BOUNDARY)
/* Allocation boundary for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
/* Minimum size in bits of the largest boundary to which any
and all fundamental data types supported by the hardware
might need to be aligned. No data type wants to be aligned
rounder than this.
Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
and Pentium Pro XFmode values at 128 bit boundaries. */
#define BIGGEST_ALIGNMENT 128
/* Decide whether a variable of mode MODE must be 128 bit aligned. */
#define ALIGN_MODE_128(MODE) \
((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
|| (MODE) == V4SFmode || (MODE) == V4SImode)
/* The published ABIs say that doubles should be aligned on word
boundaries, so lower the aligment for structure fields unless
-malign-double is set. */
/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
constant. Use the smaller value in that context. */
#ifndef IN_TARGET_LIBS
#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
#else
#define BIGGEST_FIELD_ALIGNMENT 32
#endif
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. EXP is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment (EXP, ALIGN)
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment (TYPE, ALIGN)
/* If defined, a C expression to compute the alignment for a local
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment (TYPE, ALIGN)
/* Set this non-zero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* If bit field type is int, don't let it cross an int,
and give entire struct the alignment of an int. */
/* Required on the 386 since it doesn't have bitfield insns. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Standard register usage. */
/* This processor has special stack-like registers. See reg-stack.c
for details. */
#define STACK_REGS
#define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode \
|| mode==XFmode || mode==TFmode)
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
In the 80386 we give the 8 general purpose registers the numbers 0-7.
We number the floating point registers 8-15.
Note that registers 0-7 can be accessed as a short or int,
while only 0-3 may be used with byte `mov' instructions.
Reg 16 does not correspond to any hardware register, but instead
appears in the RTL as an argument pointer prior to reload, and is
eliminated during reloading in favor of either the stack or frame
pointer. */
#define FIRST_PSEUDO_REGISTER 53
/* Number of hardware registers that go into the DWARF-2 unwind info.
If not defined, equals FIRST_PSEUDO_REGISTER. */
#define DWARF_FRAME_REGISTERS 17
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the 80386, the stack pointer is such, as is the arg pointer.
The value is an mask - bit 1 is set for fixed registers
for 32bit target, while 2 is set for fixed registers for 64bit.
Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
*/
#define FIXED_REGISTERS \
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
{ 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
/*arg,flags,fpsr,dir,frame*/ \
3, 3, 3, 3, 3, \
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
0, 0, 0, 0, 0, 0, 0, 0, \
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
0, 0, 0, 0, 0, 0, 0, 0, \
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1, 1, 1, 1, 1, 1, 1, 1, \
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1, 1, 1, 1, 1, 1, 1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like.
The value is an mask - bit 1 is set for call used
for 32bit target, while 2 is set for call used for 64bit.
Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
*/
#define CALL_USED_REGISTERS \
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
{ 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
/*arg,flags,fpsr,dir,frame*/ \
3, 3, 3, 3, 3, \
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
3, 3, 3, 3, 3, 3, 3, 3, \
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3, 3, 3, 3, 3, 3, 3, 3, \
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3, 3, 3, 3, 1, 1, 1, 1, \
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3, 3, 3, 3, 3, 3, 3, 3} \
/* Order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS. List frame pointer
late and fixed registers last. Note that, in general, we prefer
registers listed in CALL_USED_REGISTERS, keeping the others
available for storage of persistent values.
Three different versions of REG_ALLOC_ORDER have been tried:
If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
but slower code on simple functions returning values in eax.
If the order is eax, ecx, edx, ... it causes reload to abort when compiling
perl 4.036 due to not being able to create a DImode register (to hold a 2
word union).
If the order is eax, edx, ecx, ... it produces better code for simple
functions, and a slightly slower compiler. Users complained about the code
generated by allocating edx first, so restore the 'natural' order of things. */
#define REG_ALLOC_ORDER \
/*ax,dx,cx,*/ \
{ 0, 1, 2, \
/* bx,si,di,bp,sp,*/ \
3, 4, 5, 6, 7, \
/*r8,r9,r10,r11,*/ \
37,38, 39, 40, \
/*r12,r15,r14,r13*/ \
41, 44, 43, 42, \
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
21, 22, 23, 24, 25, 26, 27, 28, \
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
45, 46, 47, 48, 49, 50, 51, 52, \
/*st,st1,st2,st3,st4,st5,st6,st7*/ \
8, 9, 10, 11, 12, 13, 14, 15, \
/*,arg,cc,fpsr,dir,frame*/ \
16,17, 18, 19, 20, \
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
29, 30, 31, 32, 33, 34, 35, 36 }
/* Macro to conditionally modify fixed_regs/call_used_regs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
int i; \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
{ \
fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
call_used_regs[i] = (call_used_regs[i] \
& (TARGET_64BIT ? 2 : 1)) != 0; \
} \
if (flag_pic) \
{ \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
} \
if (! TARGET_MMX) \
{ \
int i; \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
if (! TARGET_SSE) \
{ \
int i; \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
{ \
int i; \
HARD_REG_SET x; \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
Actually there are no two word move instructions for consecutive
registers. And only registers 0-3 may have mov byte instructions
applied to them.
*/
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
: (MODE == TFmode \
? (TARGET_64BIT ? 2 : 3) \
: MODE == TCmode \
? (TARGET_64BIT ? 4 : 6) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
#define VALID_SSE_REG_MODE(MODE) \
((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
|| (MODE) == SFmode \
|| (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
#define VALID_MMX_REG_MODE(MODE) \
((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
|| (MODE) == V2SImode || (MODE) == SImode)
#define VECTOR_MODE_SUPPORTED_P(MODE) \
(VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
: VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 : 0)
#define VALID_FP_MODE_P(mode) \
((mode) == SFmode || (mode) == DFmode || (mode) == TFmode \
|| (!TARGET_64BIT && (mode) == XFmode) \
|| (mode) == SCmode || (mode) == DCmode || (mode) == TCmode\
|| (!TARGET_64BIT && (mode) == XCmode))
#define VALID_INT_MODE_P(mode) \
((mode) == QImode || (mode) == HImode || (mode) == SImode \
|| (mode) == DImode \
|| (mode) == CQImode || (mode) == CHImode || (mode) == CSImode \
|| (mode) == CDImode)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
ix86_hard_regno_mode_ok (REGNO, MODE)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) \
|| (((MODE1) == HImode || (MODE1) == SImode \
|| ((MODE1) == QImode \
&& (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
|| ((MODE1) == DImode && TARGET_64BIT)) \
&& ((MODE2) == HImode || (MODE2) == SImode \
|| ((MODE1) == QImode \
&& (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
|| ((MODE2) == DImode && TARGET_64BIT))))
/* Specify the modes required to caller save a given hard regno.
We do this on i386 to prevent flags from being saved at all.
Kill any attempts to combine saving of modes. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
(CC_REGNO_P (REGNO) ? VOIDmode \
: (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
: (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
: (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
: (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
: (MODE))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* on the 386 the pc register is %eip, and is not usable as a general
register. The ordinary mov instructions won't work */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 7
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM 6
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 20
/* First floating point reg */
#define FIRST_FLOAT_REG 8
/* First & last stack-like regs */
#define FIRST_STACK_REG FIRST_FLOAT_REG
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
#define FLAGS_REG 17
#define FPSR_REG 18
#define DIRFLAG_REG 19
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
#define LAST_SSE_REG (FIRST_SSE_REG + 7)
#define FIRST_MMX_REG (LAST_SSE_REG + 1)
#define LAST_MMX_REG (FIRST_MMX_REG + 7)
#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
/* Override this in other tm.h files to cope with various OS losage
requiring a frame pointer. */
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
#endif
/* Make sure we can access arbitrary call frames. */
#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 16
/* Register in which static-chain is passed to a function.
