1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
|
/* Output routines for Motorola MCore processor
Copyright (C) 1993, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
2009, 2010 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "mcore.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "obstack.h"
#include "expr.h"
#include "reload.h"
#include "recog.h"
#include "function.h"
#include "ggc.h"
#include "diagnostic-core.h"
#include "target.h"
#include "target-def.h"
#include "df.h"
/* For dumping information about frame sizes. */
char * mcore_current_function_name = 0;
long mcore_current_compilation_timestamp = 0;
/* Global variables for machine-dependent things. */
/* Provides the class number of the smallest class containing
reg number. */
const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
{
GENERAL_REGS, ONLYR1_REGS, LRW_REGS, LRW_REGS,
LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
LRW_REGS, LRW_REGS, LRW_REGS, GENERAL_REGS,
GENERAL_REGS, C_REGS, NO_REGS, NO_REGS,
};
struct mcore_frame
{
int arg_size; /* Stdarg spills (bytes). */
int reg_size; /* Non-volatile reg saves (bytes). */
int reg_mask; /* Non-volatile reg saves. */
int local_size; /* Locals. */
int outbound_size; /* Arg overflow on calls out. */
int pad_outbound;
int pad_local;
int pad_reg;
/* Describe the steps we'll use to grow it. */
#define MAX_STACK_GROWS 4 /* Gives us some spare space. */
int growth[MAX_STACK_GROWS];
int arg_offset;
int reg_offset;
int reg_growth;
int local_growth;
};
typedef enum
{
COND_NO,
COND_MOV_INSN,
COND_CLR_INSN,
COND_INC_INSN,
COND_DEC_INSN,
COND_BRANCH_INSN
}
cond_type;
static void output_stack_adjust (int, int);
static int calc_live_regs (int *);
static int try_constant_tricks (long, HOST_WIDE_INT *, HOST_WIDE_INT *);
static const char * output_inline_const (enum machine_mode, rtx *);
static void layout_mcore_frame (struct mcore_frame *);
static void mcore_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int);
static cond_type is_cond_candidate (rtx);
static rtx emit_new_cond_insn (rtx, int);
static rtx conditionalize_block (rtx);
static void conditionalize_optimization (void);
static void mcore_reorg (void);
static rtx handle_structs_in_regs (enum machine_mode, const_tree, int);
static void mcore_mark_dllexport (tree);
static void mcore_mark_dllimport (tree);
static int mcore_dllexport_p (tree);
static int mcore_dllimport_p (tree);
static tree mcore_handle_naked_attribute (tree *, tree, tree, int, bool *);
#ifdef OBJECT_FORMAT_ELF
static void mcore_asm_named_section (const char *,
unsigned int, tree);
#endif
static void mcore_print_operand (FILE *, rtx, int);
static void mcore_print_operand_address (FILE *, rtx);
static bool mcore_print_operand_punct_valid_p (unsigned char code);
static void mcore_unique_section (tree, int);
static void mcore_encode_section_info (tree, rtx, int);
static const char *mcore_strip_name_encoding (const char *);
static int mcore_const_costs (rtx, RTX_CODE);
static int mcore_and_cost (rtx);
static int mcore_ior_cost (rtx);
static bool mcore_rtx_costs (rtx, int, int, int *, bool);
static void mcore_external_libcall (rtx);
static bool mcore_return_in_memory (const_tree, const_tree);
static int mcore_arg_partial_bytes (CUMULATIVE_ARGS *,
enum machine_mode,
tree, bool);
static rtx mcore_function_arg (CUMULATIVE_ARGS *,
enum machine_mode,
const_tree, bool);
static void mcore_function_arg_advance (CUMULATIVE_ARGS *,
enum machine_mode,
const_tree, bool);
static unsigned int mcore_function_arg_boundary (enum machine_mode,
const_tree);
static void mcore_asm_trampoline_template (FILE *);
static void mcore_trampoline_init (rtx, tree, rtx);
static void mcore_option_override (void);
/* MCore specific attributes. */
static const struct attribute_spec mcore_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
affects_type_identity } */
{ "dllexport", 0, 0, true, false, false, NULL, false },
{ "dllimport", 0, 0, true, false, false, NULL, false },
{ "naked", 0, 0, true, false, false, mcore_handle_naked_attribute,
false },
{ NULL, 0, 0, false, false, false, NULL, false }
};
/* What options are we going to default to specific settings when
-O* happens; the user can subsequently override these settings.
Omitting the frame pointer is a very good idea on the MCore.
Scheduling isn't worth anything on the current MCore implementation. */
static const struct default_options mcore_option_optimization_table[] =
{
{ OPT_LEVELS_1_PLUS, OPT_ffunction_cse, NULL, 0 },
{ OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 },
{ OPT_LEVELS_ALL, OPT_fcaller_saves, NULL, 0 },
{ OPT_LEVELS_ALL, OPT_fschedule_insns, NULL, 0 },
{ OPT_LEVELS_ALL, OPT_fschedule_insns2, NULL, 0 },
{ OPT_LEVELS_SIZE, OPT_mhardlit, NULL, 0 },
{ OPT_LEVELS_NONE, 0, NULL, 0 }
};
/* Initialize the GCC target structure. */
#undef TARGET_ASM_EXTERNAL_LIBCALL
#define TARGET_ASM_EXTERNAL_LIBCALL mcore_external_libcall
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
#undef TARGET_MERGE_DECL_ATTRIBUTES
#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
#endif
#ifdef OBJECT_FORMAT_ELF
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
#endif
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND mcore_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS mcore_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P mcore_print_operand_punct_valid_p
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
#undef TARGET_ASM_UNIQUE_SECTION
#define TARGET_ASM_UNIQUE_SECTION mcore_unique_section
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mcore_encode_section_info
#undef TARGET_STRIP_NAME_ENCODING
#define TARGET_STRIP_NAME_ENCODING mcore_strip_name_encoding
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mcore_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG mcore_reorg
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mcore_return_in_memory
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mcore_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG mcore_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE mcore_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY mcore_function_arg_boundary
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS mcore_setup_incoming_varargs
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE mcore_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT mcore_trampoline_init
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE mcore_option_override
#undef TARGET_OPTION_OPTIMIZATION_TABLE
#define TARGET_OPTION_OPTIMIZATION_TABLE mcore_option_optimization_table
#undef TARGET_EXCEPT_UNWIND_INFO
#define TARGET_EXCEPT_UNWIND_INFO sjlj_except_unwind_info
struct gcc_target targetm = TARGET_INITIALIZER;
/* Adjust the stack and return the number of bytes taken to do it. */
static void
output_stack_adjust (int direction, int size)
{
/* If extending stack a lot, we do it incrementally. */
if (direction < 0 && size > mcore_stack_increment && mcore_stack_increment > 0)
{
rtx tmp = gen_rtx_REG (SImode, 1);
rtx memref;
emit_insn (gen_movsi (tmp, GEN_INT (mcore_stack_increment)));
do
{
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
MEM_VOLATILE_P (memref) = 1;
emit_insn (gen_movsi (memref, stack_pointer_rtx));
size -= mcore_stack_increment;
}
while (size > mcore_stack_increment);
/* SIZE is now the residual for the last adjustment,
which doesn't require a probe. */
}
if (size)
{
rtx insn;
rtx val = GEN_INT (size);
if (size > 32)
{
rtx nval = gen_rtx_REG (SImode, 1);
emit_insn (gen_movsi (nval, val));
val = nval;
}
if (direction > 0)
insn = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
else
insn = gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
emit_insn (insn);
}
}
/* Work out the registers which need to be saved,
both as a mask and a count. */
static int
calc_live_regs (int * count)
{
int reg;
int live_regs_mask = 0;
* count = 0;
for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
{
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
{
(*count)++;
live_regs_mask |= (1 << reg);
}
}
return live_regs_mask;
}
/* Print the operand address in x to the stream. */
static void
mcore_print_operand_address (FILE * stream, rtx x)
{
switch (GET_CODE (x))
{
case REG:
fprintf (stream, "(%s)", reg_names[REGNO (x)]);
break;
case PLUS:
{
rtx base = XEXP (x, 0);
rtx index = XEXP (x, 1);
if (GET_CODE (base) != REG)
{
/* Ensure that BASE is a register (one of them must be). */
rtx temp = base;
base = index;
index = temp;
}
switch (GET_CODE (index))
{
case CONST_INT:
fprintf (stream, "(%s," HOST_WIDE_INT_PRINT_DEC ")",
reg_names[REGNO(base)], INTVAL (index));
break;
default:
gcc_unreachable ();
}
}
break;
default:
output_addr_const (stream, x);
break;
}
}
static bool
mcore_print_operand_punct_valid_p (unsigned char code)
{
return (code == '.' || code == '#' || code == '*' || code == '^'
|| code == '!');
}
/* Print operand x (an rtx) in assembler syntax to file stream
according to modifier code.
