summaryrefslogtreecommitdiff
path: root/gcc/config/pdp11/pdp11.c
blob: 0a310c50d79f12ace14c4098d952a033e9d32dc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
/* Subroutines for gcc2 for pdp11.
   Copyright (C) 1994-2013 Free Software Foundation, Inc.
   Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "function.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "tree.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "df.h"
#include "opts.h"
#include "dbxout.h"

/* this is the current value returned by the macro FIRST_PARM_OFFSET 
   defined in tm.h */
int current_first_parm_offset;

/* Routines to encode/decode pdp11 floats */
static void encode_pdp11_f (const struct real_format *fmt,
			    long *, const REAL_VALUE_TYPE *);
static void decode_pdp11_f (const struct real_format *,
			    REAL_VALUE_TYPE *, const long *);
static void encode_pdp11_d (const struct real_format *fmt,
			    long *, const REAL_VALUE_TYPE *);
static void decode_pdp11_d (const struct real_format *,
			    REAL_VALUE_TYPE *, const long *);

/* These two are taken from the corresponding vax descriptors
   in real.c, changing only the encode/decode routine pointers.  */
const struct real_format pdp11_f_format =
  {
    encode_pdp11_f,
    decode_pdp11_f,
    2,
    24,
    24,
    -127,
    127,
    15,
    15,
    false,
    false,
    false,
    false,
    false,
    false,
    false,
    false
  };

const struct real_format pdp11_d_format =
  {
    encode_pdp11_d,
    decode_pdp11_d,
    2,
    56,
    56,
    -127,
    127,
    15,
    15,
    false,
    false,
    false,
    false,
    false,
    false,
    false,
    false
  };

static void
encode_pdp11_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
		const REAL_VALUE_TYPE *r)
{
  (*vax_f_format.encode) (fmt, buf, r);
  buf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
}

static void
decode_pdp11_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
		REAL_VALUE_TYPE *r, const long *buf)
{
  long tbuf;
  tbuf = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
  (*vax_f_format.decode) (fmt, r, &tbuf);
}

static void
encode_pdp11_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
		const REAL_VALUE_TYPE *r)
{
  (*vax_d_format.encode) (fmt, buf, r);
  buf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
  buf[1] = ((buf[1] >> 16) & 0xffff) | ((buf[1] & 0xffff) << 16);
}

static void
decode_pdp11_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
		REAL_VALUE_TYPE *r, const long *buf)
{
  long tbuf[2];
  tbuf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
  tbuf[1] = ((buf[1] >> 16) & 0xffff) | ((buf[1] & 0xffff) << 16);
  (*vax_d_format.decode) (fmt, r, tbuf);
}

/* This is where the condition code register lives.  */
/* rtx cc0_reg_rtx; - no longer needed? */

static const char *singlemove_string (rtx *);
static bool pdp11_assemble_integer (rtx, unsigned int, int);
static bool pdp11_rtx_costs (rtx, int, int, int, int *, bool);
static bool pdp11_return_in_memory (const_tree, const_tree);
static rtx pdp11_function_value (const_tree, const_tree, bool);
static rtx pdp11_libcall_value (enum machine_mode, const_rtx);
static bool pdp11_function_value_regno_p (const unsigned int);
static void pdp11_trampoline_init (rtx, tree, rtx);
static rtx pdp11_function_arg (cumulative_args_t, enum machine_mode,
			       const_tree, bool);
static void pdp11_function_arg_advance (cumulative_args_t,
					enum machine_mode, const_tree, bool);
static void pdp11_conditional_register_usage (void);
static bool pdp11_legitimate_constant_p (enum machine_mode, rtx);

/* Initialize the GCC target structure.  */
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP NULL
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP NULL
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER pdp11_assemble_integer

#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN "["
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN "]"

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS pdp11_rtx_costs

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG pdp11_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE pdp11_function_arg_advance

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY pdp11_return_in_memory

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE pdp11_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE pdp11_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P pdp11_function_value_regno_p

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT pdp11_trampoline_init

#undef  TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD pdp11_secondary_reload

#undef  TARGET_REGISTER_MOVE_COST 
#define TARGET_REGISTER_MOVE_COST pdp11_register_move_cost

#undef  TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS pdp11_preferred_reload_class

#undef  TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS pdp11_preferred_output_reload_class

#undef  TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P pdp11_legitimate_address_p

#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE pdp11_conditional_register_usage

#undef  TARGET_ASM_FUNCTION_SECTION
#define TARGET_ASM_FUNCTION_SECTION pdp11_function_section

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND pdp11_asm_print_operand

#undef  TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P pdp11_asm_print_operand_punct_valid_p

#undef  TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P pdp11_legitimate_constant_p

/* A helper function to determine if REGNO should be saved in the
   current function's stack frame.  */

static inline bool
pdp11_saved_regno (unsigned regno)
{
  return !call_used_regs[regno] && df_regs_ever_live_p (regno);
}

/* Expand the function prologue.  */

void
pdp11_expand_prologue (void)
{							       
  HOST_WIDE_INT fsize = get_frame_size ();
  unsigned regno;
  rtx x, via_ac = NULL;

  /* If we are outputting code for main, the switch FPU to the
     right mode if TARGET_FPU.  */
  if (MAIN_NAME_P (DECL_NAME (current_function_decl)) && TARGET_FPU)
    {
      emit_insn (gen_setd ());
      emit_insn (gen_seti ());
    }
    
  if (frame_pointer_needed) 					
    {								
      x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
      x = gen_frame_mem (Pmode, x);
      emit_move_insn (x, hard_frame_pointer_rtx);

      emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
    }								

  /* Make frame.  */
  if (fsize)
    {
      emit_insn (gen_addhi3 (stack_pointer_rtx, stack_pointer_rtx,
			     GEN_INT (-fsize)));

      /* Prevent frame references via the frame pointer from being
	 scheduled before the frame is allocated.  */
      if (frame_pointer_needed)
	emit_insn (gen_blockage ());
    }

  /* Save CPU registers.  */
  for (regno = R0_REGNUM; regno <= PC_REGNUM; regno++)
    if (pdp11_saved_regno (regno)
	&& (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed))
      {
	x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
	x = gen_frame_mem (Pmode, x);
	emit_move_insn (x, gen_rtx_REG (Pmode, regno));
      }

  /* Save FPU registers.  */
  for (regno = AC0_REGNUM; regno <= AC3_REGNUM; regno++) 
    if (pdp11_saved_regno (regno))
      {
	x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
	x = gen_frame_mem (DFmode, x);
	via_ac = gen_rtx_REG (DFmode, regno);
	emit_move_insn (x, via_ac);
      }

