1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
|
@c Copyright (C) 1988-2013 Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
@ignore
@c man begin INCLUDE
@include gcc-vers.texi
@c man end
@c man begin COPYRIGHT
Copyright @copyright{} 1988-2013 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Funding
Free Software'', the Front-Cover texts being (a) (see below), and with
the Back-Cover Texts being (b) (see below). A copy of the license is
included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
@c man end
@c Set file name and title for the man page.
@setfilename gcc
@settitle GNU project C and C++ compiler
@c man begin SYNOPSIS
gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
[@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
[@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
[@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
[@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
[@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
[@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
Only the most useful options are listed here; see below for the
remainder. @samp{g++} accepts mostly the same options as @samp{gcc}.
@c man end
@c man begin SEEALSO
gpl(7), gfdl(7), fsf-funding(7),
cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
and the Info entries for @file{gcc}, @file{cpp}, @file{as},
@file{ld}, @file{binutils} and @file{gdb}.
@c man end
@c man begin BUGS
For instructions on reporting bugs, see
@w{@value{BUGURL}}.
@c man end
@c man begin AUTHOR
See the Info entry for @command{gcc}, or
@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
for contributors to GCC@.
@c man end
@end ignore
@node Invoking GCC
@chapter GCC Command Options
@cindex GCC command options
@cindex command options
@cindex options, GCC command
@c man begin DESCRIPTION
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking. The ``overall options'' allow you to stop this
process at an intermediate stage. For example, the @option{-c} option
says not to run the linker. Then the output consists of object files
output by the assembler.
Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
@cindex C compilation options
Most of the command-line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.
@cindex C++ compilation options
@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
options for compiling C++ programs.
@cindex grouping options
@cindex options, grouping
The @command{gcc} program accepts options and file names as operands. Many
options have multi-letter names; therefore multiple single-letter options
may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
-v}}.
@cindex order of options
@cindex options, order
You can mix options and other arguments. For the most part, the order
you use doesn't matter. Order does matter when you use several
options of the same kind; for example, if you specify @option{-L} more
than once, the directories are searched in the order specified. Also,
the placement of the @option{-l} option is significant.
Many options have long names starting with @samp{-f} or with
@samp{-W}---for example,
@option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
these have both positive and negative forms; the negative form of
@option{-ffoo} is @option{-fno-foo}. This manual documents
only one of these two forms, whichever one is not the default.
@c man end
@xref{Option Index}, for an index to GCC's options.
@menu
* Option Summary:: Brief list of all options, without explanations.
* Overall Options:: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
* Invoking G++:: Compiling C++ programs.
* C Dialect Options:: Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
and Objective-C++.
* Language Independent Options:: Controlling how diagnostics should be
formatted.
* Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Optimize Options:: How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
Also, getting dependency information for Make.
* Assembler Options:: Passing options to the assembler.
* Link Options:: Specifying libraries and so on.
* Directory Options:: Where to find header files and libraries.
Where to find the compiler executable files.
* Spec Files:: How to pass switches to sub-processes.
* Target Options:: Running a cross-compiler, or an old version of GCC.
* Submodel Options:: Specifying minor hardware or convention variations,
such as 68010 vs 68020.
* Code Gen Options:: Specifying conventions for function calls, data layout
and register usage.
* Environment Variables:: Env vars that affect GCC.
* Precompiled Headers:: Compiling a header once, and using it many times.
@end menu
@c man begin OPTIONS
@node Option Summary
@section Option Summary
Here is a summary of all the options, grouped by type. Explanations are
in the following sections.
@table @emph
@item Overall Options
@xref{Overall Options,,Options Controlling the Kind of Output}.
@gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
-pipe -pass-exit-codes @gol
-x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
--version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
-fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{arg} -fdump-go-spec=@var{file}}
@item C Language Options
@xref{C Dialect Options,,Options Controlling C Dialect}.
@gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
-aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
-fno-asm -fno-builtin -fno-builtin-@var{function} @gol
-fhosted -ffreestanding -fopenmp -fms-extensions -fplan9-extensions @gol
-trigraphs -traditional -traditional-cpp @gol
-fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
-fsigned-bitfields -fsigned-char @gol
-funsigned-bitfields -funsigned-char}
@item C++ Language Options
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
@gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
-fconstexpr-depth=@var{n} -ffriend-injection @gol
-fno-elide-constructors @gol
-fno-enforce-eh-specs @gol
-ffor-scope -fno-for-scope -fno-gnu-keywords @gol
-fno-implicit-templates @gol
-fno-implicit-inline-templates @gol
-fno-implement-inlines -fms-extensions @gol
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
-fno-optional-diags -fpermissive @gol
-fno-pretty-templates @gol
-frepo -fno-rtti -fstats -ftemplate-backtrace-limit=@var{n} @gol
-ftemplate-depth=@var{n} @gol
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++ @gol
-fno-default-inline -fvisibility-inlines-hidden @gol
-fvtable-verify=@var{std|preinit|none} @gol
-fvtv-counts -fvtv-debug @gol
-fvisibility-ms-compat @gol
-fext-numeric-literals @gol
-Wabi -Wconversion-null -Wctor-dtor-privacy @gol
-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
-Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
-Weffc++ -Wstrict-null-sentinel @gol
-Wno-non-template-friend -Wold-style-cast @gol
-Woverloaded-virtual -Wno-pmf-conversions @gol
-Wsign-promo}
@item Objective-C and Objective-C++ Language Options
@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
Objective-C and Objective-C++ Dialects}.