We do use ECX as static chain register for 32 bit ABI. On the
64bit ABI, ECX is an argument register, so we use R10 instead. */
#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
/* Register to hold the addressing base for position independent
code access to data items.
We don't use PIC pointer for 64bit mode. Define the regnum to
dummy value to prevent gcc from pesimizing code dealing with EBX.
*/
#define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? INVALID_REGNUM : 3)
/* Register in which address to store a structure value
arrives in the function. On the 386, the prologue
copies this from the stack to register %eax. */
#define STRUCT_VALUE_INCOMING 0
/* Place in which caller passes the structure value address.
0 means push the value on the stack like an argument. */
#define STRUCT_VALUE 0
/* A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value
says to return the function value in memory, just as large
structures are always returned. Here TYPE will be a C expression
of type `tree', representing the data type of the value.
Note that values of mode `BLKmode' must be explicitly handled by
this macro. Also, the option `-fpcc-struct-return' takes effect
regardless of this macro. On most systems, it is possible to
leave the macro undefined; this causes a default definition to be
used, whose value is the constant 1 for `BLKmode' values, and 0
otherwise.
Do not use this macro to indicate that structures and unions
should always be returned in memory. You should instead use
`DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
#define RETURN_IN_MEMORY(TYPE) \
((TYPE_MODE (TYPE) == BLKmode) \
|| (VECTOR_MODE_P (TYPE_MODE (TYPE)) && int_size_in_bytes (TYPE) == 8)\
|| (int_size_in_bytes (TYPE) > 12 && TYPE_MODE (TYPE) != TImode \
&& TYPE_MODE (TYPE) != TFmode && ! VECTOR_MODE_P (TYPE_MODE (TYPE))))
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union.
It might seem that class BREG is unnecessary, since no useful 386
opcode needs reg %ebx. But some systems pass args to the OS in ebx,
and the "b" register constraint is useful in asms for syscalls.
The flags and fpsr registers are in no class. */
enum reg_class
{
NO_REGS,
AREG, DREG, CREG, BREG, SIREG, DIREG,
AD_REGS, /* %eax/%edx for DImode */
Q_REGS, /* %eax %ebx %ecx %edx */
NON_Q_REGS, /* %esi %edi %ebp %esp */
INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
FLOAT_REGS,
SSE_REGS,
MMX_REGS,
FP_TOP_SSE_REGS,
FP_SECOND_SSE_REGS,
FLOAT_SSE_REGS,
FLOAT_INT_REGS,
INT_SSE_REGS,
FLOAT_INT_SSE_REGS,
ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define INTEGER_CLASS_P(CLASS) (reg_class_subset_p (CLASS, GENERAL_REGS))
#define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
#define SSE_CLASS_P(CLASS) (reg_class_subset_p (CLASS, SSE_REGS))
#define MMX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, MMX_REGS))
#define MAYBE_INTEGER_CLASS_P(CLASS) (reg_classes_intersect_p (CLASS, GENERAL_REGS))
#define MAYBE_FLOAT_CLASS_P(CLASS) (reg_classes_intersect_p (CLASS, FLOAT_REGS))
#define MAYBE_SSE_CLASS_P(CLASS) (reg_classes_intersect_p (SSE_REGS, CLASS))
#define MAYBE_MMX_CLASS_P(CLASS) (reg_classes_intersect_p (MMX_REGS, CLASS))
#define Q_CLASS_P(CLASS) (reg_class_subset_p (CLASS, Q_REGS))
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", \
"AREG", "DREG", "CREG", "BREG", \
"SIREG", "DIREG", \
"AD_REGS", \
"Q_REGS", "NON_Q_REGS", \
"INDEX_REGS", \
"LEGACY_REGS", \
"GENERAL_REGS", \
"FP_TOP_REG", "FP_SECOND_REG", \
"FLOAT_REGS", \
"SSE_REGS", \
"MMX_REGS", \
"FP_TOP_SSE_REGS", \
"FP_SECOND_SSE_REGS", \
"FLOAT_SSE_REGS", \
"FLOAT_INT_REGS", \
"INT_SSE_REGS", \
"FLOAT_INT_SSE_REGS", \
"ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ { 0x00, 0x0 }, \
{ 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
{ 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
{ 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
{ 0x03, 0x0 }, /* AD_REGS */ \
{ 0x0f, 0x0 }, /* Q_REGS */ \
{ 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
{ 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
{ 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
{ 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
{ 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
{ 0xff00, 0x0 }, /* FLOAT_REGS */ \
{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
{ 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
{ 0xffffffff,0x1fffff } \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
/* When defined, the compiler allows registers explicitly used in the
rtl to be used as spill registers but prevents the compiler from
extending the lifetime of these registers. */
#define SMALL_REGISTER_CLASSES 1
#define QI_REG_P(X) \
(REG_P (X) && REGNO (X) < 4)
#define GENERAL_REGNO_P(n) \
((n) < 8 || REX_INT_REGNO_P (n))
#define GENERAL_REG_P(X) \
(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
#define NON_QI_REG_P(X) \
(REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
#define REX_INT_REGNO_P(n) ((n) >= FIRST_REX_INT_REG && (n) <= LAST_REX_INT_REG)
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
#define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
#define ANY_FP_REGNO_P(n) (FP_REGNO_P (n) || SSE_REGNO_P (n))
#define SSE_REGNO_P(n) \
(((n) >= FIRST_SSE_REG && (n) <= LAST_SSE_REG) \
|| ((n) >= FIRST_REX_SSE_REG && (n) <= LAST_REX_SSE_REG))
#define SSE_REGNO(n) \
((n) < 8 ? FIRST_SSE_REG + (n) : FIRST_REX_SSE_REG + (n) - 8)
#define SSE_REG_P(n) (REG_P (n) && SSE_REGNO_P (REGNO (n)))
#define SSE_FLOAT_MODE_P(m) \
((TARGET_SSE && (m) == SFmode) || (TARGET_SSE2 && (m) == DFmode))
#define MMX_REGNO_P(n) ((n) >= FIRST_MMX_REG && (n) <= LAST_MMX_REG)
#define MMX_REG_P(xop) (REG_P (xop) && MMX_REGNO_P (REGNO (xop)))
#define STACK_REG_P(xop) (REG_P (xop) && \
REGNO (xop) >= FIRST_STACK_REG && \
REGNO (xop) <= LAST_STACK_REG)
#define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
#define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
/* Indicate whether hard register numbered REG_NO should be converted
to SSA form. */
#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
(REG_NO == FLAGS_REG || REG_NO == ARG_POINTER_REGNUM)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS INDEX_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'r' ? GENERAL_REGS : \
(C) == 'R' ? LEGACY_REGS : \
(C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
(C) == 'Q' ? Q_REGS : \
(C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FLOAT_REGS \
: NO_REGS) : \
(C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FP_TOP_REG \
: NO_REGS) : \
(C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
? FP_SECOND_REG \
: NO_REGS) : \
(C) == 'a' ? AREG : \
(C) == 'b' ? BREG : \
(C) == 'c' ? CREG : \
(C) == 'd' ? DREG : \
(C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
(C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
(C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
(C) == 'A' ? AD_REGS : \
(C) == 'D' ? DIREG : \
(C) == 'S' ? SIREG : NO_REGS)
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
I is for non-DImode shifts.
J is for DImode shifts.
K is for signed imm8 operands.
L is for andsi as zero-extending move.
M is for shifts that can be executed by the "lea" opcode.
N is for immedaite operands for out/in instructions (0-255)
*/
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
: (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
: (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
: (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
: (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
: (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
TARGET_387 isn't set, because the stack register converter may need to
load 0.0 into the function value register. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? standard_80387_constant_p (VALUE) \
: ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
/* A C expression that defines the optional machine-dependent
constraint letters that can be used to segregate specific types of
operands, usually memory references, for the target machine. Any
letter that is not elsewhere defined and not matched by
`REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
be defined.
