1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
/* Definitions of target machine for GNU compiler,
for Motorola M*CORE Processor.
Copyright (C) 1993-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_MCORE_H
#define GCC_MCORE_H
/* RBE: need to move these elsewhere. */
#undef LIKE_PPC_ABI
#define MCORE_STRUCT_ARGS
/* RBE: end of "move elsewhere". */
/* Run-time Target Specification. */
#define TARGET_MCORE
/* Get tree.c to declare a target-specific specialization of
merge_decl_attributes. */
#define TARGET_DLLIMPORT_DECL_ATTRIBUTES 1
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__mcore__"); \
builtin_define ("__MCORE__"); \
if (TARGET_LITTLE_END) \
builtin_define ("__MCORELE__"); \
else \
builtin_define ("__MCOREBE__"); \
if (TARGET_M340) \
builtin_define ("__M340__"); \
else \
builtin_define ("__M210__"); \
} \
while (0)
#undef CPP_SPEC
#define CPP_SPEC "%{m210:%{mlittle-endian:%ethe m210 does not have little endian support}}"
/* We don't have a -lg library, so don't put it in the list. */
#undef LIB_SPEC
#define LIB_SPEC "%{!shared: %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
#undef ASM_SPEC
#define ASM_SPEC "%{mbig-endian:-EB} %{m210:-cpu=210 -EB}"
#undef LINK_SPEC
#define LINK_SPEC "%{mbig-endian:-EB} %{m210:-EB} -X"
#define TARGET_DEFAULT \
(MASK_HARDLIT \
| MASK_DIV \
| MASK_RELAX_IMM \
| MASK_M340 \
| MASK_LITTLE_END)
#ifndef MULTILIB_DEFAULTS
#define MULTILIB_DEFAULTS { "mlittle-endian", "m340" }
#endif
/* The ability to have 4 byte alignment is being suppressed for now.
If this ability is reenabled, you must disable the definition below
*and* edit t-mcore to enable multilibs for 4 byte alignment code. */
#undef TARGET_8ALIGN
#define TARGET_8ALIGN 1
extern char * mcore_current_function_name;
/* The MCore ABI says that bitfields are unsigned by default. */
#define CC1_SPEC "-funsigned-bitfields"
/* Target machine storage Layout. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
(MODE) = SImode; \
(UNSIGNEDP) = 1; \
}
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (! TARGET_LITTLE_END)
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN (! TARGET_LITTLE_END)
#define MAX_BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY (TARGET_8ALIGN ? 64 : 32)
/* Largest increment in UNITS we allow the stack to grow in a single operation. */
#define STACK_UNITS_MAXSTEP 4096
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY ((TARGET_OVERALIGN_FUNC) ? 32 : 16)
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT (TARGET_8ALIGN ? 64 : 32)
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT 32
/* Every structures size must be a multiple of 8 bits. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* Look at the fundamental type that is used for a bit-field and use
that to impose alignment on the enclosing structure.
struct s {int a:8}; should have same alignment as "int", not "char". */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Largest integer machine mode for structures. If undefined, the default
is GET_MODE_SIZE(DImode). */
#define MAX_FIXED_MODE_SIZE 32
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Standard register usage. */
/* Register allocation for our first guess
r0 stack pointer
r1 scratch, target reg for xtrb?
r2-r7 arguments.
r8-r14 call saved
r15 link register
ap arg pointer (doesn't really exist, always eliminated)
c c bit
fp frame pointer (doesn't really exist, always eliminated)
x19 two control registers. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
MCore has 16 integer registers and 2 control registers + the arg
pointer. */
#define FIRST_PSEUDO_REGISTER 20
#define R1_REG 1 /* Where literals are forced. */
#define LK_REG 15 /* Overloaded on general register. */
#define AP_REG 16 /* Fake arg pointer register. */
/* RBE: mcore.md depends on CC_REG being set to 17. */
#define CC_REG 17 /* Can't name it C_REG. */
#define FP_REG 18 /* Fake frame pointer register. */
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
#undef PC_REGNUM /* Define this if the program counter is overloaded on a register. */
#define STACK_POINTER_REGNUM 0 /* Register to use for pushing function arguments. */
#define FRAME_POINTER_REGNUM 8 /* When we need FP, use r8. */
/* The assembler's names for the registers. RFP need not always be used as
the Real framepointer; it can also be used as a normal general register.
