1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
|
/* Allocation for dataflow support routines.
Copyright (C) 1999-2016 Free Software Foundation, Inc.
Originally contributed by Michael P. Hayes
(m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
and Kenneth Zadeck (zadeck@naturalbridge.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/*
OVERVIEW:
The files in this collection (df*.c,df.h) provide a general framework
for solving dataflow problems. The global dataflow is performed using
a good implementation of iterative dataflow analysis.
The file df-problems.c provides problem instance for the most common
dataflow problems: reaching defs, upward exposed uses, live variables,
uninitialized variables, def-use chains, and use-def chains. However,
the interface allows other dataflow problems to be defined as well.
Dataflow analysis is available in most of the rtl backend (the parts
between pass_df_initialize and pass_df_finish). It is quite likely
that these boundaries will be expanded in the future. The only
requirement is that there be a correct control flow graph.
There are three variations of the live variable problem that are
available whenever dataflow is available. The LR problem finds the
areas that can reach a use of a variable, the UR problems finds the
areas that can be reached from a definition of a variable. The LIVE
problem finds the intersection of these two areas.
There are several optional problems. These can be enabled when they
are needed and disabled when they are not needed.
Dataflow problems are generally solved in three layers. The bottom
layer is called scanning where a data structure is built for each rtl
insn that describes the set of defs and uses of that insn. Scanning
is generally kept up to date, i.e. as the insns changes, the scanned
version of that insn changes also. There are various mechanisms for
making this happen and are described in the INCREMENTAL SCANNING
section.
In the middle layer, basic blocks are scanned to produce transfer
functions which describe the effects of that block on the global
dataflow solution. The transfer functions are only rebuilt if the
some instruction within the block has changed.
The top layer is the dataflow solution itself. The dataflow solution
is computed by using an efficient iterative solver and the transfer
functions. The dataflow solution must be recomputed whenever the
control changes or if one of the transfer function changes.
USAGE:
Here is an example of using the dataflow routines.
df_[chain,live,note,rd]_add_problem (flags);
df_set_blocks (blocks);
df_analyze ();
df_dump (stderr);
df_finish_pass (false);
DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
instance to struct df_problem, to the set of problems solved in this
instance of df. All calls to add a problem for a given instance of df
must occur before the first call to DF_ANALYZE.
Problems can be dependent on other problems. For instance, solving
def-use or use-def chains is dependent on solving reaching
definitions. As long as these dependencies are listed in the problem
definition, the order of adding the problems is not material.
Otherwise, the problems will be solved in the order of calls to
df_add_problem. Note that it is not necessary to have a problem. In
that case, df will just be used to do the scanning.
DF_SET_BLOCKS is an optional call used to define a region of the
function on which the analysis will be performed. The normal case is
to analyze the entire function and no call to df_set_blocks is made.
DF_SET_BLOCKS only effects the blocks that are effected when computing
the transfer functions and final solution. The insn level information
is always kept up to date.
When a subset is given, the analysis behaves as if the function only
contains those blocks and any edges that occur directly between the
blocks in the set. Care should be taken to call df_set_blocks right
before the call to analyze in order to eliminate the possibility that
optimizations that reorder blocks invalidate the bitvector.
DF_ANALYZE causes all of the defined problems to be (re)solved. When
DF_ANALYZE is completes, the IN and OUT sets for each basic block
contain the computer information. The DF_*_BB_INFO macros can be used
to access these bitvectors. All deferred rescannings are down before
the transfer functions are recomputed.
DF_DUMP can then be called to dump the information produce to some
file. This calls DF_DUMP_START, to print the information that is not
basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
for each block to print the basic specific information. These parts
can all be called separately as part of a larger dump function.
DF_FINISH_PASS causes df_remove_problem to be called on all of the
optional problems. It also causes any insns whose scanning has been
deferred to be rescanned as well as clears all of the changeable flags.
Setting the pass manager TODO_df_finish flag causes this function to
be run. However, the pass manager will call df_finish_pass AFTER the
pass dumping has been done, so if you want to see the results of the
optional problems in the pass dumps, use the TODO flag rather than
calling the function yourself.
INCREMENTAL SCANNING
There are four ways of doing the incremental scanning:
1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
df_bb_delete, df_insn_change_bb have been added to most of
the low level service functions that maintain the cfg and change
rtl. Calling and of these routines many cause some number of insns
to be rescanned.
For most modern rtl passes, this is certainly the easiest way to
manage rescanning the insns. This technique also has the advantage
that the scanning information is always correct and can be relied
upon even after changes have been made to the instructions. This
technique is contra indicated in several cases:
a) If def-use chains OR use-def chains (but not both) are built,
using this is SIMPLY WRONG. The problem is that when a ref is
deleted that is the target of an edge, there is not enough
information to efficiently find the source of the edge and
delete the edge. This leaves a dangling reference that may
cause problems.
b) If def-use chains AND use-def chains are built, this may
produce unexpected results. The problem is that the incremental
scanning of an insn does not know how to repair the chains that
point into an insn when the insn changes. So the incremental
scanning just deletes the chains that enter and exit the insn
being changed. The dangling reference issue in (a) is not a
problem here, but if the pass is depending on the chains being
maintained after insns have been modified, this technique will
not do the correct thing.
c) If the pass modifies insns several times, this incremental
updating may be expensive.
d) If the pass modifies all of the insns, as does register
allocation, it is simply better to rescan the entire function.
2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
df_insn_delete do not immediately change the insn but instead make
a note that the insn needs to be rescanned. The next call to
df_analyze, df_finish_pass, or df_process_deferred_rescans will
cause all of the pending rescans to be processed.
This is the technique of choice if either 1a, 1b, or 1c are issues
in the pass. In the case of 1a or 1b, a call to df_finish_pass
(either manually or via TODO_df_finish) should be made before the
next call to df_analyze or df_process_deferred_rescans.
This mode is also used by a few passes that still rely on note_uses,
note_stores and rtx iterators instead of using the DF data. This
can be said to fall under case 1c.
To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
(This mode can be cleared by calling df_clear_flags
(DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
be rescanned.
3) Total rescanning - In this mode the rescanning is disabled.
Only when insns are deleted is the df information associated with
it also deleted. At the end of the pass, a call must be made to
df_insn_rescan_all. This method is used by the register allocator
since it generally changes each insn multiple times (once for each ref)
and does not need to make use of the updated scanning information.
4) Do it yourself - In this mechanism, the pass updates the insns
itself using the low level df primitives. Currently no pass does
this, but it has the advantage that it is quite efficient given
that the pass generally has exact knowledge of what it is changing.
DATA STRUCTURES
Scanning produces a `struct df_ref' data structure (ref) is allocated
for every register reference (def or use) and this records the insn
and bb the ref is found within. The refs are linked together in
chains of uses and defs for each insn and for each register. Each ref
also has a chain field that links all the use refs for a def or all
the def refs for a use. This is used to create use-def or def-use
chains.
Different optimizations have different needs. Ultimately, only
register allocation and schedulers should be using the bitmaps
produced for the live register and uninitialized register problems.
The rest of the backend should be upgraded to using and maintaining
the linked information such as def use or use def chains.
PHILOSOPHY:
While incremental bitmaps are not worthwhile to maintain, incremental
chains may be perfectly reasonable. The fastest way to build chains
from scratch or after significant modifications is to build reaching
definitions (RD) and build the chains from this.