  /* ??? Maybe make ac4, ac5 call used regs?? */
  for (regno = AC4_REGNUM; regno <= AC5_REGNUM; regno++)
    if (pdp11_saved_regno (regno))
      {
	gcc_assert (via_ac != NULL);
	emit_move_insn (via_ac, gen_rtx_REG (DFmode, regno));

	x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
	x = gen_frame_mem (DFmode, x);
	emit_move_insn (x, via_ac);
      }
}

/* The function epilogue should not depend on the current stack pointer!
   It should use the frame pointer only.  This is mandatory because
   of alloca; we also take advantage of it to omit stack adjustments
   before returning.  */

/* Maybe we can make leaf functions faster by switching to the
   second register file - this way we don't have to save regs!
   leaf functions are ~ 50% of all functions (dynamically!) 

   set/clear bit 11 (dec. 2048) of status word for switching register files - 
   but how can we do this? the pdp11/45 manual says bit may only 
   be set (p.24), but not cleared!

   switching to kernel is probably more expensive, so we'll leave it 
   like this and not use the second set of registers... 

   maybe as option if you want to generate code for kernel mode? */

void
pdp11_expand_epilogue (void)
{								
  HOST_WIDE_INT fsize = get_frame_size ();
  unsigned regno;
  rtx x, reg, via_ac = NULL;

  if (pdp11_saved_regno (AC4_REGNUM) || pdp11_saved_regno (AC5_REGNUM))
    {
      /* Find a temporary with which to restore AC4/5.  */
      for (regno = AC0_REGNUM; regno <= AC3_REGNUM; regno++)
	if (pdp11_saved_regno (regno))
	  {
	    via_ac = gen_rtx_REG (DFmode, regno);
	    break;
	  }
    }

  /* If possible, restore registers via pops.  */
  if (!frame_pointer_needed || crtl->sp_is_unchanging)
    {
      /* Restore registers via pops.  */

      for (regno = AC5_REGNUM; regno >= AC0_REGNUM; regno--)
	if (pdp11_saved_regno (regno))
	  {
	    x = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
	    x = gen_frame_mem (DFmode, x);
	    reg = gen_rtx_REG (DFmode, regno);

	    if (LOAD_FPU_REG_P (regno))
	      emit_move_insn (reg, x);
	    else
	      {
	        emit_move_insn (via_ac, x);
		emit_move_insn (reg, via_ac);
	      }
	  }

      for (regno = PC_REGNUM; regno >= R0_REGNUM + 2; regno--)
	if (pdp11_saved_regno (regno)
	    && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed))
	  {
	    x = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
	    x = gen_frame_mem (Pmode, x);
	    emit_move_insn (gen_rtx_REG (Pmode, regno), x);
	  }
    }
  else
    {
      /* Restore registers via moves.  */
      /* ??? If more than a few registers need to be restored, it's smaller
	 to generate a pointer through which we can emit pops.  Consider
	 that moves cost 2*NREG words and pops cost NREG+3 words.  This
	 means that the crossover is NREG=3.

	 Possible registers to use are:
	  (1) The first call-saved general register.  This register will
		be restored with the last pop.
	  (2) R1, if it's not used as a return register.
	  (3) FP itself.  This option may result in +4 words, since we
		may need two add imm,rn instructions instead of just one.
		This also has the downside that we're not representing
		the unwind info in any way, so during the epilogue the
		debugger may get lost.  */

      HOST_WIDE_INT ofs = -pdp11_sp_frame_offset ();

      for (regno = AC5_REGNUM; regno >= AC0_REGNUM; regno--)
	if (pdp11_saved_regno (regno))
	  {
	    x = plus_constant (Pmode, hard_frame_pointer_rtx, ofs);
	    x = gen_frame_mem (DFmode, x);
	    reg = gen_rtx_REG (DFmode, regno);

	    if (LOAD_FPU_REG_P (regno))
	      emit_move_insn (reg, x);
	    else
	      {
	        emit_move_insn (via_ac, x);
		emit_move_insn (reg, via_ac);
	      }
	    ofs += 8;
	  }

      for (regno = PC_REGNUM; regno >= R0_REGNUM + 2; regno--)
	if (pdp11_saved_regno (regno)
	    && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed))
	  {
	    x = plus_constant (Pmode, hard_frame_pointer_rtx, ofs);
	    x = gen_frame_mem (Pmode, x);
	    emit_move_insn (gen_rtx_REG (Pmode, regno), x);
	    ofs += 2;
	  }
    }

  /* Deallocate the stack frame.  */
  if (fsize)
    {
      /* Prevent frame references via any pointer from being
	 scheduled after the frame is deallocated.  */
      emit_insn (gen_blockage ());

      if (frame_pointer_needed)
	{
	  /* We can deallocate the frame with a single move.  */
	  emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
	}
      else
	emit_insn (gen_addhi3 (stack_pointer_rtx, stack_pointer_rtx,
			       GEN_INT (fsize)));
    }

  if (frame_pointer_needed)
    {
      x = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
      x = gen_frame_mem (Pmode, x);
      emit_move_insn (hard_frame_pointer_rtx, x);
    }

  emit_jump_insn (gen_return ());
}

/* Return the best assembler insn template
   for moving operands[1] into operands[0] as a fullword.  */
static const char *
singlemove_string (rtx *operands)
{
  if (operands[1] != const0_rtx)
    return "mov %1,%0";

  return "clr %0";
}


/* Expand multi-word operands (SImode or DImode) into the 2 or 4
   corresponding HImode operands.  The number of operands is given
   as the third argument, and the required order of the parts as
   the fourth argument.  */
bool
pdp11_expand_operands (rtx *operands, rtx exops[][2], int opcount, 
		       pdp11_action *action, pdp11_partorder order)
{
  int words, op, w, i, sh;
  pdp11_partorder useorder;
  bool sameoff = false;
  enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype;
  REAL_VALUE_TYPE r;
  long sval[2];
  
  words = GET_MODE_BITSIZE (GET_MODE (operands[0])) / 16;
  