@gccoptlist{-fconstant-string-class=@var{class-name} @gol
-fgnu-runtime -fnext-runtime @gol
-fno-nil-receivers @gol
-fobjc-abi-version=@var{n} @gol
-fobjc-call-cxx-cdtors @gol
-fobjc-direct-dispatch @gol
-fobjc-exceptions @gol
-fobjc-gc @gol
-fobjc-nilcheck @gol
-fobjc-std=objc1 @gol
-freplace-objc-classes @gol
-fzero-link @gol
-gen-decls @gol
-Wassign-intercept @gol
-Wno-protocol -Wselector @gol
-Wstrict-selector-match @gol
-Wundeclared-selector}
@item Language Independent Options
@xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
@gccoptlist{-fmessage-length=@var{n} @gol
-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
-fno-diagnostics-show-option -fno-diagnostics-show-caret}
@item Warning Options
@xref{Warning Options,,Options to Request or Suppress Warnings}.
@gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
-pedantic-errors @gol
-w -Wextra -Wall -Waddress -Waggregate-return @gol
-Waggressive-loop-optimizations -Warray-bounds @gol
-Wno-attributes -Wno-builtin-macro-redefined @gol
-Wc++-compat -Wc++11-compat -Wcast-align -Wcast-qual @gol
-Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
-Wconversion -Wcoverage-mismatch -Wno-cpp -Wno-deprecated @gol
-Wno-deprecated-declarations -Wdisabled-optimization @gol
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
-Wno-endif-labels -Werror -Werror=* @gol
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
-Wformat-security -Wformat-y2k @gol
-Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
-Wignored-qualifiers @gol
-Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
-Winit-self -Winline -Wmaybe-uninitialized @gol
-Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
-Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
-Wlogical-op -Wlong-long @gol
-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers @gol
-Wmissing-include-dirs @gol
-Wno-mudflap @gol
-Wno-multichar -Wnonnull -Wno-overflow @gol
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
-Wpointer-arith -Wno-pointer-to-int-cast @gol
-Wredundant-decls -Wno-return-local-addr @gol
-Wreturn-type -Wsequence-point -Wshadow @gol
-Wsign-compare -Wsign-conversion -Wsizeof-pointer-memaccess @gol
-Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
-Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
-Wmissing-format-attribute @gol
-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand @gol
-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef @gol
-Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
-Wunsuffixed-float-constants -Wunused -Wunused-function @gol
-Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
-Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
-Wunused-but-set-parameter -Wunused-but-set-variable @gol
-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
-Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constant}
@item C and Objective-C-only Warning Options
@gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
-Wold-style-declaration -Wold-style-definition @gol
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
-Wdeclaration-after-statement -Wpointer-sign}
@item Debugging Options
@xref{Debugging Options,,Options for Debugging Your Program or GCC}.
@gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
-fsanitize=@var{style} @gol
-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
-fdisable-ipa-@var{pass_name} @gol
-fdisable-rtl-@var{pass_name} @gol
-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
-fdisable-tree-@var{pass_name} @gol
-fdisable-tree-@var{pass-name}=@var{range-list} @gol
-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
-fdump-translation-unit@r{[}-@var{n}@r{]} @gol
-fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
-fdump-passes @gol
-fdump-statistics @gol
-fdump-tree-all @gol
-fdump-tree-original@r{[}-@var{n}@r{]} @gol
-fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
-fdump-tree-cfg -fdump-tree-alias @gol
-fdump-tree-ch @gol
-fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
-fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
-fdump-tree-gimple@r{[}-raw@r{]} -fdump-tree-mudflap@r{[}-@var{n}@r{]} @gol
-fdump-tree-dom@r{[}-@var{n}@r{]} @gol
-fdump-tree-dse@r{[}-@var{n}@r{]} @gol
-fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
-fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
-fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
-fdump-tree-nrv -fdump-tree-vect @gol
-fdump-tree-sink @gol
-fdump-tree-sra@r{[}-@var{n}@r{]} @gol
-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
-fdump-tree-fre@r{[}-@var{n}@r{]} @gol
-fdump-tree-vtable-verify @gol
-fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
-ftree-vectorizer-verbose=@var{n} @gol
-fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
-fdump-final-insns=@var{file} @gol
-fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
-feliminate-unused-debug-symbols -femit-class-debug-always @gol
-fenable-@var{kind}-@var{pass} @gol
-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
-fdebug-types-section -fmem-report-wpa @gol
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
-fopt-info @gol
-fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
-frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
-fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
-g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
-ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
-gvms -gxcoff -gxcoff+ @gol
-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
-fdebug-prefix-map=@var{old}=@var{new} @gol
-femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
-p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
-print-multi-directory -print-multi-lib -print-multi-os-directory @gol
-print-prog-name=@var{program} -print-search-dirs -Q @gol
-print-sysroot -print-sysroot-headers-suffix @gol
-save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
@item Optimization Options
@xref{Optimize Options,,Options that Control Optimization}.
@gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
-falign-jumps[=@var{n}] @gol
-falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
-fassociative-math -fauto-inc-dec -fbranch-probabilities @gol
-fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
-fbtr-bb-exclusive -fcaller-saves @gol
-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
-fcompare-elim -fcprop-registers -fcrossjumping @gol
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
-fcx-limited-range @gol
-fdata-sections -fdce -fdelayed-branch @gol
-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively -fdse @gol
-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
-fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
-fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
-fif-conversion2 -findirect-inlining @gol
-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
-finline-small-functions -fipa-cp -fipa-cp-clone @gol
-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference @gol
-fira-algorithm=@var{algorithm} @gol
-fira-region=@var{region} -fira-hoist-pressure @gol
-fira-loop-pressure -fno-ira-share-save-slots @gol
-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
-fivopts -fkeep-inline-functions -fkeep-static-consts @gol
-floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize @gol
-floop-parallelize-all -flto -flto-compression-level @gol
-flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
-fmove-loop-invariants fmudflap -fmudflapir -fmudflapth -fno-branch-count-reg @gol
-fno-default-inline @gol
-fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls @gol
-fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
-fprefetch-loop-arrays -fprofile-report @gol
-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
-fprofile-generate=@var{path} @gol
-fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
-freciprocal-math -free -fregmove -frename-registers -freorder-blocks @gol
-freorder-blocks-and-partition -freorder-functions @gol
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
-frounding-math -fsched2-use-superblocks -fsched-pressure @gol
-fsched-spec-load -fsched-spec-load-dangerous @gol
-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
-fsched-group-heuristic -fsched-critical-path-heuristic @gol
-fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
-fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
-fschedule-insns -fschedule-insns2 -fsection-anchors @gol
-fselective-scheduling -fselective-scheduling2 @gol
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector @gol
-fstack-protector-all -fstack-protector-strong -fstrict-aliasing @gol
-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
-ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
-ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
-ftree-loop-if-convert-stores -ftree-loop-im @gol
-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
-ftree-switch-conversion -ftree-tail-merge @gol
-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp @gol
-funit-at-a-time -funroll-all-loops -funroll-loops @gol
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb @gol
-fwhole-program -fwpa -fuse-ld=@var{linker} -fuse-linker-plugin @gol
--param @var{name}=@var{value}
-O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
@item Preprocessor Options
@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
@gccoptlist{-A@var{question}=@var{answer} @gol
-A-@var{question}@r{[}=@var{answer}@r{]} @gol
-C -dD -dI -dM -dN @gol
-D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
-idirafter @var{dir} @gol
-include @var{file} -imacros @var{file} @gol
-iprefix @var{file} -iwithprefix @var{dir} @gol
-iwithprefixbefore @var{dir} -isystem @var{dir} @gol
-imultilib @var{dir} -isysroot @var{dir} @gol
-M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
-remap -trigraphs -undef -U@var{macro} @gol
-Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
@item Assembler Option
@xref{Assembler Options,,Passing Options to the Assembler}.
@gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
@item Linker Options
@xref{Link Options,,Options for Linking}.
@gccoptlist{@var{object-file-name} -l@var{library} @gol
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
-s -static -static-libgcc -static-libstdc++ @gol
-static-libasan -static-libtsan -static-libubsan @gol
-shared -shared-libgcc -symbolic @gol
-T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
-u @var{symbol}}
@item Directory Options
@xref{Directory Options,,Options for Directory Search}.
@gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
-iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
--sysroot=@var{dir} --no-sysroot-suffix}
@item Machine Dependent Options
@xref{Submodel Options,,Hardware Models and Configurations}.
@c This list is ordered alphanumerically by subsection name.