However, general algorithms for maintaining use-def or def-use chains
are not practical. The amount of work to recompute the chain any
chain after an arbitrary change is large. However, with a modest
amount of work it is generally possible to have the application that
uses the chains keep them up to date. The high level knowledge of
what is really happening is essential to crafting efficient
incremental algorithms.
As for the bit vector problems, there is no interface to give a set of
blocks over with to resolve the iteration. In general, restarting a
dataflow iteration is difficult and expensive. Again, the best way to
keep the dataflow information up to data (if this is really what is
needed) it to formulate a problem specific solution.
There are fine grained calls for creating and deleting references from
instructions in df-scan.c. However, these are not currently connected
to the engine that resolves the dataflow equations.
DATA STRUCTURES:
The basic object is a DF_REF (reference) and this may either be a
DEF (definition) or a USE of a register.
These are linked into a variety of lists; namely reg-def, reg-use,
insn-def, insn-use, def-use, and use-def lists. For example, the
reg-def lists contain all the locations that define a given register
while the insn-use lists contain all the locations that use a
register.
Note that the reg-def and reg-use chains are generally short for
pseudos and long for the hard registers.
ACCESSING INSNS:
1) The df insn information is kept in an array of DF_INSN_INFO objects.
The array is indexed by insn uid, and every DF_REF points to the
DF_INSN_INFO object of the insn that contains the reference.
2) Each insn has three sets of refs, which are linked into one of three
lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
(accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
The latter list are the list of references in REG_EQUAL or REG_EQUIV
notes. These macros produce a ref (or NULL), the rest of the list
can be obtained by traversal of the NEXT_REF field (accessed by the
DF_REF_NEXT_REF macro.) There is no significance to the ordering of
the uses or refs in an instruction.
3) Each insn has a logical uid field (LUID) which is stored in the
DF_INSN_INFO object for the insn. The LUID field is accessed by
the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
When properly set, the LUID is an integer that numbers each insn in
the basic block, in order from the start of the block.
The numbers are only correct after a call to df_analyze. They will
rot after insns are added deleted or moved round.
ACCESSING REFS:
There are 4 ways to obtain access to refs:
1) References are divided into two categories, REAL and ARTIFICIAL.
REAL refs are associated with instructions.
ARTIFICIAL refs are associated with basic blocks. The heads of
these lists can be accessed by calling df_get_artificial_defs or
df_get_artificial_uses for the particular basic block.
Artificial defs and uses occur both at the beginning and ends of blocks.
For blocks that area at the destination of eh edges, the
artificial uses and defs occur at the beginning. The defs relate
to the registers specified in EH_RETURN_DATA_REGNO and the uses
relate to the registers specified in ED_USES. Logically these
defs and uses should really occur along the eh edge, but there is
no convenient way to do this. Artificial edges that occur at the
beginning of the block have the DF_REF_AT_TOP flag set.
Artificial uses occur at the end of all blocks. These arise from
the hard registers that are always live, such as the stack
register and are put there to keep the code from forgetting about
them.
Artificial defs occur at the end of the entry block. These arise
from registers that are live at entry to the function.
2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
uses that appear inside a REG_EQUAL or REG_EQUIV note.)
All of the eq_uses, uses and defs associated with each pseudo or
hard register may be linked in a bidirectional chain. These are
called reg-use or reg_def chains. If the changeable flag
DF_EQ_NOTES is set when the chains are built, the eq_uses will be
treated like uses. If it is not set they are ignored.
The first use, eq_use or def for a register can be obtained using
the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
macros. Subsequent uses for the same regno can be obtained by
following the next_reg field of the ref. The number of elements in
each of the chains can be found by using the DF_REG_USE_COUNT,
DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
In previous versions of this code, these chains were ordered. It
has not been practical to continue this practice.
3) If def-use or use-def chains are built, these can be traversed to
get to other refs. If the flag DF_EQ_NOTES has been set, the chains
include the eq_uses. Otherwise these are ignored when building the
chains.
4) An array of all of the uses (and an array of all of the defs) can
be built. These arrays are indexed by the value in the id
structure. These arrays are only lazily kept up to date, and that
process can be expensive. To have these arrays built, call
df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
has been set the array will contain the eq_uses. Otherwise these
are ignored when building the array and assigning the ids. Note
that the values in the id field of a ref may change across calls to
df_analyze or df_reorganize_defs or df_reorganize_uses.
If the only use of this array is to find all of the refs, it is
better to traverse all of the registers and then traverse all of
reg-use or reg-def chains.
NOTES:
Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
both a use and a def. These are both marked read/write to show that they
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
will generate a use of reg 42 followed by a def of reg 42 (both marked
read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
generates a use of reg 41 then a def of reg 41 (both marked read/write),
even though reg 41 is decremented before it is used for the memory
address in this second example.
A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
for which the number of word_mode units covered by the outer mode is
smaller than that covered by the inner mode, invokes a read-modify-write
operation. We generate both a use and a def and again mark them
read/write.
Paradoxical subreg writes do not leave a trace of the old content, so they
are write-only operations.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "emit-rtl.h"
#include "cfganal.h"
#include "tree-pass.h"
#include "cfgloop.h"
static void *df_get_bb_info (struct dataflow *, unsigned int);
static void df_set_bb_info (struct dataflow *, unsigned int, void *);
static void df_clear_bb_info (struct dataflow *, unsigned int);
#ifdef DF_DEBUG_CFG
static void df_set_clean_cfg (void);
#endif
/* The obstack on which regsets are allocated. */
struct bitmap_obstack reg_obstack;
/* An obstack for bitmap not related to specific dataflow problems.
This obstack should e.g. be used for bitmaps with a short life time
such as temporary bitmaps. */
bitmap_obstack df_bitmap_obstack;
/*----------------------------------------------------------------------------
Functions to create, destroy and manipulate an instance of df.
----------------------------------------------------------------------------*/
struct df_d *df;
/* Add PROBLEM (and any dependent problems) to the DF instance. */
void
df_add_problem (const struct df_problem *problem)
{
struct dataflow *dflow;
int i;
/* First try to add the dependent problem. */
if (problem->dependent_problem)
df_add_problem (problem->dependent_problem);
/* Check to see if this problem has already been defined. If it
has, just return that instance, if not, add it to the end of the
vector. */
dflow = df->problems_by_index[problem->id];
if (dflow)
return;
/* Make a new one and add it to the end. */
dflow = XCNEW (struct dataflow);
dflow->problem = problem;
dflow->computed = false;
dflow->solutions_dirty = true;
df->problems_by_index[dflow->problem->id] = dflow;
/* Keep the defined problems ordered by index. This solves the
problem that RI will use the information from UREC if UREC has
been defined, or from LIVE if LIVE is defined and otherwise LR.