  /* If either piece order is accepted and one is pre-decrement
     while the other is post-increment, set order to be high order
     word first.  That will force the pre-decrement to be turned
     into a pointer adjust, then offset addressing.
     Otherwise, if either operand uses pre-decrement, that means
     the order is low order first. 
     Otherwise, if both operands are registers and destination is
     higher than source and they overlap, do low order word (highest
     register number) first.  */
  useorder = either;
  if (opcount == 2)
    {
      if (!REG_P (operands[0]) && !REG_P (operands[1]) &&
	  !(CONSTANT_P (operands[1]) || 
	    GET_CODE (operands[1]) == CONST_DOUBLE) &&
	  ((GET_CODE (XEXP (operands[0], 0)) == POST_INC &&
	    GET_CODE (XEXP (operands[1], 0)) == PRE_DEC) ||
	   (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC &&
	    GET_CODE (XEXP (operands[1], 0)) == POST_INC)))
	    useorder = big;
      else if ((!REG_P (operands[0]) &&
		GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) ||
	       (!REG_P (operands[1]) &&
		!(CONSTANT_P (operands[1]) || 
		  GET_CODE (operands[1]) == CONST_DOUBLE) &&
		GET_CODE (XEXP (operands[1], 0)) == PRE_DEC))
	useorder = little;
      else if (REG_P (operands[0]) && REG_P (operands[1]) &&
	       REGNO (operands[0]) > REGNO (operands[1]) &&
	       REGNO (operands[0]) < REGNO (operands[1]) + words)
	    useorder = little;

      /* Check for source == offset from register and dest == push of
	 the same register.  In that case, we have to use the same
	 offset (the one for the low order word) for all words, because
	 the push increases the offset to each source word.
	 In theory there are other cases like this, for example dest == pop,
	 but those don't occur in real life so ignore those.  */
      if (GET_CODE (operands[0]) ==  MEM 
	  && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
	  && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
	  && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
	sameoff = true;
    }

  /* If the caller didn't specify order, use the one we computed,
     or high word first if we don't care either.  If the caller did
     specify, verify we don't have a problem with that order.
     (If it matters to the caller, constraints need to be used to
     ensure this case doesn't occur).  */
  if (order == either)
    order = (useorder == either) ? big : useorder;
  else
    gcc_assert (useorder == either || useorder == order);

  
  for (op = 0; op < opcount; op++)
    {
      /* First classify the operand.  */
      if (REG_P (operands[op]))
	optype = REGOP;
      else if (CONSTANT_P (operands[op])
	       || GET_CODE (operands[op]) == CONST_DOUBLE)
	optype = CNSTOP;
      else if (GET_CODE (XEXP (operands[op], 0)) == POST_INC)
	optype = POPOP;
      else if (GET_CODE (XEXP (operands[op], 0)) == PRE_DEC)
	optype = PUSHOP;
      else if (!reload_in_progress || offsettable_memref_p (operands[op]))
	optype = OFFSOP;
      else if (GET_CODE (operands[op]) == MEM)
	optype = MEMOP;
      else
	optype = RNDOP;

      /* Check for the cases that the operand constraints are not
	 supposed to allow to happen. Return failure for such cases.  */
      if (optype == RNDOP)
	return false;
      
      if (action != NULL)
	action[op] = no_action;
      
      /* If the operand uses pre-decrement addressing but we
	 want to get the parts high order first,
	 decrement the former register explicitly
	 and change the operand into ordinary indexing.  */
      if (optype == PUSHOP && order == big)
	{
	  gcc_assert (action != NULL);
	  action[op] = dec_before;
	  operands[op] = gen_rtx_MEM (GET_MODE (operands[op]),
				      XEXP (XEXP (operands[op], 0), 0));
	  optype = OFFSOP;
	}
      /* If the operand uses post-increment mode but we want 
	 to get the parts low order first, change the operand
	 into ordinary indexing and remember to increment
	 the register explicitly when we're done.  */
      else if (optype == POPOP && order == little)
	{
	  gcc_assert (action != NULL);
	  action[op] = inc_after;
	  operands[op] = gen_rtx_MEM (GET_MODE (operands[op]),
				      XEXP (XEXP (operands[op], 0), 0));
	  optype = OFFSOP;
	}

      if (GET_CODE (operands[op]) == CONST_DOUBLE)
	{
	  REAL_VALUE_FROM_CONST_DOUBLE (r, operands[op]);
	  REAL_VALUE_TO_TARGET_DOUBLE (r, sval);
	}
      
      for (i = 0; i < words; i++)
	{
	  if (order == big)
	    w = i;
	  else if (sameoff)
	    w = words - 1;
	  else
	    w = words - 1 - i;

	  /* Set the output operand to be word "w" of the input.  */
	  if (optype == REGOP)
	    exops[i][op] = gen_rtx_REG (HImode, REGNO (operands[op]) + w);
	  else if (optype == OFFSOP)
	    exops[i][op] = adjust_address (operands[op], HImode, w * 2);
	  else if (optype == CNSTOP)
	    {
	      if (GET_CODE (operands[op]) == CONST_DOUBLE)
		{
		  sh = 16 - (w & 1) * 16;
		  exops[i][op] = gen_rtx_CONST_INT (HImode, (sval[w / 2] >> sh) & 0xffff);
		}
	      else
		{
		  sh = ((words - 1 - w) * 16);
		  exops[i][op] = gen_rtx_CONST_INT (HImode, trunc_int_for_mode (INTVAL(operands[op]) >> sh, HImode));
		}
	    }
	  else
	    exops[i][op] = operands[op];
	}
    }
  return true;
}

/* Output assembler code to perform a multiple-word move insn
   with operands OPERANDS.  This moves 2 or 4 words depending
   on the machine mode of the operands.  */

const char *
output_move_multiple (rtx *operands)
{
  rtx exops[4][2];
  pdp11_action action[2];
  int i, words;
  
  words = GET_MODE_BITSIZE (GET_MODE (operands[0])) / 16;

  pdp11_expand_operands (operands, exops, 2, action, either);
  
  /* Check for explicit decrement before.  */
  if (action[0] == dec_before)
    {
      operands[0] = XEXP (operands[0], 0);
      output_asm_insn ("sub $4,%0", operands);
    }
  if (action[1] == dec_before)
    {
      operands[1] = XEXP (operands[1], 0);
      output_asm_insn ("sub $4,%1", operands);
    }

  /* Do the words.  */
  for (i = 0; i < words; i++)
    output_asm_insn (singlemove_string (exops[i]), exops[i]);

  /* Check for increment after.  */
  if (action[0] == inc_after)
    {
      operands[0] = XEXP (operands[0], 0);
      output_asm_insn ("add $4,%0", operands);
    }
  if (action[1] == inc_after)
    {
      operands[1] = XEXP (operands[1], 0);
      output_asm_insn ("add $4,%1", operands);
    }

  return "";
}

/* Output an ascii string.  */
void
output_ascii (FILE *file, const char *p, int size)
{
  int i;

