summaryrefslogtreecommitdiff
path: root/gcc/d/implement-d.texi
blob: 039e5fbd24e0845c4ffcd884be2fbdbbb2ff3dfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
@ignore
Copyright (C) 2022-2023 Free Software Foundation, Inc.
This is part of the GNU D manual.
For copying conditions, see the file gdc.texi.
@end ignore

@node D Implementation
@chapter Language Reference
@cindex language reference, D language

The implementation of the D programming language used by the GNU D compiler is
shared with parts of the front-end for the Digital Mars D compiler, hosted at
@uref{https://github.com/dlang/dmd/}.  This common front-end covers lexical
analysis, parsing, and semantic analysis of the D programming language defined
in the documents at @uref{https://dlang.org/}.

The implementation details described in this manual are GNU D extensions to the
D programming language.  If you want to write code that checks whether these
features are available, you can test for the predefined version @code{GNU}, or
you can check whether a specific feature is compilable using
@code{__traits(compiles)}.

@smallexample
version (GNU)
@{
    import gcc.builtins;
    return __builtin_atan2(x, y);
@}

static if (__traits(compiles, @{ asm @{"";@} @}))
@{
    asm @{ "magic instruction"; @}
@}
@end smallexample

@menu
* Attributes::          Implementation-defined attributes.
* Builtin Functions::   GCC built-ins module.
* ImportC::             Importing C sources into D.
* Inline Assembly::     Interfacing D with assembler.
* Intrinsics::          Intrinsic functions supported by GDC.
* Predefined Pragmas::  Pragmas accepted by GDC.
* Predefined Versions:: List of versions for conditional compilation.
* Special Enums::       Intrinsic type interoperability with C and C++.
* Traits::              Compile-time reflection extensions.
* Vector Extensions::   Using vector types and supported operations.
* Vector Intrinsics::   Vector instructions through intrinsics.
* Missing Features::    Deviations from the D2 specification in GDC.
@end menu


@c --------------------------------------------------------

@node Attributes
@section Attributes
@cindex attributes

User-Defined Attributes (UDA) are compile-time expressions introduced by the
@code{@@} token that can be attached to a declaration.  These attributes can
then be queried, extracted, and manipulated at compile time.

GNU D provides a number of extra special attributes to control specific
compiler behavior that may help the compiler optimize or check code more
carefully for correctness.  The attributes are defined in the
@code{gcc.attributes} module.

There is some overlap between the purposes of attributes and pragmas.  It has
been found more convenient to use @code{@@attribute} to achieve a natural
attachment of attributes to their corresponding declarations, whereas
@code{pragma} is of use for compatibility with other compilers or constructs
that do not naturally form part of the grammar.

@menu
* Attribute Syntax::
* Common Attributes::
* Other Attributes::
* Target Attributes::
@end menu

@c --------------------------------------------------------

@node Attribute Syntax
@subsection Attribute Syntax

@code{@@(gcc.attributes.attribute)} is the generic entrypoint for applying GCC
attributes to a function, variable, or type.  There is no type checking done,
as well as no deprecation path for attributes removed from the compiler.  So
the recommendation is to use any of the other UDAs available as described in
@ref{Common Attributes} unless it is a target-specific attribute
(@xref{Target Attributes}).

Function attributes introduced by the @code{@@attribute} UDA are used in the
declaration of a function, followed by an attribute name string and any
arguments separated by commas enclosed in parentheses.

@smallexample
import gcc.attributes;
@@attribute("regparm", 1) int func(int size);
@end smallexample

@noindent
Multiple attributes can be applied to a single declaration either with multiple
@code{@@attribute} attributes, or passing all attributes as a comma-separated
list enclosed by parentheses.

@smallexample
// Both func1 and func2 have the same attributes applied.
@@attribute("noinline") @@attribute("noclone") void func1();
@@(attribute("noinline"), attribute("noclone")) void func2();
@end smallexample

@noindent
There are some problems with the semantics of such attributes in D.  For
example, there are no manglings for attributes, although they may affect code
generation, so problems may arise when attributed types are used in conjunction
with templates or overloading.  Similarly, @code{typeid} does not distinguish
between types with different attributes.  Support for attributes in D are
restricted to declarations only.

@c --------------------------------------------------------

@node Common Attributes
@subsection Common Attributes

The following attributes are supported on most targets.

@table @code

@cindex @code{alloc_size} function attribute
@cindex @code{alloc_size} variable attribute
@item @@(gcc.attributes.alloc_size (@var{sizeArgIdx}))
@itemx @@(gcc.attributes.alloc_size (@var{sizeArgIdx}, @var{numArgIdx}))
@itemx @@(gcc.attributes.alloc_size (@var{sizeArgIdx}, @var{numArgIdx}, @var{zeroBasedNumbering}))

The @code{@@alloc_size} attribute may be applied to a function - or a function
pointer variable -  that returns a pointer and takes at least one argument of
an integer or enumerated type.  It indicates that the returned pointer points
to memory whose size is given by the function argument at @code{sizeArgIdx}, or
by the product of the arguments at @code{sizeArgIdx} and @code{numArgIdx}.
Meaningful sizes are positive values less than @code{ptrdiff_t.max}.  Unless
@code{zeroBasedNumbering} is true, argument numbering starts at one for
ordinary functions, and at two for non-static member functions.

If @code{numArgIdx} is less than @code{0}, it is taken to mean there is no
argument specifying the element count.

@smallexample
@@alloc_size(1) void* malloc(size_t);
@@alloc_size(3,2) void* reallocarray(void *, size_t, size_t);
@@alloc_size(1,2) void* my_calloc(size_t, size_t, bool);
void malloc_cb(@@alloc_size(1) void* function(size_t) ptr) @{ @}
@end smallexample

@cindex @code{always_inline} function attribute
@item @@(gcc.attributes.always_inline)

The @code{@@always_inline} attribute inlines the function independent of any
restrictions that otherwise apply to inlining.  Failure to inline such a
function is diagnosed as an error.

@smallexample
@@always_inline int func();
@end smallexample

@cindex @code{cold} function attribute
@item @@(gcc.attributes.cold)

The @code{@@cold} attribute on functions is used to inform the compiler that the
function is unlikely to be executed.  The function is optimized for size
rather than speed and on many targets it is placed into a special subsection
of the text section so all cold functions appear close together, improving
code locality of non-cold parts of program.  The paths leading to calls of
cold functions within code are considered to be cold too.

@smallexample
@@cold int func();
@end smallexample

@cindex @code{flatten} function attribute
@item @@(gcc.attributes.flatten)

The @code{@@flatten} attribute is used to inform the compiler that every call
inside this function should be inlined, if possible.  Functions declared with
attribute @code{@@noinline} and similar are not inlined.

@smallexample
@@flatten int func();
@end smallexample

@cindex @code{no_icf} function attribute
@item @@(gcc.attributes.no_icf)

The @code{@@no_icf} attribute prevents a function from being merged with
another semantically equivalent function.

@smallexample
@@no_icf int func();
@end smallexample

@cindex @code{no_sanitize} function attribute
@item @@(gcc.attributes.no_sanitize ("@var{sanitize_option}"))

The @code{@@no_sanitize} attribute on functions is used to inform the compiler
that it should not do sanitization of any option mentioned in
@var{sanitize_option}.  A list of values acceptable by the @option{-fsanitize}
option can be provided.

@smallexample
@@no_sanitize("alignment", "object-size") void func1() @{ @}
@@no_sanitize("alignment,object-size") void func2() @{ @}
@end smallexample

@cindex @code{noclone} function attribute
@item @@(gcc.attributes.noclone)

The @code{@@noclone} attribute prevents a function from being considered for
cloning - a mechanism that produces specialized copies of functions and which
is (currently) performed by interprocedural constant propagation.

@smallexample
@@noclone int func();
@end smallexample

@cindex @code{noinline} function attribute
@item @@(gcc.attributes.noinline)

The @code{@@noinline} attribute prevents a function from being considered for
inlining.  If the function does not have side effects, there are optimizations
other than inlining that cause function calls to be optimized away, although
the function call is live.  To keep such calls from being optimized away, put
@code{asm @{ ""; @}} in the called function, to serve as a special side effect.

@smallexample
@@noinline int func();
@end smallexample

@cindex @code{noipa} function attribute
@item @@(gcc.attributes.noipa)

The @code{@@noipa} attribute disables interprocedural optimizations between the
function with this attribute and its callers, as if the body of the function is
not available when optimizing callers and the callers are unavailable when
optimizing the body.  This attribute implies @code{@@noinline},
@code{@@noclone}, and @code{@@no_icf} attributes.  However, this attribute is
not equivalent to a combination of other attributes, because its purpose is to
suppress existing and future optimizations employing interprocedural analysis,
including those that do not have an attribute suitable for disabling them
individually.

This attribute is supported mainly for the purpose of testing the compiler.

@smallexample
@@noipa int func();
@end smallexample

@cindex @code{noplt} function attribute
@item @@(gcc.attributes.noplt)

The @code{@@noplt} attribute is the counterpart to option @option{-fno-plt}.
Calls to functions marked with this attribute in position-independent code do
not use the PLT in position-independent code.

In position-dependant code, a few targets also convert call to functions that
are marked to not use the PLT to use the GOT instead.

@smallexample
@@noplt int func();
@end smallexample

@cindex @code{optimize} function attribute
@item @@(gcc.attributes.optimize (@var{arguments}))

The @code{@@optimize} attribute is used to specify that a function is to be
compiled with different optimization options than specified on the command
line.  Valid @var{arguments} are constant non-negative integers and strings.
Multiple arguments can be provided, separated by commas to specify multiple
options.  Each numeric argument specifies an optimization level.  Each string
argument that begins with the letter @code{O} refers to an optimization option
such as @option{-O0} or @option{-Os}.  Other options are taken as suffixes to
the @code{-f} prefix jointly forming the name of an optimization option.

Not every optimization option that starts with the @code{-f} prefix
specified by the attribute necessarily has an effect on the function.
The @code{@@optimize} attribute should be used for debugging purposes only.
It is not suitable in production code.

@smallexample
@@optimize(2) double fn0(double x);
@@optimize("2") double fn1(double x);
@@optimize("s") double fn2(double x);
@@optimize("Ofast") double fn3(double x);
@@optimize("-O2") double fn4(double x);
@@optimize("tree-vectorize") double fn5(double x);
@@optimize("-ftree-vectorize") double fn6(double x);
@@optimize("no-finite-math-only", 3) double fn7(double x);
@end smallexample

@cindex @code{register} variable attribute
@item @@(gcc.attributes.register ("@var{registerName}"))

The @code{@@register} attribute specifies that a local or @code{__gshared}
variable is to be given a register storage-class in the C99 sense of the term,
and will be placed into a register named @var{registerName}.