However for this to work, the computation of RI must be pushed
after which ever of those problems is defined, but we do not
require any of those except for LR to have actually been
defined. */
df->num_problems_defined++;
for (i = df->num_problems_defined - 2; i >= 0; i--)
{
if (problem->id < df->problems_in_order[i]->problem->id)
df->problems_in_order[i+1] = df->problems_in_order[i];
else
{
df->problems_in_order[i+1] = dflow;
return;
}
}
df->problems_in_order[0] = dflow;
}
/* Set the MASK flags in the DFLOW problem. The old flags are
returned. If a flag is not allowed to be changed this will fail if
checking is enabled. */
int
df_set_flags (int changeable_flags)
{
int old_flags = df->changeable_flags;
df->changeable_flags |= changeable_flags;
return old_flags;
}
/* Clear the MASK flags in the DFLOW problem. The old flags are
returned. If a flag is not allowed to be changed this will fail if
checking is enabled. */
int
df_clear_flags (int changeable_flags)
{
int old_flags = df->changeable_flags;
df->changeable_flags &= ~changeable_flags;
return old_flags;
}
/* Set the blocks that are to be considered for analysis. If this is
not called or is called with null, the entire function in
analyzed. */
void
df_set_blocks (bitmap blocks)
{
if (blocks)
{
if (dump_file)
bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
if (df->blocks_to_analyze)
{
/* This block is called to change the focus from one subset
to another. */
int p;
bitmap_head diff;
bitmap_initialize (&diff, &df_bitmap_obstack);
bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
for (p = 0; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
if (dflow->optional_p && dflow->problem->reset_fun)
dflow->problem->reset_fun (df->blocks_to_analyze);
else if (dflow->problem->free_blocks_on_set_blocks)
{
bitmap_iterator bi;
unsigned int bb_index;
EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
if (bb)
{
void *bb_info = df_get_bb_info (dflow, bb_index);
dflow->problem->free_bb_fun (bb, bb_info);
df_clear_bb_info (dflow, bb_index);
}
}
}
}
bitmap_clear (&diff);
}
else
{
/* This block of code is executed to change the focus from
the entire function to a subset. */
bitmap_head blocks_to_reset;
bool initialized = false;
int p;
for (p = 0; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
if (dflow->optional_p && dflow->problem->reset_fun)
{
if (!initialized)
{
basic_block bb;
bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
FOR_ALL_BB_FN (bb, cfun)
{
bitmap_set_bit (&blocks_to_reset, bb->index);
}
}
dflow->problem->reset_fun (&blocks_to_reset);
}
}
if (initialized)
bitmap_clear (&blocks_to_reset);
df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
}
bitmap_copy (df->blocks_to_analyze, blocks);
df->analyze_subset = true;
}
else
{
/* This block is executed to reset the focus to the entire
function. */
if (dump_file)
fprintf (dump_file, "clearing blocks_to_analyze\n");
if (df->blocks_to_analyze)
{
BITMAP_FREE (df->blocks_to_analyze);
df->blocks_to_analyze = NULL;
}
df->analyze_subset = false;
}
/* Setting the blocks causes the refs to be unorganized since only
the refs in the blocks are seen. */
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
df_mark_solutions_dirty ();
}
/* Delete a DFLOW problem (and any problems that depend on this
problem). */
void
df_remove_problem (struct dataflow *dflow)
{
const struct df_problem *problem;
int i;
if (!dflow)
return;
problem = dflow->problem;
gcc_assert (problem->remove_problem_fun);
/* Delete any problems that depended on this problem first. */
for (i = 0; i < df->num_problems_defined; i++)
if (df->problems_in_order[i]->problem->dependent_problem == problem)
df_remove_problem (df->problems_in_order[i]);
/* Now remove this problem. */
for (i = 0; i < df->num_problems_defined; i++)
if (df->problems_in_order[i] == dflow)
{
int j;
for (j = i + 1; j < df->num_problems_defined; j++)
df->problems_in_order[j-1] = df->problems_in_order[j];
df->problems_in_order[j-1] = NULL;
df->num_problems_defined--;
break;
}
(problem->remove_problem_fun) ();
df->problems_by_index[problem->id] = NULL;
}
/* Remove all of the problems that are not permanent. Scanning, LR
and (at -O2 or higher) LIVE are permanent, the rest are removable.
Also clear all of the changeable_flags. */
void
df_finish_pass (bool verify ATTRIBUTE_UNUSED)
{
int i;
#ifdef ENABLE_DF_CHECKING
int saved_flags;
#endif
if (!df)
return;
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
#ifdef ENABLE_DF_CHECKING
saved_flags = df->changeable_flags;
#endif
/* We iterate over problems by index as each problem removed will
lead to problems_in_order to be reordered. */
for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
{
struct dataflow *dflow = df->problems_by_index[i];
if (dflow && dflow->optional_p)
df_remove_problem (dflow);
}
/* Clear all of the flags. */
df->changeable_flags = 0;
df_process_deferred_rescans ();
/* Set the focus back to the whole function. */
if (df->blocks_to_analyze)
{
BITMAP_FREE (df->blocks_to_analyze);
df->blocks_to_analyze = NULL;
df_mark_solutions_dirty ();
df->analyze_subset = false;
}
#ifdef ENABLE_DF_CHECKING
/* Verification will fail in DF_NO_INSN_RESCAN. */
if (!(saved_flags & DF_NO_INSN_RESCAN))
{
df_lr_verify_transfer_functions ();
if (df_live)
df_live_verify_transfer_functions ();
}
#ifdef DF_DEBUG_CFG
df_set_clean_cfg ();
#endif
#endif
if (flag_checking && verify)
df->changeable_flags |= DF_VERIFY_SCHEDULED;
}
/* Set up the dataflow instance for the entire back end. */
static unsigned int
rest_of_handle_df_initialize (void)
{
gcc_assert (!df);
df = XCNEW (struct df_d);
df->changeable_flags = 0;
bitmap_obstack_initialize (&df_bitmap_obstack);
/* Set this to a conservative value. Stack_ptr_mod will compute it
correctly later. */
crtl->sp_is_unchanging = 0;
df_scan_add_problem ();
df_scan_alloc (NULL);
/* These three problems are permanent. */
df_lr_add_problem ();
if (optimize > 1)
df_live_add_problem ();
df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
df->n_blocks = post_order_compute (df->postorder, true, true);
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
gcc_assert (df->n_blocks == df->n_blocks_inverted);
df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
df_hard_reg_init ();
/* After reload, some ports add certain bits to regs_ever_live so
this cannot be reset. */
df_compute_regs_ever_live (true);
df_scan_blocks ();
df_compute_regs_ever_live (false);
return 0;
}
namespace {
const pass_data pass_data_df_initialize_opt =
{
RTL_PASS, /* type */
"dfinit", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_DF_SCAN, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_df_initialize_opt : public rtl_opt_pass
{
public:
pass_df_initialize_opt (gcc::context *ctxt)
: rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return optimize > 0; }
virtual unsigned int execute (function *)
{
return rest_of_handle_df_initialize ();
}
}; // class pass_df_initialize_opt
} // anon namespace
rtl_opt_pass *
make_pass_df_initialize_opt (gcc::context *ctxt)
{
return new pass_df_initialize_opt (ctxt);
}
namespace {
const pass_data pass_data_df_initialize_no_opt =
{
RTL_PASS, /* type */
"no-opt dfinit", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_DF_SCAN, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_df_initialize_no_opt : public rtl_opt_pass
{
public:
pass_df_initialize_no_opt (gcc::context *ctxt)
: rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return optimize == 0; }
virtual unsigned int execute (function *)
{
return rest_of_handle_df_initialize ();
}
}; // class pass_df_initialize_no_opt
} // anon namespace
rtl_opt_pass *
make_pass_df_initialize_no_opt (gcc::context *ctxt)
{
return new pass_df_initialize_no_opt (ctxt);
}
/* Free all the dataflow info and the DF structure. This should be
called from the df_finish macro which also NULLs the parm. */
static unsigned int
rest_of_handle_df_finish (void)
{
int i;
gcc_assert (df);
for (i = 0; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
dflow->problem->free_fun ();
}
free (df->postorder);
free (df->postorder_inverted);
free (df->hard_regs_live_count);
free (df);
df = NULL;
bitmap_obstack_release (&df_bitmap_obstack);
return 0;
}
namespace {
const pass_data pass_data_df_finish =
{
RTL_PASS, /* type */
"dfinish", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_df_finish : public rtl_opt_pass
{
public:
pass_df_finish (gcc::context *ctxt)
: rtl_opt_pass (pass_data_df_finish, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
return rest_of_handle_df_finish ();
}
}; // class pass_df_finish
} // anon namespace
rtl_opt_pass *
make_pass_df_finish (gcc::context *ctxt)
{
return new pass_df_finish (ctxt);
}
/*----------------------------------------------------------------------------
The general data flow analysis engine.