  /* This used to output .byte "string", which doesn't work with the UNIX
     assembler and I think not with DEC ones either.  */
  fprintf (file, "\t.byte ");

  for (i = 0; i < size; i++)
    {
      register int c = p[i];
      if (c < 0)
	c += 256;
      fprintf (file, "%#o", c);
      if (i < size - 1)
	putc (',', file);
    }
  putc ('\n', file);
}


void
pdp11_asm_output_var (FILE *file, const char *name, int size,
		      int align, bool global)
{
  if (align > 8)
    fprintf (file, "\n\t.even\n");
  if (global)
    {
      fprintf (file, ".globl ");
      assemble_name (file, name);
    }
  fprintf (file, "\n");
  assemble_name (file, name);
  fprintf (file, ": .=.+ %#ho\n", (unsigned short)size);
}

static void
pdp11_asm_print_operand (FILE *file, rtx x, int code)
{
  REAL_VALUE_TYPE r;
  long sval[2];
 
  if (code == '#')
    fprintf (file, "#");
  else if (code == '@')
    {
      if (TARGET_UNIX_ASM)
	fprintf (file, "*");
      else
	fprintf (file, "@");
    }
  else if (GET_CODE (x) == REG)
    fprintf (file, "%s", reg_names[REGNO (x)]);
  else if (GET_CODE (x) == MEM)
    output_address (XEXP (x, 0));
  else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != SImode)
    {
      REAL_VALUE_FROM_CONST_DOUBLE (r, x);
      REAL_VALUE_TO_TARGET_DOUBLE (r, sval);
      fprintf (file, "$%#lo", sval[0] >> 16);
    }
  else
    {
      putc ('$', file);
      output_addr_const_pdp11 (file, x);
    }
}

static bool
pdp11_asm_print_operand_punct_valid_p (unsigned char c)
{
  return (c == '#' || c == '@');
}

void
print_operand_address (FILE *file, register rtx addr)
{
  register rtx breg;
  rtx offset;
  int again = 0;
  
 retry:

  switch (GET_CODE (addr))
    {
    case MEM:
      if (TARGET_UNIX_ASM)
	fprintf (file, "*");
      else
	fprintf (file, "@");
      addr = XEXP (addr, 0);
      again = 1;
      goto retry;

    case REG:
      fprintf (file, "(%s)", reg_names[REGNO (addr)]);
      break;

    case PRE_MODIFY:
    case PRE_DEC:
      fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case POST_MODIFY:
    case POST_INC:
      fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case PLUS:
      breg = 0;
      offset = 0;
      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	  || GET_CODE (XEXP (addr, 0)) == MEM)
	{
	  offset = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	       || GET_CODE (XEXP (addr, 1)) == MEM)
	{
	  offset = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      if (GET_CODE (addr) != PLUS)
	;
      else if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  breg = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (GET_CODE (XEXP (addr, 1)) == REG)
	{
	  breg = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      if (GET_CODE (addr) == REG)
	{
	  gcc_assert (breg == 0);
	  breg = addr;
	  addr = 0;
	}
      if (offset != 0)
	{
	  gcc_assert (addr == 0);
	  addr = offset;
	}
      if (addr != 0)
	output_addr_const_pdp11 (file, addr);
      if (breg != 0)
	{
	  gcc_assert (GET_CODE (breg) == REG);
	  fprintf (file, "(%s)", reg_names[REGNO (breg)]);
	}
      break;

    default:
      if (!again && GET_CODE (addr) == CONST_INT)
	{
	  /* Absolute (integer number) address.  */
	  if (!TARGET_UNIX_ASM)
	    fprintf (file, "@$");
	}
      output_addr_const_pdp11 (file, addr);
    }
}

/* Target hook to assemble integer objects.  We need to use the
   pdp-specific version of output_addr_const.  */

static bool
pdp11_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
  if (aligned_p)
    switch (size)
      {
      case 1:
	fprintf (asm_out_file, "\t.byte\t");
	output_addr_const_pdp11 (asm_out_file, GEN_INT (INTVAL (x) & 0xff));
;
	fprintf (asm_out_file, " /* char */\n");
	return true;

      case 2:
	fprintf (asm_out_file, TARGET_UNIX_ASM ? "\t" : "\t.word\t");
	output_addr_const_pdp11 (asm_out_file, x);
	fprintf (asm_out_file, " /* short */\n");
	return true;
      }
  return default_assemble_integer (x, size, aligned_p);
}


/* register move costs, indexed by regs */

static const int move_costs[N_REG_CLASSES][N_REG_CLASSES] = 
{
             /* NO  MUL  GEN  LFPU  NLFPU FPU ALL */

/* NO */     {  0,   0,   0,    0,    0,    0,   0},
/* MUL */    {  0,   2,   2,   22,   22,   22,  22},
/* GEN */    {  0,   2,   2,   22,   22,   22,  22},
/* LFPU */   {  0,  22,  22,    2,    2,    2,  22},
/* NLFPU */  {  0,  22,  22,    2,   10,   10,  22},
/* FPU */    {  0,  22,  22,    2,   10,   10,  22},
/* ALL */    {  0,  22,  22,   22,   22,   22,  22}
}  ;


/* -- note that some moves are tremendously expensive, 
   because they require lots of tricks! do we have to 
   charge the costs incurred by secondary reload class 
   -- as we do here with 10 -- or not ? */

static int 
pdp11_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
			  reg_class_t c1, reg_class_t c2)
{
    return move_costs[(int)c1][(int)c2];
}

static bool
pdp11_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
		 int opno ATTRIBUTE_UNUSED, int *total,
		 bool speed ATTRIBUTE_UNUSED)
{
  switch (code)
    {
    case CONST_INT:
      if (INTVAL (x) == 0 || INTVAL (x) == -1 || INTVAL (x) == 1)
	{
	  *total = 0;
	  return true;
	}
      /* FALLTHRU */

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      /* Twice as expensive as REG.  */
      *total = 2;
      return true;

    case CONST_DOUBLE:
      /* Twice (or 4 times) as expensive as 16 bit.  */
      *total = 4;
      return true;

    case MULT:
      /* ??? There is something wrong in MULT because MULT is not 
         as cheap as total = 2 even if we can shift!  */
      /* If optimizing for size make mult etc cheap, but not 1, so when 
         in doubt the faster insn is chosen.  */
      if (optimize_size)
        *total = COSTS_N_INSNS (2);
      else
        *total = COSTS_N_INSNS (11);
      return false;

    case DIV:
      if (optimize_size)
        *total = COSTS_N_INSNS (2);
      else
        *total = COSTS_N_INSNS (25);
      return false;

    case MOD:
      if (optimize_size)
        *total = COSTS_N_INSNS (2);
      else
        *total = COSTS_N_INSNS (26);
      return false;

    case ABS:
      /* Equivalent to length, so same for optimize_size.  */
      *total = COSTS_N_INSNS (3);
      return false;