Note that the name `fp' is horribly misleading since `fp' is in fact only
the argument-and-return-context pointer. */
#define REGISTER_NAMES \
{ \
"sp", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"apvirtual", "c", "fpvirtual", "x19" \
}
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap c fp x19 */ \
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
/* RBE: r15 {link register} not available across calls,
But we don't mark it that way here.... */
#define CALL_USED_REGISTERS \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ap c fp x19 */ \
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
/* The order in which register should be allocated. */
#define REG_ALLOC_ORDER \
/* r7 r6 r5 r4 r3 r2 r15 r14 r13 r12 r11 r10 r9 r8 r1 r0 ap c fp x19*/ \
{ 7, 6, 5, 4, 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 1, 0, 16, 17, 18, 19}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the MCore regs are UNITS_PER_WORD bits wide; */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
We may keep double values in even registers. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((TARGET_8ALIGN && GET_MODE_SIZE (MODE) > UNITS_PER_WORD) ? (((REGNO) & 1) == 0) : (REGNO < 18))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* Definitions for register eliminations.
We have two registers that can be eliminated on the MCore. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer. */
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 16
/* Register in which the static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 1
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
OFFSET = mcore_initial_elimination_offset (FROM, TO)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The MCore has only general registers. There are
also some special purpose registers: the T bit register, the
procedure Link and the Count Registers. */
enum reg_class
{
NO_REGS,
ONLYR1_REGS,
LRW_REGS,
GENERAL_REGS,
C_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"ONLYR1_REGS", \
"LRW_REGS", \
"GENERAL_REGS", \
"C_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
/* ??? STACK_POINTER_REGNUM should be excluded from LRW_REGS. */
#define REG_CLASS_CONTENTS \
{ \
{0x000000}, /* NO_REGS */ \
{0x000002}, /* ONLYR1_REGS */ \
{0x007FFE}, /* LRW_REGS */ \
{0x01FFFF}, /* GENERAL_REGS */ \
{0x020000}, /* C_REGS */ \
{0x0FFFFF} /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) ((REGNO) < FIRST_PSEUDO_REGISTER ? regno_reg_class[REGNO] : NO_REGS)
/* When this hook returns true for MODE, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Convenience wrappers around insn_const_int_ok_for_constraint. */
#define CONST_OK_FOR_I(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_I)
#define CONST_OK_FOR_J(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_J)
#define CONST_OK_FOR_L(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_L)
#define CONST_OK_FOR_K(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_K)
#define CONST_OK_FOR_M(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_M)
#define CONST_OK_FOR_N(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_N)
#define CONST_OK_FOR_O(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_O)
#define CONST_OK_FOR_P(VALUE) \
insn_const_int_ok_for_constraint (VALUE, CONSTRAINT_P)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) mcore_reload_class (X, CLASS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
mcore_secondary_reload_class (CLASS, MODE, X)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
On MCore this is the size of MODE in words. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
/* Stack layout; function entry, exit and calling. */
/* Define the number of register that can hold parameters.
These two macros are used only in other macro definitions below. */
#define NPARM_REGS 6
#define FIRST_PARM_REG 2
#define FIRST_RET_REG 2
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If defined, the maximum amount of space required for outgoing arguments
will be computed and placed into the variable
`crtl->outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) mcore_function_value (VALTYPE, FUNC)
/* Don't default to pcc-struct-return, because gcc is the only compiler, and
we want to retain compatibility with older gcc versions. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_RET_REG)
/* 1 if N is a possible register number for a function value.