The variable needs to boiled down to a data type that fits the target register.
It also cannot have either thread-local or @code{extern} storage.  It is an
error to take the address of a register variable.

@smallexample
@@register("ebx") __gshared int ebx = void;
void func() @{ @@register("r10") long r10 = 0x2a; @}
@end smallexample

@cindex @code{restrict} parameter attribute
@item @@(gcc.attributes.restrict)

The @code{@@restrict} attribute specifies that a function parameter is to be
restrict-qualified in the C99 sense of the term.  The parameter needs to boil
down to either a pointer or reference type, such as a D pointer, class
reference, or a @code{ref} parameter.

@smallexample
void func(@@restrict ref const float[16] array);
@end smallexample

@cindex @code{section} function attribute
@cindex @code{section} variable attribute
@item @@(gcc.attributes.section ("@var{sectionName}"))

The @code{@@section} attribute specifies that a function or variable lives in a
particular section.  For when you need certain particular functions to appear
in special sections.

Some file formats do not support arbitrary sections so the section attribute is
not available on all platforms.  If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker
instead.

@smallexample
@@section("bar") extern void func();
@@section("stack") ubyte[10000] stack;
@end smallexample

@cindex @code{simd} function attribute
@item @@(gcc.attributes.simd)

The @code{@@simd} attribute enables creation of one or more function versions
that can process multiple arguments using SIMD instructions from a single
invocation.  Specifying this attribute allows compiler to assume that such
versions are available at link time (provided in the same or another module).
Generated versions are target-dependent and described in the corresponding
Vector ABI document.

@smallexample
@@simd double sqrt(double x);
@end smallexample

@cindex @code{simd_clones} function attribute
@item @@(gcc.attributes.simd_clones ("@var{mask}"))

The @code{@@simd_clones} attribute is the same as @code{@@simd}, but also
includes a @var{mask} argument.  Valid masks values are @code{notinbranch} or
@code{inbranch}, and instructs the compiler to generate non-masked or masked
clones correspondingly.

@smallexample
@@simd_clones("notinbranch") double atan2(double y, double x);
@end smallexample

@cindex @code{symver} function attribute
@item @@(gcc.attributes.symver ("@var{arguments}"))

The @code{@@symver} attribute creates a symbol version on ELF targets.
The syntax of the string parameter is @code{"@var{name}@@@var{nodename}"}.
The @var{name} part of the parameter is the actual name of the symbol by which
it will be externally referenced.  The @var{nodename} portion should be the
name of a node specified in the version script supplied to the linker when
building a shared library.  Versioned symbol must be defined and must be
exported with default visibility.

Finally if the parameter is @code{"@var{name}@@@@@var{nodename}"} then in
addition to creating a symbol version (as if
@code{"@var{name}@@@var{nodename}"} was used) the version will be also used to
resolve @var{name} by the linker.

@smallexample
@@symver("foo@@VERS_1") int foo_v1();
@end smallexample

@cindex @code{target} function attribute
@item @@(gcc.attributes.target ("@var{options}"))

The @code{@@target} attribute is used to specify that a function is to be
compiled with different target options than specified on the command line.  One
or more strings can be provided as arguments, separated by commas to specify
multiple options.  Each string consists of one or more comma-separated suffixes
to the @option{-m} prefix jointly forming the name of a machine-dependent
option.

The target attribute can be used for instance to have a function compiled with
a different ISA (instruction set architecture) than the default.

The options supported are specific to each target.

@smallexample
@@target("arch=core2") void core2_func();
@@target("sse3") void sse3_func();
@end smallexample

@cindex @code{target_clones} function attribute
@item @@(gcc.attributes.target_clones ("@var{options}"))

The @code{@@target_clones} attribute is used to specify that a function be
cloned into multiple versions compiled with different target @var{options} than
specified on the command line.  The supported options and restrictions are the
same as for @code{@@target} attribute.

It also creates a resolver function that dynamically selects a clone suitable
for current architecture.  The resolver is created only if there is a usage of
a function with @code{@@target_clones} attribute.

@smallexample
@@target_clones("sse4.1,avx,default") double func(double x);
@end smallexample

@cindex @code{used} function attribute
@cindex @code{used} variable attribute
@item @@(gcc.attributes.used)

The @code{@@used} attribute, annotated to a function or variable, means that
code must be emitted for the function even if it appears that the function is
not referenced.  This is useful, for example, when the function is referenced
only in inline assembly.

@smallexample
@@used __gshared int var = 0x1000;
@end smallexample

@cindex @code{visibility} function attribute
@cindex @code{visibility} variable attribute
@item @@(gcc.attributes.visibility ("@var{visibilityName}"))

The @code{@@visibility} attribute affects the linkage of the declaration to
which it is attached.  It can be applied to variables, types, and functions.

There are four supported visibility_type values: @code{default}, @code{hidden},
@code{protected}, or @code{internal} visibility.

@smallexample
@@visibility("protected") void func() @{  @}
@end smallexample

@cindex @code{weak} function attribute
@cindex @code{weak} variable attribute
@item @@(gcc.attributes.weak)

The @code{@@weak} attribute causes a declaration of an external symbol to be
emitted as a weak symbol rather than a global.  This is primarily useful in
defining library functions that can be overridden in user code, though it can
also be used with non-function declarations.  The overriding symbol must have
the same type as the weak symbol.  In addition, if it designates a variable it
must also have the same size and alignment as the weak symbol.

Weak symbols are supported for ELF targets, and also for a.out targets when
using the GNU assembler and linker.

@smallexample
@@weak int func() @{ return 1; @}
@end smallexample

@end table

@c --------------------------------------------------------

@node Other Attributes
@subsection Other Attributes

The following attributes are defined for compatibility with other compilers.

@table @code

@cindex @code{allocSize} function attribute
@item @@(gcc.attributes.allocSize (@var{sizeArgIdx}))
@itemx @@(gcc.attributes.allocSize (@var{sizeArgIdx}, @var{numArgIdx}))
@item @@(gcc.attributes.allocSize (@var{sizeArgIdx}))

These attributes are a synonym for
@code{@@alloc_size(@var{sizeArgIdx}, @var{numArgIdx}, true)}.
Unlike @code{@@alloc_size}, it uses 0-based index of the function arguments.

@cindex @code{assumeUsed} function attribute
@cindex @code{assumeUsed} variable attribute
@item @@(gcc.attributes.assumeUsed)

This attribute is a synonym for @code{@@used}.

@cindex @code{dynamicCompile} function attribute
@item @@(gcc.attributes.dynamicCompile)
@itemx @@(gcc.attributes.dynamicCompileConst)
@itemx @@(gcc.attributes.dynamicCompileEmit)

These attributes are accepted, but have no effect.

@cindex @code{fastmath} function attribute
@item @@(gcc.attributes.fastmath)

This attribute is a synonym for @code{@@optimize("Ofast")}.  Explicitly sets
"fast-math" for a function, enabling aggressive math optimizations.

@cindex @code{hidden} function attribute
@cindex @code{hidden} variable attribute
@item @@(gcc.attributes.hidden)

This attribute is a synonym for @code{@@visibility("hidden")}.  Sets the
visibility of a function or global variable to "hidden".

@cindex @code{naked} function attribute
@item @@(gcc.attributes.naked)

This attribute is a synonym for @code{@@attribute("naked")}.  Adds GCC's
"naked" attribute to a function, disabling function prologue / epilogue
emission.  Intended to be used in combination with basic @code{asm} statements.
While using extended @code{asm} or a mixture of basic @code{asm} and D code may
appear to work, they cannot be depended upon to work reliably and are not
supported.

@cindex @code{noSanitize} function attribute
@item @@(gcc.attributes.noSanitize ("@var{sanitize_option}"))

This attribute is a synonym for @code{@@no_sanitize("sanitize_option")}.


@cindex @code{optStrategy} function attribute
@item @@(gcc.attributes.optStrategy ("@var{strategy}"))

This attribute is a synonym for @code{@@optimize("O0")} and
@code{@@optimize("Os")}.  Sets the optimization strategy for a function.  Valid
strategies are "none", "optsize", "minsize".  The strategies are mutually
exclusive.

@item @@(gcc.attributes.polly)

This attribute is a synonym for
@code{@@optimize("loop-parallelize-all", "loop-nest-optimize")}.
Only effective when GDC was built with ISL included.

@end table

@c --------------------------------------------------------

@node Target Attributes
@subsection Target-specific Attributes

Many targets have their own target-specific attributes.  These are also exposed
via the @code{gcc.attributes} module with use of the generic
@code{@@(gcc.attributes.attribute)} UDA function.

@xref{Attribute Syntax}, for details of the exact syntax for using attributes.

See the function and variable attribute documentation in the GCC manual for
more information about what attributes are available on each target.

Examples of using x86-specific target attributes are shown as follows:

@smallexample
import gcc.attributes;

@@attribute("cdecl")
@@attribute("fastcall")
@@attribute("ms_abi")
@@attribute("sysv_abi")
@@attribute("callee_pop_aggregate_return", 1)
@@attribute("ms_hook_prologue")
@@attribute("naked")
@@attribute("regparm", 2)
@@attribute("sseregparm")
@@attribute("force_align_arg_pointer")
@@attribute("stdcall")
@@attribute("no_caller_saved_registers")
@@attribute("interrupt")
@@attribute("indirect_branch", "thunk")
@@attribute("function_return", "keep"))
@@attribute("nocf_check")
@@attribute("cf_check")
@@attribute("indirect_return")
@@attribute("fentry_name", "nop")
@@attribute("fentry_section", "__entry_loc")
@@attribute("nodirect_extern_access")

@end smallexample


@c --------------------------------------------------------

@node Builtin Functions
@section Built-in Functions
@cindex built-in functions

GCC provides a large number of built-in functions that are made available in
GNU D by importing the @code{gcc.builtins} module.  Declarations in this module
are automatically created by the compiler.  All declarations start with
@code{__builtin_}.  Refer to the built-in function documentation in the GCC
manual for a full list of functions that are available.

@menu
* Builtin Types::
* Query Builtins::
* Other Builtins::
@end menu

@c --------------------------------------------------------

@node Builtin Types
@subsection Built-in Types
@cindex built-in types

In addition to built-in functions, the following types are defined in the
@code{gcc.builtins} module.

@table @code
@item ___builtin_clong
The D equivalent of the target's C @code{long} type.

@item ___builtin_clonglong
The D equivalent of the target's C @code{long long} type.