'R' print the next register or memory location along, i.e. the lsw in
a double word value
'O' print a constant without the #
'M' print a constant as its negative
'P' print log2 of a power of two
'Q' print log2 of an inverse of a power of two
'U' print register for ldm/stm instruction
'X' print byte number for xtrbN instruction. */
static void
mcore_print_operand (FILE * stream, rtx x, int code)
{
switch (code)
{
case 'N':
if (INTVAL(x) == -1)
fprintf (asm_out_file, "32");
else
fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) + 1));
break;
case 'P':
fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) & 0xffffffff));
break;
case 'Q':
fprintf (asm_out_file, "%d", exact_log2 (~INTVAL (x)));
break;
case 'O':
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case 'M':
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (x));
break;
case 'R':
/* Next location along in memory or register. */
switch (GET_CODE (x))
{
case REG:
fputs (reg_names[REGNO (x) + 1], (stream));
break;
case MEM:
mcore_print_operand_address
(stream, XEXP (adjust_address (x, SImode, 4), 0));
break;
default:
gcc_unreachable ();
}
break;
case 'U':
fprintf (asm_out_file, "%s-%s", reg_names[REGNO (x)],
reg_names[REGNO (x) + 3]);
break;
case 'x':
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
break;
case 'X':
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3 - INTVAL (x) / 8);
break;
default:
switch (GET_CODE (x))
{
case REG:
fputs (reg_names[REGNO (x)], (stream));
break;
case MEM:
output_address (XEXP (x, 0));
break;
default:
output_addr_const (stream, x);
break;
}
break;
}
}
/* What does a constant cost ? */
static int
mcore_const_costs (rtx exp, enum rtx_code code)
{
HOST_WIDE_INT val = INTVAL (exp);
/* Easy constants. */
if ( CONST_OK_FOR_I (val)
|| CONST_OK_FOR_M (val)
|| CONST_OK_FOR_N (val)
|| (code == PLUS && CONST_OK_FOR_L (val)))
return 1;
else if (code == AND
&& ( CONST_OK_FOR_M (~val)
|| CONST_OK_FOR_N (~val)))
return 2;
else if (code == PLUS
&& ( CONST_OK_FOR_I (-val)
|| CONST_OK_FOR_M (-val)
|| CONST_OK_FOR_N (-val)))
return 2;
return 5;
}
/* What does an and instruction cost - we do this b/c immediates may
have been relaxed. We want to ensure that cse will cse relaxed immeds
out. Otherwise we'll get bad code (multiple reloads of the same const). */
static int
mcore_and_cost (rtx x)
{
HOST_WIDE_INT val;
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
return 2;
val = INTVAL (XEXP (x, 1));
/* Do it directly. */
if (CONST_OK_FOR_K (val) || CONST_OK_FOR_M (~val))
return 2;
/* Takes one instruction to load. */
else if (const_ok_for_mcore (val))
return 3;
/* Takes two instructions to load. */
else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
return 4;
/* Takes a lrw to load. */
return 5;
}
/* What does an or cost - see and_cost(). */
static int
mcore_ior_cost (rtx x)
{
HOST_WIDE_INT val;
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
return 2;
val = INTVAL (XEXP (x, 1));
/* Do it directly with bclri. */
if (CONST_OK_FOR_M (val))
return 2;
/* Takes one instruction to load. */
else if (const_ok_for_mcore (val))
return 3;
/* Takes two instructions to load. */
else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
return 4;
/* Takes a lrw to load. */
return 5;
}
static bool
mcore_rtx_costs (rtx x, int code, int outer_code, int * total,
bool speed ATTRIBUTE_UNUSED)
{
switch (code)
{
case CONST_INT:
*total = mcore_const_costs (x, (enum rtx_code) outer_code);
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 5;
return true;
case CONST_DOUBLE:
*total = 10;
return true;
case AND:
*total = COSTS_N_INSNS (mcore_and_cost (x));
return true;
case IOR:
*total = COSTS_N_INSNS (mcore_ior_cost (x));
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
case FLOAT:
case FIX:
*total = COSTS_N_INSNS (100);
return true;
default:
return false;
}
}
/* Prepare the operands for a comparison. Return whether the branch/setcc
should reverse the operands. */
bool
mcore_gen_compare (enum rtx_code code, rtx op0, rtx op1)
{
rtx cc_reg = gen_rtx_REG (CCmode, CC_REG);
bool invert;
if (GET_CODE (op1) == CONST_INT)
{
HOST_WIDE_INT val = INTVAL (op1);
switch (code)
{
case GTU:
/* Unsigned > 0 is the same as != 0; everything else is converted
below to LEU (reversed cmphs). */
if (val == 0)
code = NE;
break;
/* Check whether (LE A imm) can become (LT A imm + 1),
or (GT A imm) can become (GE A imm + 1). */
case GT:
case LE:
if (CONST_OK_FOR_J (val + 1))
{
op1 = GEN_INT (val + 1);
code = code == LE ? LT : GE;
}
break;
default:
break;
}
}
if (CONSTANT_P (op1) && GET_CODE (op1) != CONST_INT)
op1 = force_reg (SImode, op1);
/* cmpnei: 0-31 (K immediate)
cmplti: 1-32 (J immediate, 0 using btsti x,31). */
invert = false;
switch (code)
{
case EQ: /* Use inverted condition, cmpne. */
code = NE;
invert = true;
/* Drop through. */
case NE: /* Use normal condition, cmpne. */
if (GET_CODE (op1) == CONST_INT && ! CONST_OK_FOR_K (INTVAL (op1)))
op1 = force_reg (SImode, op1);
break;
case LE: /* Use inverted condition, reversed cmplt. */
code = GT;
invert = true;
/* Drop through. */
case GT: /* Use normal condition, reversed cmplt. */
if (GET_CODE (op1) == CONST_INT)
op1 = force_reg (SImode, op1);
break;
case GE: /* Use inverted condition, cmplt. */
code = LT;
invert = true;
/* Drop through. */
case LT: /* Use normal condition, cmplt. */
if (GET_CODE (op1) == CONST_INT &&
/* covered by btsti x,31. */
INTVAL (op1) != 0 &&
! CONST_OK_FOR_J (INTVAL (op1)))
op1 = force_reg (SImode, op1);
break;
case GTU: /* Use inverted condition, cmple. */
/* We coped with unsigned > 0 above. */
gcc_assert (GET_CODE (op1) != CONST_INT || INTVAL (op1) != 0);
code = LEU;
invert = true;
/* Drop through. */
case LEU: /* Use normal condition, reversed cmphs. */
if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
op1 = force_reg (SImode, op1);
break;
case LTU: /* Use inverted condition, cmphs. */
code = GEU;
invert = true;
/* Drop through. */
case GEU: /* Use normal condition, cmphs. */
if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
op1 = force_reg (SImode, op1);
break;
default:
break;
}
emit_insn (gen_rtx_SET (VOIDmode,
cc_reg,
gen_rtx_fmt_ee (code, CCmode, op0, op1)));
return invert;
}
int
mcore_symbolic_address_p (rtx x)
{
switch (GET_CODE (x))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
x = XEXP (x, 0);
return ( (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (x, 0)) == LABEL_REF)
&& GET_CODE (XEXP (x, 1)) == CONST_INT);
default:
return 0;
}
}
/* Functions to output assembly code for a function call. */
char *
mcore_output_call (rtx operands[], int index)
{
static char buffer[20];
rtx addr = operands [index];
if (REG_P (addr))
{
if (TARGET_CG_DATA)
{
gcc_assert (mcore_current_function_name);
ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
"unknown", 1);
}
sprintf (buffer, "jsr\t%%%d", index);
}
else
{
if (TARGET_CG_DATA)
{
gcc_assert (mcore_current_function_name);
gcc_assert (GET_CODE (addr) == SYMBOL_REF);
ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
XSTR (addr, 0), 0);
}
sprintf (buffer, "jbsr\t%%%d", index);
}
return buffer;
}
/* Can we load a constant with a single instruction ? */
int
const_ok_for_mcore (HOST_WIDE_INT value)
{
if (value >= 0 && value <= 127)
return 1;
/* Try exact power of two. */
if (CONST_OK_FOR_M (value))
return 1;
/* Try exact power of two - 1. */
if (CONST_OK_FOR_N (value) && value != -1)
return 1;
return 0;
}
/* Can we load a constant inline with up to 2 instructions ? */
int
mcore_const_ok_for_inline (HOST_WIDE_INT value)
{
HOST_WIDE_INT x, y;
return try_constant_tricks (value, & x, & y) > 0;
}
/* Are we loading the constant using a not ? */
int
mcore_const_trick_uses_not (HOST_WIDE_INT value)
{
HOST_WIDE_INT x, y;
return try_constant_tricks (value, & x, & y) == 2;
}
/* Try tricks to load a constant inline and return the trick number if
success (0 is non-inlinable).