    case ZERO_EXTEND:
      /* Only used for qi->hi.  */
      *total = COSTS_N_INSNS (1);
      return false;

    case SIGN_EXTEND:
      if (GET_MODE (x) == HImode)
      	*total = COSTS_N_INSNS (1);
      else if (GET_MODE (x) == SImode)
	*total = COSTS_N_INSNS (6);
      else
	*total = COSTS_N_INSNS (2);
      return false;

    case ASHIFT:
    case LSHIFTRT:
    case ASHIFTRT:
      if (optimize_size)
        *total = COSTS_N_INSNS (1);
      else if (GET_MODE (x) ==  QImode)
        {
          if (GET_CODE (XEXP (x, 1)) != CONST_INT)
   	    *total = COSTS_N_INSNS (8); /* worst case */
          else
	    *total = COSTS_N_INSNS (INTVAL (XEXP (x, 1)));
        }
      else if (GET_MODE (x) == HImode)
        {
          if (GET_CODE (XEXP (x, 1)) == CONST_INT)
            {
	      if (abs (INTVAL (XEXP (x, 1))) == 1)
                *total = COSTS_N_INSNS (1);
              else
	        *total = COSTS_N_INSNS (2.5 + 0.5 * INTVAL (XEXP (x, 1)));
            }
          else
            *total = COSTS_N_INSNS (10); /* worst case */
        }
      else if (GET_MODE (x) == SImode)
        {
          if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	    *total = COSTS_N_INSNS (2.5 + 0.5 * INTVAL (XEXP (x, 1)));
          else /* worst case */
            *total = COSTS_N_INSNS (18);
        }
      return false;

    default:
      return false;
    }
}

const char *
output_jump (enum rtx_code code, int inv, int length)
{
    static int x = 0;
    
    static char buf[1000];
    const char *pos, *neg;

    if (cc_prev_status.flags & CC_NO_OVERFLOW)
      {
	switch (code)
	  {
	  case GTU: code = GT; break;
	  case LTU: code = LT; break;
	  case GEU: code = GE; break;
	  case LEU: code = LE; break;
	  default: ;
	  }
      }
    switch (code)
      {
      case EQ: pos = "beq", neg = "bne"; break;
      case NE: pos = "bne", neg = "beq"; break;
      case GT: pos = "bgt", neg = "ble"; break;
      case GTU: pos = "bhi", neg = "blos"; break;
      case LT: pos = "blt", neg = "bge"; break;
      case LTU: pos = "blo", neg = "bhis"; break;
      case GE: pos = "bge", neg = "blt"; break;
      case GEU: pos = "bhis", neg = "blo"; break;
      case LE: pos = "ble", neg = "bgt"; break;
      case LEU: pos = "blos", neg = "bhi"; break;
      default: gcc_unreachable ();
      }

#if 0
/* currently we don't need this, because the tstdf and cmpdf 
   copy the condition code immediately, and other float operations are not 
   yet recognized as changing the FCC - if so, then the length-cost of all
   jump insns increases by one, because we have to potentially copy the 
   FCC! */
    if (cc_status.flags & CC_IN_FPU)
	output_asm_insn("cfcc", NULL);
#endif
	
    switch (length)
    {
      case 2:
	
	sprintf(buf, "%s %%l1", inv ? neg : pos);
	
	return buf;
	
      case 6:
	
	sprintf(buf, "%s JMP_%d\n\tjmp %%l1\nJMP_%d:", inv ? pos : neg, x, x);
	
	x++;
	
	return buf;
	
      default:
	
	gcc_unreachable ();
    }
    
}

void
notice_update_cc_on_set(rtx exp, rtx insn ATTRIBUTE_UNUSED)
{
    if (GET_CODE (SET_DEST (exp)) == CC0)
    { 
      cc_status.flags = 0;					
      cc_status.value1 = SET_DEST (exp);			
      cc_status.value2 = SET_SRC (exp);			
    }							
    else if (GET_CODE (SET_SRC (exp)) == CALL)		
    { 
      CC_STATUS_INIT; 
    }
    else if (SET_DEST(exp) == pc_rtx)
    { 
      /* jump */
    }	
    else if (GET_MODE (SET_DEST(exp)) == HImode		
	     || GET_MODE (SET_DEST(exp)) == QImode)
    { 
      cc_status.flags = GET_CODE (SET_SRC(exp)) == MINUS ? 0 : CC_NO_OVERFLOW;
      cc_status.value1 = SET_SRC (exp);   			
      cc_status.value2 = SET_DEST (exp);			
	
      if (cc_status.value1 && GET_CODE (cc_status.value1) == REG	
	  && cc_status.value2					
	  && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
	cc_status.value2 = 0;					
      if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM	
	  && cc_status.value2					
	  && GET_CODE (cc_status.value2) == MEM)			
	cc_status.value2 = 0; 					
    }		        
    else
    { 
      CC_STATUS_INIT; 
    }
}


int
simple_memory_operand(rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
    rtx addr;

    /* Eliminate non-memory operations */
    if (GET_CODE (op) != MEM)
	return FALSE;

#if 0
    /* dword operations really put out 2 instructions, so eliminate them.  */
    if (GET_MODE_SIZE (GET_MODE (op)) > (HAVE_64BIT_P () ? 8 : 4))
	return FALSE;
#endif

    /* Decode the address now.  */

  indirection:
    
    addr = XEXP (op, 0);

    switch (GET_CODE (addr))
    {
      case REG:
	/* (R0) - no extra cost */
	return 1;
	
      case PRE_DEC:
      case POST_INC:
	/* -(R0), (R0)+ - cheap! */
	return 0;
	
      case MEM:
	/* cheap - is encoded in addressing mode info! 

	   -- except for @(R0), which has to be @0(R0) !!! */

	if (GET_CODE (XEXP (addr, 0)) == REG)
	    return 0;
	
	op=addr;
	goto indirection;
	
      case CONST_INT:
      case LABEL_REF:	       
      case CONST:
      case SYMBOL_REF:
	/* @#address - extra cost */
	return 0;

      case PLUS:
	/* X(R0) - extra cost */
	return 0;

      default:
	break;
    }
    
    return FALSE;
}


/*
 * output a block move:
 *
 * operands[0]	... to
 * operands[1]  ... from
 * operands[2]  ... length
 * operands[3]  ... alignment
 * operands[4]  ... scratch register
 */

 
const char *
output_block_move(rtx *operands)
{
    static int count = 0;
    char buf[200];
    int unroll;
    int lastbyte = 0;
    
    /* Move of zero bytes is a NOP.  */
    if (operands[2] == const0_rtx)
      return "";
    