@item ___builtin_culong
The D equivalent of the target's C @code{unsigned long} type.

@item ___builtin_culonglong
The D equivalent of the target's C @code{unsigned long long} type.

@item ___builtin_machine_byte
Signed unit-sized integer type.

@item ___builtin_machine_int
Signed word-sized integer type.

@item ___builtin_machine_ubyte
Unsigned unit-sized integer type.

@item ___builtin_machine_uint
Unsigned word-sized integer type.

@item ___builtin_pointer_int
Signed pointer-sized integer type.

@item ___builtin_pointer_uint
Unsigned pointer-sized integer type.

@item ___builtin_unwind_int
The D equivalent of the target's C @code{_Unwind_Sword} type.

@item ___builtin_unwind_uint
The D equivalent of the target's C @code{_Unwind_Word} type.

@item ___builtin_va_list
The target's @code{va_list} type.
@end table

@c --------------------------------------------------------

@node Query Builtins
@subsection Querying Available Built-ins
@cindex built-in functions

Not all of the functions are supported, and some target-specific functions may
only be available when compiling for a particular ISA.  One way of finding out
what is exposed by the built-ins module is by generating a D interface file.
Assuming you have no file @file{builtins.d}, the command
@smallexample
  echo "module gcc.builtins;" > builtins.d; gdc -H -fsyntax-only builtins.d
@end smallexample
@noindent
will save all built-in declarations to the file @file{builtins.di}.

Another way to determine whether a specific built-in is available is by using
compile-time reflection.
@smallexample
enum X86_HAVE_SSE3 = __traits(compiles, __builtin_ia32_haddps);
enum X86_HAVE_SSSE3 = __traits(compiles, __builtin_ia32_pmulhrsw128);
enum X86_HAVE_SSE41 = __traits(compiles, __builtin_ia32_dpps);
enum X86_HAVE_SSE42 = __traits(compiles, __builtin_ia32_pcmpgtq);
enum X86_HAVE_AVX = __traits(compiles, __builtin_ia32_vbroadcastf128_pd256);
enum X86_HAVE_AVX2 = __traits(compiles, __builtin_ia32_gathersiv2df);
enum X86_HAVE_BMI2 = __traits(compiles, __builtin_ia32_pext_si);
@end smallexample

@c --------------------------------------------------------

@node Other Builtins
@subsection Other Built-in Functions
@cindex built-in functions
@opindex fno-builtin

As well as built-ins being available from the @code{gcc.builtins} module, GNU D
will also recognize when an @code{extern(C)} library function is a GCC
built-in.  Many of these functions are only optimized in certain cases; if they
are not optimized in a particular case, a call to the library function is
emitted.  This optimization can be disabled with the @option{-fno-builtin}
option (@pxref{Runtime Options}).

In the @code{core.stdc.complex} module, the functions
@code{cabs}, @code{cabsf}, @code{cabsl}, @code{cacos}, @code{cacosf},
@code{cacosh}, @code{cacoshf}, @code{cacoshl}, @code{cacosl}, @code{carg},
@code{cargf}, @code{cargl}, @code{casin}, @code{casinf}, @code{casinh},
@code{casinhf}, @code{casinhl}, @code{casinl}, @code{catan}, @code{catanf},
@code{catanh}, @code{catanhf}, @code{catanhl}, @code{catanl}, @code{ccos},
@code{ccosf}, @code{ccosh}, @code{ccoshf}, @code{ccoshl}, @code{ccosl},
@code{cexp}, @code{cexpf}, @code{cexpl}, @code{clog}, @code{clogf},
@code{clogl}, @code{conj}, @code{conjf}, @code{conjl}, @code{cpow},
@code{cpowf}, @code{cpowl}, @code{cproj}, @code{cprojf}, @code{cprojl},
@code{csin}, @code{csinf}, @code{csinh}, @code{csinhf}, @code{csinhl},
@code{csinl}, @code{csqrt}, @code{csqrtf}, @code{csqrtl}, @code{ctan},
@code{ctanf}, @code{ctanh}, @code{ctanhf}, @code{ctanhl}, @code{ctanl}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.ctype} module, the functions
@code{isalnum}, @code{isalpha}, @code{isblank}, @code{iscntrl}, @code{isdigit},
@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct}, @code{isspace},
@code{isupper}, @code{isxdigit}, @code{tolower}, @code{toupper}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.fenv} module, the functions
@code{feclearexcept}, @code{fegetenv}, @code{fegetexceptflag},
@code{fegetround}, @code{feholdexcept}, @code{feraiseexcept}, @code{fesetenv},
@code{fesetexceptflag}, @code{fesetround}, @code{fetestexcept},
@code{feupdateenv}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.inttypes} module, the function @code{imaxabs} may be
handled as a built-in function.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.math} module, the functions
@code{acos}, @code{acosf}, @code{acosh}, @code{acoshf}, @code{acoshl},
@code{acosl}, @code{asin}, @code{asinf}, @code{asinh}, @code{asinhf},
@code{asinhl}, @code{asinl}, @code{atan}, @code{atan2}, @code{atan2f},
@code{atan2l}, @code{atanf}, @code{atanh}, @code{atanhf}, @code{atanhl},
@code{atanl}, @code{cbrt}, @code{cbrtf}, @code{cbrtl}, @code{ceil},
@code{ceilf}, @code{ceill}, @code{copysign}, @code{copysignf},
@code{copysignl}, @code{cos}, @code{cosf}, @code{cosh}, @code{coshf},
@code{coshl}, @code{cosl}, @code{erf}, @code{erfc}, @code{erfcf}, @code{erfcl},
@code{erff}, @code{erfl}, @code{exp}, @code{exp2}, @code{exp2f}, @code{exp2l},
@code{expf}, @code{expl}, @code{expm1}, @code{expm1f}, @code{expm1l},
@code{fabs}, @code{fabsf}, @code{fabsl}, @code{fdim}, @code{fdimf},
@code{fdiml}, @code{floor}, @code{floorf}, @code{floorl}, @code{fma},
@code{fmaf}, @code{fmal}, @code{fmax}, @code{fmaxf}, @code{fmaxl}, @code{fmin},
@code{fminf}, @code{fminl}, @code{fmod}, @code{fmodf}, @code{fmodl},
@code{frexp}, @code{frexpf}, @code{frexpl}, @code{hypot}, @code{hypotf},
@code{hypotl}, @code{ilogb}, @code{ilogbf}, @code{ilogbl}, @code{isinf},
@code{isnan}, @code{ldexp}, @code{ldexpf}, @code{ldexpl}, @code{lgamma},
@code{lgammaf}, @code{lgammal}, @code{llrint}, @code{llrintf}, @code{llrintl},
@code{llround}, @code{llroundf}, @code{llroundl}, @code{log}, @code{log10},
@code{log10f}, @code{log10l}, @code{log1p}, @code{log1pf}, @code{log1pl},
@code{log2}, @code{log2f}, @code{log2l}, @code{logb}, @code{logbf},
@code{logbl}, @code{logf}, @code{logl}, @code{lrint}, @code{lrintf},
@code{lrintl}, @code{lround}, @code{lroundf}, @code{lroundl}, @code{modf},
@code{modff}, @code{modfl}, @code{nan}, @code{nanf}, @code{nanl},
@code{nearbyint}, @code{nearbyintf}, @code{nearbyintl}, @code{nextafter},
@code{nextafterf}, @code{nextafterl}, @code{nexttoward}, @code{nexttowardf},
@code{nexttowardl}, @code{pow}, @code{powf}, @code{powl}, @code{remainder},
@code{remainderf}, @code{remainderl}, @code{remquo}, @code{remquof},
@code{remquol}, @code{rint}, @code{rintf}, @code{rintl}, @code{round},
@code{roundf}, @code{roundl}, @code{scalbln}, @code{scalblnf}, @code{scalblnl},
@code{scalbn}, @code{scalbnf}, @code{scalbnl}, @code{signbit}, @code{sin},
@code{sinf}, @code{sinh}, @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrt},
@code{sqrtf}, @code{sqrtl}, @code{tan}, @code{tanf}, @code{tanh}, @code{tanhf},
@code{tanhl}, @code{tanl}, @code{tgamma}, @code{tgammaf}, @code{tgammal},
@code{trunc}, @code{truncf}, @code{truncl}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.stdio} module, the functions
@code{fprintf}, @code{fputc}, @code{fputc_unlocked}, @code{fputs},
@code{fwrite}, @code{printf}, @code{puts}, @code{snprintf}, @code{sprintf},
@code{vfprintf}, @code{vprintf}, @code{vsnprintf}, @code{vsprintf}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.stdlib} module, the functions
@code{abort}, @code{abs}, @code{aligned_alloc}, @code{alloca}, @code{calloc},
@code{exit}, @code{_Exit}, @code{free}, @code{labs}, @code{llabs},
@code{malloc}, @code{realloc}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.string} module, the functions
@code{memchr}, @code{memcmp}, @code{memcpy}, @code{memmove}, @code{memset},
@code{strcat}, @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
@code{strdup}, @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.time} module, the function @code{strftime} may be
handled as a built-in function.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

In the @code{core.stdc.wctype} module, the functions
@code{iswalnum}, @code{iswalpha}, @code{iswblank}, @code{iswcntrl},
@code{iswdigit}, @code{iswgraph}, @code{iswlower}, @code{iswprint},
@code{iswpunct}, @code{iswspace}, @code{iswupper}, @code{iswxdigit},
@code{towlower}, @code{towupper}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.

Within the @code{core.sys} package for POSIX and platform definitions, the
functions
@code{putchar_unlocked}, @code{putc_unlocked}, @code{posix_memalign},
@code{ffs}, @code{strcasecmp}, @code{strncasecmp}, @code{stpcpy},
@code{stpncpy}, @code{strndup}, @code{strnlen}, @code{execl}, @code{execle},
@code{execlp}, @code{execv}, @code{execve}, @code{execvp}, @code{_exit},
@code{fork}
may be handled as built-in functions.  All these functions have corresponding
versions prefixed with @code{__builtin_} in the @code{gcc.builtins} module.


@c --------------------------------------------------------

@node ImportC
@section Importing C Sources into D
@cindex importC

ImportC is a C preprocessor and parser embedded into the GNU D implementation.
It enables direct importation of C files, without needing to manually prepare a
D file corresponding to the declarations in the C file.

ImportC is an implementation of ISO/IEC 9899:2011, which will be referred to as
C11.  Prior versions, such as C99, C89, and K+R C, are not supported. 