@c Try and put the significant identifier (CPU or system) first,
@c so users have a clue at guessing where the ones they want will be.
@emph{AArch64 Options}
@gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
-mgeneral-regs-only @gol
-mcmodel=tiny -mcmodel=small -mcmodel=large @gol
-mstrict-align @gol
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
-mtls-dialect=desc -mtls-dialect=traditional @gol
-march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
@emph{Adapteva Epiphany Options}
@gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
-mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
-mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
-mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
-msplit-vecmove-early -m1reg-@var{reg}}
@emph{ARM Options}
@gccoptlist{-mapcs-frame -mno-apcs-frame @gol
-mabi=@var{name} @gol
-mapcs-stack-check -mno-apcs-stack-check @gol
-mapcs-float -mno-apcs-float @gol
-mapcs-reentrant -mno-apcs-reentrant @gol
-msched-prolog -mno-sched-prolog @gol
-mlittle-endian -mbig-endian -mwords-little-endian @gol
-mfloat-abi=@var{name} @gol
-mfp16-format=@var{name}
-mthumb-interwork -mno-thumb-interwork @gol
-mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
-mstructure-size-boundary=@var{n} @gol
-mabort-on-noreturn @gol
-mlong-calls -mno-long-calls @gol
-msingle-pic-base -mno-single-pic-base @gol
-mpic-register=@var{reg} @gol
-mnop-fun-dllimport @gol
-mpoke-function-name @gol
-mthumb -marm @gol
-mtpcs-frame -mtpcs-leaf-frame @gol
-mcaller-super-interworking -mcallee-super-interworking @gol
-mtp=@var{name} -mtls-dialect=@var{dialect} @gol
-mword-relocations @gol
-mfix-cortex-m3-ldrd @gol
-munaligned-access @gol
-mneon-for-64bits @gol
-mrestrict-it}
@emph{AVR Options}
@gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
-mcall-prologues -mint8 -mno-interrupts -mrelax @gol
-mstrict-X -mtiny-stack -Waddr-space-convert}
@emph{Blackfin Options}
@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
-mno-id-shared-library -mshared-library-id=@var{n} @gol
-mleaf-id-shared-library -mno-leaf-id-shared-library @gol
-msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
-micplb}
@emph{C6X Options}
@gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
-msim -msdata=@var{sdata-type}}
@emph{CRIS Options}
@gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
-mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
-mstack-align -mdata-align -mconst-align @gol
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
-melf -maout -melinux -mlinux -sim -sim2 @gol
-mmul-bug-workaround -mno-mul-bug-workaround}
@emph{CR16 Options}
@gccoptlist{-mmac @gol
-mcr16cplus -mcr16c @gol
-msim -mint32 -mbit-ops
-mdata-model=@var{model}}
@emph{Darwin Options}
@gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
-arch_only -bind_at_load -bundle -bundle_loader @gol
-client_name -compatibility_version -current_version @gol
-dead_strip @gol
-dependency-file -dylib_file -dylinker_install_name @gol
-dynamic -dynamiclib -exported_symbols_list @gol
-filelist -flat_namespace -force_cpusubtype_ALL @gol
-force_flat_namespace -headerpad_max_install_names @gol
-iframework @gol
-image_base -init -install_name -keep_private_externs @gol
-multi_module -multiply_defined -multiply_defined_unused @gol
-noall_load -no_dead_strip_inits_and_terms @gol
-nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
-pagezero_size -prebind -prebind_all_twolevel_modules @gol
-private_bundle -read_only_relocs -sectalign @gol
-sectobjectsymbols -whyload -seg1addr @gol
-sectcreate -sectobjectsymbols -sectorder @gol
-segaddr -segs_read_only_addr -segs_read_write_addr @gol
-seg_addr_table -seg_addr_table_filename -seglinkedit @gol
-segprot -segs_read_only_addr -segs_read_write_addr @gol
-single_module -static -sub_library -sub_umbrella @gol
-twolevel_namespace -umbrella -undefined @gol
-unexported_symbols_list -weak_reference_mismatches @gol
-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
-mkernel -mone-byte-bool}
@emph{DEC Alpha Options}
@gccoptlist{-mno-fp-regs -msoft-float @gol
-mieee -mieee-with-inexact -mieee-conformant @gol
-mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
-mtrap-precision=@var{mode} -mbuild-constants @gol
-mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
-mbwx -mmax -mfix -mcix @gol
-mfloat-vax -mfloat-ieee @gol
-mexplicit-relocs -msmall-data -mlarge-data @gol
-msmall-text -mlarge-text @gol
-mmemory-latency=@var{time}}
@emph{FR30 Options}
@gccoptlist{-msmall-model -mno-lsim}
@emph{FRV Options}
@gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
-mhard-float -msoft-float @gol
-malloc-cc -mfixed-cc -mdword -mno-dword @gol
-mdouble -mno-double @gol
-mmedia -mno-media -mmuladd -mno-muladd @gol