----------------------------------------------------------------------------*/
/* Return time BB when it was visited for last time. */
#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
/* Helper function for df_worklist_dataflow.
Propagate the dataflow forward.
Given a BB_INDEX, do the dataflow propagation
and set bits on for successors in PENDING
if the out set of the dataflow has changed.
AGE specify time when BB was visited last time.
AGE of 0 means we are visiting for first time and need to
compute transfer function to initialize datastructures.
Otherwise we re-do transfer function only if something change
while computing confluence functions.
We need to compute confluence only of basic block that are younger
then last visit of the BB.
Return true if BB info has changed. This is always the case
in the first visit. */
static bool
df_worklist_propagate_forward (struct dataflow *dataflow,
unsigned bb_index,
unsigned *bbindex_to_postorder,
bitmap pending,
sbitmap considered,
ptrdiff_t age)
{
edge e;
edge_iterator ei;
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
bool changed = !age;
/* Calculate <conf_op> of incoming edges. */
if (EDGE_COUNT (bb->preds) > 0)
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (age <= BB_LAST_CHANGE_AGE (e->src)
&& bitmap_bit_p (considered, e->src->index))
changed |= dataflow->problem->con_fun_n (e);
}
else if (dataflow->problem->con_fun_0)
dataflow->problem->con_fun_0 (bb);
if (changed
&& dataflow->problem->trans_fun (bb_index))
{
/* The out set of this block has changed.
Propagate to the outgoing blocks. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
unsigned ob_index = e->dest->index;
if (bitmap_bit_p (considered, ob_index))
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
}
return true;
}
return false;
}
/* Helper function for df_worklist_dataflow.
Propagate the dataflow backward. */
static bool
df_worklist_propagate_backward (struct dataflow *dataflow,
unsigned bb_index,
unsigned *bbindex_to_postorder,
bitmap pending,
sbitmap considered,
ptrdiff_t age)
{
edge e;
edge_iterator ei;
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
bool changed = !age;
/* Calculate <conf_op> of incoming edges. */
if (EDGE_COUNT (bb->succs) > 0)
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (age <= BB_LAST_CHANGE_AGE (e->dest)
&& bitmap_bit_p (considered, e->dest->index))
changed |= dataflow->problem->con_fun_n (e);
}
else if (dataflow->problem->con_fun_0)
dataflow->problem->con_fun_0 (bb);
if (changed
&& dataflow->problem->trans_fun (bb_index))
{
/* The out set of this block has changed.
Propagate to the outgoing blocks. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
unsigned ob_index = e->src->index;
if (bitmap_bit_p (considered, ob_index))
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
}
return true;
}
return false;
}
/* Main dataflow solver loop.
DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
need to visit.
BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
PENDING will be freed.
The worklists are bitmaps indexed by postorder positions.
The function implements standard algorithm for dataflow solving with two
worklists (we are processing WORKLIST and storing new BBs to visit in
PENDING).
As an optimization we maintain ages when BB was changed (stored in bb->aux)
and when it was last visited (stored in last_visit_age). This avoids need
to re-do confluence function for edges to basic blocks whose source
did not change since destination was visited last time. */
static void
df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
bitmap pending,
sbitmap considered,
int *blocks_in_postorder,
unsigned *bbindex_to_postorder,
int n_blocks)
{
enum df_flow_dir dir = dataflow->problem->dir;
int dcount = 0;
bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
int age = 0;
bool changed;
vec<int> last_visit_age = vNULL;
int prev_age;
basic_block bb;
int i;
last_visit_age.safe_grow_cleared (n_blocks);
/* Double-queueing. Worklist is for the current iteration,
and pending is for the next. */
while (!bitmap_empty_p (pending))
{
bitmap_iterator bi;
unsigned int index;
std::swap (pending, worklist);
EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
{
unsigned bb_index;
dcount++;
bitmap_clear_bit (pending, index);
bb_index = blocks_in_postorder[index];
bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
prev_age = last_visit_age[index];
if (dir == DF_FORWARD)
changed = df_worklist_propagate_forward (dataflow, bb_index,
bbindex_to_postorder,
pending, considered,
prev_age);
else
changed = df_worklist_propagate_backward (dataflow, bb_index,
bbindex_to_postorder,
pending, considered,
prev_age);
last_visit_age[index] = ++age;
if (changed)
bb->aux = (void *)(ptrdiff_t)age;
}
bitmap_clear (worklist);
}
for (i = 0; i < n_blocks; i++)
BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
BITMAP_FREE (worklist);
BITMAP_FREE (pending);
last_visit_age.release ();
/* Dump statistics. */
if (dump_file)
fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
"n_basic_blocks %d n_edges %d"
" count %d (%5.2g)\n",
n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
}
/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
with "n"-th bit representing the n-th block in the reverse-postorder order.
The solver is a double-queue algorithm similar to the "double stack" solver
from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
The only significant difference is that the worklist in this implementation
is always sorted in RPO of the CFG visiting direction. */
void
df_worklist_dataflow (struct dataflow *dataflow,
bitmap blocks_to_consider,
int *blocks_in_postorder,
int n_blocks)
{
bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_iterator bi;
unsigned int *bbindex_to_postorder;
int i;
unsigned int index;
enum df_flow_dir dir = dataflow->problem->dir;
gcc_assert (dir != DF_NONE);
/* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
bbindex_to_postorder = XNEWVEC (unsigned int,
last_basic_block_for_fn (cfun));
/* Initialize the array to an out-of-bound value. */
for (i = 0; i < last_basic_block_for_fn (cfun); i++)
bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
/* Initialize the considered map. */
bitmap_clear (considered);
EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
{
bitmap_set_bit (considered, index);
}
/* Initialize the mapping of block index to postorder. */
for (i = 0; i < n_blocks; i++)
{
bbindex_to_postorder[blocks_in_postorder[i]] = i;
/* Add all blocks to the worklist. */
bitmap_set_bit (pending, i);
}
/* Initialize the problem. */
if (dataflow->problem->init_fun)
dataflow->problem->init_fun (blocks_to_consider);
/* Solve it. */
df_worklist_dataflow_doublequeue (dataflow, pending, considered,
blocks_in_postorder,
bbindex_to_postorder,
n_blocks);
sbitmap_free (considered);
free (bbindex_to_postorder);
}
/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
the order of the remaining entries. Returns the length of the resulting
list. */
static unsigned
df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
{
unsigned act, last;
for (act = 0, last = 0; act < len; act++)
if (bitmap_bit_p (blocks, list[act]))
list[last++] = list[act];
return last;
}
/* Execute dataflow analysis on a single dataflow problem.