Assuming you have no file @file{cstdio.c} or @file{main.d}, the commands
@smallexample
  cat > cstdio.c << @@EOC
  int printf(const char*, ...);
  @@EOC
  cat > main.d << @@EOD
  import cstdio;
  void main() @{ printf("Hello ImportC\n"); @}
  @@EOD
  gdc main.d -o main; ./main
@end smallexample
will generate a program which will print @samp{Hello ImportC}.

ImportC does not have a preprocessor.  It is designed to compile C files after
they have been first run through the C preprocessor.  If the C file has a
@samp{.i} extension, the file is presumed to be already preprocessed.
Preprocessing can be run manually:
@smallexample
  gcc -E file.c > file.i
@end smallexample

@noindent
ImportC collects all the @code{#define} macros from the preprocessor run when
it is run automatically. The macros that look like manifest constants, such as:
@smallexample
#define COLOR 0x123456
@end smallexample
are interpreted as D manifest constant declarations of the form:
@smallexample
enum COLOR = 0x123456;
@end smallexample

@noindent
The variety of macros that can be interpreted as D declarations may be
expanded, but will never encompass all the metaprogramming uses of C macros. 

GNU D does not directly compile C files into modules that can be linked in with
D code to form an executable.  When given a source file with the suffix
@samp{.c}, the compiler driver program @command{gdc} instead runs the
subprogram @command{cc1}.

@smallexample
gdc file1.d file2.c // d21 file1.d -o file1.s
                    // cc1 file2.c -o file2.s
                    // as file1.s -o file1.o
                    // as file2.s -o file2.o
                    // ld file1.o file2.o
@end smallexample


@c --------------------------------------------------------

@node Inline Assembly
@section Inline Assembly
@cindex assembly language in D

The @code{asm} keyword allows you to embed assembler instructions within D
code.  GNU D provides two forms of inline @code{asm} statements.  A @dfn{basic
@code{asm}} statement is one with no operands, while an @dfn{extended
@code{asm}} statement includes one or more operands.

@example
asm @var{FunctionAttributes} @{
        @var{AssemblerInstruction} ;
@}

asm @var{FunctionAttributes} @{
        @var{AssemblerTemplate}
         : @var{OutputOperands}
         @r{[} : @var{InputOperands}
         @r{[} : @var{Clobbers}
         @r{[} : @var{GotoLabels} @r{]} @r{]} @r{]} ;
@}
@end example

@noindent
The extended form is preferred for mixing D and assembly language within a
function, but to include assembly language in a function declared with the
@code{naked} attribute you must use basic @code{asm}.

@smallexample
uint incr (uint value)
@{
    uint result;
    asm @{ "incl %0"
          : "=a" (result)
          : "a" (value);
    @}
    return result;
@}
@end smallexample

@noindent
Multiple assembler instructions can appear within an @code{asm} block, or the
instruction template can be a multi-line or concatenated string.  In both
cases, GCC's optimizers won't discard or move any instruction within the
statement block.
@smallexample
bool hasCPUID()
@{ 
    uint flags = void;
    asm nothrow @@nogc @{
        "pushfl";
        "pushfl";
        "xorl %0, (%%esp)" :: "i" (0x00200000);
        "popfl";
        "pushfl";
        "popl %0" : "=a" (flags);
        "xorl (%%esp), %0" : "=a" (flags);
        "popfl";
    @}
    return (flags & 0x0020_0000) != 0;
@} 
@end smallexample

@noindent
The instruction templates for both basic and extended @code{asm} can be any
expression that can be evaluated at compile-time to a string, not just string
literals.

@smallexample
uint invert(uint v)
@{
    uint result;
    asm @@safe @@nogc nothrow pure @{
        genAsmInsn(`invert`)
        : [res] `=r` (result)
        : [arg1] `r` (v);
    @}
    return result;

@}
@end smallexample

@noindent
The total number of input + output + goto operands is limited to 30.


@c --------------------------------------------------------

@node Intrinsics
@section Intrinsics
@cindex intrinsics

The D language specification itself does not define any intrinsics that a
compatible compiler must implement.  Rather, within the D core library there
are a number of modules that define primitives with generic implementations.
While the generic versions of these functions are computationally expensive
relative to the cost of the operation itself, compiler implementations are free
to recognize them and generate equivalent and faster code.

The following are the kinds of intrinsics recognized by GNU D.

@menu
* Bit Operation Intrinsics::
* Integer Overflow Intrinsics::
* Math Intrinsics::
* Variadic Intrinsics::
* Volatile Intrinsics::
* CTFE Intrinsics::
@end menu

@c --------------------------------------------------------

@node Bit Operation Intrinsics
@subsection Bit Operation Intrinsics
@cindex intrinsics, bitop

The following functions are a collection of intrinsics that do bit-level
operations, available by importing the @code{core.bitop} module.

Although most are named after x86 hardware instructions, it is not guaranteed
that they will result in generating equivalent assembly on x86.  If the
compiler determines there is a better way to get the same result in hardware,
then that will be used instead.

@deftypefn {Function} {int} core.bitop.bsf (uint @var{v})
@deftypefnx {Function} {int} core.bitop.bsf (ulong @var{v})

Scans the bits in @var{v} starting with bit @code{0}, looking for the first set
bit.  Returns the bit number of the first bit set.  The return value is
undefined if @var{v} is zero.

This intrinsic is the same as the GCC built-in function @code{__builtin_ctz}.
@end deftypefn

@deftypefn {Function} {int} core.bitop.bsr (uint @var{v})
@deftypefnx {Function} {int} core.bitop.bsr (ulong @var{v})

Scans the bits in @var{v} from the most significant bit to the least
significant bit, looking for the first set bit.  Returns the bit number of the
first bit set.  The return value is undefined if @var{v} is zero.

This intrinsic is equivalent to writing the following:
@smallexample
result = __builtin_clz(v) ^ (v.sizeof * 8 - 1)
@end smallexample
@end deftypefn

@deftypefn {Function} {int} core.bitop.bt (scope const(uint*) @var{p}, uint @var{bitnum})
@deftypefnx {Function} {int} core.bitop.bt (scope const(uint*) @var{p}, uint @var{bitnum})

Tests the bit @var{bitnum} in the input parameter @var{p}.  Returns a non-zero
value if the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:
@smallexample
immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum % bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;
@end smallexample
@end deftypefn

@deftypefn {Function} {int} core.bitop.btc (uint* @var{p}, uint @var{bitnum})
@deftypefnx {Function} {int} core.bitop.btc (ulong* @var{p}, ulong @var{bitnum})

Tests and complements the bit @var{bitnum} in the input parameter @var{p}.
Returns a non-zero value if the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:
@smallexample
immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum % bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

p[bitnum / bits_per_unit] ^= bit_mask;
@end smallexample
@end deftypefn

@deftypefn {Function} {int} core.bitop.btr (uint* @var{p}, uint @var{bitnum})
@deftypefnx {Function} {int} core.bitop.btr (ulong* @var{p}, ulong @var{bitnum})

Tests and resets (sets to 0) the bit @var{bitnum} in the input parameter
@var{p}.  Returns a non-zero value if the bit was set, and a zero if it was
clear.

This intrinsic is equivalent to writing the following:
@smallexample
immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum % bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

p[bitnum / bits_per_unit] &= ~bit_mask;
@end smallexample
@end deftypefn

@deftypefn {Function} {int} core.bitop.bts (uint* @var{p}, uint @var{bitnum})
@deftypefnx {Function} {int} core.bitop.bts (ulong* @var{p}, ulong @var{bitnum})

Tests and sets the bit @var{bitnum} in the input parameter @var{p}.  Returns a
non-zero value if the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:
@smallexample
immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum % bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

p[bitnum / bits_per_unit] |= bit_mask;
@end smallexample
@end deftypefn


@deftypefn {Function} {ushort} core.bitop.byteswap (ushort @var{x})
@deftypefnx {Function} {uint} core.bitop.bswap (uint @var{x})
@deftypefnx {Function} {ulong} core.bitop.bswap (ulong @var{x})

Swaps the bytes in @var{x} end-to-end; for example, in a 4-byte @code{uint},
byte @code{0} becomes byte @code{3}, byte @code{1} becomes byte @code{2}, etc.

This intrinsic is the same as the GCC built-in function @code{__builtin_bswap}.
@end deftypefn

@deftypefn {Function} {int} core.bitop.popcnt (uint @var{x})
@deftypefnx {Function} {int} core.bitop.popcnt (ulong @var{x})

Calculates the number of set bits in @var{x}.

This intrinsic is the same as the GCC built-in function
@code{__builtin_popcount}.
@end deftypefn

@deftypefn {Template} {T} core.bitop.rol (T)(const T @var{value}, const uint @var{count})
@deftypefnx {Template} {T} core.bitop.rol (uint @var{count}, T)(const T @var{value})

Bitwise rotate @var{value} left by @var{count} bit positions.

This intrinsic is equivalent to writing the following:
@smallexample
result = cast(T) ((value << count) | (value >> (T.sizeof * 8 - count)));
@end smallexample
@end deftypefn

@deftypefn {Template} {T} core.bitop.ror (T)(const T @var{value}, const uint @var{count})
@deftypefnx {Template} {T} core.bitop.ror (uint @var{count}, T)(const T @var{value})

Bitwise rotate @var{value} right by @var{count} bit positions.

This intrinsic is equivalent to writing the following:
@smallexample
result = cast(T) ((value >> count) | (value << (T.sizeof * 8 - count)));
@end smallexample
@end deftypefn

@c --------------------------------------------------------

@node Integer Overflow Intrinsics
@subsection Integer Overflow Intrinsics
@cindex intrinsics, checkedint

The following functions are a collection of intrinsics that implement integral
arithmetic primitives that check for out-of-range results, available by
importing the @code{core.checkedint} module.

In all intrinsics, the overflow is sticky, meaning a sequence of operations can
be done and overflow need only be checked at the end.

@deftypefn {Function} {int} core.checkedint.adds (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.adds (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Add two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_sadd_overflow}.
@end deftypefn

@deftypefn {Function} {int} core.checkedint.addu (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.addu (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Add two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_uadd_overflow}.
@end deftypefn

@deftypefn {Function} {int} core.checkedint.muls (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.muls (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Multiply two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_smul_overflow}.
@end deftypefn

@deftypefn {Function} {int} core.checkedint.mulu (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.mulu (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Multiply two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_umul_overflow}.
@end deftypefn

@deftypefn {Function} {int} core.checkedint.negs (int @var{x}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.negs (long @var{x}, @
                                                    ref bool @var{overflow})

Negates an integer.