    /* Look for moves by small constant byte counts, those we'll
       expand to straight line code.  */
    if (CONSTANT_P (operands[2]))
    {
	if (INTVAL (operands[2]) < 16
	    && (!optimize_size || INTVAL (operands[2]) < 5)
	    && INTVAL (operands[3]) == 1)
	{
	    register int i;
	    
	    for (i = 1; i <= INTVAL (operands[2]); i++)
		output_asm_insn("movb (%1)+, (%0)+", operands);

	    return "";
	}
	else if (INTVAL(operands[2]) < 32
		 && (!optimize_size || INTVAL (operands[2]) < 9)
		 && INTVAL (operands[3]) >= 2)
	{
	    register int i;
	    
	    for (i = 1; i <= INTVAL (operands[2]) / 2; i++)
		output_asm_insn ("mov (%1)+, (%0)+", operands);
	    if (INTVAL (operands[2]) & 1)
	      output_asm_insn ("movb (%1), (%0)", operands);
	    
	    return "";
	}
    }

    /* Ideally we'd look for moves that are multiples of 4 or 8
       bytes and handle those by unrolling the move loop.  That
       makes for a lot of code if done at run time, but it's ok
       for constant counts.  Also, for variable counts we have
       to worry about odd byte count with even aligned pointers.
       On 11/40 and up we handle that case; on older machines
       we don't and just use byte-wise moves all the time.  */

    if (CONSTANT_P (operands[2]) )
    {
      if (INTVAL (operands[3]) < 2)
	unroll = 0;
      else
	{
	  lastbyte = INTVAL (operands[2]) & 1;

	  if (optimize_size || INTVAL (operands[2]) & 2)
	    unroll = 1;
	  else if (INTVAL (operands[2]) & 4)
	    unroll = 2;
	  else
	    unroll = 3;
	}
      
      /* Loop count is byte count scaled by unroll.  */
      operands[2] = GEN_INT (INTVAL (operands[2]) >> unroll);
      output_asm_insn ("mov %2, %4", operands);
    }
    else
    {
	/* Variable byte count; use the input register
	   as the scratch.  */
	operands[4] = operands[2];

	/* Decide whether to move by words, and check
	   the byte count for zero.  */
	if (TARGET_40_PLUS && INTVAL (operands[3]) > 1)
	  {
	    unroll = 1;
	    output_asm_insn ("asr %4", operands);
	  }
	else
	  {
	    unroll = 0;
	    output_asm_insn ("tst %4", operands);
	  }
	sprintf (buf, "beq movestrhi%d", count + 1);
	output_asm_insn (buf, NULL);
    }

    /* Output the loop label.  */
    sprintf (buf, "\nmovestrhi%d:", count);
    output_asm_insn (buf, NULL);

    /* Output the appropriate move instructions.  */
    switch (unroll)
    {
      case 0:
	output_asm_insn ("movb (%1)+, (%0)+", operands);
	break;
	
      case 1:
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	break;
	
      case 2:
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	break;
	
      default:
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	output_asm_insn ("mov (%1)+, (%0)+", operands);
	break;
    }

    /* Output the decrement and test.  */
    if (TARGET_40_PLUS)
      {
	sprintf (buf, "sob %%4, movestrhi%d", count);
	output_asm_insn (buf, operands);
      }
    else
      {
	output_asm_insn ("dec %4", operands);
	sprintf (buf, "bgt movestrhi%d", count);
	output_asm_insn (buf, NULL);
      }
    count ++;

    /* If constant odd byte count, move the last byte.  */
    if (lastbyte)
      output_asm_insn ("movb (%1), (%0)", operands);
    else if (!CONSTANT_P (operands[2]))
      {
	/* Output the destination label for the zero byte count check.  */
	sprintf (buf, "\nmovestrhi%d:", count);
	output_asm_insn (buf, NULL);
	count++;
    
	/* If we did word moves, check for trailing last byte. */
	if (unroll)
	  {
	    sprintf (buf, "bcc movestrhi%d", count);
	    output_asm_insn (buf, NULL);
	    output_asm_insn ("movb (%1), (%0)", operands);
	    sprintf (buf, "\nmovestrhi%d:", count);
	    output_asm_insn (buf, NULL);
	    count++;
	  }
      }
	     
    return "";
}

/* This function checks whether a real value can be encoded as
   a literal, i.e., addressing mode 27.  In that mode, real values
   are one word values, so the remaining 48 bits have to be zero.  */
int
legitimate_const_double_p (rtx address)
{
  REAL_VALUE_TYPE r;
  long sval[2];
  REAL_VALUE_FROM_CONST_DOUBLE (r, address);
  REAL_VALUE_TO_TARGET_DOUBLE (r, sval);
  if ((sval[0] & 0xffff) == 0 && sval[1] == 0)
    return 1;
  return 0;
}

/* Implement CANNOT_CHANGE_MODE_CLASS.  */
bool
pdp11_cannot_change_mode_class (enum machine_mode from,
				enum machine_mode to,
				enum reg_class rclass)
{
  /* Also, FPU registers contain a whole float value and the parts of
     it are not separately accessible.

     So we disallow all mode changes involving FPRs.  */
  if (FLOAT_MODE_P (from) != FLOAT_MODE_P (to))
    return true;
  
  return reg_classes_intersect_p (FPU_REGS, rclass);
}

/* TARGET_PREFERRED_RELOAD_CLASS

   Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  

loading is easier into LOAD_FPU_REGS than FPU_REGS! */

static reg_class_t
pdp11_preferred_reload_class (rtx x, reg_class_t rclass)
{
  if (rclass == FPU_REGS)
    return LOAD_FPU_REGS;
  if (rclass == ALL_REGS)
    {
      if (FLOAT_MODE_P (GET_MODE (x)))
	return LOAD_FPU_REGS;
      else
	return GENERAL_REGS;
    }
  return rclass;
}

/* TARGET_PREFERRED_OUTPUT_RELOAD_CLASS

   Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  

loading is easier into LOAD_FPU_REGS than FPU_REGS! */

static reg_class_t
pdp11_preferred_output_reload_class (rtx x, reg_class_t rclass)
{
  if (rclass == FPU_REGS)
    return LOAD_FPU_REGS;
  if (rclass == ALL_REGS)
    {
      if (FLOAT_MODE_P (GET_MODE (x)))
	return LOAD_FPU_REGS;
      else
	return GENERAL_REGS;
    }
  return rclass;
}


/* TARGET_SECONDARY_RELOAD.