If it is required for a particular target machine, it should
return 1 if VALUE corresponds to the operand type represented by
the constraint letter C. If C is not defined as an extra
constraint, the value returned should be 0 regardless of VALUE. */
#define EXTRA_CONSTRAINT(VALUE, C) \
((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
: (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
: 0)
/* Place additional restrictions on the register class to use when it
is necessary to be able to hold a value of mode MODE in a reload
register for which class CLASS would ordinarily be used. */
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
((MODE) == QImode && !TARGET_64BIT \
&& ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
? Q_REGS : (CLASS))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the 80386 series, we prevent floating constants from being
reloaded into floating registers (since no move-insn can do that)
and we ensure that QImodes aren't reloaded into the esi or edi reg. */
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
QImode must go into class Q_REGS.
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
movdf to do mem-to-mem moves through integer regs. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
ix86_preferred_reload_class (X, CLASS)
/* If we are copying between general and FP registers, we need a memory
location. The same is true for SSE and MMX registers. */
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
ix86_secondary_memory_needed (CLASS1, CLASS2, MODE, 1)
/* QImode spills from non-QI registers need a scratch. This does not
happen often -- the only example so far requires an uninitialized
pseudo. */
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
((CLASS) == GENERAL_REGS && !TARGET_64BIT && (MODE) == QImode \
? Q_REGS : NO_REGS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On the 80386, this is the size of MODE in words,
except in the FP regs, where a single reg is always enough.
The TFmodes are really just 80bit values, so we use only 3 registers
to hold them, instead of 4, as the size would suggest.
*/
#define CLASS_MAX_NREGS(CLASS, MODE) \
(!MAYBE_INTEGER_CLASS_P (CLASS) \
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
: ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* A C expression whose value is nonzero if pseudos that have been
assigned to registers of class CLASS would likely be spilled
because registers of CLASS are needed for spill registers.
The default value of this macro returns 1 if CLASS has exactly one
register and zero otherwise. On most machines, this default
should be used. Only define this macro to some other expression
if pseudo allocated by `local-alloc.c' end up in memory because
their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only
be allocated by `global.c', which knows how to reallocate the
pseudo to another register. If there would not be another
register available for reallocation, you should not change the
definition of this macro since the only effect of such a
definition would be to slow down register allocation. */
#define CLASS_LIKELY_SPILLED_P(CLASS) \
(((CLASS) == AREG) \
|| ((CLASS) == DREG) \
|| ((CLASS) == CREG) \
|| ((CLASS) == BREG) \
|| ((CLASS) == AD_REGS) \
|| ((CLASS) == SIREG) \
|| ((CLASS) == DIREG))
/* A C statement that adds to CLOBBERS any hard regs the port wishes
to automatically clobber for all asms.
We do this in the new i386 backend to maintain source compatibility
with the old cc0-based compiler. */
#define MD_ASM_CLOBBERS(CLOBBERS) \
do { \
(CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), (CLOBBERS));\
(CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), (CLOBBERS)); \
(CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), (CLOBBERS)); \
} while (0)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On 386 pushw decrements by exactly 2 no matter what the position was.
On the 386 there is no pushb; we use pushw instead, and this
has the effect of rounding up to 2.
For 64bit ABI we round up to 8 bytes.
*/
#define PUSH_ROUNDING(BYTES) \
(TARGET_64BIT \
? (((BYTES) + 7) & (-8)) \
: (((BYTES) + 1) & (-2)))
/* If defined, the maximum amount of space required for outgoing arguments will
be computed and placed into the variable
`current_function_outgoing_args_size'. No space will be pushed onto the
stack for each call; instead, the function prologue should increase the stack
frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
/* If defined, a C expression whose value is nonzero when we want to use PUSH
instructions to pass outgoing arguments. */
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Define this macro if functions should assume that stack space has been
allocated for arguments even when their values are passed in registers.
The value of this macro is the size, in bytes, of the area reserved for
arguments passed in registers for the function represented by FNDECL.
This space can be allocated by the caller, or be a part of the
machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
which. */
#define REG_PARM_STACK_SPACE(FNDECL) 0
/* Define as a C expression that evaluates to nonzero if we do not know how
to pass TYPE solely in registers. The file expr.h defines a
definition that is usually appropriate, refer to expr.h for additional
documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
computed in the stack and then loaded into a register. */
#define MUST_PASS_IN_STACK(MODE,TYPE) \
((TYPE) != 0 \
&& (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
|| TREE_ADDRESSABLE (TYPE) \
|| ((MODE) == TImode) \
|| ((MODE) == BLKmode \
&& ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& 0 == (int_size_in_bytes (TYPE) \
% (PARM_BOUNDARY / BITS_PER_UNIT))) \
&& (FUNCTION_ARG_PADDING (MODE, TYPE) \
== (BYTES_BIG_ENDIAN ? upward : downward)))))
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
(ix86_return_pops_args (FUNDECL, FUNTYPE, SIZE))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), \
VALUE_REGNO (TYPE_MODE (VALTYPE)))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, VALUE_REGNO (MODE))
/* Define the size of the result block used for communication between
untyped_call and untyped_return. The block contains a DImode value
followed by the block used by fnsave and frstor. */
#define APPLY_RESULT_SIZE (8+108)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) ((N) < REGPARM_MAX)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
typedef struct ix86_args {
int words; /* # words passed so far */
int nregs; /* # registers available for passing */
int regno; /* next available register number */
int sse_words; /* # sse words passed so far */
int sse_nregs; /* # sse registers available for passing */
int sse_regno; /* next available sse register number */
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
(init_cumulative_args (&CUM, FNTYPE, LIBNAME))
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(function_arg_advance (&CUM, MODE, TYPE, NAMED))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(function_arg (&CUM, MODE, TYPE, NAMED))
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* If PIC, we cannot make sibling calls to global functions
because the PLT requires %ebx live.
If we are returning floats on the register stack, we cannot make
sibling calls to functions that return floats. (The stack adjust
instruction will wind up after the sibcall jump, and not be executed.) */
#define FUNCTION_OK_FOR_SIBCALL(DECL) \
(DECL \
&& (! flag_pic || ! TREE_PUBLIC (DECL)) \
&& (! TARGET_FLOAT_RETURNS_IN_80387 \
|| ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
|| FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
/* This macro is invoked at the end of compilation. It is used here to
output code for -fpic that will load the return address into %ebx. */
#undef ASM_FILE_END
#define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
if (flag_pic) \
{ \
fprintf (FILE, "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
LPREFIX, (LABELNO)); \
fprintf (FILE, "\tcall\t*_mcount@GOT(%%ebx)\n"); \
} \
else \
{ \
fprintf (FILE, "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
fprintf (FILE, "\tcall\t_mcount\n"); \
} \
}
/* There are three profiling modes for basic blocks available.
The modes are selected at compile time by using the options
-a or -ax of the gnu compiler.
The variable `profile_block_flag' will be set according to the
selected option.
profile_block_flag == 0, no option used:
No profiling done.
profile_block_flag == 1, -a option used.
Count frequency of execution of every basic block.
profile_block_flag == 2, -ax option used.
Generate code to allow several different profiling modes at run time.
Available modes are:
Produce a trace of all basic blocks.
Count frequency of jump instructions executed.
In every mode it is possible to start profiling upon entering
certain functions and to disable profiling of some other functions.
The result of basic-block profiling will be written to a file `bb.out'.
If the -ax option is used parameters for the profiling will be read
from file `bb.in'.