This intrinsic is equivalent to writing the following:
@smallexample
result = __builtin_ssub (0, x, overflow);
@end smallexample
@end deftypefn

@deftypefn {Function} {int} core.checkedint.subs (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.subs (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Substract two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_ssub_overflow}.
@end deftypefn

@deftypefn {Function} {int} core.checkedint.subu (int @var{x}, int @var{y}, @
                                                  ref bool @var{overflow})
@deftypefnx {Function} {long} core.checkedint.subu (long @var{x}, long @var{y}, @
                                                    ref bool @var{overflow})

Substract two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function
@code{__builtin_usub_overflow}.
@end deftypefn

@c --------------------------------------------------------

@node Math Intrinsics
@subsection Math Intrinsics
@cindex intrinsics, math

The following functions are a collection of mathematical intrinsics, available
by importing the @code{core.math} module.

@deftypefn {Function} {float} core.math.cos (float x)
@deftypefnx {Function} {double} core.math.cos (double x)
@deftypefnx {Function} {real} core.math.cos (real x)

Returns cosine of @var{x}, where @var{x} is in radians.  The return value is
undefined if @var{x} is greater than @math{2^{64}}.

This intrinsic is the same as the GCC built-in function @code{__builtin_cos}.
@end deftypefn

@deftypefn {Function} {float} core.math.fabs (float x)
@deftypefnx {Function} {double} core.math.fabs (double x)
@deftypefnx {Function} {real} core.math.fabs (real x)

Compute the absolute value of @var{x}.

This intrinsic is the same as the GCC built-in function @code{__builtin_fabs}.
@end deftypefn

@deftypefn {Function} {float} core.math.ldexp (float n, int exp)
@deftypefnx {Function} {double} core.math.ldexp (double n, int exp)
@deftypefnx {Function} {real} core.math.ldexp (real n, int exp)

Compute @math{n * 2^{exp}}.

This intrinsic is the same as the GCC built-in function @code{__builtin_ldexp}.
@end deftypefn

@deftypefn {Function} {float} core.math.rint (float x)
@deftypefnx {Function} {double} core.math.rint (double x)
@deftypefnx {Function} {real} core.math.rint (real x)

Rounds @var{x} to the nearest integer value, using the current rounding mode.
If the return value is not equal to @var{x}, the @code{FE_INEXACT} exception is
raised. @code{nearbyint} performs the same operation, but does not set the
@code{FE_INEXACT} exception.

This intrinsic is the same as the GCC built-in function @code{__builtin_rint}.
@end deftypefn

@deftypefn {Function} {float} core.math.rndtol (float x)
@deftypefnx {Function} {double} core.math.rndtol (double x)
@deftypefnx {Function} {real} core.math.rndtol (real x)

Returns @var{x} rounded to a long value using the current rounding mode.
If the integer value of @var{x} is greater than @code{long.max}, the result
is indeterminate.

This intrinsic is the same as the GCC built-in function
@code{__builtin_llround}.
@end deftypefn

@deftypefn {Function} {float} core.math.sin (float x)
@deftypefnx {Function} {double} core.math.sin (double x)
@deftypefnx {Function} {real} core.math.sin (real x)

Returns sine of @var{x}, where @var{x} is in radians.  The return value is
undefined if @var{x} is greater than @math{2^{64}}.

This intrinsic is the same as the GCC built-in function @code{__builtin_sin}.
@end deftypefn

@deftypefn {Function} {float} core.math.sqrt (float x)
@deftypefnx {Function} {double} core.math.sqrt (double x)
@deftypefnx {Function} {real} core.math.sqrt (real x)

Compute the sqrt of @var{x}.

This intrinsic is the same as the GCC built-in function @code{__builtin_sqrt}.
@end deftypefn

@deftypefn {Template} {T} core.math.toPrec (T)(float f)
@deftypefnx {Template} {T} core.math.toPrec (T)(double f)
@deftypefnx {Template} {T} core.math.toPrec (T)(real f)

Round @var{f} to a specific precision.

In floating-point operations, D language types specify only a minimum
precision, not a maximum.  The @code{toPrec} function forces rounding of the
argument @var{f} to the precision of the specified floating point type
@code{T}.  The rounding mode used is inevitably target-dependent, but will be
done in a way to maximize accuracy.  In most cases, the default is
round-to-nearest.
@end deftypefn

@c --------------------------------------------------------

@node Variadic Intrinsics
@subsection Variadic Intrinsics
@cindex intrinsics, stdarg

The following functions are a collection of variadic intrinsics, available by
importing the @code{core.stdc.stdarg} module.

@deftypefn {Template} {void} core.stdc.stdarg.va_arg (T)(ref va_list ap, ref T parmn)

Retrieve and store in @var{parmn} the next value from the @code{va_list}
@var{ap} that is of type @code{T}.

This intrinsic is equivalent to writing the following:
@smallexample
parmn = __builtin_va_arg (ap, T);
@end smallexample
@end deftypefn

@deftypefn {Template} {T} core.stdc.stdarg.va_arg (T)(ref va_list ap)

Retrieve and return the next value from the @code{va_list} @var{ap} that is of
type @code{T}.

This intrinsic is equivalent to writing the following:
@smallexample
result = __builtin_va_arg (ap, T);
@end smallexample
@end deftypefn

@deftypefn {Function} {void} core.stdc.stdarg.va_copy (out va_list dest, va_list src)

Make a copy of @var{src} in its current state and store to @var{dest}.

This intrinsic is the same as the GCC built-in function @code{__builtin_va_copy}.
@end deftypefn

@deftypefn {Function} {void} core.stdc.stdarg.va_end (va_list ap)

Destroy @var{ap} so that it is no longer useable.

This intrinsic is the same as the GCC built-in function @code{__builtin_va_end}.
@end deftypefn

@deftypefn {Template} {void} core.stdc.stdarg.va_start (T)(out va_list ap, ref T parmn)

Initialize @var{ap} so that it can be used to access the variable arguments
that follow the named argument @var{parmn}.

This intrinsic is the same as the GCC built-in function @code{__builtin_va_start}.
@end deftypefn

@c --------------------------------------------------------

@node Volatile Intrinsics
@subsection Volatile Intrinsics
@cindex intrinsics, volatile

The following functions are a collection of intrinsics for volatile operations,
available by importing the @code{core.volatile} module.

Calls to them are guaranteed to not be removed (as dead assignment elimination
or presumed to have no effect) or reordered in the same thread.

These reordering guarantees are only made with regards to other operations done
through these functions; the compiler is free to reorder regular loads/stores
with regards to loads/stores done through these functions.

This is useful when dealing with memory-mapped I/O (MMIO) where a store can
have an effect other than just writing a value, or where sequential loads with
no intervening stores can retrieve different values from the same location due
to external stores to the location.

These functions will, when possible, do the load/store as a single operation.
In general, this is possible when the size of the operation is less than or
equal to @code{(void*).sizeof}, although some targets may support larger
operations.  If the load/store cannot be done as a single operation, multiple
smaller operations will be used.

These are not to be conflated with atomic operations.  They do not guarantee
any atomicity.  This may be provided by coincidence as a result of the
instructions used on the target, but this should not be relied on for portable
programs.  Further, no memory fences are implied by these functions.  They
should not be used for communication between threads.  They may be used to
guarantee a write or read cycle occurs at a specified address.

@deftypefn {Function} {ubyte} core.volatile.volatileLoad (ubyte* ptr)
@deftypefnx {Function} {ushort} core.volatile.volatileLoad (ushort* ptr)
@deftypefnx {Function} {uint} core.volatile.volatileLoad (uint* ptr)
@deftypefnx {Function} {ulong} core.volatile.volatileLoad (ulong* ptr)

Read value from the memory location indicated by @var{ptr}.
@end deftypefn

@deftypefn {Function} {ubyte} core.volatile.volatileStore (ubyte* ptr, ubyte value)
@deftypefnx {Function} {ushort} core.volatile.volatileStore (ushort* ptr, ushort value)
@deftypefnx {Function} {uint} core.volatile.volatileStore (uint* ptr, uint value)
@deftypefnx {Function} {ulong} core.volatile.volatileStore (ulong* ptr, ulong value)

Write @var{value} to the memory location indicated by @var{ptr}.
@end deftypefn

@c --------------------------------------------------------

@node CTFE Intrinsics
@subsection CTFE Intrinsics
@cindex intrinsics, ctfe

The following functions are only treated as intrinsics during compile-time
function execution (CTFE) phase of compilation to allow more functions to be
computable at compile-time, either because their generic implementations are
too complex, or do some low-level bit manipulation of floating point types.

Calls to these functions that exist after CTFE has finished will get standard
code-generation without any special compiler intrinsic suppport.

@deftypefn {Function} {float} std.math.exponential.exp (float x)
@deftypefnx {Function} {double} std.math.exponential.exp (double x)
@deftypefnx {Function} {real} std.math.exponential.exp (real x)

Calculates @math{e^x}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_exp}.
@end deftypefn

@deftypefn {Function} {float} std.math.exponential.expm1 (float x)
@deftypefnx {Function} {double} std.math.exponential.expm1 (double x)
@deftypefnx {Function} {real} std.math.exponential.expm1 (real x)

Calculates @math{e^x-1.0}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_expm1}.
@end deftypefn

@deftypefn {Function} {float} std.math.exponential.exp2 (float x)
@deftypefnx {Function} {double} std.math.exponential.exp2 (double x)
@deftypefnx {Function} {real} std.math.exponential.exp2 (real x)

Calculates @math{2^x}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_exp2}.
@end deftypefn

@deftypefn {Function} {float} std.math.exponential.log (float x)
@deftypefnx {Function} {double} std.math.exponential.log (double x)
@deftypefnx {Function} {real} std.math.exponential.log (real x)

Calculate the natural logarithm of @var{x}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_log}.
@end deftypefn

@deftypefn {Function} {float} std.math.exponential.log10 (float x)
@deftypefnx {Function} {double} std.math.exponential.log10 (double x)
@deftypefnx {Function} {real} std.math.exponential.log10 (real x)

Calculates the base-10 logarithm of @var{x}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_log10}.
@end deftypefn

@deftypefn {Function} {float} std.math.exponential.log2 (float x)
@deftypefnx {Function} {double} std.math.exponential.log2 (double x)
@deftypefnx {Function} {real} std.math.exponential.log2 (real x)

Calculates the base-2 logarithm of @var{x}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_log2}.
@end deftypefn

@deftypefn {Template} {Largest!(F, G)} std.math.exponential.pow (F, G) (F x, G y)
@deftypefnx {Template} {real} std.math.exponential.pow (I, F)(I x, F y)

Calculates @math{x^y}, where @var{y} is a float.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_pow}.
@end deftypefn

@deftypefn {Template} {F} std.math.exponential.pow (F, G) (F x, G n)

Calculates @math{x^n}, where @var{n} is an integer.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_powi}.
@end deftypefn

@deftypefn {Function} {real} std.math.operations.fma (real x, real y, real z)

Returns @code{(x * y) + z}, rounding only once according to the current
rounding mode.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_fma}.
@end deftypefn

@deftypefn {Template} {F} std.math.operations.fmax (F)(const F x, const F y)

Returns the larger of @var{x} and @var{y}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_fmax}.
@end deftypefn

@deftypefn {Template} {F} std.math.operations.fmin (F)(const F x, const F y)

Returns the smaller of @var{x} and @var{y}.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_fmin}.
@end deftypefn

@deftypefn {Function} {float} std.math.rounding.ceil (float x)
@deftypefnx {Function} {double} std.math.rounding.ceil (double x)
@deftypefnx {Function} {real} std.math.rounding.ceil (real x)

Returns the value of @var{x} rounded upward to the next integer (toward
positive infinity).