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
-mlinked-fp -mlong-calls -malign-labels @gol
-mlibrary-pic -macc-4 -macc-8 @gol
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
-moptimize-membar -mno-optimize-membar @gol
-mscc -mno-scc -mcond-exec -mno-cond-exec @gol
-mvliw-branch -mno-vliw-branch @gol
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
-mno-nested-cond-exec -mtomcat-stats @gol
-mTLS -mtls @gol
-mcpu=@var{cpu}}
@emph{GNU/Linux Options}
@gccoptlist{-mglibc -muclibc -mbionic -mandroid @gol
-tno-android-cc -tno-android-ld}
@emph{H8/300 Options}
@gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
@emph{HPPA Options}
@gccoptlist{-march=@var{architecture-type} @gol
-mdisable-fpregs -mdisable-indexing @gol
-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
-mfixed-range=@var{register-range} @gol
-mjump-in-delay -mlinker-opt -mlong-calls @gol
-mlong-load-store -mno-disable-fpregs @gol
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
-mno-jump-in-delay -mno-long-load-store @gol
-mno-portable-runtime -mno-soft-float @gol
-mno-space-regs -msoft-float -mpa-risc-1-0 @gol
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
-mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
-munix=@var{unix-std} -nolibdld -static -threads}
@emph{i386 and x86-64 Options}
@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
-mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
-mfpmath=@var{unit} @gol
-masm=@var{dialect} -mno-fancy-math-387 @gol
-mno-fp-ret-in-387 -msoft-float @gol
-mno-wide-multiply -mrtd -malign-double @gol
-mpreferred-stack-boundary=@var{num} @gol
-mincoming-stack-boundary=@var{num} @gol
-mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
-mrecip -mrecip=@var{opt} @gol
-mvzeroupper -mprefer-avx128 @gol
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd @gol
-maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
-mbmi2 -mrtm -mlwp -mthreads @gol
-mno-align-stringops -minline-all-stringops @gol
-minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
-mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy}
-mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
-m96bit-long-double -mlong-double-64 -mlong-double-80 @gol
-mregparm=@var{num} -msseregparm @gol
-mveclibabi=@var{type} -mvect8-ret-in-mem @gol
-mpc32 -mpc64 -mpc80 -mstackrealign @gol
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
-mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
-m32 -m64 -mx32 -mlarge-data-threshold=@var{num} @gol
-msse2avx -mfentry -m8bit-idiv @gol
-mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
-mstack-protector-guard=@var{guard}}
@emph{i386 and x86-64 Windows Options}
@gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
-mnop-fun-dllimport -mthread @gol
-municode -mwin32 -mwindows -fno-set-stack-executable}
@emph{IA-64 Options}
@gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
-mconstant-gp -mauto-pic -mfused-madd @gol
-minline-float-divide-min-latency @gol
-minline-float-divide-max-throughput @gol
-mno-inline-float-divide @gol
-minline-int-divide-min-latency @gol
-minline-int-divide-max-throughput @gol
-mno-inline-int-divide @gol
-minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
-mno-inline-sqrt @gol
-mdwarf2-asm -mearly-stop-bits @gol
-mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
-mtune=@var{cpu-type} -milp32 -mlp64 @gol
-msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
-msched-spec-ldc -msched-spec-control-ldc @gol
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
@emph{LM32 Options}
@gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
-msign-extend-enabled -muser-enabled}
@emph{M32R/D Options}
@gccoptlist{-m32r2 -m32rx -m32r @gol
-mdebug @gol
-malign-loops -mno-align-loops @gol
-missue-rate=@var{number} @gol
-mbranch-cost=@var{number} @gol
-mmodel=@var{code-size-model-type} @gol
-msdata=@var{sdata-type} @gol
-mno-flush-func -mflush-func=@var{name} @gol
-mno-flush-trap -mflush-trap=@var{number} @gol
-G @var{num}}
@emph{M32C Options}
@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
@emph{M680x0 Options}
@gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune}
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
-mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
-malign-int -mstrict-align -msep-data -mno-sep-data @gol
-mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
-mxgot -mno-xgot}
@emph{MCore Options}
@gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
-m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
@emph{MeP Options}
@gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
-mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
-mtiny=@var{n}}
@emph{MicroBlaze Options}
@gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