0: not inlinable
1: single instruction (do the usual thing)
2: single insn followed by a 'not'
3: single insn followed by a subi
4: single insn followed by an addi
5: single insn followed by rsubi
6: single insn followed by bseti
7: single insn followed by bclri
8: single insn followed by rotli
9: single insn followed by lsli
10: single insn followed by ixh
11: single insn followed by ixw. */
static int
try_constant_tricks (HOST_WIDE_INT value, HOST_WIDE_INT * x, HOST_WIDE_INT * y)
{
HOST_WIDE_INT i;
unsigned HOST_WIDE_INT bit, shf, rot;
if (const_ok_for_mcore (value))
return 1; /* Do the usual thing. */
if (! TARGET_HARDLIT)
return 0;
if (const_ok_for_mcore (~value))
{
*x = ~value;
return 2;
}
for (i = 1; i <= 32; i++)
{
if (const_ok_for_mcore (value - i))
{
*x = value - i;
*y = i;
return 3;
}
if (const_ok_for_mcore (value + i))
{
*x = value + i;
*y = i;
return 4;
}
}
bit = 0x80000000ULL;
for (i = 0; i <= 31; i++)
{
if (const_ok_for_mcore (i - value))
{
*x = i - value;
*y = i;
return 5;
}
if (const_ok_for_mcore (value & ~bit))
{
*y = bit;
*x = value & ~bit;
return 6;
}
if (const_ok_for_mcore (value | bit))
{
*y = ~bit;
*x = value | bit;
return 7;
}
bit >>= 1;
}
shf = value;
rot = value;
for (i = 1; i < 31; i++)
{
int c;
/* MCore has rotate left. */
c = rot << 31;
rot >>= 1;
rot &= 0x7FFFFFFF;
rot |= c; /* Simulate rotate. */
if (const_ok_for_mcore (rot))
{
*y = i;
*x = rot;
return 8;
}
if (shf & 1)
shf = 0; /* Can't use logical shift, low order bit is one. */
shf >>= 1;
if (shf != 0 && const_ok_for_mcore (shf))
{
*y = i;
*x = shf;
return 9;
}
}
if ((value % 3) == 0 && const_ok_for_mcore (value / 3))
{
*x = value / 3;
return 10;
}
if ((value % 5) == 0 && const_ok_for_mcore (value / 5))
{
*x = value / 5;
return 11;
}
return 0;
}
/* Check whether reg is dead at first. This is done by searching ahead
for either the next use (i.e., reg is live), a death note, or a set of
reg. Don't just use dead_or_set_p() since reload does not always mark
deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
can ignore subregs by extracting the actual register. BRC */
int
mcore_is_dead (rtx first, rtx reg)
{
rtx insn;
/* For mcore, subregs can't live independently of their parent regs. */
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
/* Dies immediately. */
if (dead_or_set_p (first, reg))
return 1;
/* Look for conclusive evidence of live/death, otherwise we have
to assume that it is live. */
for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == JUMP_INSN)
return 0; /* We lose track, assume it is alive. */
else if (GET_CODE(insn) == CALL_INSN)
{
/* Call's might use it for target or register parms. */
if (reg_referenced_p (reg, PATTERN (insn))
|| find_reg_fusage (insn, USE, reg))
return 0;
else if (dead_or_set_p (insn, reg))
return 1;
}
else if (GET_CODE (insn) == INSN)
{
if (reg_referenced_p (reg, PATTERN (insn)))
return 0;
else if (dead_or_set_p (insn, reg))
return 1;
}
}
/* No conclusive evidence either way, we cannot take the chance
that control flow hid the use from us -- "I'm not dead yet". */
return 0;
}
/* Count the number of ones in mask. */
int
mcore_num_ones (HOST_WIDE_INT mask)
{
/* A trick to count set bits recently posted on comp.compilers. */
mask = (mask >> 1 & 0x55555555) + (mask & 0x55555555);
mask = ((mask >> 2) & 0x33333333) + (mask & 0x33333333);
mask = ((mask >> 4) + mask) & 0x0f0f0f0f;
mask = ((mask >> 8) + mask);
return (mask + (mask >> 16)) & 0xff;
}
/* Count the number of zeros in mask. */
int
mcore_num_zeros (HOST_WIDE_INT mask)
{
return 32 - mcore_num_ones (mask);
}
/* Determine byte being masked. */
int
mcore_byte_offset (unsigned int mask)
{
if (mask == 0x00ffffffL)
return 0;
else if (mask == 0xff00ffffL)
return 1;
else if (mask == 0xffff00ffL)
return 2;
else if (mask == 0xffffff00L)
return 3;
return -1;
}
/* Determine halfword being masked. */
int
mcore_halfword_offset (unsigned int mask)
{
if (mask == 0x0000ffffL)
return 0;
else if (mask == 0xffff0000L)
return 1;
return -1;
}
/* Output a series of bseti's corresponding to mask. */
const char *
mcore_output_bseti (rtx dst, int mask)
{
rtx out_operands[2];
int bit;
out_operands[0] = dst;
for (bit = 0; bit < 32; bit++)
{
if ((mask & 0x1) == 0x1)
{
out_operands[1] = GEN_INT (bit);
output_asm_insn ("bseti\t%0,%1", out_operands);
}
mask >>= 1;
}
return "";
}
/* Output a series of bclri's corresponding to mask. */
const char *
mcore_output_bclri (rtx dst, int mask)
{
rtx out_operands[2];
int bit;
out_operands[0] = dst;
for (bit = 0; bit < 32; bit++)
{
if ((mask & 0x1) == 0x0)
{
out_operands[1] = GEN_INT (bit);
output_asm_insn ("bclri\t%0,%1", out_operands);
}
mask >>= 1;
}
return "";
}
/* Output a conditional move of two constants that are +/- 1 within each
other. See the "movtK" patterns in mcore.md. I'm not sure this is
really worth the effort. */
const char *
mcore_output_cmov (rtx operands[], int cmp_t, const char * test)
{
HOST_WIDE_INT load_value;
HOST_WIDE_INT adjust_value;
rtx out_operands[4];
out_operands[0] = operands[0];
/* Check to see which constant is loadable. */
if (const_ok_for_mcore (INTVAL (operands[1])))
{
out_operands[1] = operands[1];
out_operands[2] = operands[2];
}
else if (const_ok_for_mcore (INTVAL (operands[2])))
{
out_operands[1] = operands[2];
out_operands[2] = operands[1];
/* Complement test since constants are swapped. */
cmp_t = (cmp_t == 0);
}
load_value = INTVAL (out_operands[1]);
adjust_value = INTVAL (out_operands[2]);
/* First output the test if folded into the pattern. */
if (test)
output_asm_insn (test, operands);
/* Load the constant - for now, only support constants that can be
generated with a single instruction. maybe add general inlinable
constants later (this will increase the # of patterns since the
instruction sequence has a different length attribute). */
if (load_value >= 0 && load_value <= 127)
output_asm_insn ("movi\t%0,%1", out_operands);
else if (CONST_OK_FOR_M (load_value))
output_asm_insn ("bgeni\t%0,%P1", out_operands);
else if (CONST_OK_FOR_N (load_value))
output_asm_insn ("bmaski\t%0,%N1", out_operands);
/* Output the constant adjustment. */
if (load_value > adjust_value)
{
if (cmp_t)
output_asm_insn ("decf\t%0", out_operands);
else
output_asm_insn ("dect\t%0", out_operands);
}
else
{
if (cmp_t)
output_asm_insn ("incf\t%0", out_operands);
else
output_asm_insn ("inct\t%0", out_operands);
}
return "";
}
/* Outputs the peephole for moving a constant that gets not'ed followed
by an and (i.e. combine the not and the and into andn). BRC */
const char *
mcore_output_andn (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
{
HOST_WIDE_INT x, y;
rtx out_operands[3];
const char * load_op;
char buf[256];
int trick_no;
trick_no = try_constant_tricks (INTVAL (operands[1]), &x, &y);
gcc_assert (trick_no == 2);
out_operands[0] = operands[0];
out_operands[1] = GEN_INT (x);
out_operands[2] = operands[2];
if (x >= 0 && x <= 127)
load_op = "movi\t%0,%1";
/* Try exact power of two. */
else if (CONST_OK_FOR_M (x))
load_op = "bgeni\t%0,%P1";
/* Try exact power of two - 1. */
else if (CONST_OK_FOR_N (x))
load_op = "bmaski\t%0,%N1";
else
{
load_op = "BADMOVI-andn\t%0, %1";
gcc_unreachable ();
}
sprintf (buf, "%s\n\tandn\t%%2,%%0", load_op);
output_asm_insn (buf, out_operands);
return "";
}
/* Output an inline constant. */
static const char *
output_inline_const (enum machine_mode mode, rtx operands[])
{
HOST_WIDE_INT x = 0, y = 0;
int trick_no;
rtx out_operands[3];
char buf[256];
char load_op[256];
const char *dst_fmt;
HOST_WIDE_INT value;
value = INTVAL (operands[1]);
trick_no = try_constant_tricks (value, &x, &y);
/* lrw's are handled separately: Large inlinable constants never get
turned into lrw's. Our caller uses try_constant_tricks to back
off to an lrw rather than calling this routine. */
gcc_assert (trick_no != 0);
if (trick_no == 1)
x = value;
/* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
out_operands[0] = operands[0];
out_operands[1] = GEN_INT (x);
if (trick_no > 2)
out_operands[2] = GEN_INT (y);
/* Select dst format based on mode. */
if (mode == DImode && (! TARGET_LITTLE_END))
dst_fmt = "%R0";
else
dst_fmt = "%0";
if (x >= 0 && x <= 127)
sprintf (load_op, "movi\t%s,%%1", dst_fmt);
/* Try exact power of two. */
else if (CONST_OK_FOR_M (x))
sprintf (load_op, "bgeni\t%s,%%P1", dst_fmt);
/* Try exact power of two - 1. */
else if (CONST_OK_FOR_N (x))
sprintf (load_op, "bmaski\t%s,%%N1", dst_fmt);
else
{
sprintf (load_op, "BADMOVI-inline_const %s, %%1", dst_fmt);
gcc_unreachable ();
}
switch (trick_no)
{
case 1:
strcpy (buf, load_op);
break;
case 2: /* not */
sprintf (buf, "%s\n\tnot\t%s\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 3: /* add */
sprintf (buf, "%s\n\taddi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 4: /* sub */
sprintf (buf, "%s\n\tsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 5: /* rsub */
/* Never happens unless -mrsubi, see try_constant_tricks(). */
sprintf (buf, "%s\n\trsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 6: /* bseti */
sprintf (buf, "%s\n\tbseti\t%s,%%P2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 7: /* bclr */
sprintf (buf, "%s\n\tbclri\t%s,%%Q2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 8: /* rotl */
sprintf (buf, "%s\n\trotli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 9: /* lsl */
sprintf (buf, "%s\n\tlsli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
break;
case 10: /* ixh */
sprintf (buf, "%s\n\tixh\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
break;
case 11: /* ixw */
sprintf (buf, "%s\n\tixw\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
break;
default:
return "";
}
output_asm_insn (buf, out_operands);
return "";
}
/* Output a move of a word or less value. */
const char *
mcore_output_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx dst = operands[0];
rtx src = operands[1];
if (GET_CODE (dst) == REG)
{
if (GET_CODE (src) == REG)
{
if (REGNO (src) == CC_REG) /* r-c */
return "mvc\t%0";
else
return "mov\t%0,%1"; /* r-r*/
}
else if (GET_CODE (src) == MEM)
{
if (GET_CODE (XEXP (src, 0)) == LABEL_REF)
return "lrw\t%0,[%1]"; /* a-R */
else
switch (GET_MODE (src)) /* r-m */
{
case SImode:
return "ldw\t%0,%1";
case HImode:
return "ld.h\t%0,%1";
case QImode:
return "ld.b\t%0,%1";
default:
gcc_unreachable ();
}
}
else if (GET_CODE (src) == CONST_INT)
{
HOST_WIDE_INT x, y;
if (CONST_OK_FOR_I (INTVAL (src))) /* r-I */
return "movi\t%0,%1";
else if (CONST_OK_FOR_M (INTVAL (src))) /* r-M */
return "bgeni\t%0,%P1\t// %1 %x1";
else if (CONST_OK_FOR_N (INTVAL (src))) /* r-N */
return "bmaski\t%0,%N1\t// %1 %x1";
else if (try_constant_tricks (INTVAL (src), &x, &y)) /* R-P */
return output_inline_const (SImode, operands); /* 1-2 insns */
else
return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
}
else
return "lrw\t%0, %1"; /* Into the literal pool. */
}
else if (GET_CODE (dst) == MEM) /* m-r */
switch (GET_MODE (dst))
{
case SImode:
return "stw\t%1,%0";
case HImode:
return "st.h\t%1,%0";
case QImode:
return "st.b\t%1,%0";
default:
gcc_unreachable ();
}
gcc_unreachable ();
}
/* Return a sequence of instructions to perform DI or DF move.