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_ceil}.
@end deftypefn

@deftypefn {Function} {float} std.math.rounding.floor (float x)
@deftypefnx {Function} {double} std.math.rounding.floor (double x)
@deftypefnx {Function} {real} std.math.rounding.floor (real x)

Returns the value of @var{x} rounded downward to the next integer (toward
negative infinity).

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_floor}.
@end deftypefn

@deftypefn {Function} {real} std.math.rounding.round (real x)

Return the value of @var{x} rounded to the nearest integer.  If the fractional
part of @var{x} is exactly 0.5, the return value is rounded away from zero.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_round}.
@end deftypefn

@deftypefn {Function} {real} std.math.rounding.trunc (real x)

Returns the integer portion of @var{x}, dropping the fractional portion.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_trunc}.
@end deftypefn

@deftypefn {Template} {R} std.math.traits.copysign (R, X)(R to, X from)

Returns a value composed of @var{to} with @var{from}'s sign bit.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_copysign}.
@end deftypefn

@deftypefn {Template} {bool} std.math.traits.isFinite (X)(X x)

Returns true if @var{x} is finite.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_isfinite}.
@end deftypefn

@deftypefn {Template} {bool} std.math.traits.isInfinity (X)(X x)

Returns true if @var{x} is infinite.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_isinf}.
@end deftypefn

@deftypefn {Template} {bool} std.math.traits.isNaN (X)(X x)

Returns true if @var{x} is NaN.

This function is evaluated during CTFE as the GCC built-in function
@code{__builtin_isnan}.
@end deftypefn

@deftypefn {Function} {float} std.math.trigoometry.tan (float x)
@deftypefnx {Function} {double} std.math.trigoometry.tan (double x)
@deftypefnx {Function} {real} std.math.trigonometry.tan (real x)

Returns tangent of @var{x}, where @var{x} is in radians.

This intrinsic is the same as the GCC built-in function @code{__builtin_tan}.
@end deftypefn


@c --------------------------------------------------------

@node Predefined Pragmas
@section Predefined Pragmas
@cindex predefined pragmas
@cindex @code{pragma}

The @code{@w{pragma}} operator is used as a way to pass special information to the
implementation and allow the addition of vendor specific extensions.  The
standard predefined pragmas are documented by the D language specification
hosted at @uref{https://dlang.org/spec/pragma.html#predefined-pragmas}.  A D
compiler must recognize, but is free to ignore any pragma in this list.

Where a pragma is ignored, the GNU D compiler will emit a warning when the
@option{-Wunknown-pragmas} option is seen on the command-line.

@table @code
@item pragma(crt_constructor)
@code{pragma(crt_constructor)} annotates a function so it is run after the C
runtime library is initialized and before the D runtime library is initialized.
Functions with this pragma must return @code{void}.
@smallexample
pragma(crt_constructor) void init() @{ @}
@end smallexample

@item pragma(crt_destructor)
@code{pragma(crt_destructor)} annotates a function so it is run after the D
runtime library is terminated and before the C runtime library is terminated.
Calling @code{exit} function also causes the annotated functions to run.
Functions with this pragma must return @code{void}.
@smallexample
pragma(crt_destructor) void init() @{ @}
@end smallexample

@item pragma(inline)
@itemx pragma(inline, false)
@itemx pragma(inline, true)
@code{pragma(inline)} affects whether functions are declared inlined or not.
The pragma takes two forms.  In the first form, inlining is controlled by the
command-line options for inlining.

Functions annotated with @code{pragma(inline, false)} are marked uninlinable.
Functions annotated with @code{pragma(inline, true)} are always inlined.

@item pragma(lib)
This pragma is accepted, but has no effect.
@smallexample
pragma(lib, "advapi32");
@end smallexample

@item pragma(linkerDirective)
This pragma is accepted, but has no effect.
@smallexample
pragma(linkerDirective, "/FAILIFMISMATCH:_ITERATOR_DEBUG_LEVEL=2");
@end smallexample

@item pragma(mangle)
@code{pragma(mangle, "symbol_name")} overrides the default mangling for a
function or variable symbol.  The symbol name can be any expression that must
evaluate at compile time to a string literal.  This enables linking to a symbol
which is a D keyword, since an identifier cannot be a keyword.

Targets are free to apply a prefix to the user label of the symbol name in
assembly.  For example, on @code{x86_64-apple-darwin}, @samp{symbol_name} would
produce @samp{_symbol_name}.  If the mangle string begins with @samp{*}, then
@code{pragma(mangle)} will output the rest of the string unchanged.

@smallexample
pragma(mangle, "body")
extern(C) void body_func();

pragma(mangle, "function")
extern(C++) struct _function @{@}
@end smallexample

@item pragma(msg)
@code{pragma(msg, "message")} causes the compiler to print an informational
message with the text @samp{message}.  The pragma accepts multiple arguments,
each to which is evaluated at compile time and then all are combined into one
concatenated message.
@smallexample
pragma(msg, "compiling...", 6, 1.0); // prints "compiling...61.0"
@end smallexample

@item pragma(printf)
@itemx pragma(scanf)

@code{pragma(printf)} and @code{pragma(scanf)} specifies that a function
declaration with @code{printf} or @code{scanf} style arguments that should be
type-checked against a format string. 

A printf-like or scanf-like function can either be an @code{extern(C)} or
@code{extern(C++)} function with a @var{format} parameter accepting a pointer
to a 0-terminated @code{char} string, immediately followed by either a
@code{...} variadic argument list or a parameter of type @code{va_list} as the
last parameter.

@smallexample
extern(C):
pragma(printf)
int printf(scope const char* format, scope const ...);

pragma(scanf)
int vscanf(scope const char* format, va_list arg);
@end smallexample

@item pragma(startaddress)
This pragma is accepted, but has no effect.
@smallexample
void foo() @{ @}
pragma(startaddress, foo);
@end smallexample

@end table


@c --------------------------------------------------------

@node Predefined Versions
@section Predefined Versions
@cindex predefined versions
@cindex @code{version}

Several conditional version identifiers are predefined; you use them without
supplying their definitions.  They fall into three classes: standard, common,
and target-specific.

Predefined version identifiers from this list cannot be set from the command
line or from version statements.  This prevents things like both @code{Windows}
and @code{linux} being simultaneously set.

@menu
* Standard Predefined Versions::
* Common Predefined Versions::
* Target Predefined Versions::
@end menu

@c --------------------------------------------------------

@node Standard Predefined Versions
@subsection Standard Predefined Versions
@cindex standard predefined versions

The standard predefined versions are documented by the D language specification
hosted at @uref{https://dlang.org/spec/version.html#predefined-versions}.

@table @code
@item all
@itemx none
Version @code{none} is never defined; used to just disable a section of code.
Version @code{all} is always defined; used as the opposite of @code{none}.

@item BigEndian
@itemx LittleEndian
These versions reflect the byte order of multi-byte data in memory.
@code{LittleEndian} is set when the least significant byte is first.
@code{BigEndian} is set when the most significant byte is first.

@item CRuntime_Bionic
@itemx CRuntime_Glibc
@itemx CRuntime_Microsoft
@itemx CRuntime_Musl
@itemx CRuntime_Newlib
@itemx CRuntime_UClibc

These versions reflect which standard C library is being linked in.
@code{CRuntime_Bionic} is set when Bionic is the default C library.
@code{CRuntime_Glibc} is set when GLIBC is the default C library.
@code{CRuntime_Microsoft} is set when MSVCRT is the default C library.
@code{CRuntime_Musl} is set when musl is the default C library.
@code{CRuntime_Newlib} is set when Newlib is the default C library.
@code{CRuntime_UClibc} is set when uClibc is the default C library.

@item CppRuntime_Gcc
This version is defined when the standard C++ library being linked in is @file{libstdc++}.

@item D_BetterC
This version is defined when the standard D libraries are not being implicitly
linked in.  This also implies that features of the D language that rely on
exceptions, module information, or run-time type information are disabled as
well.  Enabled by @option{-fno-druntime}.

@item D_Coverage
This version is defined when code coverage analysis instrumentation is being
generated.  Enabled by @option{-ftest-coverage}.

@item D_Ddoc
This version is defined when Ddoc documentation is being generated.  Enabled by
@option{-fdoc}.

@item D_Exceptions
This version is defined when exception handling is supported.  Disabled by
@option{-fno-exceptions}.

@item D_HardFloat
@itemx D_SoftFloat
These versions reflect the floating-point ABI in use by the target.
@code{D_HardFloat} is set when the target hardware has a floating-point unit.
@code{D_SoftFloat} is set when the target hardware does not have a
floating-point unit.

@item D_Invariants
This version is defined when checks are being emitted for class invariants and
struct invariants.  Enabled by @option{-finvariants}.

@item D_LP64
This version is defined when pointers are 64-bits.  Not to be confused with
with C's @code{__LP64__} model.

@item D_ModuleInfo
This version is defined when run-time module information (also known as
@code{ModuleInfo}) is supported.  Disabled by @option{-fno-moduleinfo}.

@item D_NoBoundsChecks
This version is defined when array bounds checks are disabled.  Enabled by
@option{-fno-bounds-checks}.

@item D_Optimized
This version is defined in all optimizing compilations.

@item D_PIC
This version is defined when position-independent code is being generated.
Enabled by @option{-fPIC}.

@item D_PIE
This version is defined when position-independent code that can be only linked
into executables is being generated.  Enabled by @option{-fPIE}.

@item D_PreConditions
This version is defined when checks are being emitted for @code{in} contracts.
Disabled by @option{-fno-preconditions}.