On the MCore, only r4 can return results. */
#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == FIRST_RET_REG)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On MCore, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus NARGREGS or more means all following args should go on the stack. */
#define CUMULATIVE_ARGS int
#define ROUND_ADVANCE(SIZE) \
((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Round a register number up to a proper boundary for an arg of mode
MODE.
We round to an even reg for things larger than a word. */
#define ROUND_REG(X, MODE) \
((TARGET_8ALIGN \
&& GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
? ((X) + ((X) & 1)) : (X))
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On MCore, the offset always starts at 0: the first parm reg is always
the same reg. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
((CUM) = 0)
/* Call the function profiler with a given profile label. */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
fprintf (STREAM, " trap 1\n"); \
fprintf (STREAM, " .align 2\n"); \
fprintf (STREAM, " .long LP%d\n", (LABELNO)); \
}
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 0
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 12
/* Alignment required for a trampoline in bits. */
#define TRAMPOLINE_ALIGNMENT 32
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in reginfo.c during register
allocation. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < AP_REG || (unsigned) reg_renumber[(REGNO)] < AP_REG)
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 1
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 0
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) \
REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) 0
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
#define BASE_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
#define INDEX_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
/* Jump to LABEL if X is a valid address RTX. This must also take
REG_OK_STRICT into account when deciding about valid registers, but it uses
the above macros so we are in luck.
Allow REG
REG+disp
A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
and for DI is 0..56 because we use two SI loads, etc. */
#define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL) \
do \
{ \
if (GET_CODE (OP) == CONST_INT) \
{ \
if (GET_MODE_SIZE (MODE) >= 4 \
&& (((unsigned HOST_WIDE_INT) INTVAL (OP)) % 4) == 0 \
&& ((unsigned HOST_WIDE_INT) INTVAL (OP)) \
<= (unsigned HOST_WIDE_INT) 64 - GET_MODE_SIZE (MODE)) \
goto LABEL; \
if (GET_MODE_SIZE (MODE) == 2 \
&& (((unsigned HOST_WIDE_INT) INTVAL (OP)) % 2) == 0 \
&& ((unsigned HOST_WIDE_INT) INTVAL (OP)) <= 30) \
goto LABEL; \
if (GET_MODE_SIZE (MODE) == 1 \
&& ((unsigned HOST_WIDE_INT) INTVAL (OP)) <= 15) \
goto LABEL; \
} \
} \
while (0)
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if (GET_CODE (X) == PLUS || GET_CODE (X) == LO_SUM) \
{ \
rtx xop0 = XEXP (X,0); \
rtx xop1 = XEXP (X,1); \
if (BASE_REGISTER_RTX_P (xop0)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
if (BASE_REGISTER_RTX_P (xop1)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
} \
}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* 'char' is signed by default. */
#define DEFAULT_SIGNED_CHAR 0
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE BITS_PER_WORD
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, UNKNOWN if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS TARGET_SLOW_BYTES
/* Shift counts are truncated to 6-bits (0 to 63) instead of the expected
5-bits, so we can not define SHIFT_COUNT_TRUNCATED to true for this
target. */
#define SHIFT_COUNT_TRUNCATED 0
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
/* Why is this defined??? -- dac */
#define NO_FUNCTION_CSE 1
/* The machine modes of pointers and functions. */
#define Pmode SImode
#define FUNCTION_MODE Pmode
/* Compute extra cost of moving data between one register class
and another. All register moves are cheap. */
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) 2
#define WORD_REGISTER_OPERATIONS
/* Assembler output control. */
#define ASM_COMMENT_START "\t//"
#define ASM_APP_ON "// inline asm begin\n"
#define ASM_APP_OFF "// inline asm end\n"
#define FILE_ASM_OP "\t.file\n"
/* Switch to the text or data segment. */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
/* Switch into a generic section. */
#undef TARGET_ASM_NAMED_SECTION
#define TARGET_ASM_NAMED_SECTION mcore_asm_named_section
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, LK_REG)
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tsubi\t %s,%d\n\tstw\t %s,(%s)\n", \
reg_names[STACK_POINTER_REGNUM], \
(STACK_BOUNDARY / BITS_PER_UNIT), \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM])
/* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH. */
#define REG_PUSH_LENGTH 2
/* This is how to output an insn to pop a register from the stack. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tldw\t %s,(%s)\n\taddi\t %s,%d\n", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
(STACK_BOUNDARY / BITS_PER_UNIT))
/* Output a reference to a label. */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
fprintf (STREAM, "%s%s", USER_LABEL_PREFIX, \
(* targetm.strip_name_encoding) (NAME))
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align\t%d\n", LOG)
#ifndef ASM_DECLARE_RESULT
#define ASM_DECLARE_RESULT(FILE, RESULT)
#endif
#define MULTIPLE_SYMBOL_SPACES 1
#define SUPPORTS_ONE_ONLY 1
/* A pair of macros to output things for the callgraph data.