Since the MCORE cannot move a DI or DF in one instruction, we have
to take care when we see overlapping source and dest registers. */
const char *
mcore_output_movedouble (rtx operands[], enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx dst = operands[0];
rtx src = operands[1];
if (GET_CODE (dst) == REG)
{
if (GET_CODE (src) == REG)
{
int dstreg = REGNO (dst);
int srcreg = REGNO (src);
/* Ensure the second source not overwritten. */
if (srcreg + 1 == dstreg)
return "mov %R0,%R1\n\tmov %0,%1";
else
return "mov %0,%1\n\tmov %R0,%R1";
}
else if (GET_CODE (src) == MEM)
{
rtx memexp = memexp = XEXP (src, 0);
int dstreg = REGNO (dst);
int basereg = -1;
if (GET_CODE (memexp) == LABEL_REF)
return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
else if (GET_CODE (memexp) == REG)
basereg = REGNO (memexp);
else if (GET_CODE (memexp) == PLUS)
{
if (GET_CODE (XEXP (memexp, 0)) == REG)
basereg = REGNO (XEXP (memexp, 0));
else if (GET_CODE (XEXP (memexp, 1)) == REG)
basereg = REGNO (XEXP (memexp, 1));
else
gcc_unreachable ();
}
else
gcc_unreachable ();
/* ??? length attribute is wrong here. */
if (dstreg == basereg)
{
/* Just load them in reverse order. */
return "ldw\t%R0,%R1\n\tldw\t%0,%1";
/* XXX: alternative: move basereg to basereg+1
and then fall through. */
}
else
return "ldw\t%0,%1\n\tldw\t%R0,%R1";
}
else if (GET_CODE (src) == CONST_INT)
{
if (TARGET_LITTLE_END)
{
if (CONST_OK_FOR_I (INTVAL (src)))
output_asm_insn ("movi %0,%1", operands);
else if (CONST_OK_FOR_M (INTVAL (src)))
output_asm_insn ("bgeni %0,%P1", operands);
else if (CONST_OK_FOR_N (INTVAL (src)))
output_asm_insn ("bmaski %0,%N1", operands);
else
gcc_unreachable ();
if (INTVAL (src) < 0)
return "bmaski %R0,32";
else
return "movi %R0,0";
}
else
{
if (CONST_OK_FOR_I (INTVAL (src)))
output_asm_insn ("movi %R0,%1", operands);
else if (CONST_OK_FOR_M (INTVAL (src)))
output_asm_insn ("bgeni %R0,%P1", operands);
else if (CONST_OK_FOR_N (INTVAL (src)))
output_asm_insn ("bmaski %R0,%N1", operands);
else
gcc_unreachable ();
if (INTVAL (src) < 0)
return "bmaski %0,32";
else
return "movi %0,0";
}
}
else
gcc_unreachable ();
}
else if (GET_CODE (dst) == MEM && GET_CODE (src) == REG)
return "stw\t%1,%0\n\tstw\t%R1,%R0";
else
gcc_unreachable ();
}
/* Predicates used by the templates. */
int
mcore_arith_S_operand (rtx op)
{
if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (~INTVAL (op)))
return 1;
return 0;
}
/* Expand insert bit field. BRC */
int
mcore_expand_insv (rtx operands[])
{
int width = INTVAL (operands[1]);
int posn = INTVAL (operands[2]);
int mask;
rtx mreg, sreg, ereg;
/* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
for width==1 must be removed. Look around line 368. This is something
we really want the md part to do. */
if (width == 1 && GET_CODE (operands[3]) == CONST_INT)
{
/* Do directly with bseti or bclri. */
/* RBE: 2/97 consider only low bit of constant. */
if ((INTVAL (operands[3]) & 1) == 0)
{
mask = ~(1 << posn);
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_AND (SImode, operands[0], GEN_INT (mask))));
}
else
{
mask = 1 << posn;
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_IOR (SImode, operands[0], GEN_INT (mask))));
}
return 1;
}
/* Look at some bit-field placements that we aren't interested
in handling ourselves, unless specifically directed to do so. */
if (! TARGET_W_FIELD)
return 0; /* Generally, give up about now. */
if (width == 8 && posn % 8 == 0)
/* Byte sized and aligned; let caller break it up. */
return 0;
if (width == 16 && posn % 16 == 0)
/* Short sized and aligned; let caller break it up. */
return 0;
/* The general case - we can do this a little bit better than what the
machine independent part tries. This will get rid of all the subregs
that mess up constant folding in combine when working with relaxed
immediates. */
/* If setting the entire field, do it directly. */
if (GET_CODE (operands[3]) == CONST_INT
&& INTVAL (operands[3]) == ((1 << width) - 1))
{
mreg = force_reg (SImode, GEN_INT (INTVAL (operands[3]) << posn));
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_IOR (SImode, operands[0], mreg)));
return 1;
}
/* Generate the clear mask. */
mreg = force_reg (SImode, GEN_INT (~(((1 << width) - 1) << posn)));
/* Clear the field, to overlay it later with the source. */
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_AND (SImode, operands[0], mreg)));
/* If the source is constant 0, we've nothing to add back. */
if (GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) == 0)
return 1;
/* XXX: Should we worry about more games with constant values?
We've covered the high profile: set/clear single-bit and many-bit
fields. How often do we see "arbitrary bit pattern" constants? */
sreg = copy_to_mode_reg (SImode, operands[3]);
/* Extract src as same width as dst (needed for signed values). We
always have to do this since we widen everything to SImode.
We don't have to mask if we're shifting this up against the
MSB of the register (e.g., the shift will push out any hi-order
bits. */
if (width + posn != (int) GET_MODE_SIZE (SImode))
{
ereg = force_reg (SImode, GEN_INT ((1 << width) - 1));
emit_insn (gen_rtx_SET (SImode, sreg,
gen_rtx_AND (SImode, sreg, ereg)));
}
/* Insert source value in dest. */
if (posn != 0)
emit_insn (gen_rtx_SET (SImode, sreg,
gen_rtx_ASHIFT (SImode, sreg, GEN_INT (posn))));
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_IOR (SImode, operands[0], sreg)));
return 1;
}
/* ??? Block move stuff stolen from m88k. This code has not been
verified for correctness. */
/* Emit code to perform a block move. Choose the best method.
OPERANDS[0] is the destination.
OPERANDS[1] is the source.
OPERANDS[2] is the size.
OPERANDS[3] is the alignment safe to use. */
/* Emit code to perform a block move with an offset sequence of ldw/st
instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
known constants. DEST and SRC are registers. OFFSET is the known
starting point for the output pattern. */
static const enum machine_mode mode_from_align[] =
{
VOIDmode, QImode, HImode, VOIDmode, SImode,
};
static void
block_move_sequence (rtx dst_mem, rtx src_mem, int size, int align)
{
rtx temp[2];
enum machine_mode mode[2];
int amount[2];
bool active[2];
int phase = 0;
int next;
int offset_ld = 0;
int offset_st = 0;
rtx x;
x = XEXP (dst_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
dst_mem = replace_equiv_address (dst_mem, x);
}
x = XEXP (src_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
src_mem = replace_equiv_address (src_mem, x);
}
active[0] = active[1] = false;
do
{
next = phase;
phase ^= 1;
if (size > 0)
{
int next_amount;
next_amount = (size >= 4 ? 4 : (size >= 2 ? 2 : 1));
next_amount = MIN (next_amount, align);
amount[next] = next_amount;
mode[next] = mode_from_align[next_amount];
temp[next] = gen_reg_rtx (mode[next]);
x = adjust_address (src_mem, mode[next], offset_ld);
emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
offset_ld += next_amount;
size -= next_amount;
active[next] = true;
}
if (active[phase])
{
active[phase] = false;
x = adjust_address (dst_mem, mode[phase], offset_st);
emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
offset_st += amount[phase];
}
}
while (active[next]);
}
bool
mcore_expand_block_move (rtx *operands)
{
HOST_WIDE_INT align, bytes, max;
if (GET_CODE (operands[2]) != CONST_INT)
return false;
bytes = INTVAL (operands[2]);
align = INTVAL (operands[3]);
if (bytes <= 0)
return false;
if (align > 4)
align = 4;
switch (align)
{
case 4:
if (bytes & 1)
max = 4*4;
else if (bytes & 3)
max = 8*4;
else
max = 16*4;
break;
case 2:
max = 4*2;
break;
case 1:
max = 4*1;
break;
default:
gcc_unreachable ();
}
if (bytes <= max)
{
block_move_sequence (operands[0], operands[1], bytes, align);
return true;
}
return false;
}
/* Code to generate prologue and epilogue sequences. */
static int number_of_regs_before_varargs;
/* Set by TARGET_SETUP_INCOMING_VARARGS to indicate to prolog that this is
for a varargs function. */
static int current_function_anonymous_args;
#define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
#define STORE_REACH (64) /* Maximum displace of word store + 4. */
#define ADDI_REACH (32) /* Maximum addi operand. */
static void
layout_mcore_frame (struct mcore_frame * infp)
{
int n;
unsigned int i;
int nbytes;
int regarg;
int localregarg;
int outbounds;
unsigned int growths;
int step;
/* Might have to spill bytes to re-assemble a big argument that
was passed partially in registers and partially on the stack. */
nbytes = crtl->args.pretend_args_size;
/* Determine how much space for spilled anonymous args (e.g., stdarg). */
if (current_function_anonymous_args)
nbytes += (NPARM_REGS - number_of_regs_before_varargs) * UNITS_PER_WORD;
infp->arg_size = nbytes;
/* How much space to save non-volatile registers we stomp. */
infp->reg_mask = calc_live_regs (& n);
infp->reg_size = n * 4;
/* And the rest of it... locals and space for overflowed outbounds. */
infp->local_size = get_frame_size ();
infp->outbound_size = crtl->outgoing_args_size;
/* Make sure we have a whole number of words for the locals. */
if (infp->local_size % STACK_BYTES)
infp->local_size = (infp->local_size + STACK_BYTES - 1) & ~ (STACK_BYTES -1);
/* Only thing we know we have to pad is the outbound space, since
we've aligned our locals assuming that base of locals is aligned. */
infp->pad_local = 0;
infp->pad_reg = 0;
infp->pad_outbound = 0;
if (infp->outbound_size % STACK_BYTES)
infp->pad_outbound = STACK_BYTES - (infp->outbound_size % STACK_BYTES);
/* Now we see how we want to stage the prologue so that it does
the most appropriate stack growth and register saves to either:
(1) run fast,
(2) reduce instruction space, or
(3) reduce stack space. */
for (i = 0; i < ARRAY_SIZE (infp->growth); i++)
infp->growth[i] = 0;
regarg = infp->reg_size + infp->arg_size;
localregarg = infp->local_size + regarg;
outbounds = infp->outbound_size + infp->pad_outbound;
growths = 0;
/* XXX: Consider one where we consider localregarg + outbound too! */
/* Frame of <= 32 bytes and using stm would get <= 2 registers.