BLOCKS_TO_CONSIDER are the blocks whose solution can either be
examined or will be computed. For calls from DF_ANALYZE, this is
the set of blocks that has been passed to DF_SET_BLOCKS.
*/
void
df_analyze_problem (struct dataflow *dflow,
bitmap blocks_to_consider,
int *postorder, int n_blocks)
{
timevar_push (dflow->problem->tv_id);
/* (Re)Allocate the datastructures necessary to solve the problem. */
if (dflow->problem->alloc_fun)
dflow->problem->alloc_fun (blocks_to_consider);
#ifdef ENABLE_DF_CHECKING
if (dflow->problem->verify_start_fun)
dflow->problem->verify_start_fun ();
#endif
/* Set up the problem and compute the local information. */
if (dflow->problem->local_compute_fun)
dflow->problem->local_compute_fun (blocks_to_consider);
/* Solve the equations. */
if (dflow->problem->dataflow_fun)
dflow->problem->dataflow_fun (dflow, blocks_to_consider,
postorder, n_blocks);
/* Massage the solution. */
if (dflow->problem->finalize_fun)
dflow->problem->finalize_fun (blocks_to_consider);
#ifdef ENABLE_DF_CHECKING
if (dflow->problem->verify_end_fun)
dflow->problem->verify_end_fun ();
#endif
timevar_pop (dflow->problem->tv_id);
dflow->computed = true;
}
/* Analyze dataflow info. */
static void
df_analyze_1 (void)
{
int i;
/* These should be the same. */
gcc_assert (df->n_blocks == df->n_blocks_inverted);
/* We need to do this before the df_verify_all because this is
not kept incrementally up to date. */
df_compute_regs_ever_live (false);
df_process_deferred_rescans ();
if (dump_file)
fprintf (dump_file, "df_analyze called\n");
#ifndef ENABLE_DF_CHECKING
if (df->changeable_flags & DF_VERIFY_SCHEDULED)
#endif
df_verify ();
/* Skip over the DF_SCAN problem. */
for (i = 1; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
if (dflow->solutions_dirty)
{
if (dflow->problem->dir == DF_FORWARD)
df_analyze_problem (dflow,
df->blocks_to_analyze,
df->postorder_inverted,
df->n_blocks_inverted);
else
df_analyze_problem (dflow,
df->blocks_to_analyze,
df->postorder,
df->n_blocks);
}
}
if (!df->analyze_subset)
{
BITMAP_FREE (df->blocks_to_analyze);
df->blocks_to_analyze = NULL;
}
#ifdef DF_DEBUG_CFG
df_set_clean_cfg ();
#endif
}
/* Analyze dataflow info. */
void
df_analyze (void)
{
bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
int i;
free (df->postorder);
free (df->postorder_inverted);
df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
df->n_blocks = post_order_compute (df->postorder, true, true);
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
for (i = 0; i < df->n_blocks; i++)
bitmap_set_bit (current_all_blocks, df->postorder[i]);
if (flag_checking)
{
/* Verify that POSTORDER_INVERTED only contains blocks reachable from
the ENTRY block. */
for (i = 0; i < df->n_blocks_inverted; i++)
gcc_assert (bitmap_bit_p (current_all_blocks,
df->postorder_inverted[i]));
}
/* Make sure that we have pruned any unreachable blocks from these
sets. */
if (df->analyze_subset)
{
bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
df->n_blocks = df_prune_to_subcfg (df->postorder,
df->n_blocks, df->blocks_to_analyze);
df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
df->n_blocks_inverted,
df->blocks_to_analyze);
BITMAP_FREE (current_all_blocks);
}
else
{
df->blocks_to_analyze = current_all_blocks;
current_all_blocks = NULL;
}
df_analyze_1 ();
}
/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
Returns the number of blocks which is always loop->num_nodes. */
static int
loop_post_order_compute (int *post_order, struct loop *loop)
{
edge_iterator *stack;
int sp;
int post_order_num = 0;
bitmap visited;
/* Allocate stack for back-tracking up CFG. */
stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
visited = BITMAP_ALLOC (NULL);
/* Push the first edge on to the stack. */
stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
while (sp)
{
edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
ei = stack[sp - 1];
src = ei_edge (ei)->src;
dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet and mark it
if not so. */
if (flow_bb_inside_loop_p (loop, dest)
&& bitmap_set_bit (visited, dest->index))
{
if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
stack[sp++] = ei_start (dest->succs);
else
post_order[post_order_num++] = dest->index;
}
else
{
if (ei_one_before_end_p (ei)
&& src != loop_preheader_edge (loop)->src)
post_order[post_order_num++] = src->index;
if (!ei_one_before_end_p (ei))
ei_next (&stack[sp - 1]);
else
sp--;
}
}
free (stack);
BITMAP_FREE (visited);
return post_order_num;
}
/* Compute the reverse top sort order of the inverted sub-CFG specified
by LOOP. Returns the number of blocks which is always loop->num_nodes. */
static int
loop_inverted_post_order_compute (int *post_order, struct loop *loop)
{
basic_block bb;
edge_iterator *stack;
int sp;
int post_order_num = 0;
bitmap visited;
/* Allocate stack for back-tracking up CFG. */
stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
visited = BITMAP_ALLOC (NULL);
/* Put all latches into the initial work list. In theory we'd want
to start from loop exits but then we'd have the special case of
endless loops. It doesn't really matter for DF iteration order and
handling latches last is probably even better. */
stack[sp++] = ei_start (loop->header->preds);
bitmap_set_bit (visited, loop->header->index);
/* The inverted traversal loop. */
while (sp)
{
edge_iterator ei;
basic_block pred;
/* Look at the edge on the top of the stack. */
ei = stack[sp - 1];
bb = ei_edge (ei)->dest;
pred = ei_edge (ei)->src;
/* Check if the predecessor has been visited yet and mark it
if not so. */
if (flow_bb_inside_loop_p (loop, pred)
&& bitmap_set_bit (visited, pred->index))
{
if (EDGE_COUNT (pred->preds) > 0)
/* Since the predecessor node has been visited for the first
time, check its predecessors. */
stack[sp++] = ei_start (pred->preds);
else
post_order[post_order_num++] = pred->index;
}
else
{
if (flow_bb_inside_loop_p (loop, bb)
&& ei_one_before_end_p (ei))
post_order[post_order_num++] = bb->index;
if (!ei_one_before_end_p (ei))
ei_next (&stack[sp - 1]);
else
sp--;
}
}
free (stack);
BITMAP_FREE (visited);
return post_order_num;
}
/* Analyze dataflow info for the basic blocks contained in LOOP. */
void
df_analyze_loop (struct loop *loop)
{
free (df->postorder);
free (df->postorder_inverted);
df->postorder = XNEWVEC (int, loop->num_nodes);
df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
df->n_blocks = loop_post_order_compute (df->postorder, loop);
df->n_blocks_inverted
= loop_inverted_post_order_compute (df->postorder_inverted, loop);
gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
for (int i = 0; i < df->n_blocks; ++i)
bitmap_set_bit (blocks, df->postorder[i]);
df_set_blocks (blocks);
BITMAP_FREE (blocks);
df_analyze_1 ();
}
/* Return the number of basic blocks from the last call to df_analyze. */
int
df_get_n_blocks (enum df_flow_dir dir)
{
gcc_assert (dir != DF_NONE);
if (dir == DF_FORWARD)
{
gcc_assert (df->postorder_inverted);
return df->n_blocks_inverted;
}
gcc_assert (df->postorder);
return df->n_blocks;
}
/* Return a pointer to the array of basic blocks in the reverse postorder.