   FPU registers AC4 and AC5 (class NO_LOAD_FPU_REGS) require an 
   intermediate register (AC0-AC3: LOAD_FPU_REGS).  Everything else
   can be loade/stored directly.  */
static reg_class_t 
pdp11_secondary_reload (bool in_p ATTRIBUTE_UNUSED,
			rtx x,
			reg_class_t reload_class,
			enum machine_mode reload_mode ATTRIBUTE_UNUSED,
			secondary_reload_info *sri ATTRIBUTE_UNUSED)
{
  if (reload_class != NO_LOAD_FPU_REGS || GET_CODE (x) != REG ||
      REGNO_REG_CLASS (REGNO (x)) == LOAD_FPU_REGS)
    return NO_REGS;
  
  return LOAD_FPU_REGS;
}

/* Target routine to check if register to register move requires memory.

   The answer is yes if we're going between general register and FPU 
   registers.  The mode doesn't matter in making this check.
*/
bool 
pdp11_secondary_memory_needed (reg_class_t c1, reg_class_t c2, 
			       enum machine_mode mode ATTRIBUTE_UNUSED)
{
  int fromfloat = (c1 == LOAD_FPU_REGS || c1 == NO_LOAD_FPU_REGS || 
		   c1 == FPU_REGS);
  int tofloat = (c2 == LOAD_FPU_REGS || c2 == NO_LOAD_FPU_REGS || 
		 c2 == FPU_REGS);
  
  return (fromfloat != tofloat);
}

/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

*/

static bool
pdp11_legitimate_address_p (enum machine_mode mode,
			    rtx operand, bool strict)
{
    rtx xfoob;

    /* accept @#address */
    if (CONSTANT_ADDRESS_P (operand))
      return true;
    
    switch (GET_CODE (operand))
      {
      case REG:
	/* accept (R0) */
	return !strict || REGNO_OK_FOR_BASE_P (REGNO (operand));
    
      case PLUS:
	/* accept X(R0) */
	return GET_CODE (XEXP (operand, 0)) == REG
	  && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))))
	  && CONSTANT_ADDRESS_P (XEXP (operand, 1));

      case PRE_DEC:
	/* accept -(R0) */
	return GET_CODE (XEXP (operand, 0)) == REG
	  && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))));

      case POST_INC:
	/* accept (R0)+ */
	return GET_CODE (XEXP (operand, 0)) == REG
	  && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))));

      case PRE_MODIFY:
	/* accept -(SP) -- which uses PRE_MODIFY for byte mode */
	return GET_CODE (XEXP (operand, 0)) == REG
	  && REGNO (XEXP (operand, 0)) == STACK_POINTER_REGNUM
	  && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS
	  && GET_CODE (XEXP (xfoob, 0)) == REG
	  && REGNO (XEXP (xfoob, 0)) == STACK_POINTER_REGNUM
	  && CONSTANT_P (XEXP (xfoob, 1))
	  && INTVAL (XEXP (xfoob,1)) == -2;

      case POST_MODIFY:
	/* accept (SP)+ -- which uses POST_MODIFY for byte mode */
	return GET_CODE (XEXP (operand, 0)) == REG
	  && REGNO (XEXP (operand, 0)) == STACK_POINTER_REGNUM
	  && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS
	  && GET_CODE (XEXP (xfoob, 0)) == REG
	  && REGNO (XEXP (xfoob, 0)) == STACK_POINTER_REGNUM
	  && CONSTANT_P (XEXP (xfoob, 1))
	  && INTVAL (XEXP (xfoob,1)) == 2;

      case MEM:
	/* handle another level of indirection ! */
	xfoob = XEXP (operand, 0);

	/* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently
	   also forbidden for float, because we have to handle this 
	   in output_move_double and/or output_move_quad() - we could
	   do it, but currently it's not worth it!!! 
	   now that DFmode cannot go into CPU register file, 
	   maybe I should allow float ... 
	   but then I have to handle memory-to-memory moves in movdf ??  */
	if (GET_MODE_BITSIZE(mode) > 16)
	  return false;

	/* accept @address */
	if (CONSTANT_ADDRESS_P (xfoob))
	  return true;

	switch (GET_CODE (xfoob))
	  {
	  case REG:
	    /* accept @(R0) - which is @0(R0) */
	    return !strict || REGNO_OK_FOR_BASE_P(REGNO (xfoob));

	  case PLUS:
	    /* accept @X(R0) */
	    return GET_CODE (XEXP (xfoob, 0)) == REG
	      && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))))
	      && CONSTANT_ADDRESS_P (XEXP (xfoob, 1));

	  case PRE_DEC:
	    /* accept @-(R0) */
	    return GET_CODE (XEXP (xfoob, 0)) == REG
	      && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))));

	  case POST_INC:
	    /* accept @(R0)+ */
	    return GET_CODE (XEXP (xfoob, 0)) == REG
	      && (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))));

	  default:
	    /* anything else is invalid */
	    return false;
	  }

      default:
	/* anything else is invalid */
	return false;
      }
}

/* Return the class number of the smallest class containing
   reg number REGNO.  */
enum reg_class
pdp11_regno_reg_class (int regno)
{ 
  if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM)
    return GENERAL_REGS;
  else if (regno > AC3_REGNUM)
    return NO_LOAD_FPU_REGS;
  else if (regno >= AC0_REGNUM)
    return LOAD_FPU_REGS;
  else if (regno & 1)
    return MUL_REGS;
  else
    return GENERAL_REGS;
}


int
pdp11_sp_frame_offset (void)
{
  int offset = 0, regno;
  offset = get_frame_size();
  for (regno = 0; regno <= PC_REGNUM; regno++)
    if (pdp11_saved_regno (regno))
      offset += 2;
  for (regno = AC0_REGNUM; regno <= AC5_REGNUM; regno++)
    if (pdp11_saved_regno (regno))
      offset += 8;
  
  return offset;
}   

/* Return the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

int
pdp11_initial_elimination_offset (int from, int to)
{
  int spoff;
  
  if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    return 4;
  else if (from == FRAME_POINTER_REGNUM
	   && to == HARD_FRAME_POINTER_REGNUM)
    return 0;
  else
    {
      gcc_assert (to == STACK_POINTER_REGNUM);

      /* Get the size of the register save area.  */
      spoff = pdp11_sp_frame_offset ();
      if (from == FRAME_POINTER_REGNUM)
	return spoff;

      gcc_assert (from == ARG_POINTER_REGNUM);

      /* If there is a frame pointer, that is saved too.  */
      if (frame_pointer_needed)
	spoff += 2;
      
      /* Account for the saved PC in the function call.  */
      return spoff + 2;
    }
}    