use stw's with offsets and buy the frame in one shot. */
if (localregarg <= ADDI_REACH
&& (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
{
/* Make sure we'll be aligned. */
if (localregarg % STACK_BYTES)
infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
step = localregarg + infp->pad_reg;
infp->reg_offset = infp->local_size;
if (outbounds + step <= ADDI_REACH && !frame_pointer_needed)
{
step += outbounds;
infp->reg_offset += outbounds;
outbounds = 0;
}
infp->arg_offset = step - 4;
infp->growth[growths++] = step;
infp->reg_growth = growths;
infp->local_growth = growths;
/* If we haven't already folded it in. */
if (outbounds)
infp->growth[growths++] = outbounds;
goto finish;
}
/* Frame can't be done with a single subi, but can be done with 2
insns. If the 'stm' is getting <= 2 registers, we use stw's and
shift some of the stack purchase into the first subi, so both are
single instructions. */
if (localregarg <= STORE_REACH
&& (infp->local_size > ADDI_REACH)
&& (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
{
int all;
/* Make sure we'll be aligned; use either pad_reg or pad_local. */
if (localregarg % STACK_BYTES)
infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
all = localregarg + infp->pad_reg + infp->pad_local;
step = ADDI_REACH; /* As much up front as we can. */
if (step > all)
step = all;
/* XXX: Consider whether step will still be aligned; we believe so. */
infp->arg_offset = step - 4;
infp->growth[growths++] = step;
infp->reg_growth = growths;
infp->reg_offset = step - infp->pad_reg - infp->reg_size;
all -= step;
/* Can we fold in any space required for outbounds? */
if (outbounds + all <= ADDI_REACH && !frame_pointer_needed)
{
all += outbounds;
outbounds = 0;
}
/* Get the rest of the locals in place. */
step = all;
infp->growth[growths++] = step;
infp->local_growth = growths;
all -= step;
gcc_assert (all == 0);
/* Finish off if we need to do so. */
if (outbounds)
infp->growth[growths++] = outbounds;
goto finish;
}
/* Registers + args is nicely aligned, so we'll buy that in one shot.
Then we buy the rest of the frame in 1 or 2 steps depending on
whether we need a frame pointer. */
if ((regarg % STACK_BYTES) == 0)
{
infp->growth[growths++] = regarg;
infp->reg_growth = growths;
infp->arg_offset = regarg - 4;
infp->reg_offset = 0;
if (infp->local_size % STACK_BYTES)
infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
step = infp->local_size + infp->pad_local;
if (!frame_pointer_needed)
{
step += outbounds;
outbounds = 0;
}
infp->growth[growths++] = step;
infp->local_growth = growths;
/* If there's any left to be done. */
if (outbounds)
infp->growth[growths++] = outbounds;
goto finish;
}
/* XXX: optimizations that we'll want to play with....
-- regarg is not aligned, but it's a small number of registers;
use some of localsize so that regarg is aligned and then
save the registers. */
/* Simple encoding; plods down the stack buying the pieces as it goes.
-- does not optimize space consumption.
-- does not attempt to optimize instruction counts.
-- but it is safe for all alignments. */
if (regarg % STACK_BYTES != 0)
infp->pad_reg = STACK_BYTES - (regarg % STACK_BYTES);
infp->growth[growths++] = infp->arg_size + infp->reg_size + infp->pad_reg;
infp->reg_growth = growths;
infp->arg_offset = infp->growth[0] - 4;
infp->reg_offset = 0;
if (frame_pointer_needed)
{
if (infp->local_size % STACK_BYTES != 0)
infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
infp->growth[growths++] = infp->local_size + infp->pad_local;
infp->local_growth = growths;
infp->growth[growths++] = outbounds;
}
else
{
if ((infp->local_size + outbounds) % STACK_BYTES != 0)
infp->pad_local = STACK_BYTES - ((infp->local_size + outbounds) % STACK_BYTES);
infp->growth[growths++] = infp->local_size + infp->pad_local + outbounds;
infp->local_growth = growths;
}
/* Anything else that we've forgotten?, plus a few consistency checks. */
finish:
gcc_assert (infp->reg_offset >= 0);
gcc_assert (growths <= MAX_STACK_GROWS);
for (i = 0; i < growths; i++)
gcc_assert (!(infp->growth[i] % STACK_BYTES));
}
/* Define the offset between two registers, one to be eliminated, and
the other its replacement, at the start of a routine. */
int
mcore_initial_elimination_offset (int from, int to)
{
int above_frame;
int below_frame;
struct mcore_frame fi;
layout_mcore_frame (& fi);
/* fp to ap */
above_frame = fi.local_size + fi.pad_local + fi.reg_size + fi.pad_reg;
/* sp to fp */
below_frame = fi.outbound_size + fi.pad_outbound;
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
return above_frame;
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
return above_frame + below_frame;
if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
return below_frame;
gcc_unreachable ();
}
/* Keep track of some information about varargs for the prolog. */
static void
mcore_setup_incoming_varargs (CUMULATIVE_ARGS *args_so_far,
enum machine_mode mode, tree type,
int * ptr_pretend_size ATTRIBUTE_UNUSED,
int second_time ATTRIBUTE_UNUSED)
{
current_function_anonymous_args = 1;
/* We need to know how many argument registers are used before
the varargs start, so that we can push the remaining argument
registers during the prologue. */
number_of_regs_before_varargs = *args_so_far + mcore_num_arg_regs (mode, type);
/* There is a bug somewhere in the arg handling code.
Until I can find it this workaround always pushes the
last named argument onto the stack. */
number_of_regs_before_varargs = *args_so_far;
/* The last named argument may be split between argument registers
and the stack. Allow for this here. */
if (number_of_regs_before_varargs > NPARM_REGS)
number_of_regs_before_varargs = NPARM_REGS;
}
void
mcore_expand_prolog (void)
{
struct mcore_frame fi;
int space_allocated = 0;
int growth = 0;
/* Find out what we're doing. */
layout_mcore_frame (&fi);
space_allocated = fi.arg_size + fi.reg_size + fi.local_size +
fi.outbound_size + fi.pad_outbound + fi.pad_local + fi.pad_reg;
if (TARGET_CG_DATA)
{
/* Emit a symbol for this routine's frame size. */
rtx x;
x = DECL_RTL (current_function_decl);
gcc_assert (GET_CODE (x) == MEM);
x = XEXP (x, 0);
gcc_assert (GET_CODE (x) == SYMBOL_REF);
if (mcore_current_function_name)
free (mcore_current_function_name);
mcore_current_function_name = xstrdup (XSTR (x, 0));
ASM_OUTPUT_CG_NODE (asm_out_file, mcore_current_function_name, space_allocated);
if (cfun->calls_alloca)
ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name, "alloca", 1);
/* 970425: RBE:
We're looking at how the 8byte alignment affects stack layout
and where we had to pad things. This emits information we can
extract which tells us about frame sizes and the like. */
fprintf (asm_out_file,
"\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
mcore_current_function_name,
fi.arg_size, fi.reg_size, fi.reg_mask,
fi.local_size, fi.outbound_size,
frame_pointer_needed);
}
if (mcore_naked_function_p ())
return;
/* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
/* If we have a parameter passed partially in regs and partially in memory,
the registers will have been stored to memory already in function.c. So
we only need to do something here for varargs functions. */
if (fi.arg_size != 0 && crtl->args.pretend_args_size == 0)
{
int offset;
int rn = FIRST_PARM_REG + NPARM_REGS - 1;
int remaining = fi.arg_size;
for (offset = fi.arg_offset; remaining >= 4; offset -= 4, rn--, remaining -= 4)
{
emit_insn (gen_movsi
(gen_rtx_MEM (SImode,
plus_constant (stack_pointer_rtx, offset)),
gen_rtx_REG (SImode, rn)));
}
}
/* Do we need another stack adjustment before we do the register saves? */
if (growth < fi.reg_growth)
output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
if (fi.reg_size != 0)
{
int i;
int offs = fi.reg_offset;
for (i = 15; i >= 0; i--)
{
if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
{
int first_reg = 15;
while (fi.reg_mask & (1 << first_reg))
first_reg--;
first_reg++;
emit_insn (gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
gen_rtx_REG (SImode, first_reg),
GEN_INT (16 - first_reg)));
i -= (15 - first_reg);
offs += (16 - first_reg) * 4;
}
else if (fi.reg_mask & (1 << i))
{
emit_insn (gen_movsi
(gen_rtx_MEM (SImode,
plus_constant (stack_pointer_rtx, offs)),
gen_rtx_REG (SImode, i)));
offs += 4;
}
}
}
/* Figure the locals + outbounds. */
if (frame_pointer_needed)
{
/* If we haven't already purchased to 'fp'. */
if (growth < fi.local_growth)
output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
/* ... and then go any remaining distance for outbounds, etc. */
if (fi.growth[growth])
output_stack_adjust (-1, fi.growth[growth++]);
}
else
{
if (growth < fi.local_growth)
output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
if (fi.growth[growth])
output_stack_adjust (-1, fi.growth[growth++]);
}
}
void
mcore_expand_epilog (void)
{
struct mcore_frame fi;
int i;
int offs;
int growth = MAX_STACK_GROWS - 1 ;
/* Find out what we're doing. */
layout_mcore_frame(&fi);
if (mcore_naked_function_p ())
return;
/* If we had a frame pointer, restore the sp from that. */
if (frame_pointer_needed)
{
emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
growth = fi.local_growth - 1;
}
else
{
/* XXX: while loop should accumulate and do a single sell. */
while (growth >= fi.local_growth)
{
if (fi.growth[growth] != 0)
output_stack_adjust (1, fi.growth[growth]);
growth--;
}
}
/* Make sure we've shrunk stack back to the point where the registers
were laid down. This is typically 0/1 iterations. Then pull the
register save information back off the stack. */
while (growth >= fi.reg_growth)
output_stack_adjust ( 1, fi.growth[growth--]);
offs = fi.reg_offset;
for (i = 15; i >= 0; i--)
{
if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
{
int first_reg;
/* Find the starting register. */
first_reg = 15;
while (fi.reg_mask & (1 << first_reg))
first_reg--;
first_reg++;
emit_insn (gen_load_multiple (gen_rtx_REG (SImode, first_reg),
gen_rtx_MEM (SImode, stack_pointer_rtx),
GEN_INT (16 - first_reg)));
i -= (15 - first_reg);
offs += (16 - first_reg) * 4;
}
else if (fi.reg_mask & (1 << i))
{
emit_insn (gen_movsi
(gen_rtx_REG (SImode, i),
gen_rtx_MEM (SImode,
plus_constant (stack_pointer_rtx, offs))));
offs += 4;
}
}
/* Give back anything else. */
/* XXX: Should accumulate total and then give it back. */
while (growth >= 0)
output_stack_adjust ( 1, fi.growth[growth--]);
}
/* This code is borrowed from the SH port. */
/* The MCORE cannot load a large constant into a register, constants have to
come from a pc relative load. The reference of a pc relative load
instruction must be less than 1k in front of the instruction. This
means that we often have to dump a constant inside a function, and
generate code to branch around it.