@item D_PostConditions
This version is defined when checks are being emitted for @code{out} contracts.
Disabled by @option{-fno-postconditions}.

@item D_TypeInfo
This version is defined when run-time type information (also known as
@code{TypeInfo}) is supported.  Disabled by @option{-fno-rtti}.

@item D_Version2
This version defined when this is a D version 2 compiler.

@item unittest
This version is defined when the @code{unittest} code is being compiled in.
Enabled by @option{-funittest}.

@end table

@c --------------------------------------------------------

@node Common Predefined Versions
@subsection Common Predefined Versions
@cindex common predefined versions

The common predefined macros are GNU D extensions.  They are available
with the same meanings regardless of the machine or operating system on
which you are using GNU D.  Their names all start with @code{GNU}.

@table @code

@item GNU
This version is defined by the GNU D compiler.  If all you need to know is
whether or not your D program is being compiled by GDC, or a non-GDC compiler,
you can simply test @code{version(GNU)}.

@item GNU_DWARF2_Exceptions
@itemx GNU_SEH_Exceptions
@itemx GNU_SjLj_Exceptions
These versions reflect the mechanism that will be used for exception handling
by the target.  @code{GNU_DWARF2_Exceptions} is defined when the target uses
DWARF 2 exceptions.  @code{GNU_SEH_Exceptions} is defined when the target uses
SEH exceptions.  @code{GNU_SjLj_Exceptions} is defined when the target uses the
@code{setjmp}/@code{longjmp}-based exception handling scheme.

@item GNU_EMUTLS
This version is defined if the target does not support thread-local storage,
and an emulation layer is used instead.

@item GNU_InlineAsm
This version is defined when @code{asm} statements use GNU D style syntax.
(@pxref{Inline Assembly})

@item GNU_StackGrowsDown
This version is defined if pushing a word onto the stack moves the stack
pointer to a smaller address, and is undefined otherwise.

@end table

@c --------------------------------------------------------

@node Target Predefined Versions
@subsection Target-specific Predefined Versions
@cindex target-specific predefined versions

The D compiler normally predefines several versions that indicate what type of
system and machine is in use.  They are obviously different on each target
supported by GCC.

@table @code
@item AArch64
Version relating to the AArch64 family of processors.

@item Android
Version relating to the Android platform.

@item ARM
@itemx ARM_HardFloat
@itemx ARM_SoftFloat
@itemx ARM_SoftFP
@itemx ARM_Thumb
Versions relating to the ARM family of processors.

@item Cygwin
Version relating to the Cygwin environment.

@item darwin
Deprecated; use @code{OSX} instead.

@item DragonFlyBSD
Versions relating to DragonFlyBSD systems.

@item FreeBSD
@item FreeBSD_9
@item FreeBSD_10
@item FreeBSD_11
@item FreeBSD_...
Versions relating to FreeBSD systems.  The FreeBSD major version number is
inferred from the target triplet.

@item HPPA
@itemx HPPA64
Versions relating to the HPPA family of processors.

@item Hurd
Version relating to GNU Hurd systems.

@item linux
Version relating to Linux systems.

@item MinGW
Version relating to the MinGW environment.

@item MIPS32
@itemx MIPS64
@itemx MIPS_EABI
@itemx MIPS_HardFloat
@itemx MIPS_N32
@itemx MIPS_N64
@itemx MIPS_O32
@itemx MIPS_O64
@itemx MIPS_SoftFloat
Versions relating to the MIPS family of processors.

@item NetBSD
Version relating to NetBSD systems.

@item OpenBSD
Version relating to OpenBSD systems.

@item OSX
Version relating to OSX systems.

@item Posix
Version relating to POSIX systems (includes Linux, FreeBSD, OSX, Solaris, etc).

@item PPC
@itemx PPC64
@itemx PPC_HardFloat
@itemx PPC_SoftFloat
Versions relating to the PowerPC family of processors.

@item RISCV32
@itemx RISCV64
Versions relating to the RISC-V family of processors.

@item S390
@itemx SystemZ
Versions relating to the S/390 and System Z family of processors.

@item S390X
Deprecated; use @code{SystemZ} instead.

@item Solaris
Versions relating to Solaris systems.

@item SPARC
@itemx SPARC64
@itemx SPARC_HardFloat
@itemx SPARC_SoftFloat
@itemx SPARC_V8Plus
Versions relating to the SPARC family of processors.

@item Thumb
Deprecated; use @code{ARM_Thumb} instead.

@item D_X32
@itemx X86
@itemx X86_64
Versions relating to the x86-32 and x86-64 family of processors.

@item Windows
@itemx Win32
@itemx Win64
Versions relating to Microsoft Windows systems.

@end table


@c --------------------------------------------------------

@node Special Enums
@section Special Enums
@cindex special enums

Special @code{enum} names are used to represent types that do not have an
equivalent basic D type.  For example, C++ types used by the C++ name mangler.

Special enums are declared opaque, with a base type explicitly set.  Unlike
regular opaque enums, special enums can be used as any other value type.  They
have a default @code{.init} value, as well as other enum properties available
(@code{.min}, @code{.max}).  Special enums can be declared in any module, and
will be recognized by the compiler.

@smallexample
import gcc.builtins;
enum __c_long : __builtin_clong;
__c_long var = 0x800A;
@end smallexample

@noindent
The following identifiers are recognized by GNU D.

@table @code
@item __c_complex_double
C @code{_Complex double} type.
@item __c_complex_float
C @code{_Complex float} type.
@item __c_complex_real
C @code{_Complex long double} type.
@item __c_long
C++ @code{long} type.
@item __c_longlong
C++ @code{long long} type.
@item __c_long_double
C @code{long double} type.
@item __c_ulong
C++ @code{unsigned long} type.
@item __c_ulonglong
C++ @code{unsigned long long} type.
@item __c_wchar_t
C++ @code{wchar_t} type.
@end table

The @code{core.stdc.config} module declares the following shorthand alias types
for convenience: @code{c_complex_double}, @code{c_complex_float},
@code{c_complex_real}, @code{cpp_long}, @code{cpp_longlong},
@code{c_long_double}, @code{cpp_ulong}, @code{cpp_ulonglong}.


@c --------------------------------------------------------

@node Traits
@section Traits
@cindex traits

Traits are extensions to the D programming language to enable programs, at
compile time, to get at information internal to the compiler.  This is also
known as compile time reflection.

GNU D implements a @code{__traits(getTargetInfo)} trait that receives a string
key as its argument.  The result is an expression describing the requested
target information.

@smallexample
version (OSX)
@{
    static assert(__traits(getTargetInfo, "objectFormat") == "macho");
@}
@end smallexample

@noindent
Keys for the trait are implementation defined, allowing target-specific data
for exotic targets.  A reliable subset exists which a D compiler must
recognize.  These are documented by the D language specification hosted at
@uref{https://dlang.org/spec/traits.html#getTargetInfo}.

The following keys are recognized by GNU D.

@table @code
@item cppRuntimeLibrary
The C++ runtime library affinity for this toolchain.

@item cppStd
The version of the C++ standard supported by @code{extern(C++)} code,
equivalent to the @code{__cplusplus} macro in a C++ compiler.

@item floatAbi
Floating point ABI; may be @samp{hard}, @samp{soft}, or @samp{softfp}.

@item objectFormat
Target object format.

@end table


@c --------------------------------------------------------

@node Vector Extensions
@section Vector Extensions
@cindex vector extensions
@cindex simd

CPUs often support specialized vector types and vector operations (aka media
instructions).  Vector types are a fixed array of floating or integer types,
and vector operations operate simultaneously on them.

@smallexample
alias int4 = __vector(int[4]);
@end smallexample

@noindent
All the basic integer types can be used as base types, both as signed and as
unsigned: @code{byte}, @code{short}, @code{int}, @code{long}.  In addition,
@code{float} and @code{double} can be used to build floating-point vector
types, and @code{void} to build vectors of untyped data.  Only sizes that are
positive power-of-two multiples of the base type size are currently allowed.

@noindent
The @code{core.simd} module has the following shorthand aliases for commonly
supported vector types:
@code{byte8}, @code{byte16}, @code{byte32}, @code{byte64},
@code{double1}, @code{double2}, @code{double4}, @code{double8},
@code{float2}, @code{float4}, @code{float8}, @code{float16},
@code{int2}, @code{int4}, @code{int8}, @code{int16},
@code{long1}, @code{long2}, @code{long4}, @code{long8},
@code{short4}, @code{short8}, @code{short16}, @code{short32},
@code{ubyte8}, @code{ubyte16}, @code{ubyte32}, @code{ubyte64},
@code{uint2}, @code{uint4}, @code{uint8}, @code{uint16},
@code{ulong1}, @code{ulong2}, @code{ulong4}, @code{ulong8},
@code{ushort4}, @code{ushort8}, @code{ushort16}, @code{ushort32},
@code{void8}, @code{void16}, @code{void32}, @code{void64}.
All these aliases correspond to @code{__vector(type[N])}.

Which vector types are supported depends on the target.  Only vector types that
are implemented for the current architecture are supported at compile-time.
Vector operations that are not supported in hardware cause GNU D to synthesize
the instructions using a narrower mode.

@smallexample
alias v4i = __vector(int[4]);
alias v128f = __vector(float[128]);    // Error: not supported on this platform

int4 a, b, c;

c = a * b;    // Natively supported on x86 with SSE4
c = a / b;    // Always synthesized
@end smallexample

@noindent
Vector types can be used with a subset of normal D operations.  Currently, GNU
D allows using the following operators on these types: @code{+, -, *, /,
unary+, unary-}@.

@smallexample
alias int4 = __vector(int[4]);

int4 a, b, c;

c = a + b;
@end smallexample

@noindent
It is also possible to use shifting operators @code{<<}, @code{>>}, the modulus
operator @code{%}, logical operations @code{&, |, ^}, and the complement
operator @code{unary~} on integer-type vectors.

For convenience, it is allowed to use a binary vector operation where one
operand is a scalar.  In that case the compiler transforms the scalar operand
into a vector where each element is the scalar from the operation.  The
transformation happens only if the scalar could be safely converted to the
vector-element type.  Consider the following code.

@smallexample
alias int4 = __vector(int[4]);

int4 a, b;
long l;

a = b + 1;    // a = b + [1,1,1,1];
a = 2 * b;    // a = [2,2,2,2] * b;

a = l + a;    // Error, incompatible types.
@end smallexample

@noindent
Vector comparison is supported with standard comparison operators:
@code{==, !=, <, <=, >, >=}.  Comparison operands can be vector expressions of
integer-type or real-type.  Comparison between integer-type vectors and
real-type vectors are not supported.  The result of the comparison is a vector
of the same width and number of elements as the comparison operands with a
signed integral element type.