/* A copy of output_addr_const modified for pdp11 expression syntax.
   output_addr_const also gets called for %cDIGIT and %nDIGIT, which we don't
   use, and for debugging output, which we don't support with this port either.
   So this copy should get called whenever needed.
*/
void
output_addr_const_pdp11 (FILE *file, rtx x)
{
  char buf[256];
  int i;
  
 restart:
  switch (GET_CODE (x))
    {
    case PC:
      gcc_assert (flag_pic);
      putc ('.', file);
      break;

    case SYMBOL_REF:
      assemble_name (file, XSTR (x, 0));
      break;

    case LABEL_REF:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
      assemble_name (file, buf);
      break;

    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
      assemble_name (file, buf);
      break;

    case CONST_INT:
      i = INTVAL (x);
      if (i < 0)
	{
	  i = -i;
	  fprintf (file, "-");
	}
      fprintf (file, "%#o", i & 0xffff);
      break;

    case CONST:
      /* This used to output parentheses around the expression,
	 but that does not work on the 386 (either ATT or BSD assembler).  */
      output_addr_const_pdp11 (file, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %o if the number is one word and positive.  */
	  gcc_assert (!CONST_DOUBLE_HIGH (x));
	  fprintf (file, "%#ho", (unsigned short) CONST_DOUBLE_LOW (x));
	}
      else
	/* We can't handle floating point constants;
	   PRINT_OPERAND must handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

    case PLUS:
      /* Some assemblers need integer constants to appear last (e.g. masm).  */
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  output_addr_const_pdp11 (file, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    fprintf (file, "+");
	  output_addr_const_pdp11 (file, XEXP (x, 0));
	}
      else
	{
	  output_addr_const_pdp11 (file, XEXP (x, 0));
	  if (INTVAL (XEXP (x, 1)) >= 0)
	    fprintf (file, "+");
	  output_addr_const_pdp11 (file, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x,
	 since some assemblers can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      output_addr_const_pdp11 (file, XEXP (x, 0));
      if (GET_CODE (XEXP (x, 1)) != CONST_INT
	  || INTVAL (XEXP (x, 1)) >= 0)
	fprintf (file, "-");
      output_addr_const_pdp11 (file, XEXP (x, 1));
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
      output_addr_const_pdp11 (file, XEXP (x, 0));
      break;

    default:
      output_operand_lossage ("invalid expression as operand");
    }
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
pdp11_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  /* Integers 32 bits and under, and scalar floats (if FPU), are returned
     in registers.  The rest go into memory.  */
  return (TYPE_MODE (type) == DImode
	  || (FLOAT_MODE_P (TYPE_MODE (type)) && ! TARGET_AC0)
	  || TREE_CODE (type) == VECTOR_TYPE
	  || COMPLEX_MODE_P (TYPE_MODE (type)));
}

/* Worker function for TARGET_FUNCTION_VALUE.

   On the pdp11 the value is found in R0 (or ac0??? not without FPU!!!! )  */

static rtx
pdp11_function_value (const_tree valtype, 
 		      const_tree fntype_or_decl ATTRIBUTE_UNUSED,
 		      bool outgoing ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (TYPE_MODE (valtype),
		      BASE_RETURN_VALUE_REG(TYPE_MODE(valtype)));
}

/* Worker function for TARGET_LIBCALL_VALUE.  */

static rtx
pdp11_libcall_value (enum machine_mode mode,
                     const_rtx fun ATTRIBUTE_UNUSED)
{
  return  gen_rtx_REG (mode, BASE_RETURN_VALUE_REG(mode));
}

/* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.

   On the pdp, the first "output" reg is the only register thus used.

   maybe ac0 ? - as option someday!  */

static bool
pdp11_function_value_regno_p (const unsigned int regno)
{
  return (regno == RETVAL_REGNUM) || (TARGET_AC0 && (regno == AC0_REGNUM));
}

/* Worker function for TARGET_TRAMPOLINE_INIT.

   trampoline - how should i do it in separate i+d ? 
   have some allocate_trampoline magic??? 

   the following should work for shared I/D:

   MOV	#STATIC, $4	01270Y	0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
   JMP	@#FUNCTION	000137  0x0000 <- FUNCTION
*/

static void
pdp11_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx mem;

  gcc_assert (!TARGET_SPLIT);

  mem = adjust_address (m_tramp, HImode, 0);
  emit_move_insn (mem, GEN_INT (012700+STATIC_CHAIN_REGNUM));
  mem = adjust_address (m_tramp, HImode, 2);
  emit_move_insn (mem, chain_value);
  mem = adjust_address (m_tramp, HImode, 4);
  emit_move_insn (mem, GEN_INT (000137));
  emit_move_insn (mem, fnaddr);
}

/* Worker function for TARGET_FUNCTION_ARG.

   Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

static rtx
pdp11_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
		    enum machine_mode mode ATTRIBUTE_UNUSED,
		    const_tree type ATTRIBUTE_UNUSED,
		    bool named ATTRIBUTE_UNUSED)
{
  return NULL_RTX;
}

/* Worker function for TARGET_FUNCTION_ARG_ADVANCE.

   Update the data in CUM to advance over an argument of mode MODE and
   data type TYPE.  (TYPE is null for libcalls where that information
   may not be available.)  */

static void
pdp11_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
			    const_tree type, bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  *cum += (mode != BLKmode
	   ? GET_MODE_SIZE (mode)
	   : int_size_in_bytes (type));
}

/* Make sure everything's fine if we *don't* have an FPU.
   This assumes that putting a register in fixed_regs will keep the
   compiler's mitts completely off it.  We don't bother to zero it out
   of register classes.  Also fix incompatible register naming with
   the UNIX assembler.  */

static void
pdp11_conditional_register_usage (void)
{
  int i;
  HARD_REG_SET x;
  if (!TARGET_FPU)
    {
      COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]);
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )
       if (TEST_HARD_REG_BIT (x, i))
	fixed_regs[i] = call_used_regs[i] = 1;
    }

  if (TARGET_AC0)
      call_used_regs[AC0_REGNUM] = 1;
  if (TARGET_UNIX_ASM)
    {
      /* Change names of FPU registers for the UNIX assembler.  */
      reg_names[8] = "fr0";
      reg_names[9] = "fr1";
      reg_names[10] = "fr2";
      reg_names[11] = "fr3";
      reg_names[12] = "fr4";
      reg_names[13] = "fr5";
    }
}

static section *
pdp11_function_section (tree decl ATTRIBUTE_UNUSED,
			enum node_frequency freq ATTRIBUTE_UNUSED,
			bool startup ATTRIBUTE_UNUSED,
			bool exit ATTRIBUTE_UNUSED)
{
  return NULL;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.  */

static bool
pdp11_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return GET_CODE (x) != CONST_DOUBLE || legitimate_const_double_p (x);
}

struct gcc_target targetm = TARGET_INITIALIZER;