Depending on the direction of the dataflow problem,
it returns either the usual reverse postorder array
or the reverse postorder of inverted traversal. */
int *
df_get_postorder (enum df_flow_dir dir)
{
gcc_assert (dir != DF_NONE);
if (dir == DF_FORWARD)
{
gcc_assert (df->postorder_inverted);
return df->postorder_inverted;
}
gcc_assert (df->postorder);
return df->postorder;
}
static struct df_problem user_problem;
static struct dataflow user_dflow;
/* Interface for calling iterative dataflow with user defined
confluence and transfer functions. All that is necessary is to
supply DIR, a direction, CONF_FUN_0, a confluence function for
blocks with no logical preds (or NULL), CONF_FUN_N, the normal
confluence function, TRANS_FUN, the basic block transfer function,
and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
void
df_simple_dataflow (enum df_flow_dir dir,
df_init_function init_fun,
df_confluence_function_0 con_fun_0,
df_confluence_function_n con_fun_n,
df_transfer_function trans_fun,
bitmap blocks, int * postorder, int n_blocks)
{
memset (&user_problem, 0, sizeof (struct df_problem));
user_problem.dir = dir;
user_problem.init_fun = init_fun;
user_problem.con_fun_0 = con_fun_0;
user_problem.con_fun_n = con_fun_n;
user_problem.trans_fun = trans_fun;
user_dflow.problem = &user_problem;
df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
}
/*----------------------------------------------------------------------------
Functions to support limited incremental change.
----------------------------------------------------------------------------*/
/* Get basic block info. */
static void *
df_get_bb_info (struct dataflow *dflow, unsigned int index)
{
if (dflow->block_info == NULL)
return NULL;
if (index >= dflow->block_info_size)
return NULL;
return (void *)((char *)dflow->block_info
+ index * dflow->problem->block_info_elt_size);
}
/* Set basic block info. */
static void
df_set_bb_info (struct dataflow *dflow, unsigned int index,
void *bb_info)
{
gcc_assert (dflow->block_info);
memcpy ((char *)dflow->block_info
+ index * dflow->problem->block_info_elt_size,
bb_info, dflow->problem->block_info_elt_size);
}
/* Clear basic block info. */
static void
df_clear_bb_info (struct dataflow *dflow, unsigned int index)
{
gcc_assert (dflow->block_info);
gcc_assert (dflow->block_info_size > index);
memset ((char *)dflow->block_info
+ index * dflow->problem->block_info_elt_size,
0, dflow->problem->block_info_elt_size);
}
/* Mark the solutions as being out of date. */
void
df_mark_solutions_dirty (void)
{
if (df)
{
int p;
for (p = 1; p < df->num_problems_defined; p++)
df->problems_in_order[p]->solutions_dirty = true;
}
}
/* Return true if BB needs it's transfer functions recomputed. */
bool
df_get_bb_dirty (basic_block bb)
{
return bitmap_bit_p ((df_live
? df_live : df_lr)->out_of_date_transfer_functions,
bb->index);
}
/* Mark BB as needing it's transfer functions as being out of
date. */
void
df_set_bb_dirty (basic_block bb)
{
bb->flags |= BB_MODIFIED;
if (df)
{
int p;
for (p = 1; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
if (dflow->out_of_date_transfer_functions)
bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
}
df_mark_solutions_dirty ();
}
}
/* Grow the bb_info array. */
void
df_grow_bb_info (struct dataflow *dflow)
{
unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
if (dflow->block_info_size < new_size)
{
new_size += new_size / 4;
dflow->block_info
= (void *)XRESIZEVEC (char, (char *)dflow->block_info,
new_size
* dflow->problem->block_info_elt_size);
memset ((char *)dflow->block_info
+ dflow->block_info_size
* dflow->problem->block_info_elt_size,
0,
(new_size - dflow->block_info_size)
* dflow->problem->block_info_elt_size);
dflow->block_info_size = new_size;
}
}
/* Clear the dirty bits. This is called from places that delete
blocks. */
static void
df_clear_bb_dirty (basic_block bb)
{
int p;
for (p = 1; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
if (dflow->out_of_date_transfer_functions)
bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
}
}
/* Called from the rtl_compact_blocks to reorganize the problems basic
block info. */
void
df_compact_blocks (void)
{
int i, p;
basic_block bb;
void *problem_temps;
bitmap_head tmp;
bitmap_initialize (&tmp, &df_bitmap_obstack);
for (p = 0; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
/* Need to reorganize the out_of_date_transfer_functions for the
dflow problem. */
if (dflow->out_of_date_transfer_functions)
{
bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
bitmap_clear (dflow->out_of_date_transfer_functions);
if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
if (bitmap_bit_p (&tmp, EXIT_BLOCK))
bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
i = NUM_FIXED_BLOCKS;
FOR_EACH_BB_FN (bb, cfun)
{
if (bitmap_bit_p (&tmp, bb->index))
bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
i++;
}
}
/* Now shuffle the block info for the problem. */
if (dflow->problem->free_bb_fun)
{
int size = (last_basic_block_for_fn (cfun)
* dflow->problem->block_info_elt_size);
problem_temps = XNEWVAR (char, size);
df_grow_bb_info (dflow);
memcpy (problem_temps, dflow->block_info, size);
/* Copy the bb info from the problem tmps to the proper
place in the block_info vector. Null out the copied
item. The entry and exit blocks never move. */
i = NUM_FIXED_BLOCKS;
FOR_EACH_BB_FN (bb, cfun)
{
df_set_bb_info (dflow, i,
(char *)problem_temps
+ bb->index * dflow->problem->block_info_elt_size);
i++;
}
memset ((char *)dflow->block_info
+ i * dflow->problem->block_info_elt_size, 0,
(last_basic_block_for_fn (cfun) - i)
* dflow->problem->block_info_elt_size);
free (problem_temps);
}
}
/* Shuffle the bits in the basic_block indexed arrays. */
if (df->blocks_to_analyze)
{
if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
if (bitmap_bit_p (&tmp, EXIT_BLOCK))
bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
bitmap_copy (&tmp, df->blocks_to_analyze);
bitmap_clear (df->blocks_to_analyze);
i = NUM_FIXED_BLOCKS;
FOR_EACH_BB_FN (bb, cfun)
{
if (bitmap_bit_p (&tmp, bb->index))
bitmap_set_bit (df->blocks_to_analyze, i);
i++;
}
}
bitmap_clear (&tmp);
i = NUM_FIXED_BLOCKS;
FOR_EACH_BB_FN (bb, cfun)
{
SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
bb->index = i;
i++;
}
gcc_assert (i == n_basic_blocks_for_fn (cfun));
for (; i < last_basic_block_for_fn (cfun); i++)
SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
#ifdef DF_DEBUG_CFG
if (!df_lr->solutions_dirty)
df_set_clean_cfg ();
#endif
}
/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
block. There is no excuse for people to do this kind of thing. */
void
df_bb_replace (int old_index, basic_block new_block)
{
int new_block_index = new_block->index;
int p;
if (dump_file)
fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
gcc_assert (df);
gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
for (p = 0; p < df->num_problems_defined; p++)
{
struct dataflow *dflow = df->problems_in_order[p];
if (dflow->block_info)
{
df_grow_bb_info (dflow);
df_set_bb_info (dflow, old_index,
df_get_bb_info (dflow, new_block_index));
}
}
df_clear_bb_dirty (new_block);
SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
new_block->index = old_index;
df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
}
/* Free all of the per basic block dataflow from all of the problems.