Vectors are compared element-wise producing 0 when comparison is false
and -1 (constant of the appropriate type where all bits are set)
otherwise.  Consider the following example.

@smallexample
alias int4 = __vector(int[4]);

int4 a = [1,2,3,4];
int4 b = [3,2,1,4];
int4 c;

c = a >  b;     // The result would be [0, 0,-1, 0]
c = a == b;     // The result would be [0,-1, 0,-1]
@end smallexample


@c --------------------------------------------------------

@node Vector Intrinsics
@section Vector Intrinsics
@cindex intrinsics, vector

The following functions are a collection of vector operation intrinsics,
available by importing the @code{gcc.simd} module.

@deftypefn {Template} {void} gcc.simd.prefetch (bool @var{rw}, @
                                                ubyte @var{locality}) @
                                               (const(void)* @var{addr})

Emit the prefetch instruction.  The value of @var{addr} is the address of the
memory to prefetch.  The value of @var{rw} is a compile-time constant one or
zero; one means that the prefetch is preparing for a write to the memory
address and zero, the default, means that the prefetch is preparing for a read.
The value @var{locality} must be a compile-time constant integer between zero
and three.

This intrinsic is the same as the GCC built-in function
@code{__builtin_prefetch}.

@smallexample
for (i = 0; i < n; i++)
@{
    import gcc.simd : prefetch;
    a[i] = a[i] + b[i];
    prefetch!(true, 1)(&a[i+j]);
    prefetch!(false, 1)(&b[i+j]);
    // @r{@dots{}}
@}
@end smallexample
@end deftypefn

@deftypefn {Template} {V} gcc.simd.loadUnaligned (V)(const V* @var{p})

Load unaligned vector from the address @var{p}.

@smallexample
float4 v;
ubyte[16] arr;

v = loadUnaligned(cast(float4*)arr.ptr);
@end smallexample
@end deftypefn

@deftypefn {Template} {V} gcc.simd.storeUnaligned (V)(V* @var{p}, V @var{value})

Store vector @var{value} to unaligned address @var{p}.

@smallexample
float4 v;
ubyte[16] arr;

storeUnaligned(cast(float4*)arr.ptr, v);
@end smallexample
@end deftypefn

@deftypefn {Template} {V0} gcc.simd.shuffle (V0, V1, M)(V0 @var{op1}, @
                                                        V1 @var{op2}, @
                                                        M @var{mask})
@deftypefnx {Template} {V} gcc.simd.shuffle (V, M)(V @var{op1}, M @var{mask})

Construct a permutation of elements from one or two vectors, returning a vector
of the same type as the input vector(s).  The @var{mask} is an integral vector
with the same width and element count as the output vector.

This intrinsic is the same as the GCC built-in function
@code{__builtin_shuffle}.

@smallexample
int4 a = [1, 2, 3, 4];
int4 b = [5, 6, 7, 8];
int4 mask1 = [0, 1, 1, 3];
int4 mask2 = [0, 4, 2, 5];
int4 res;

res = shuffle(a, mask1);    // res is [1,2,2,4]
res = shuffle(a, b, mask2); // res is [1,5,3,6]
@end smallexample
@end deftypefn

@deftypefn {Template} {V} gcc.simd.shufflevector (V1, V2, M...)(V1 @var{op1}, @
                                                  V2 @var{op2}, M @var{mask})
@deftypefnx {Template} {V} gcc.simd.shufflevector (V, @var{mask}...)(V @
                                                   @var{op1}, V @var{op2})

Construct a permutation of elements from two vectors, returning a vector with
the same element type as the input vector(s), and same length as the
@var{mask}.

This intrinsic is the same as the GCC built-in function
@code{__builtin_shufflevector}.

@smallexample
int8 a = [1, -2, 3, -4, 5, -6, 7, -8];
int4 b = shufflevector(a, a, 0, 2, 4, 6);   // b is [1,3,5,7]
int4 c = [-2, -4, -6, -8];
int8 d = shufflevector!(int8, 4, 0, 5, 1, 6, 2, 7, 3)(c, b); // d is a
@end smallexample
@end deftypefn

@deftypefn {Template} {E} gcc.simd.extractelement (V, int idx)(V @var{val})
Extracts a single scalar element from a vector @var{val} at a specified index
@var{idx}.

@smallexample
int4 a = [0, 10, 20, 30];
int k = extractelement!(int4, 2)(a);    // a is 20
@end smallexample
@end deftypefn

@deftypefn {Template} {V} gcc.simd.insertelement (V, int idx)(V val, B @var{e})
Inserts a scalar element @var{e} into a vector @var{val} at a specified index
@var{idx}.

@smallexample
int4 a = [0, 10, 20, 30];
int4 b = insertelement!(int4, 2)(a, 50); // b is [0,10,50,30]
@end smallexample
@end deftypefn

@deftypefn {Template} {V} gcc.simd.convertvector (V, T)(T val)
Convert a vector @var{val} from one integral or floating vector type to
another.  The result is an integral or floating vector that has had every
element cast to the element type of the return type.

This intrinsic is the same as the GCC built-in function
@code{__builtin_convertvector}.

@smallexample
int4 a = [1, -2, 3, -4];
float4 b = [1.5, -2.5, 3, 7];
float4 c = convertvector!float4(a);    // c is [1,-2,3,-4]
double4 d = convertvector!double4(a);  // d is [1,-2,3,-4]
double4 e = convertvector!double4(b);  // e is [1.5,-2.5,3,7]
int4 f = convertvector!int4(b);        // f is [1,-2,3,7]
@end smallexample
@end deftypefn

@deftypefn {Template} {V0} gcc.simd.blendvector (V0, V1, M)(V0 @var{op0}, @
                                                            V1 @var{op1}, @
                                                            M @var{mask})

Construct a conditional merge of elements from two vectors, returning a vector
of the same type as the input vector(s).  The @var{mask} is an integral vector
with the same width and element count as the output vector.

@smallexample
int4 a = [1, 2, 3, 4];
int4 b = [3, 2, 1, 4];
auto c = blendvector(a, b, a > b);  // c is [3,2,3,4]
auto d = blendvector(a, b, a < b);  // d is [1,2,1,4]
@end smallexample
@end deftypefn


@c --------------------------------------------------------

@node Missing Features
@section Missing Features and Deviations
@cindex missing features
@cindex D spec deviations

Some parts of the D specification are hard or impossible to implement with
GCC, they should be listed here.

@table @asis
@item Bit Operation Intrinsics
The Digital Mars D compiler implements the @code{core.bitop} intrinsics
@code{inp}, @code{inpw}, @code{inpl}, @code{outp}, @code{outpw}, and
@code{outpl}.  These are not recognized by GNU D.  On most targets, equivalent
intrinsics that have the same effect would be @code{core.volatile.loadVolatile}
and @code{core.volatile.storeVolatile} respectively
(@pxref{Volatile Intrinsics}).

On x86 targets, if an @code{in} or @code{out} instruction is specifically
required, that can be achieved using assembler statements instead.
@smallexample
ubyte inp(uint port)
@{
    ubyte value;
    asm @{ "inb %w1, %b0" : "=a" (value) : "Nd" (port); @}
    return value;
@}

void outp(uint port, ushort value)
@{
    asm @{ "outb %b0, %w1" : : "a" (value), "Nd" (port); @}
@}
@end smallexample

@item Floating-Point Intermediate Values

GNU D uses a software compile-time floating-point type that assists in
cross-compilation and support for arbitrary target @code{real} precisions wider
than 80 bits.  Because of this, the result of floating-point CTFE operations
may have different results in GNU D compared with other D compilers that use
the host's native floating-point type for storage and CTFE.  In particular, GNU
D won't overflow or underflow when a target real features a higher precision
than the host.  Differences also extend to @code{.stringof} representations of
intermediate values due to formatting differences with @code{sprintf("%Lg")}.
@smallexample
version(GNU)
    assert((25.5).stringof ~ (3.01).stringof == "2.55e+13.01e+0");
else
    assert((25.5).stringof ~ (3.01).stringof == "25.53.01");
@end smallexample

@item Function Calling Conventions
GNU D does not implement the @code{extern(D)} calling convention for x86 as
described in the D specification hosted at
@uref{https://dlang.org/spec/abi.html#function_calling_conventions}.

Instead, there is no distinction between @code{extern(C)} and @code{extern(D)}
other than name mangling.

@item ImportC Limitations
GNU D does not run the preprocessor automatically for any ImportC sources.
Instead all C files are expected to be manually preprocessed before they are
imported into the compilation.

@item Inline Assembler
GNU D does not implement the D inline assembler for x86 and x86_64 as described
in the D specification hosted at @uref{https://dlang.org/spec/iasm.html}.  Nor
does GNU D predefine the @code{D_InlineAsm_X86} and @code{D_InlineAsm_X86_64}
version identifiers to indicate support.

The GNU D compiler uses an alternative, GCC-based syntax for inline assembler
(@pxref{Inline Assembly}).

@item Interfacing to Objective-C
GNU D does not support interfacing with Objective-C, nor its protocols,
classes, subclasses, instance variables, instance methods and class methods.
The @code{extern(Objective-C)} linkage is ignored, as are the @code{@@optional}
and @code{@@selector} attributes.  The @code{D_ObjectiveC} version identifier
is not predefined for compilations.

@item Pragma Directives
Pragmas that are designed to embed information into object files or otherwise
pass options to the linker are not supported by GNU D.  These include
@code{pragma(lib)}, @code{pragma(linkerDirective)}, and
@code{pragma(startaddress)}.

@item SIMD Intrinsics
The Digital Mars D compiler implements the @code{core.simd} intrinsics
@code{__simd}, @code{__simd_ib}, @code{__simd_sto}.  These are not recognized
by GNU D, nor does GNU D predefine the @code{D_SIMD} version identifier to
indicate support.

On x86 targets, all intrinsics are available as functions in the
@code{gcc.builtins} module, and have predictable equivalents.
@smallexample
version (DigitalMars)
@{
    __simd(XMM.PSLLW, op1, op2);
    __simd_ib(XMM.PSLLW, op1, imm8);
@}
version (GNU)
@{
    __builtin_ia32_psllw(op1, op2);
    __builtin_ia32_psllwi(op1, imm8);
@}
@end smallexample

@item TypeInfo-based va_arg
The Digital Mars D compiler implements a version of @code{core.vararg.va_arg}
that accepts a run-time @code{TypeInfo} argument for use when the static type
is not known.  This function is not implemented by GNU D.  It is more portable
to use variadic template functions instead.

@end table