*/
/* The following macro shall output assembler code to FILE
to initialize basic-block profiling. */
#undef FUNCTION_BLOCK_PROFILER
#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
ix86_output_function_block_profiler (FILE, BLOCK_OR_LABEL)
/* The following macro shall output assembler code to FILE
to increment a counter associated with basic block number BLOCKNO. */
#define BLOCK_PROFILER(FILE, BLOCKNO) \
ix86_output_block_profiler (FILE, BLOCKNO)
/* The following macro shall output rtl for the epilogue
to indicate a return from function during basic-block profiling.
If profiling_block_flag == 2:
Output assembler code to call function `__bb_trace_ret'.
Note that function `__bb_trace_ret' must not change the
machine state, especially the flag register. To grant
this, you must output code to save and restore registers
either in this macro or in the macros MACHINE_STATE_SAVE
and MACHINE_STATE_RESTORE. The last two macros will be
used in the function `__bb_trace_ret', so you must make
sure that the function prologue does not change any
register prior to saving it with MACHINE_STATE_SAVE.
else if profiling_block_flag != 0:
The macro will not be used, so it need not distinguish
these cases.
*/
#define FUNCTION_BLOCK_PROFILER_EXIT \
emit_call_insn (gen_call (gen_rtx_MEM (QImode, \
gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")), \
const0_rtx, constm1_rtx))
/* The function `__bb_trace_func' is called in every basic block
and is not allowed to change the machine state. Saving (restoring)
the state can either be done in the BLOCK_PROFILER macro,
before calling function (rsp. after returning from function)
`__bb_trace_func', or it can be done inside the function by
defining the macros:
MACHINE_STATE_SAVE(ID)
MACHINE_STATE_RESTORE(ID)
In the latter case care must be taken, that the prologue code
of function `__bb_trace_func' does not already change the
state prior to saving it with MACHINE_STATE_SAVE.
The parameter `ID' is a string identifying a unique macro use.
On the i386 the initialization code at the begin of
function `__bb_trace_func' contains a `sub' instruction
therefore we handle save and restore of the flag register
in the BLOCK_PROFILER macro.
Note that ebx, esi, and edi are callee-save, so we don't have to
preserve them explicitly. */
#define MACHINE_STATE_SAVE(ID) \
do { \
register int eax_ __asm__("eax"); \
register int ecx_ __asm__("ecx"); \
register int edx_ __asm__("edx"); \
__asm__ __volatile__ ("\
push{l} %0\n\t\
push{l} %1\n\t\
push{l} %2" \
: : "r"(eax_), "r"(ecx_), "r"(edx_)); \
} while (0);
#define MACHINE_STATE_RESTORE(ID) \
do { \
register int eax_ __asm__("eax"); \
register int ecx_ __asm__("ecx"); \
register int edx_ __asm__("edx"); \
__asm__ __volatile__ ("\
pop{l} %2\n\t\
pop{l} %1\n\t\
pop{l} %0" \
: "=r"(eax_), "=r"(ecx_), "=r"(edx_)); \
} while (0);
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
/* Note on the 386 it might be more efficient not to define this since
we have to restore it ourselves from the frame pointer, in order to
use pop */
#define EXIT_IGNORE_STACK 1
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the 386, the trampoline contains two instructions:
mov #STATIC,ecx
jmp FUNCTION
The trampoline is generated entirely at runtime. The operand of JMP
is the address of FUNCTION relative to the instruction following the
JMP (which is 5 bytes long). */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
x86_initialize_trampoline (TRAMP, FNADDR, CXT)
/* Definitions for register eliminations.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
There are two registers that can always be eliminated on the i386.
The frame pointer and the arg pointer can be replaced by either the
hard frame pointer or to the stack pointer, depending upon the
circumstances. The hard frame pointer is not used before reload and
so it is not eligible for elimination. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
/* Given FROM and TO register numbers, say whether this elimination is
allowed. Frame pointer elimination is automatically handled.
All other eliminations are valid. */
#define CAN_ELIMINATE(FROM, TO) \
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = ix86_initial_elimination_offset (FROM, TO)
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < STACK_POINTER_REGNUM \
|| (REGNO >= FIRST_REX_INT_REG \
&& (REGNO) <= LAST_REX_INT_REG) \
|| ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
&& (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
|| (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) <= STACK_POINTER_REGNUM \
|| (REGNO) == ARG_POINTER_REGNUM \
|| (REGNO) == FRAME_POINTER_REGNUM \
|| (REGNO >= FIRST_REX_INT_REG \
&& (REGNO) <= LAST_REX_INT_REG) \
|| ((unsigned) reg_renumber[REGNO] >= FIRST_REX_INT_REG \
&& (unsigned) reg_renumber[REGNO] <= LAST_REX_INT_REG) \
|| (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
/* Non strict versions, pseudos are ok */
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
(REGNO (X) < STACK_POINTER_REGNUM \
|| (REGNO (X) >= FIRST_REX_INT_REG \
&& REGNO (X) <= LAST_REX_INT_REG) \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
(REGNO (X) <= STACK_POINTER_REGNUM \
|| REGNO (X) == ARG_POINTER_REGNUM \
|| REGNO (X) == FRAME_POINTER_REGNUM \
|| (REGNO (X) >= FIRST_REX_INT_REG \
&& REGNO (X) <= LAST_REX_INT_REG) \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Strict versions, hard registers only */
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#ifndef REG_OK_STRICT
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
#else
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is usually machine-independent.
See legitimize_pic_address in i386.c for details as to what
constitutes a legitimate address when -fpic is used. */
#define MAX_REGS_PER_ADDRESS 2
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == CONST_DOUBLE)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#endif
/* If defined, a C expression to determine the base term of address X.
This macro is used in only one place: `find_base_term' in alias.c.
It is always safe for this macro to not be defined. It exists so
that alias analysis can understand machine-dependent addresses.