VALUE means (to the tools that reads this info later):
0 a call from src to dst
1 the call is special (e.g. dst is "unknown" or "alloca")
2 the call is special (e.g., the src is a table instead of routine)
Frame sizes are augmented with timestamps to help later tools
differentiate between static entities with same names in different
files. */
extern long mcore_current_compilation_timestamp;
#define ASM_OUTPUT_CG_NODE(FILE,SRCNAME,VALUE) \
do \
{ \
if (mcore_current_compilation_timestamp == 0) \
mcore_current_compilation_timestamp = time (0); \
fprintf ((FILE),"\t.equ\t__$frame$size$_%s_$_%08lx,%d\n", \
(SRCNAME), mcore_current_compilation_timestamp, (VALUE)); \
} \
while (0)
#define ASM_OUTPUT_CG_EDGE(FILE,SRCNAME,DSTNAME,VALUE) \
do \
{ \
fprintf ((FILE),"\t.equ\t__$function$call$_%s_$_%s,%d\n", \
(SRCNAME), (DSTNAME), (VALUE)); \
} \
while (0)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.export\t"
/* The prefix to add to user-visible assembler symbols. */
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
/* Make an internal label into a string. */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
sprintf (STRING, "*.%s%ld", PREFIX, (long) NUM)
/* Jump tables must be 32 bit aligned. */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
fprintf (STREAM, "\t.align 2\n.%s%d:\n", PREFIX, NUM);
/* Output a relative address. Not needed since jump tables are absolute
but we must define it anyway. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
/* Output an element of a dispatch table. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
fprintf (STREAM, "\t.long\t.L%d\n", VALUE)
/* Output various types of constants. */
/* This is how to output an assembler line
that says to advance the location counter by SIZE bytes. */
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.fill %d, 1\n", (int)(SIZE))
/* This says how to output an assembler line
to define a global common symbol, with alignment information. */
/* XXX - for now we ignore the alignment. */
#undef ASM_OUTPUT_ALIGNED_COMMON
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
do \
{ \
if (mcore_dllexport_name_p (NAME)) \
MCORE_EXPORT_NAME (FILE, NAME) \
if (! mcore_dllimport_name_p (NAME)) \
{ \
fputs ("\t.comm\t", FILE); \
assemble_name (FILE, NAME); \
fprintf (FILE, ",%lu\n", (unsigned long)(SIZE)); \
} \
} \
while (0)
/* This says how to output an assembler line
to define a local common symbol.... */
#undef ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
(fputs ("\t.lcomm\t", FILE), \
assemble_name (FILE, NAME), \
fprintf (FILE, ",%d\n", (int)SIZE))
/* ... and how to define a local common symbol whose alignment
we wish to specify. ALIGN comes in as bits, we have to turn
it into bytes. */
#undef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
do \
{ \
fputs ("\t.bss\t", (FILE)); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%d,%d\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
} \
while (0)
#endif /* ! GCC_MCORE_H */
|