This is typically called before a basic block is deleted and the
problem will be reanalyzed. */
void
df_bb_delete (int bb_index)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
int i;
if (!df)
return;
for (i = 0; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
if (dflow->problem->free_bb_fun)
{
void *bb_info = df_get_bb_info (dflow, bb_index);
if (bb_info)
{
dflow->problem->free_bb_fun (bb, bb_info);
df_clear_bb_info (dflow, bb_index);
}
}
}
df_clear_bb_dirty (bb);
df_mark_solutions_dirty ();
}
/* Verify that there is a place for everything and everything is in
its place. This is too expensive to run after every pass in the
mainline. However this is an excellent debugging tool if the
dataflow information is not being updated properly. You can just
sprinkle calls in until you find the place that is changing an
underlying structure without calling the proper updating
routine. */
void
df_verify (void)
{
df_scan_verify ();
#ifdef ENABLE_DF_CHECKING
df_lr_verify_transfer_functions ();
if (df_live)
df_live_verify_transfer_functions ();
#endif
}
#ifdef DF_DEBUG_CFG
/* Compute an array of ints that describes the cfg. This can be used
to discover places where the cfg is modified by the appropriate
calls have not been made to the keep df informed. The internals of
this are unexciting, the key is that two instances of this can be
compared to see if any changes have been made to the cfg. */
static int *
df_compute_cfg_image (void)
{
basic_block bb;
int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
int i;
int * map;
FOR_ALL_BB_FN (bb, cfun)
{
size += EDGE_COUNT (bb->succs);
}
map = XNEWVEC (int, size);
map[0] = size;
i = 1;
FOR_ALL_BB_FN (bb, cfun)
{
edge_iterator ei;
edge e;
map[i++] = bb->index;
FOR_EACH_EDGE (e, ei, bb->succs)
map[i++] = e->dest->index;
map[i++] = -1;
}
map[i] = -1;
return map;
}
static int *saved_cfg = NULL;
/* This function compares the saved version of the cfg with the
current cfg and aborts if the two are identical. The function
silently returns if the cfg has been marked as dirty or the two are
the same. */
void
df_check_cfg_clean (void)
{
int *new_map;
if (!df)
return;
if (df_lr->solutions_dirty)
return;
if (saved_cfg == NULL)
return;
new_map = df_compute_cfg_image ();
gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
free (new_map);
}
/* This function builds a cfg fingerprint and squirrels it away in
saved_cfg. */
static void
df_set_clean_cfg (void)
{
free (saved_cfg);
saved_cfg = df_compute_cfg_image ();
}
#endif /* DF_DEBUG_CFG */
/*----------------------------------------------------------------------------
PUBLIC INTERFACES TO QUERY INFORMATION.
----------------------------------------------------------------------------*/
/* Return first def of REGNO within BB. */
df_ref
df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
{
rtx_insn *insn;
df_ref def;
FOR_BB_INSNS (bb, insn)
{
if (!INSN_P (insn))
continue;
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_REGNO (def) == regno)
return def;
}
return NULL;
}
/* Return last def of REGNO within BB. */
df_ref
df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
{
rtx_insn *insn;
df_ref def;
FOR_BB_INSNS_REVERSE (bb, insn)
{
if (!INSN_P (insn))
continue;
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_REGNO (def) == regno)
return def;
}
return NULL;
}
/* Finds the reference corresponding to the definition of REG in INSN.
DF is the dataflow object. */
df_ref
df_find_def (rtx_insn *insn, rtx reg)
{
df_ref def;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
gcc_assert (REG_P (reg));
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_REGNO (def) == REGNO (reg))
return def;
return NULL;
}
/* Return true if REG is defined in INSN, zero otherwise. */
bool
df_reg_defined (rtx_insn *insn, rtx reg)
{
return df_find_def (insn, reg) != NULL;
}
/* Finds the reference corresponding to the use of REG in INSN.
DF is the dataflow object. */
df_ref
df_find_use (rtx_insn *insn, rtx reg)
{
df_ref use;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
gcc_assert (REG_P (reg));
df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
FOR_EACH_INSN_INFO_USE (use, insn_info)
if (DF_REF_REGNO (use) == REGNO (reg))
return use;
if (df->changeable_flags & DF_EQ_NOTES)
FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
if (DF_REF_REGNO (use) == REGNO (reg))
return use;
return NULL;
}
/* Return true if REG is referenced in INSN, zero otherwise. */
bool
df_reg_used (rtx_insn *insn, rtx reg)
{
return df_find_use (insn, reg) != NULL;
}
/*----------------------------------------------------------------------------
Debugging and printing functions.
----------------------------------------------------------------------------*/
/* Write information about registers and basic blocks into FILE.
This is part of making a debugging dump. */
void
dump_regset (regset r, FILE *outf)
{
unsigned i;
reg_set_iterator rsi;
if (r == NULL)
{
fputs (" (nil)", outf);
return;
}
EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
{
fprintf (outf, " %d", i);
if (i < FIRST_PSEUDO_REGISTER)
fprintf (outf, " [%s]",
reg_names[i]);
}
}
/* Print a human-readable representation of R on the standard error
stream. This function is designed to be used from within the
debugger. */
extern void debug_regset (regset);
DEBUG_FUNCTION void
debug_regset (regset r)
{
dump_regset (r, stderr);
putc ('\n', stderr);
}
/* Write information about registers and basic blocks into FILE.