@emph{MIPS Options}
@gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 @gol
-mips64 -mips64r2 @gol
-mips16 -mno-mips16 -mflip-mips16 @gol
-minterlink-compressed -mno-interlink-compressed @gol
-minterlink-mips16 -mno-interlink-mips16 @gol
-mabi=@var{abi} -mabicalls -mno-abicalls @gol
-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float @gol
-mno-float -msingle-float -mdouble-float @gol
-mabs=@var{mode} -mnan=@var{encoding} @gol
-mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
-mmcu -mmno-mcu @gol
-meva -mno-eva @gol
-mmicromips -mno-micromips @gol
-mfpu=@var{fpu-type} @gol
-msmartmips -mno-smartmips @gol
-mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
-mlong64 -mlong32 -msym32 -mno-sym32 @gol
-G@var{num} -mlocal-sdata -mno-local-sdata @gol
-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
-membedded-data -mno-embedded-data @gol
-muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
-mcode-readable=@var{setting} @gol
-msplit-addresses -mno-split-addresses @gol
-mexplicit-relocs -mno-explicit-relocs @gol
-mcheck-zero-division -mno-check-zero-division @gol
-mdivide-traps -mdivide-breaks @gol
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
-mfix-24k -mno-fix-24k @gol
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120 @gol
-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
-mflush-func=@var{func} -mno-flush-func @gol
-mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
-mfp-exceptions -mno-fp-exceptions @gol
-mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
@emph{MMIX Options}
@gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
-melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
-mno-base-addresses -msingle-exit -mno-single-exit}
@emph{MN10300 Options}
@gccoptlist{-mmult-bug -mno-mult-bug @gol
-mno-am33 -mam33 -mam33-2 -mam34 @gol
-mtune=@var{cpu-type} @gol
-mreturn-pointer-on-d0 @gol
-mno-crt0 -mrelax -mliw -msetlb}
@emph{Moxie Options}
@gccoptlist{-meb -mel -mno-crt0}
@emph{PDP-11 Options}
@gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
-mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
-mint16 -mno-int32 -mfloat32 -mno-float64 @gol
-mfloat64 -mno-float32 -mabshi -mno-abshi @gol
-mbranch-expensive -mbranch-cheap @gol
-munix-asm -mdec-asm}
@emph{picoChip Options}
@gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
-msymbol-as-address -mno-inefficient-warnings}
@emph{PowerPC Options}
See RS/6000 and PowerPC Options.
@emph{RL78 Options}
@gccoptlist{-msim -mmul=none -mmul=g13 -mmul=rl78}
@emph{RS/6000 and PowerPC Options}
@gccoptlist{-mcpu=@var{cpu-type} @gol
-mtune=@var{cpu-type} @gol
-mcmodel=@var{code-model} @gol
-mpowerpc64 @gol
-maltivec -mno-altivec @gol
-mpowerpc-gpopt -mno-powerpc-gpopt @gol
-mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
-mfprnd -mno-fprnd @gol
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
-m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
-malign-power -malign-natural @gol
-msoft-float -mhard-float -mmultiple -mno-multiple @gol
-msingle-float -mdouble-float -msimple-fpu @gol
-mstring -mno-string -mupdate -mno-update @gol
-mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
-mstrict-align -mno-strict-align -mrelocatable @gol
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
-mprioritize-restricted-insns=@var{priority} @gol
-msched-costly-dep=@var{dependence_type} @gol
-minsert-sched-nops=@var{scheme} @gol
-mcall-sysv -mcall-netbsd @gol
-maix-struct-return -msvr4-struct-return @gol
-mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
-mblock-move-inline-limit=@var{num} @gol
-misel -mno-isel @gol
-misel=yes -misel=no @gol
-mspe -mno-spe @gol
-mspe=yes -mspe=no @gol
-mpaired @gol
-mgen-cell-microcode -mwarn-cell-microcode @gol
-mvrsave -mno-vrsave @gol
-mmulhw -mno-mulhw @gol
-mdlmzb -mno-dlmzb @gol
-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
-mprototype -mno-prototype @gol
-msim -mmvme -mads -myellowknife -memb -msdata @gol
-msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
-mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
-mno-recip-precision @gol
-mveclibabi=@var{type} -mfriz -mno-friz @gol
-mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
-msave-toc-indirect -mno-save-toc-indirect @gol
-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
-mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
-mquad-memory -mno-quad-memory @gol
-mcompat-align-parm -mno-compat-align-parm}
@emph{RX Options}
@gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
-mcpu=@gol
-mbig-endian-data -mlittle-endian-data @gol
-msmall-data @gol
-msim -mno-sim@gol
-mas100-syntax -mno-as100-syntax@gol
-mrelax@gol
-mmax-constant-size=@gol
-mint-register=@gol
-mpid@gol