The typical use of this macro is to handle addresses containing
a label_ref or symbol_ref within an UNSPEC. */
#define FIND_BASE_TERM(X) ix86_find_base_term (x)
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.c for details. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
(X) = legitimize_address (X, OLDX, MODE); \
if (memory_address_p (MODE, X)) \
goto WIN; \
}
#define REWRITE_ADDRESS(x) rewrite_address(x)
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
(! SYMBOLIC_CONST (X) \
|| legitimate_pic_address_disp_p (X))
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the 80386, only postdecrement and postincrement address depend thus
(the amount of decrement or increment being the length of the operand). */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
/* Codes for all the SSE/MMX builtins. */
enum ix86_builtins
{
IX86_BUILTIN_ADDPS,
IX86_BUILTIN_ADDSS,
IX86_BUILTIN_DIVPS,
IX86_BUILTIN_DIVSS,
IX86_BUILTIN_MULPS,
IX86_BUILTIN_MULSS,
IX86_BUILTIN_SUBPS,
IX86_BUILTIN_SUBSS,
IX86_BUILTIN_CMPEQPS,
IX86_BUILTIN_CMPLTPS,
IX86_BUILTIN_CMPLEPS,
IX86_BUILTIN_CMPGTPS,
IX86_BUILTIN_CMPGEPS,
IX86_BUILTIN_CMPNEQPS,
IX86_BUILTIN_CMPNLTPS,
IX86_BUILTIN_CMPNLEPS,
IX86_BUILTIN_CMPNGTPS,
IX86_BUILTIN_CMPNGEPS,
IX86_BUILTIN_CMPORDPS,
IX86_BUILTIN_CMPUNORDPS,
IX86_BUILTIN_CMPNEPS,
IX86_BUILTIN_CMPEQSS,
IX86_BUILTIN_CMPLTSS,
IX86_BUILTIN_CMPLESS,
IX86_BUILTIN_CMPGTSS,
IX86_BUILTIN_CMPGESS,
IX86_BUILTIN_CMPNEQSS,
IX86_BUILTIN_CMPNLTSS,
IX86_BUILTIN_CMPNLESS,
IX86_BUILTIN_CMPNGTSS,
IX86_BUILTIN_CMPNGESS,
IX86_BUILTIN_CMPORDSS,
IX86_BUILTIN_CMPUNORDSS,
IX86_BUILTIN_CMPNESS,
IX86_BUILTIN_COMIEQSS,
IX86_BUILTIN_COMILTSS,
IX86_BUILTIN_COMILESS,
IX86_BUILTIN_COMIGTSS,
IX86_BUILTIN_COMIGESS,
IX86_BUILTIN_COMINEQSS,
IX86_BUILTIN_UCOMIEQSS,
IX86_BUILTIN_UCOMILTSS,
IX86_BUILTIN_UCOMILESS,
IX86_BUILTIN_UCOMIGTSS,
IX86_BUILTIN_UCOMIGESS,
IX86_BUILTIN_UCOMINEQSS,
IX86_BUILTIN_CVTPI2PS,
IX86_BUILTIN_CVTPS2PI,
IX86_BUILTIN_CVTSI2SS,
IX86_BUILTIN_CVTSS2SI,
IX86_BUILTIN_CVTTPS2PI,
IX86_BUILTIN_CVTTSS2SI,
IX86_BUILTIN_M_FROM_INT,
IX86_BUILTIN_M_TO_INT,
IX86_BUILTIN_MAXPS,
IX86_BUILTIN_MAXSS,
IX86_BUILTIN_MINPS,
IX86_BUILTIN_MINSS,
IX86_BUILTIN_LOADAPS,
IX86_BUILTIN_LOADUPS,
IX86_BUILTIN_STOREAPS,
IX86_BUILTIN_STOREUPS,
IX86_BUILTIN_LOADSS,
IX86_BUILTIN_STORESS,
IX86_BUILTIN_MOVSS,
IX86_BUILTIN_MOVHLPS,
IX86_BUILTIN_MOVLHPS,
IX86_BUILTIN_LOADHPS,
IX86_BUILTIN_LOADLPS,
IX86_BUILTIN_STOREHPS,
IX86_BUILTIN_STORELPS,
IX86_BUILTIN_MASKMOVQ,
IX86_BUILTIN_MOVMSKPS,
IX86_BUILTIN_PMOVMSKB,
IX86_BUILTIN_MOVNTPS,
IX86_BUILTIN_MOVNTQ,
IX86_BUILTIN_PACKSSWB,
IX86_BUILTIN_PACKSSDW,
IX86_BUILTIN_PACKUSWB,
IX86_BUILTIN_PADDB,
IX86_BUILTIN_PADDW,
IX86_BUILTIN_PADDD,
IX86_BUILTIN_PADDSB,
IX86_BUILTIN_PADDSW,
IX86_BUILTIN_PADDUSB,
IX86_BUILTIN_PADDUSW,
IX86_BUILTIN_PSUBB,
IX86_BUILTIN_PSUBW,
IX86_BUILTIN_PSUBD,
IX86_BUILTIN_PSUBSB,
IX86_BUILTIN_PSUBSW,
IX86_BUILTIN_PSUBUSB,
IX86_BUILTIN_PSUBUSW,
IX86_BUILTIN_PAND,
IX86_BUILTIN_PANDN,
IX86_BUILTIN_POR,
IX86_BUILTIN_PXOR,
IX86_BUILTIN_PAVGB,
IX86_BUILTIN_PAVGW,
IX86_BUILTIN_PCMPEQB,
IX86_BUILTIN_PCMPEQW,
IX86_BUILTIN_PCMPEQD,
IX86_BUILTIN_PCMPGTB,
IX86_BUILTIN_PCMPGTW,
IX86_BUILTIN_PCMPGTD,
IX86_BUILTIN_PEXTRW,
IX86_BUILTIN_PINSRW,
IX86_BUILTIN_PMADDWD,
IX86_BUILTIN_PMAXSW,
IX86_BUILTIN_PMAXUB,
IX86_BUILTIN_PMINSW,
IX86_BUILTIN_PMINUB,
IX86_BUILTIN_PMULHUW,
IX86_BUILTIN_PMULHW,
IX86_BUILTIN_PMULLW,
IX86_BUILTIN_PSADBW,
IX86_BUILTIN_PSHUFW,
IX86_BUILTIN_PSLLW,
IX86_BUILTIN_PSLLD,
IX86_BUILTIN_PSLLQ,
IX86_BUILTIN_PSRAW,
IX86_BUILTIN_PSRAD,
IX86_BUILTIN_PSRLW,
IX86_BUILTIN_PSRLD,
IX86_BUILTIN_PSRLQ,
IX86_BUILTIN_PSLLWI,
IX86_BUILTIN_PSLLDI,
IX86_BUILTIN_PSLLQI,
IX86_BUILTIN_PSRAWI,
IX86_BUILTIN_PSRADI,
IX86_BUILTIN_PSRLWI,
IX86_BUILTIN_PSRLDI,
IX86_BUILTIN_PSRLQI,
IX86_BUILTIN_PUNPCKHBW,
IX86_BUILTIN_PUNPCKHWD,
IX86_BUILTIN_PUNPCKHDQ,
IX86_BUILTIN_PUNPCKLBW,
IX86_BUILTIN_PUNPCKLWD,
IX86_BUILTIN_PUNPCKLDQ,
IX86_BUILTIN_SHUFPS,
IX86_BUILTIN_RCPPS,
IX86_BUILTIN_RCPSS,
IX86_BUILTIN_RSQRTPS,
IX86_BUILTIN_RSQRTSS,
IX86_BUILTIN_SQRTPS,
IX86_BUILTIN_SQRTSS,
IX86_BUILTIN_UNPCKHPS,
IX86_BUILTIN_UNPCKLPS,
IX86_BUILTIN_ANDPS,
IX86_BUILTIN_ANDNPS,
IX86_BUILTIN_ORPS,
IX86_BUILTIN_XORPS,
IX86_BUILTIN_EMMS,
IX86_BUILTIN_LDMXCSR,
IX86_BUILTIN_STMXCSR,
IX86_BUILTIN_SFENCE,
IX86_BUILTIN_PREFETCH,
/* Composite builtins, expand to more than one insn. */
IX86_BUILTIN_SETPS1,
IX86_BUILTIN_SETPS,
IX86_BUILTIN_CLRPS,
IX86_BUILTIN_SETRPS,
IX86_BUILTIN_LOADPS1,
IX86_BUILTIN_LOADRPS,
IX86_BUILTIN_STOREPS1,
IX86_BUILTIN_STORERPS,
IX86_BUILTIN_MMX_ZERO,
IX86_BUILTIN_MAX
};
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
so that we may access it directly in the GOT. */
#define ENCODE_SECTION_INFO(DECL) \
do \
{ \
if (flag_pic) \
{ \
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
\
if (GET_CODE (rtl) == MEM) \
{ \
if (TARGET_DEBUG_ADDR \
&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
{ \
fprintf (stderr, "Encode %s, public = %d\n", \
IDENTIFIER_POINTER (DECL_NAME (DECL)), \
TREE_PUBLIC (DECL)); \
} \
\
SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
= (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
|| ! TREE_PUBLIC (DECL)); \
} \
} \
} \
while (0)
/* The `FINALIZE_PIC' macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but
not before. (It is not done before, because in the case of
compiling an inline function, it would lead to multiple PIC
prologues being included in functions which used inline functions
and were compiled to assembly language.) */
#define FINALIZE_PIC \
do \
{ \
current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
} \
while (0)
/* Max number of args passed in registers. If this is more than 3, we will
have problems with ebx (register #4), since it is a caller save register and
is also used as the pic register in ELF. So for now, don't allow more than
3 registers to be passed in registers. */
#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
#define SSE_REGPARM_MAX (TARGET_64BIT ? 16 : 0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE 1 */
/* Specify the tree operation to be used to convert reals to integers.