It is important to minimize this, since the branches will slow things
down and make things bigger.
Worst case code looks like:
lrw L1,r0
br L2
align
L1: .long value
L2:
..
lrw L3,r0
br L4
align
L3: .long value
L4:
..
We fix this by performing a scan before scheduling, which notices which
instructions need to have their operands fetched from the constant table
and builds the table.
The algorithm is:
scan, find an instruction which needs a pcrel move. Look forward, find the
last barrier which is within MAX_COUNT bytes of the requirement.
If there isn't one, make one. Process all the instructions between
the find and the barrier.
In the above example, we can tell that L3 is within 1k of L1, so
the first move can be shrunk from the 2 insn+constant sequence into
just 1 insn, and the constant moved to L3 to make:
lrw L1,r0
..
lrw L3,r0
bra L4
align
L3:.long value
L4:.long value
Then the second move becomes the target for the shortening process. */
typedef struct
{
rtx value; /* Value in table. */
rtx label; /* Label of value. */
} pool_node;
/* The maximum number of constants that can fit into one pool, since
the pc relative range is 0...1020 bytes and constants are at least 4
bytes long. We subtract 4 from the range to allow for the case where
we need to add a branch/align before the constant pool. */
#define MAX_COUNT 1016
#define MAX_POOL_SIZE (MAX_COUNT/4)
static pool_node pool_vector[MAX_POOL_SIZE];
static int pool_size;
/* Dump out any constants accumulated in the final pass. These
will only be labels. */
const char *
mcore_output_jump_label_table (void)
{
int i;
if (pool_size)
{
fprintf (asm_out_file, "\t.align 2\n");
for (i = 0; i < pool_size; i++)
{
pool_node * p = pool_vector + i;
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (p->label));
output_asm_insn (".long %0", &p->value);
}
pool_size = 0;
}
return "";
}
/* Check whether insn is a candidate for a conditional. */
static cond_type
is_cond_candidate (rtx insn)
{
/* The only things we conditionalize are those that can be directly
changed into a conditional. Only bother with SImode items. If
we wanted to be a little more aggressive, we could also do other
modes such as DImode with reg-reg move or load 0. */
if (GET_CODE (insn) == INSN)
{
rtx pat = PATTERN (insn);
rtx src, dst;
if (GET_CODE (pat) != SET)
return COND_NO;
dst = XEXP (pat, 0);
if ((GET_CODE (dst) != REG &&
GET_CODE (dst) != SUBREG) ||
GET_MODE (dst) != SImode)
return COND_NO;
src = XEXP (pat, 1);
if ((GET_CODE (src) == REG ||
(GET_CODE (src) == SUBREG &&
GET_CODE (SUBREG_REG (src)) == REG)) &&
GET_MODE (src) == SImode)
return COND_MOV_INSN;
else if (GET_CODE (src) == CONST_INT &&
INTVAL (src) == 0)
return COND_CLR_INSN;
else if (GET_CODE (src) == PLUS &&
(GET_CODE (XEXP (src, 0)) == REG ||
(GET_CODE (XEXP (src, 0)) == SUBREG &&
GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
GET_MODE (XEXP (src, 0)) == SImode &&
GET_CODE (XEXP (src, 1)) == CONST_INT &&
INTVAL (XEXP (src, 1)) == 1)
return COND_INC_INSN;
else if (((GET_CODE (src) == MINUS &&
GET_CODE (XEXP (src, 1)) == CONST_INT &&
INTVAL( XEXP (src, 1)) == 1) ||
(GET_CODE (src) == PLUS &&
GET_CODE (XEXP (src, 1)) == CONST_INT &&
INTVAL (XEXP (src, 1)) == -1)) &&
(GET_CODE (XEXP (src, 0)) == REG ||
(GET_CODE (XEXP (src, 0)) == SUBREG &&
GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
GET_MODE (XEXP (src, 0)) == SImode)
return COND_DEC_INSN;
/* Some insns that we don't bother with:
(set (rx:DI) (ry:DI))
(set (rx:DI) (const_int 0))
*/
}
else if (GET_CODE (insn) == JUMP_INSN &&
GET_CODE (PATTERN (insn)) == SET &&
GET_CODE (XEXP (PATTERN (insn), 1)) == LABEL_REF)
return COND_BRANCH_INSN;
return COND_NO;
}
/* Emit a conditional version of insn and replace the old insn with the
new one. Return the new insn if emitted. */
static rtx
emit_new_cond_insn (rtx insn, int cond)
{
rtx c_insn = 0;
rtx pat, dst, src;
cond_type num;
if ((num = is_cond_candidate (insn)) == COND_NO)
return NULL;
pat = PATTERN (insn);
if (GET_CODE (insn) == INSN)
{
dst = SET_DEST (pat);
src = SET_SRC (pat);
}
else
{
dst = JUMP_LABEL (insn);
src = NULL_RTX;
}
switch (num)
{
case COND_MOV_INSN:
case COND_CLR_INSN:
if (cond)
c_insn = gen_movt0 (dst, src, dst);
else
c_insn = gen_movt0 (dst, dst, src);
break;
case COND_INC_INSN:
if (cond)
c_insn = gen_incscc (dst, dst);
else
c_insn = gen_incscc_false (dst, dst);
break;
case COND_DEC_INSN:
if (cond)
c_insn = gen_decscc (dst, dst);
else
c_insn = gen_decscc_false (dst, dst);
break;
case COND_BRANCH_INSN:
if (cond)
c_insn = gen_branch_true (dst);
else
c_insn = gen_branch_false (dst);
break;
default:
return NULL;
}
/* Only copy the notes if they exist. */
if (rtx_length [GET_CODE (c_insn)] >= 7 && rtx_length [GET_CODE (insn)] >= 7)
{
/* We really don't need to bother with the notes and links at this
point, but go ahead and save the notes. This will help is_dead()
when applying peepholes (links don't matter since they are not
used any more beyond this point for the mcore). */
REG_NOTES (c_insn) = REG_NOTES (insn);
}
if (num == COND_BRANCH_INSN)
{
/* For jumps, we need to be a little bit careful and emit the new jump
before the old one and to update the use count for the target label.