-mno-warn-multiple-fast-interrupts@gol
-msave-acc-in-interrupts}
@emph{S/390 and zSeries Options}
@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
-mlong-double-64 -mlong-double-128 @gol
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
-m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard}
@emph{Score Options}
@gccoptlist{-meb -mel @gol
-mnhwloop @gol
-muls @gol
-mmac @gol
-mscore5 -mscore5u -mscore7 -mscore7d}
@emph{SH Options}
@gccoptlist{-m1 -m2 -m2e @gol
-m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
-m3 -m3e @gol
-m4-nofpu -m4-single-only -m4-single -m4 @gol
-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
-m5-64media -m5-64media-nofpu @gol
-m5-32media -m5-32media-nofpu @gol
-m5-compact -m5-compact-nofpu @gol
-mb -ml -mdalign -mrelax @gol
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
-mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
-mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
-maccumulate-outgoing-args -minvalid-symbols @gol
-matomic-model=@var{atomic-model} @gol
-mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch -mcbranchdi -mcmpeqdi @gol
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
-mpretend-cmove -mtas}
@emph{Solaris 2 Options}
@gccoptlist{-mimpure-text -mno-impure-text @gol
-pthreads -pthread}
@emph{SPARC Options}
@gccoptlist{-mcpu=@var{cpu-type} @gol
-mtune=@var{cpu-type} @gol
-mcmodel=@var{code-model} @gol
-mmemory-model=@var{mem-model} @gol
-m32 -m64 -mapp-regs -mno-app-regs @gol
-mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
-mfpu -mno-fpu -mhard-float -msoft-float @gol
-mhard-quad-float -msoft-quad-float @gol
-mstack-bias -mno-stack-bias @gol
-munaligned-doubles -mno-unaligned-doubles @gol
-mv8plus -mno-v8plus -mvis -mno-vis @gol
-mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
-mcbcond -mno-cbcond @gol
-mfmaf -mno-fmaf -mpopc -mno-popc @gol
-mfix-at697f -mfix-ut699}
@emph{SPU Options}
@gccoptlist{-mwarn-reloc -merror-reloc @gol
-msafe-dma -munsafe-dma @gol
-mbranch-hints @gol
-msmall-mem -mlarge-mem -mstdmain @gol
-mfixed-range=@var{register-range} @gol
-mea32 -mea64 @gol
-maddress-space-conversion -mno-address-space-conversion @gol
-mcache-size=@var{cache-size} @gol
-matomic-updates -mno-atomic-updates}
@emph{System V Options}
@gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
@emph{TILE-Gx Options}
@gccoptlist{-mcpu=@var{cpu} -m32 -m64 -mcmodel=@var{code-model}}
@emph{TILEPro Options}
@gccoptlist{-mcpu=@var{cpu} -m32}
@emph{V850 Options}
@gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
-mprolog-function -mno-prolog-function -mspace @gol
-mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
-mapp-regs -mno-app-regs @gol
-mdisable-callt -mno-disable-callt @gol
-mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
-mv850e -mv850 -mv850e3v5 @gol
-mloop @gol
-mrelax @gol
-mlong-jumps @gol
-msoft-float @gol
-mhard-float @gol
-mgcc-abi @gol
-mrh850-abi @gol
-mbig-switch}
@emph{VAX Options}
@gccoptlist{-mg -mgnu -munix}
@emph{VMS Options}
@gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
-mpointer-size=@var{size}}
@emph{VxWorks Options}
@gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
-Xbind-lazy -Xbind-now}
@emph{x86-64 Options}
See i386 and x86-64 Options.
@emph{Xstormy16 Options}
@gccoptlist{-msim}
@emph{Xtensa Options}
@gccoptlist{-mconst16 -mno-const16 @gol
-mfused-madd -mno-fused-madd @gol
-mforce-no-pic @gol
-mserialize-volatile -mno-serialize-volatile @gol
-mtext-section-literals -mno-text-section-literals @gol
-mtarget-align -mno-target-align @gol
-mlongcalls -mno-longcalls}
@emph{zSeries Options}
See S/390 and zSeries Options.
@item Code Generation Options
@xref{Code Gen Options,,Options for Code Generation Conventions}.
@gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
-ffixed-@var{reg} -fexceptions @gol
-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
-fasynchronous-unwind-tables @gol
-finhibit-size-directive -finstrument-functions @gol
-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
-fno-common -fno-ident @gol
-fpcc-struct-return -fpic -fPIC -fpie -fPIE @gol
-fno-jump-tables @gol
-frecord-gcc-switches @gol
-freg-struct-return -fshort-enums @gol
-fshort-double -fshort-wchar @gol
-fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
-fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
-fno-stack-limit -fsplit-stack @gol
-fleading-underscore -ftls-model=@var{model} @gol
-fstack-reuse=@var{reuse_level} @gol
-ftrapv -fwrapv -fbounds-check @gol
-fvisibility -fstrict-volatile-bitfields -fsync-libcalls}
@end table
@menu
* Overall Options:: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
* C Dialect Options:: Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
and Objective-C++.