This should be changed to take advantage of fist --wfs ??
*/
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 16
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
move efficiently, as opposed to MOVE_MAX which is the maximum
number of bytes we can move with a single instruction. */
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
/* If a memory-to-memory move would take MOVE_RATIO or more simple
move-instruction pairs, we will do a movstr or libcall instead.
Increasing the value will always make code faster, but eventually
incurs high cost in increased code size.
If you don't define this, a reasonable default is used. */
#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
/* On i386, shifts do truncate the count. But bit opcodes don't. */
/* #define SHIFT_COUNT_TRUNCATED */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* When a prototype says `char' or `short', really pass an `int'.
(The 386 can't easily push less than an int.) */
#define PROMOTE_PROTOTYPES 1
/* A macro to update M and UNSIGNEDP when an object whose type is
TYPE and which has the specified mode and signedness is to be
stored in a register. This macro is only called when TYPE is a
scalar type.
On i386 it is sometimes usefull to promote HImode and QImode
quantities to SImode. The choice depends on target type. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
|| ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
(MODE) = SImode;
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode (TARGET_64BIT ? DImode : SImode)
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* A part of a C `switch' statement that describes the relative costs
of constant RTL expressions. It must contain `case' labels for
expression codes `const_int', `const', `symbol_ref', `label_ref'
and `const_double'. Each case must ultimately reach a `return'
statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the
precise value of the constant, which is available for examination
in X, and the rtx code of the expression in which it is contained,
found in OUTER_CODE.
CODE is the expression code--redundant, since it can be obtained
with `GET_CODE (X)'. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
\
case CONST_DOUBLE: \
{ \
int code; \
if (GET_MODE (RTX) == VOIDmode) \
return 0; \
\
code = standard_80387_constant_p (RTX); \
return code == 1 ? 1 : \
code == 2 ? 2 : \
3; \
}
/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
#define TOPLEVEL_COSTS_N_INSNS(N) \
do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
This can be used, for example, to indicate how costly a multiply
instruction is. In writing this macro, you can use the construct
`COSTS_N_INSNS (N)' to specify a cost equal to N fast
instructions. OUTER_CODE is the code of the expression in which X
is contained.
This macro is optional; do not define it if the default cost
assumptions are adequate for the target machine. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case ASHIFT: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& GET_MODE (XEXP (X, 0)) == SImode) \
{ \
HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
if (value == 1) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
if (value == 2 || value == 3) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
} \
/* fall through */ \
\
case ROTATE: \
case ASHIFTRT: \
case LSHIFTRT: \
case ROTATERT: \
if (GET_MODE (XEXP (X, 0)) == DImode) \
{ \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
if (INTVAL (XEXP (X, 1)) > 32) \
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
else \
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
} \
else \
{ \
if (GET_CODE (XEXP (X, 1)) == AND) \
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
else \
TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
} \
} \
else \
{ \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
else \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
} \
break; \
\
case MULT: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
int nbits = 0; \
\
while (value != 0) \
{ \
nbits++; \
value >>= 1; \
} \
\
TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
+ nbits * ix86_cost->mult_bit); \
} \
else /* This is arbitrary */ \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
+ 7 * ix86_cost->mult_bit); \
\
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
\
case PLUS: \
if (GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
&& GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1)); \
if (val == 2 || val == 4 || val == 8) \
{ \
return (COSTS_N_INSNS (ix86_cost->lea) \
+ rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), OUTER_CODE) \
+ rtx_cost (XEXP (X, 1), OUTER_CODE)); \
} \
} \
else if (GET_CODE (XEXP (X, 0)) == MULT \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
if (val == 2 || val == 4 || val == 8) \
{ \
return (COSTS_N_INSNS (ix86_cost->lea) \
+ rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
+ rtx_cost (XEXP (X, 1), OUTER_CODE)); \
} \
} \
else if (GET_CODE (XEXP (X, 0)) == PLUS) \
{ \
return (COSTS_N_INSNS (ix86_cost->lea) \
+ rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
+ rtx_cost (XEXP (XEXP (X, 0), 1), OUTER_CODE) \
+ rtx_cost (XEXP (X, 1), OUTER_CODE)); \
} \
\
/* fall through */ \
case AND: \
case IOR: \
case XOR: \
case MINUS: \
if (GET_MODE (X) == DImode) \
return (COSTS_N_INSNS (ix86_cost->add) * 2 \
+ (rtx_cost (XEXP (X, 0), OUTER_CODE) \
<< (GET_MODE (XEXP (X, 0)) != DImode)) \
+ (rtx_cost (XEXP (X, 1), OUTER_CODE) \
<< (GET_MODE (XEXP (X, 1)) != DImode))); \
\
/* fall through */ \
case NEG: \
case NOT: \
if (GET_MODE (X) == DImode) \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
\
egress_rtx_costs: \
break;
/* An expression giving the cost of an addressing mode that contains
ADDRESS. If not defined, the cost is computed from the ADDRESS
expression and the `CONST_COSTS' values.
For most CISC machines, the default cost is a good approximation
of the true cost of the addressing mode. However, on RISC
machines, all instructions normally have the same length and
execution time. Hence all addresses will have equal costs.
In cases where more than one form of an address is known, the form
with the lowest cost will be used. If multiple forms have the
same, lowest, cost, the one that is the most complex will be used.
For example, suppose an address that is equal to the sum of a
register and a constant is used twice in the same basic block.
When this macro is not defined, the address will be computed in a
register and memory references will be indirect through that
register. On machines where the cost of the addressing mode
containing the sum is no higher than that of a simple indirect
reference, this will produce an additional instruction and
possibly require an additional register. Proper specification of
this macro eliminates this overhead for such machines.
Similar use of this macro is made in strength reduction of loops.
ADDRESS need not be valid as an address. In such a case, the cost
is not relevant and can be any value; invalid addresses need not be
assigned a different cost.
On machines where an address involving more than one register is as
cheap as an address computation involving only one register,
defining `ADDRESS_COST' to reflect this can cause two registers to
be live over a region of code where only one would have been if
`ADDRESS_COST' were not defined in that manner. This effect should
be considered in the definition of this macro. Equivalent costs
should probably only be given to addresses with different numbers
of registers on machines with lots of registers.
This macro will normally either not be defined or be defined as a
constant.
For i386, it is better to use a complex address than let gcc copy
the address into a reg and make a new pseudo. But not if the address
requires to two regs - that would mean more pseudos with longer
lifetimes. */
#define ADDRESS_COST(RTX) \
ix86_address_cost (RTX)
/* A C expression for the cost of moving data from a register in class FROM to
one in class TO. The classes are expressed using the enumeration values
such as `GENERAL_REGS'. A value of 2 is the default; other values are
interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the same as TO;
on some machines it is expensive to move between registers if they are not
general registers. */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
ix86_register_move_cost (MODE, CLASS1, CLASS2)
/* A C expression for the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost. */
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
ix86_memory_move_cost (MODE, CLASS, IN)
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that. */
#define BRANCH_COST ix86_branch_cost
/* Define this macro as a C expression which is nonzero if accessing
less than a word of memory (i.e. a `char' or a `short') is no
faster than accessing a word of memory, i.e., if such access
require more than one instruction or if there is no difference in
cost between byte and (aligned) word loads.
When this macro is not defined, the compiler will access a field by
finding the smallest containing object; when it is defined, a
fullword load will be used if alignment permits. Unless bytes
accesses are faster than word accesses, using word accesses is
preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the
structure, but to different bytes. */
#define SLOW_BYTE_ACCESS 0
/* Nonzero if access to memory by shorts is slow and undesirable. */
#define SLOW_SHORT_ACCESS 0
/* Define this macro if zero-extension (of a `char' or `short' to an
`int') can be done faster if the destination is a register that is
known to be zero.