This way, the barrier following the old (uncond) jump will get
deleted, but the label won't. */
c_insn = emit_jump_insn_before (c_insn, insn);
++ LABEL_NUSES (dst);
JUMP_LABEL (c_insn) = dst;
}
else
c_insn = emit_insn_after (c_insn, insn);
delete_insn (insn);
return c_insn;
}
/* Attempt to change a basic block into a series of conditional insns. This
works by taking the branch at the end of the 1st block and scanning for the
end of the 2nd block. If all instructions in the 2nd block have cond.
versions and the label at the start of block 3 is the same as the target
from the branch at block 1, then conditionalize all insn in block 2 using
the inverse condition of the branch at block 1. (Note I'm bending the
definition of basic block here.)
e.g., change:
bt L2 <-- end of block 1 (delete)
mov r7,r8
addu r7,1
br L3 <-- end of block 2
L2: ... <-- start of block 3 (NUSES==1)
L3: ...
to:
movf r7,r8
incf r7
bf L3
L3: ...
we can delete the L2 label if NUSES==1 and re-apply the optimization
starting at the last instruction of block 2. This may allow an entire
if-then-else statement to be conditionalized. BRC */
static rtx
conditionalize_block (rtx first)
{
rtx insn;
rtx br_pat;
rtx end_blk_1_br = 0;
rtx end_blk_2_insn = 0;
rtx start_blk_3_lab = 0;
int cond;
int br_lab_num;
int blk_size = 0;
/* Check that the first insn is a candidate conditional jump. This is
the one that we'll eliminate. If not, advance to the next insn to
try. */
if (GET_CODE (first) != JUMP_INSN ||
GET_CODE (PATTERN (first)) != SET ||
GET_CODE (XEXP (PATTERN (first), 1)) != IF_THEN_ELSE)
return NEXT_INSN (first);
/* Extract some information we need. */
end_blk_1_br = first;
br_pat = PATTERN (end_blk_1_br);
/* Complement the condition since we use the reverse cond. for the insns. */
cond = (GET_CODE (XEXP (XEXP (br_pat, 1), 0)) == EQ);
/* Determine what kind of branch we have. */
if (GET_CODE (XEXP (XEXP (br_pat, 1), 1)) == LABEL_REF)
{
/* A normal branch, so extract label out of first arm. */
br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 1), 0));
}
else
{
/* An inverse branch, so extract the label out of the 2nd arm
and complement the condition. */
cond = (cond == 0);
br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 2), 0));
}
/* Scan forward for the start of block 2: it must start with a
label and that label must be the same as the branch target
label from block 1. We don't care about whether block 2 actually
ends with a branch or a label (an uncond. branch is
conditionalizable). */
for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
{
enum rtx_code code;
code = GET_CODE (insn);
/* Look for the label at the start of block 3. */
if (code == CODE_LABEL && CODE_LABEL_NUMBER (insn) == br_lab_num)
break;
/* Skip barriers, notes, and conditionalizable insns. If the
insn is not conditionalizable or makes this optimization fail,
just return the next insn so we can start over from that point. */
if (code != BARRIER && code != NOTE && !is_cond_candidate (insn))
return NEXT_INSN (insn);
/* Remember the last real insn before the label (i.e. end of block 2). */
if (code == JUMP_INSN || code == INSN)
{
blk_size ++;
end_blk_2_insn = insn;
}
}
if (!insn)
return insn;
/* It is possible for this optimization to slow performance if the blocks
are long. This really depends upon whether the branch is likely taken
or not. If the branch is taken, we slow performance in many cases. But,
if the branch is not taken, we always help performance (for a single
block, but for a double block (i.e. when the optimization is re-applied)
this is not true since the 'right thing' depends on the overall length of
the collapsed block). As a compromise, don't apply this optimization on
blocks larger than size 2 (unlikely for the mcore) when speed is important.
the best threshold depends on the latencies of the instructions (i.e.,
the branch penalty). */
if (optimize > 1 && blk_size > 2)
return insn;
/* At this point, we've found the start of block 3 and we know that
it is the destination of the branch from block 1. Also, all
instructions in the block 2 are conditionalizable. So, apply the
conditionalization and delete the branch. */
start_blk_3_lab = insn;
for (insn = NEXT_INSN (end_blk_1_br); insn != start_blk_3_lab;
insn = NEXT_INSN (insn))
{
rtx newinsn;
if (INSN_DELETED_P (insn))
continue;
/* Try to form a conditional variant of the instruction and emit it. */
if ((newinsn = emit_new_cond_insn (insn, cond)))
{
if (end_blk_2_insn == insn)
end_blk_2_insn = newinsn;
insn = newinsn;
}
}
/* Note whether we will delete the label starting blk 3 when the jump
gets deleted. If so, we want to re-apply this optimization at the
last real instruction right before the label. */
if (LABEL_NUSES (start_blk_3_lab) == 1)
{
start_blk_3_lab = 0;
}
/* ??? we probably should redistribute the death notes for this insn, esp.
the death of cc, but it doesn't really matter this late in the game.
The peepholes all use is_dead() which will find the correct death
regardless of whether there is a note. */
delete_insn (end_blk_1_br);
if (! start_blk_3_lab)
return end_blk_2_insn;
/* Return the insn right after the label at the start of block 3. */
return NEXT_INSN (start_blk_3_lab);
}
/* Apply the conditionalization of blocks optimization. This is the
outer loop that traverses through the insns scanning for a branch
that signifies an opportunity to apply the optimization. Note that
this optimization is applied late. If we could apply it earlier,
say before cse 2, it may expose more optimization opportunities.
but, the pay back probably isn't really worth the effort (we'd have
to update all reg/flow/notes/links/etc to make it work - and stick it
in before cse 2). */
static void
conditionalize_optimization (void)
{
rtx insn;
for (insn = get_insns (); insn; insn = conditionalize_block (insn))
continue;
}
static int saved_warn_return_type = -1;
static int saved_warn_return_type_count = 0;
/* This is to handle loads from the constant pool. */
static void
mcore_reorg (void)
{
/* Reset this variable. */
current_function_anonymous_args = 0;
/* Restore the warn_return_type if it has been altered. */
if (saved_warn_return_type != -1)
{
/* Only restore the value if we have reached another function.
The test of warn_return_type occurs in final_function () in
c-decl.c a long time after the code for the function is generated,
so we need a counter to tell us when we have finished parsing that
function and can restore the flag. */
if (--saved_warn_return_type_count == 0)
{
warn_return_type = saved_warn_return_type;
saved_warn_return_type = -1;
}
}
if (optimize == 0)
return;
/* Conditionalize blocks where we can. */
conditionalize_optimization ();
/* Literal pool generation is now pushed off until the assembler. */
}
/* Return true if X is something that can be moved directly into r15. */
bool
mcore_r15_operand_p (rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
return mcore_const_ok_for_inline (INTVAL (x));
case REG:
case SUBREG:
case MEM:
return 1;
default:
return 0;
}
}
/* Implement SECONDARY_RELOAD_CLASS. If RCLASS contains r15, and we can't
directly move X into it, use r1-r14 as a temporary. */
enum reg_class
mcore_secondary_reload_class (enum reg_class rclass,
enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
if (TEST_HARD_REG_BIT (reg_class_contents[rclass], 15)
&& !mcore_r15_operand_p (x))
return LRW_REGS;
return NO_REGS;
}
/* Return the reg_class to use when reloading the rtx X into the class
RCLASS. If X is too complex to move directly into r15, prefer to
use LRW_REGS instead. */
enum reg_class
mcore_reload_class (rtx x, enum reg_class rclass)
{
if (reg_class_subset_p (LRW_REGS, rclass) && !mcore_r15_operand_p (x))
return LRW_REGS;
return rclass;
}
/* Tell me if a pair of reg/subreg rtx's actually refer to the same
register. Note that the current version doesn't worry about whether
they are the same mode or note (e.g., a QImode in r2 matches an HImode
in r2 matches an SImode in r2. Might think in the future about whether
we want to be able to say something about modes. */
int
mcore_is_same_reg (rtx x, rtx y)
{
/* Strip any and all of the subreg wrappers. */
while (GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
while (GET_CODE (y) == SUBREG)
y = SUBREG_REG (y);
if (GET_CODE(x) == REG && GET_CODE(y) == REG && REGNO(x) == REGNO(y))
return 1;
return 0;
}
static void
mcore_option_override (void)
{
/* Only the m340 supports little endian code. */
if (TARGET_LITTLE_END && ! TARGET_M340)
target_flags |= MASK_M340;
}
/* Compute the number of word sized registers needed to
hold a function argument of mode MODE and type TYPE. */
int
mcore_num_arg_regs (enum machine_mode mode, const_tree type)
{
int size;
if (targetm.calls.must_pass_in_stack (mode, type))
return 0;
if (type && mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
return ROUND_ADVANCE (size);
}
static rtx
handle_structs_in_regs (enum machine_mode mode, const_tree type, int reg)
{
int size;
/* The MCore ABI defines that a structure whose size is not a whole multiple
of bytes is passed packed into registers (or spilled onto the stack if
not enough registers are available) with the last few bytes of the
structure being packed, left-justified, into the last register/stack slot.
GCC handles this correctly if the last word is in a stack slot, but we
have to generate a special, PARALLEL RTX if the last word is in an
argument register. */
if (type
&& TYPE_MODE (type) == BLKmode
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (size = int_size_in_bytes (type)) > UNITS_PER_WORD
&& (size % UNITS_PER_WORD != 0)
&& (reg + mcore_num_arg_regs (mode, type) <= (FIRST_PARM_REG + NPARM_REGS)))
{
rtx arg_regs [NPARM_REGS];
int nregs;
rtx result;
rtvec rtvec;
for (nregs = 0; size > 0; size -= UNITS_PER_WORD)
{
arg_regs [nregs] =
gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, reg ++),
GEN_INT (nregs * UNITS_PER_WORD));
nregs ++;
}
/* We assume here that NPARM_REGS == 6. The assert checks this. */
gcc_assert (ARRAY_SIZE (arg_regs) == 6);
rtvec = gen_rtvec (nregs, arg_regs[0], arg_regs[1], arg_regs[2],
arg_regs[3], arg_regs[4], arg_regs[5]);
result = gen_rtx_PARALLEL (mode, rtvec);
return result;
}
return gen_rtx_REG (mode, reg);
}
rtx
mcore_function_value (const_tree valtype, const_tree func)
{
enum machine_mode mode;
int unsigned_p;
mode = TYPE_MODE (valtype);
/* Since we promote return types, we must promote the mode here too. */
mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
return handle_structs_in_regs (mode, valtype, FIRST_RET_REG);
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On MCore the first args are normally in registers
and the rest are pushed. Any arg that starts within the first
NPARM_REGS words is at least partially passed in a register unless
its data type forbids. */
static rtx
mcore_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool named)
{
int arg_reg;
if (! named || mode == VOIDmode)
return 0;
if (targetm.calls.must_pass_in_stack (mode, type))
return 0;
arg_reg = ROUND_REG (*cum, mode);
if (arg_reg < NPARM_REGS)
return handle_structs_in_regs (mode, type, FIRST_PARM_REG + arg_reg);
return 0;
}
static void
mcore_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
*cum = (ROUND_REG (*cum, mode)
+ (int)named * mcore_num_arg_regs (mode, type));
}
static unsigned int
mcore_function_arg_boundary (enum machine_mode mode,
const_tree type ATTRIBUTE_UNUSED)
{
/* Doubles must be aligned to an 8 byte boundary. */
return (mode != BLKmode && GET_MODE_SIZE (mode) == 8
? BIGGEST_ALIGNMENT
: PARM_BOUNDARY);
}
/* Returns the number of bytes of argument registers required to hold *part*
of a parameter of machine mode MODE and type TYPE (which may be NULL if
the type is not known). If the argument fits entirely in the argument
registers, or entirely on the stack, then 0 is returned. CUM is the
number of argument registers already used by earlier parameters to
the function. */
static int
mcore_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, bool named)
{
int reg = ROUND_REG (*cum, mode);
if (named == 0)
return 0;
if (targetm.calls.must_pass_in_stack (mode, type))
return 0;
/* REG is not the *hardware* register number of the register that holds
the argument, it is the *argument* register number. So for example,
the first argument to a function goes in argument register 0, which
translates (for the MCore) into hardware register 2. The second
argument goes into argument register 1, which translates into hardware
register 3, and so on. NPARM_REGS is the number of argument registers
supported by the target, not the maximum hardware register number of
the target. */
if (reg >= NPARM_REGS)
return 0;
/* If the argument fits entirely in registers, return 0. */
if (reg + mcore_num_arg_regs (mode, type) <= NPARM_REGS)
return 0;
/* The argument overflows the number of available argument registers.