This is part of making a debugging dump. */
void
df_print_regset (FILE *file, bitmap r)
{
unsigned int i;
bitmap_iterator bi;
if (r == NULL)
fputs (" (nil)", file);
else
{
EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
{
fprintf (file, " %d", i);
if (i < FIRST_PSEUDO_REGISTER)
fprintf (file, " [%s]", reg_names[i]);
}
}
fprintf (file, "\n");
}
/* Write information about registers and basic blocks into FILE. The
bitmap is in the form used by df_byte_lr. This is part of making a
debugging dump. */
void
df_print_word_regset (FILE *file, bitmap r)
{
unsigned int max_reg = max_reg_num ();
if (r == NULL)
fputs (" (nil)", file);
else
{
unsigned int i;
for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
{
bool found = (bitmap_bit_p (r, 2 * i)
|| bitmap_bit_p (r, 2 * i + 1));
if (found)
{
int word;
const char * sep = "";
fprintf (file, " %d", i);
fprintf (file, "(");
for (word = 0; word < 2; word++)
if (bitmap_bit_p (r, 2 * i + word))
{
fprintf (file, "%s%d", sep, word);
sep = ", ";
}
fprintf (file, ")");
}
}
}
fprintf (file, "\n");
}
/* Dump dataflow info. */
void
df_dump (FILE *file)
{
basic_block bb;
df_dump_start (file);
FOR_ALL_BB_FN (bb, cfun)
{
df_print_bb_index (bb, file);
df_dump_top (bb, file);
df_dump_bottom (bb, file);
}
fprintf (file, "\n");
}
/* Dump dataflow info for df->blocks_to_analyze. */
void
df_dump_region (FILE *file)
{
if (df->blocks_to_analyze)
{
bitmap_iterator bi;
unsigned int bb_index;
fprintf (file, "\n\nstarting region dump\n");
df_dump_start (file);
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
dump_bb (file, bb, 0, TDF_DETAILS);
}
fprintf (file, "\n");
}
else
df_dump (file);
}
/* Dump the introductory information for each problem defined. */
void
df_dump_start (FILE *file)
{
int i;
if (!df || !file)
return;
fprintf (file, "\n\n%s\n", current_function_name ());
fprintf (file, "\nDataflow summary:\n");
if (df->blocks_to_analyze)
fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
for (i = 0; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
if (dflow->computed)
{
df_dump_problem_function fun = dflow->problem->dump_start_fun;
if (fun)
fun (file);
}
}
}
/* Dump the top or bottom of the block information for BB. */
static void
df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
{
int i;
if (!df || !file)
return;
for (i = 0; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
if (dflow->computed)
{
df_dump_bb_problem_function bbfun;
if (top)
bbfun = dflow->problem->dump_top_fun;
else
bbfun = dflow->problem->dump_bottom_fun;
if (bbfun)
bbfun (bb, file);
}
}
}
/* Dump the top of the block information for BB. */
void
df_dump_top (basic_block bb, FILE *file)
{
df_dump_bb_problem_data (bb, file, /*top=*/true);
}
/* Dump the bottom of the block information for BB. */
void
df_dump_bottom (basic_block bb, FILE *file)
{
df_dump_bb_problem_data (bb, file, /*top=*/false);
}
/* Dump information about INSN just before or after dumping INSN itself. */
static void
df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
{
int i;
if (!df || !file)
return;
for (i = 0; i < df->num_problems_defined; i++)
{
struct dataflow *dflow = df->problems_in_order[i];
if (dflow->computed)
{
df_dump_insn_problem_function insnfun;
if (top)
insnfun = dflow->problem->dump_insn_top_fun;
else
insnfun = dflow->problem->dump_insn_bottom_fun;
if (insnfun)
insnfun (insn, file);
}
}
}
/* Dump information about INSN before dumping INSN itself. */
void
df_dump_insn_top (const rtx_insn *insn, FILE *file)
{
df_dump_insn_problem_data (insn, file, /*top=*/true);
}
/* Dump information about INSN after dumping INSN itself. */
void
df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
{
df_dump_insn_problem_data (insn, file, /*top=*/false);
}
static void
df_ref_dump (df_ref ref, FILE *file)
{
fprintf (file, "%c%d(%d)",
DF_REF_REG_DEF_P (ref)
? 'd'
: (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
DF_REF_ID (ref),
DF_REF_REGNO (ref));
}
void
df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
{
fprintf (file, "{ ");
for (; ref; ref = DF_REF_NEXT_LOC (ref))
{
df_ref_dump (ref, file);
if (follow_chain)
df_chain_dump (DF_REF_CHAIN (ref), file);
}
fprintf (file, "}");
}
/* Dump either a ref-def or reg-use chain. */
void
df_regs_chain_dump (df_ref ref, FILE *file)
{
fprintf (file, "{ ");
while (ref)
{
df_ref_dump (ref, file);
ref = DF_REF_NEXT_REG (ref);
}
fprintf (file, "}");
}
static void
df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
{
for (; mws; mws = DF_MWS_NEXT (mws))
fprintf (file, "mw %c r[%d..%d]\n",
DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
mws->start_regno, mws->end_regno);
}
static void
df_insn_uid_debug (unsigned int uid,
bool follow_chain, FILE *file)
{
fprintf (file, "insn %d luid %d",
uid, DF_INSN_UID_LUID (uid));
if (DF_INSN_UID_DEFS (uid))
{
fprintf (file, " defs ");
df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
}
if (DF_INSN_UID_USES (uid))
{
fprintf (file, " uses ");
df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
}
if (DF_INSN_UID_EQ_USES (uid))
{
fprintf (file, " eq uses ");
df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
}
if (DF_INSN_UID_MWS (uid))
{
fprintf (file, " mws ");
df_mws_dump (DF_INSN_UID_MWS (uid), file);
}
fprintf (file, "\n");
}
DEBUG_FUNCTION void
df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
{
df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
}
DEBUG_FUNCTION void
df_insn_debug_regno (rtx_insn *insn, FILE *file)
{
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
fprintf (file, "insn %d bb %d luid %d defs ",
INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
DF_INSN_INFO_LUID (insn_info));
df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
fprintf (file, " uses ");
df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
fprintf (file, " eq_uses ");
df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
fprintf (file, "\n");
}
DEBUG_FUNCTION void
df_regno_debug (unsigned int regno, FILE *file)
{
fprintf (file, "reg %d defs ", regno);
df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
fprintf (file, " uses ");
df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
fprintf (file, " eq_uses ");
df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
fprintf (file, "\n");
}
DEBUG_FUNCTION void
df_ref_debug (df_ref ref, FILE *file)
{
fprintf (file, "%c%d ",
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
DF_REF_ID (ref));
fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
DF_REF_REGNO (ref),
DF_REF_BBNO (ref),
DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
DF_REF_FLAGS (ref),
DF_REF_TYPE (ref));
if (DF_REF_LOC (ref))
{
if (flag_dump_noaddr)
fprintf (file, "loc #(#) chain ");
else
fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
(void *)*DF_REF_LOC (ref));
}
else
fprintf (file, "chain ");
df_chain_dump (DF_REF_CHAIN (ref), file);
fprintf (file, "\n");
}
/* Functions for debugging from GDB. */
DEBUG_FUNCTION void
debug_df_insn (rtx_insn *insn)
{
df_insn_debug (insn, true, stderr);
debug_rtx (insn);
}
DEBUG_FUNCTION void
debug_df_reg (rtx reg)
{
df_regno_debug (REGNO (reg), stderr);
}
DEBUG_FUNCTION void
debug_df_regno (unsigned int regno)
{
df_regno_debug (regno, stderr);
}
DEBUG_FUNCTION void
debug_df_ref (df_ref ref)
{
df_ref_debug (ref, stderr);
}
DEBUG_FUNCTION void
debug_df_defno (unsigned int defno)
{
df_ref_debug (DF_DEFS_GET (defno), stderr);
}
DEBUG_FUNCTION void
debug_df_useno (unsigned int defno)
{
df_ref_debug (DF_USES_GET (defno), stderr);
}
DEBUG_FUNCTION void
debug_df_chain (struct df_link *link)
{
df_chain_dump (link, stderr);
fputc ('\n', stderr);
}
|