If you define this macro, you must have instruction patterns that
recognize RTL structures like this:
(set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
and likewise for `HImode'. */
/* #define SLOW_ZERO_EXTEND */
/* Define this macro to be the value 1 if unaligned accesses have a
cost many times greater than aligned accesses, for example if they
are emulated in a trap handler.
When this macro is non-zero, the compiler will act as if
`STRICT_ALIGNMENT' were non-zero when generating code for block
moves. This can cause significantly more instructions to be
produced. Therefore, do not set this macro non-zero if unaligned
accesses only add a cycle or two to the time for a memory access.
If the value of this macro is always zero, it need not be defined. */
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
/* Define this macro to inhibit strength reduction of memory
addresses. (On some machines, such strength reduction seems to do
harm rather than good.) */
/* #define DONT_REDUCE_ADDR */
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register.
Desirable on the 386 because a CALL with a constant address is
faster than one with a register address. */
#define NO_FUNCTION_CSE
/* Define this macro if it is as good or better for a function to call
itself with an explicit address than to call an address kept in a
register. */
#define NO_RECURSIVE_FUNCTION_CSE
/* Add any extra modes needed to represent the condition code.
For the i386, we need separate modes when floating-point
equality comparisons are being done.
Add CCNO to indicate comparisons against zero that requires
Overflow flag to be unset. Sign bit test is used instead and
thus can be used to form "a&b>0" type of tests.
Add CCGC to indicate comparisons agains zero that allows
unspecified garbage in the Carry flag. This mode is used
by inc/dec instructions.
Add CCGOC to indicate comparisons agains zero that allows
unspecified garbage in the Carry and Overflow flag. This
mode is used to simulate comparisons of (a-b) and (a+b)
against zero using sub/cmp/add operations.
Add CCZ to indicate that only the Zero flag is valid. */
#define EXTRA_CC_MODES \
CC(CCGCmode, "CCGC") \
CC(CCGOCmode, "CCGOC") \
CC(CCNOmode, "CCNO") \
CC(CCZmode, "CCZ") \
CC(CCFPmode, "CCFP") \
CC(CCFPUmode, "CCFPU")
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison.
For floating-point equality comparisons, CCFPEQmode should be used.
VOIDmode should be used in all other cases.
For integer comparisons against zero, reduce to CCNOmode or CCZmode if
possible, to allow for more combinations. */
#define SELECT_CC_MODE(OP,X,Y) ix86_cc_mode (OP, X, Y)
/* Return non-zero if MODE implies a floating point inequality can be
reversed. */
#define REVERSIBLE_CC_MODE(MODE) 1
/* A C expression whose value is reversed condition code of the CODE for
comparison done in CC_MODE mode. */
#define REVERSE_CONDITION(CODE, MODE) \
((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
: reverse_condition_maybe_unordered (CODE))
/* Control the assembler format that we output, to the extent
this does not vary between assemblers. */
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
For non floating point regs, the following are the HImode names.
For float regs, the stack top is sometimes referred to as "%st(0)"
instead of just "%st". PRINT_REG handles this with the "y" code. */
#undef HI_REGISTER_NAMES
#define HI_REGISTER_NAMES \
{"ax","dx","cx","bx","si","di","bp","sp", \
"st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
"flags","fpsr", "dirflag", "frame", \
"xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
#define REGISTER_NAMES HI_REGISTER_NAMES
/* Table of additional register names to use in user input. */
#define ADDITIONAL_REGISTER_NAMES \
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
{ "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
{ "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
{ "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
{ "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
{ "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
{ "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
{ "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
/* Note we are omitting these since currently I don't know how
to get gcc to use these, since they want the same but different
number as al, and ax.
*/
#define QI_REGISTER_NAMES \
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
/* These parallel the array above, and can be used to access bits 8:15
of regs 0 through 3. */
#define QI_HIGH_REGISTER_NAMES \
{"ah", "dh", "ch", "bh", }
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(n) \
(TARGET_64BIT ? dbx64_register_map[n] : dbx_register_map[n])
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
/* Before the prologue, RA is at 0(%esp). */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
/* After the prologue, RA is at -4(AP) in the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT) == 0 \
? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
: gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
/* PC is dbx register 8; let's use that column for RA. */
#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
/* Before the prologue, the top of the frame is at 4(%esp). */
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
/* Select a format to encode pointers in exception handling data. CODE
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
true if the symbol may be affected by dynamic relocations.
??? All x86 object file formats are capable of representing this.
After all, the relocation needed is the same as for the call insn.
Whether or not a particular assembler allows us to enter such, I
guess we'll have to see. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
(flag_pic ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel \
: DW_EH_PE_absptr)
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
(assemble_name (FILE, NAME), fputs (":\n", FILE))
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { long l[2]; \
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
fprintf (FILE, "%s0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
} while (0)
/* This is how to output a `long double' extended real constant. */
#undef ASM_OUTPUT_LONG_DOUBLE
#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
do { long l[4]; \
REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
if (TARGET_128BIT_LONG_DOUBLE) \
fprintf (FILE, "%s0x%lx,0x%lx,0x%lx,0x0\n", ASM_LONG, l[0], l[1], l[2]); \
else \
fprintf (FILE, "%s0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { long l; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
fprintf ((FILE), "%s0x%lx\n", ASM_LONG, l); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fputs (ASM_LONG, FILE), \
output_addr_const (FILE,(VALUE)), \
putc('\n',FILE))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fputs (ASM_SHORT, FILE), \
output_addr_const (FILE,(VALUE)), \
putc('\n',FILE))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fputs (ASM_BYTE_OP, FILE), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
/* Given that x86 natively supports unaligned data, it's reasonable to
assume that all x86 assemblers don't auto-align data. Thus the
unaligned output macros required by dwarf2 frame unwind information
degenerate to the macros used above. */
#define UNALIGNED_SHORT_ASM_OP ASM_SHORT
#define UNALIGNED_INT_ASM_OP ASM_LONG
#define INT_ASM_OP ASM_LONG
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
asm_fprintf ((FILE), "%s0x%x\n", ASM_BYTE_OP, (VALUE))
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
asm_fprintf (FILE, "\tpush{l}\t%%e%s\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
asm_fprintf (FILE, "\tpop{l}\t%%e%s\n", reg_names[REGNO])
/* This is how to output an element of a case-vector that is absolute.
*/
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "%s%s%d\n", ASM_LONG, LPREFIX, VALUE)
/* This is how to output an element of a case-vector that is relative.
We don't use these on the 386 yet, because the ATT assembler can't do
forward reference the differences.
*/
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "%s%s%d-%s%d\n",ASM_LONG, LPREFIX, VALUE, LPREFIX, REL)
/* A C statement that outputs an address constant appropriate to
for DWARF debugging. */
#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,X) \
i386_dwarf_output_addr_const((FILE),(X))
/* Either simplify a location expression, or return the original. */
#define ASM_SIMPLIFY_DWARF_ADDR(X) \
i386_simplify_dwarf_addr(X)
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
Effect of various CODE letters is described in i386.c near
print_operand function. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '*' || (CODE) == '+')
/* Print the name of a register based on its machine mode and number.
If CODE is 'w', pretend the mode is HImode.
If CODE is 'b', pretend the mode is QImode.
If CODE is 'k', pretend the mode is SImode.
If CODE is 'q', pretend the mode is DImode.
If CODE is 'h', pretend the reg is the `high' byte register.
If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
#define PRINT_REG(X, CODE, FILE) \
print_reg (X, CODE, FILE)
#define PRINT_OPERAND(FILE, X, CODE) \
print_operand (FILE, X, CODE)
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
/* Print the name of a register for based on its machine mode and number.