Compute how many argument registers have not yet been assigned to
hold an argument. */
reg = NPARM_REGS - reg;
/* Return partially in registers and partially on the stack. */
return reg * UNITS_PER_WORD;
}
/* Return nonzero if SYMBOL is marked as being dllexport'd. */
int
mcore_dllexport_name_p (const char * symbol)
{
return symbol[0] == '@' && symbol[1] == 'e' && symbol[2] == '.';
}
/* Return nonzero if SYMBOL is marked as being dllimport'd. */
int
mcore_dllimport_name_p (const char * symbol)
{
return symbol[0] == '@' && symbol[1] == 'i' && symbol[2] == '.';
}
/* Mark a DECL as being dllexport'd. */
static void
mcore_mark_dllexport (tree decl)
{
const char * oldname;
char * newname;
rtx rtlname;
tree idp;
rtlname = XEXP (DECL_RTL (decl), 0);
if (GET_CODE (rtlname) == MEM)
rtlname = XEXP (rtlname, 0);
gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
oldname = XSTR (rtlname, 0);
if (mcore_dllexport_name_p (oldname))
return; /* Already done. */
newname = XALLOCAVEC (char, strlen (oldname) + 4);
sprintf (newname, "@e.%s", oldname);
/* We pass newname through get_identifier to ensure it has a unique
address. RTL processing can sometimes peek inside the symbol ref
and compare the string's addresses to see if two symbols are
identical. */
/* ??? At least I think that's why we do this. */
idp = get_identifier (newname);
XEXP (DECL_RTL (decl), 0) =
gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
}
/* Mark a DECL as being dllimport'd. */
static void
mcore_mark_dllimport (tree decl)
{
const char * oldname;
char * newname;
tree idp;
rtx rtlname;
rtx newrtl;
rtlname = XEXP (DECL_RTL (decl), 0);
if (GET_CODE (rtlname) == MEM)
rtlname = XEXP (rtlname, 0);
gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
oldname = XSTR (rtlname, 0);
gcc_assert (!mcore_dllexport_name_p (oldname));
if (mcore_dllimport_name_p (oldname))
return; /* Already done. */
/* ??? One can well ask why we're making these checks here,
and that would be a good question. */
/* Imported variables can't be initialized. */
if (TREE_CODE (decl) == VAR_DECL
&& !DECL_VIRTUAL_P (decl)
&& DECL_INITIAL (decl))
{
error ("initialized variable %q+D is marked dllimport", decl);
return;
}
/* `extern' needn't be specified with dllimport.
Specify `extern' now and hope for the best. Sigh. */
if (TREE_CODE (decl) == VAR_DECL
/* ??? Is this test for vtables needed? */
&& !DECL_VIRTUAL_P (decl))
{
DECL_EXTERNAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
}
newname = XALLOCAVEC (char, strlen (oldname) + 11);
sprintf (newname, "@i.__imp_%s", oldname);
/* We pass newname through get_identifier to ensure it has a unique
address. RTL processing can sometimes peek inside the symbol ref
and compare the string's addresses to see if two symbols are
identical. */
/* ??? At least I think that's why we do this. */
idp = get_identifier (newname);
newrtl = gen_rtx_MEM (Pmode,
gen_rtx_SYMBOL_REF (Pmode,
IDENTIFIER_POINTER (idp)));
XEXP (DECL_RTL (decl), 0) = newrtl;
}
static int
mcore_dllexport_p (tree decl)
{
if ( TREE_CODE (decl) != VAR_DECL
&& TREE_CODE (decl) != FUNCTION_DECL)
return 0;
return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)) != 0;
}
static int
mcore_dllimport_p (tree decl)
{
if ( TREE_CODE (decl) != VAR_DECL
&& TREE_CODE (decl) != FUNCTION_DECL)
return 0;
return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) != 0;
}
/* We must mark dll symbols specially. Definitions of dllexport'd objects
install some info in the .drective (PE) or .exports (ELF) sections. */
static void
mcore_encode_section_info (tree decl, rtx rtl ATTRIBUTE_UNUSED, int first ATTRIBUTE_UNUSED)
{
/* Mark the decl so we can tell from the rtl whether the object is
dllexport'd or dllimport'd. */
if (mcore_dllexport_p (decl))
mcore_mark_dllexport (decl);
else if (mcore_dllimport_p (decl))
mcore_mark_dllimport (decl);
/* It might be that DECL has already been marked as dllimport, but
a subsequent definition nullified that. The attribute is gone
but DECL_RTL still has @i.__imp_foo. We need to remove that. */
else if ((TREE_CODE (decl) == FUNCTION_DECL
|| TREE_CODE (decl) == VAR_DECL)
&& DECL_RTL (decl) != NULL_RTX
&& GET_CODE (DECL_RTL (decl)) == MEM
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == MEM
&& GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == SYMBOL_REF
&& mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0)))
{
const char * oldname = XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0);
tree idp = get_identifier (oldname + 9);
rtx newrtl = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
XEXP (DECL_RTL (decl), 0) = newrtl;
/* We previously set TREE_PUBLIC and DECL_EXTERNAL.
??? We leave these alone for now. */
}
}
/* Undo the effects of the above. */
static const char *
mcore_strip_name_encoding (const char * str)
{
return str + (str[0] == '@' ? 3 : 0);
}
/* MCore specific attribute support.
dllexport - for exporting a function/variable that will live in a dll
dllimport - for importing a function/variable from a dll
naked - do not create a function prologue/epilogue. */
/* Handle a "naked" attribute; arguments as in
struct attribute_spec.handler. */
static tree
mcore_handle_naked_attribute (tree * node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
{
/* PR14310 - don't complain about lack of return statement
in naked functions. The solution here is a gross hack
but this is the only way to solve the problem without
adding a new feature to GCC. I did try submitting a patch
that would add such a new feature, but it was (rightfully)
rejected on the grounds that it was creeping featurism,
so hence this code. */
if (warn_return_type)
{
saved_warn_return_type = warn_return_type;
warn_return_type = 0;
saved_warn_return_type_count = 2;
}
else if (saved_warn_return_type_count)
saved_warn_return_type_count = 2;
}
else
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* ??? It looks like this is PE specific? Oh well, this is what the
old code did as well. */
static void
mcore_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
{
int len;
const char * name;
char * string;
const char * prefix;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
/* Strip off any encoding in name. */
name = (* targetm.strip_name_encoding) (name);
/* The object is put in, for example, section .text$foo.
The linker will then ultimately place them in .text
(everything from the $ on is stripped). */
if (TREE_CODE (decl) == FUNCTION_DECL)
prefix = ".text$";
/* For compatibility with EPOC, we ignore the fact that the
section might have relocs against it. */
else if (decl_readonly_section (decl, 0))
prefix = ".rdata$";
else
prefix = ".data$";
len = strlen (name) + strlen (prefix);
string = XALLOCAVEC (char, len + 1);
sprintf (string, "%s%s", prefix, name);
DECL_SECTION_NAME (decl) = build_string (len, string);
}
int
mcore_naked_function_p (void)
{
return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
}
#ifdef OBJECT_FORMAT_ELF
static void
mcore_asm_named_section (const char *name,
unsigned int flags ATTRIBUTE_UNUSED,
tree decl ATTRIBUTE_UNUSED)
{
fprintf (asm_out_file, "\t.section %s\n", name);
}
#endif /* OBJECT_FORMAT_ELF */
/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
static void
mcore_external_libcall (rtx fun)
{
fprintf (asm_out_file, "\t.import\t");
assemble_name (asm_out_file, XSTR (fun, 0));
fprintf (asm_out_file, "\n");
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
mcore_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
const HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > 2 * UNITS_PER_WORD);
}
/* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.
Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.
On the MCore, the trampoline looks like:
lrw r1, function
lrw r13, area
jmp r13
or r0, r0
.literals */
static void
mcore_asm_trampoline_template (FILE *f)
{
fprintf (f, "\t.short 0x7102\n");
fprintf (f, "\t.short 0x7d02\n");
fprintf (f, "\t.short 0x00cd\n");
fprintf (f, "\t.short 0x1e00\n");
fprintf (f, "\t.long 0\n");
fprintf (f, "\t.long 0\n");
}
/* Worker function for TARGET_TRAMPOLINE_INIT. */
static void
mcore_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
rtx mem;
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
mem = adjust_address (m_tramp, SImode, 8);
emit_move_insn (mem, chain_value);
mem = adjust_address (m_tramp, SImode, 12);
emit_move_insn (mem, fnaddr);
}
|