This macro is used to print debugging output.
This macro is different from PRINT_REG in that it may be used in
programs that are not linked with aux-output.o. */
#define DEBUG_PRINT_REG(X, CODE, FILE) \
do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
static const char * const qi_name[] = QI_REGISTER_NAMES; \
fprintf (FILE, "%d ", REGNO (X)); \
if (REGNO (X) == FLAGS_REG) \
{ fputs ("flags", FILE); break; } \
if (REGNO (X) == DIRFLAG_REG) \
{ fputs ("dirflag", FILE); break; } \
if (REGNO (X) == FPSR_REG) \
{ fputs ("fpsr", FILE); break; } \
if (REGNO (X) == ARG_POINTER_REGNUM) \
{ fputs ("argp", FILE); break; } \
if (REGNO (X) == FRAME_POINTER_REGNUM) \
{ fputs ("frame", FILE); break; } \
if (STACK_TOP_P (X)) \
{ fputs ("st(0)", FILE); break; } \
if (FP_REG_P (X)) \
{ fputs (hi_name[REGNO(X)], FILE); break; } \
if (REX_INT_REG_P (X)) \
{ \
switch (GET_MODE_SIZE (GET_MODE (X))) \
{ \
default: \
case 8: \
fprintf (FILE, "r%i", REGNO (X) \
- FIRST_REX_INT_REG + 8); \
break; \
case 4: \
fprintf (FILE, "r%id", REGNO (X) \
- FIRST_REX_INT_REG + 8); \
break; \
case 2: \
fprintf (FILE, "r%iw", REGNO (X) \
- FIRST_REX_INT_REG + 8); \
break; \
case 1: \
fprintf (FILE, "r%ib", REGNO (X) \
- FIRST_REX_INT_REG + 8); \
break; \
} \
break; \
} \
switch (GET_MODE_SIZE (GET_MODE (X))) \
{ \
case 8: \
fputs ("r", FILE); \
fputs (hi_name[REGNO (X)], FILE); \
break; \
default: \
fputs ("e", FILE); \
case 2: \
fputs (hi_name[REGNO (X)], FILE); \
break; \
case 1: \
fputs (qi_name[REGNO (X)], FILE); \
break; \
} \
} while (0)
/* a letter which is not needed by the normal asm syntax, which
we can use for operand syntax in the extended asm */
#define ASM_OPERAND_LETTER '#'
#define RET return ""
#define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
/* Define the codes that are matched by predicates in i386.c. */
#define PREDICATE_CODES \
{"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
SYMBOL_REF, LABEL_REF, CONST}}, \
{"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF}}, \
{"shiftdi_operand", {SUBREG, REG, MEM}}, \
{"const_int_1_operand", {CONST_INT}}, \
{"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
{"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM}}, \
{"pic_symbolic_operand", {CONST}}, \
{"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
{"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
{"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
{"const1_operand", {CONST_INT}}, \
{"const248_operand", {CONST_INT}}, \
{"incdec_operand", {CONST_INT}}, \
{"mmx_reg_operand", {REG}}, \
{"reg_no_sp_operand", {SUBREG, REG}}, \
{"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
{"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
{"q_regs_operand", {SUBREG, REG}}, \
{"non_q_regs_operand", {SUBREG, REG}}, \
{"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
GE, UNGE, LTGT, UNEQ}}, \
{"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
}}, \
{"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
GTU, UNORDERED, ORDERED, UNLE, UNLT, \
UNGE, UNGT, LTGT, UNEQ }}, \
{"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
{"ext_register_operand", {SUBREG, REG}}, \
{"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
{"mult_operator", {MULT}}, \
{"div_operator", {DIV}}, \
{"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
LSHIFTRT, ROTATERT}}, \
{"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
{"memory_displacement_operand", {MEM}}, \
{"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
LABEL_REF, SUBREG, REG, MEM, AND}}, \
{"long_memory_operand", {MEM}},
/* A list of predicates that do special things with modes, and so
should not elicit warnings for VOIDmode match_operand. */
#define SPECIAL_MODE_PREDICATES \
"ext_register_operand",
/* CM_32 is used by 32bit ABI
CM_SMALL is small model assuming that all code and data fits in the first
31bits of address space.
CM_KERNEL is model assuming that all code and data fits in the negative
31bits of address space.
CM_MEDIUM is model assuming that code fits in the first 31bits of address
space. Size of data is unlimited.
CM_LARGE is model making no assumptions about size of particular sections.
CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
tables first in 31bits of address space.
*/
enum cmodel {
CM_32,
CM_SMALL,
CM_KERNEL,
CM_MEDIUM,
CM_LARGE,
CM_SMALL_PIC
};
/* Size of the RED_ZONE area. */
#define RED_ZONE_SIZE 128
/* Reserved area of the red zone for temporaries. */
#define RED_ZONE_RESERVE 8
/* Valud of -mcmodel specified by user. */
extern const char *ix86_cmodel_string;
extern enum cmodel ix86_cmodel;
/* Variables in i386.c */
extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
extern const char *ix86_arch_string; /* for -march=<xxx> */
extern const char *ix86_regparm_string; /* # registers to use to pass args */
extern const char *ix86_align_loops_string; /* power of two alignment for loops */
extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
extern int ix86_regparm; /* ix86_regparm_string as a number */
extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
extern int ix86_branch_cost; /* values 1-5: see jump.c */
extern enum reg_class const regclass_map[]; /* smalled class containing REGNO */
extern struct rtx_def *ix86_compare_op0; /* operand 0 for comparisons */
extern struct rtx_def *ix86_compare_op1; /* operand 1 for comparisons */
/* To properly truncate FP values into integers, we need to set i387 control
word. We can't emit proper mode switching code before reload, as spills
generated by reload may truncate values incorrectly, but we still can avoid
redundant computation of new control word by the mode switching pass.
The fldcw instructions are still emitted redundantly, but this is probably
not going to be noticeable problem, as most CPUs do have fast path for
the sequence.
The machinery is to emit simple truncation instructions and split them
before reload to instructions having USEs of two memory locations that
are filled by this code to old and new control word.
Post-reload pass may be later used to eliminate the redundant fildcw if
needed. */
enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
/* Define this macro if the port needs extra instructions inserted
for mode switching in an optimizing compilation. */
#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
initializer for an array of integers. Each initializer element N
refers to an entity that needs mode switching, and specifies the
number of different modes that might need to be set for this
entity. The position of the initializer in the initializer -
starting counting at zero - determines the integer that is used to
refer to the mode-switched entity in question. */
#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
/* ENTITY is an integer specifying a mode-switched entity. If
`OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
return an integer value not larger than the corresponding element
in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
must be switched into prior to the execution of INSN. */
#define MODE_NEEDED(ENTITY, I) \
(GET_CODE (I) == CALL_INSN \
|| (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
? FP_CW_UNINITIALIZED \
: recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
? FP_CW_ANY \
: FP_CW_STORED)
/* This macro specifies the order in which modes for ENTITY are
processed. 0 is the highest priority. */
#define MODE_PRIORITY_TO_MODE(ENTITY, N) N
/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
is the set of hard registers live at the point where the insn(s)
are to be inserted. */
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
(MODE == FP_CW_STORED \
? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
assign_386_stack_local (HImode, 2)), 0\
: 0)
/* Avoid renaming of stack registers, as doing so in combination with
scheduling just increases amount of live registers at time and in
the turn amount of fxch instructions needed.
??? Maybe Pentium chips benefits from renaming, someone can try... */
#define HARD_REGNO_RENAME_OK(src,target) \
((src) < FIRST_STACK_REG || (src) > LAST_STACK_REG)
/*
Local variables:
version-control: t
End:
*/
|