* Language Independent Options:: Controlling how diagnostics should be
formatted.
* Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Optimize Options:: How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
Also, getting dependency information for Make.
* Assembler Options:: Passing options to the assembler.
* Link Options:: Specifying libraries and so on.
* Directory Options:: Where to find header files and libraries.
Where to find the compiler executable files.
* Spec Files:: How to pass switches to sub-processes.
* Target Options:: Running a cross-compiler, or an old version of GCC.
@end menu
@node Overall Options
@section Options Controlling the Kind of Output
Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.
@cindex file name suffix
For any given input file, the file name suffix determines what kind of
compilation is done:
@table @gcctabopt
@item @var{file}.c
C source code that must be preprocessed.
@item @var{file}.i
C source code that should not be preprocessed.
@item @var{file}.ii
C++ source code that should not be preprocessed.
@item @var{file}.m
Objective-C source code. Note that you must link with the @file{libobjc}
library to make an Objective-C program work.
@item @var{file}.mi
Objective-C source code that should not be preprocessed.
@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code. Note that you must link with the @file{libobjc}
library to make an Objective-C++ program work. Note that @samp{.M} refers
to a literal capital M@.
@item @var{file}.mii
Objective-C++ source code that should not be preprocessed.
@item @var{file}.h
C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header (default), or C, C++ header file to be turned into an
Ada spec (via the @option{-fdump-ada-spec} switch).
@item @var{file}.cc
@itemx @var{file}.cp
@itemx @var{file}.cxx
@itemx @var{file}.cpp
@itemx @var{file}.CPP
@itemx @var{file}.c++
@itemx @var{file}.C
C++ source code that must be preprocessed. Note that in @samp{.cxx},
the last two letters must both be literally @samp{x}. Likewise,
@samp{.C} refers to a literal capital C@.
@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code that must be preprocessed.
@item @var{file}.mii
Objective-C++ source code that should not be preprocessed.
@item @var{file}.hh
@itemx @var{file}.H
@itemx @var{file}.hp
@itemx @var{file}.hxx
@itemx @var{file}.hpp
@itemx @var{file}.HPP
@itemx @var{file}.h++
@itemx @var{file}.tcc
C++ header file to be turned into a precompiled header or Ada spec.
@item @var{file}.f
@itemx @var{file}.for
@itemx @var{file}.ftn
Fixed form Fortran source code that should not be preprocessed.
@item @var{file}.F
@itemx @var{file}.FOR
@itemx @var{file}.fpp
@itemx @var{file}.FPP
@itemx @var{file}.FTN
Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).
@item @var{file}.f90
@itemx @var{file}.f95
@itemx @var{file}.f03
@itemx @var{file}.f08
Free form Fortran source code that should not be preprocessed.
@item @var{file}.F90
@itemx @var{file}.F95
@itemx @var{file}.F03
@itemx @var{file}.F08
Free form Fortran source code that must be preprocessed (with the
traditional preprocessor).
@item @var{file}.go
Go source code.
@c FIXME: Descriptions of Java file types.
@c @var{file}.java
@c @var{file}.class
@c @var{file}.zip
@c @var{file}.jar
@item @var{file}.ads
Ada source code file that contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also
called @dfn{specs}.
@item @var{file}.adb
Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called @dfn{bodies}.
@c GCC also knows about some suffixes for languages not yet included:
@c Pascal:
@c @var{file}.p
@c @var{file}.pas
@c Ratfor:
@c @var{file}.r
@item @var{file}.s
Assembler code.
@item @var{file}.S
@itemx @var{file}.sx
Assembler code that must be preprocessed.
@item @var{other}
An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
@end table
@opindex x
You can specify the input language explicitly with the @option{-x} option:
@table @gcctabopt
@item -x @var{language}
Specify explicitly the @var{language} for the following input files
(rather than letting the compiler choose a default based on the file
name suffix). This option applies to all following input files until
the next @option{-x} option. Possible values for @var{language} are:
@smallexample
c c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
f77 f77-cpp-input f95 f95-cpp-input
go
java
@end smallexample
@item -x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if @option{-x}
has not been used at all).
@item -pass-exit-codes
@opindex pass-exit-codes
Normally the @command{gcc} program exits with the code of 1 if any
phase of the compiler returns a non-success return code. If you specify
@option{-pass-exit-codes}, the @command{gcc} program instead returns with
the numerically highest error produced by any phase returning an error
indication. The C, C++, and Fortran front ends return 4 if an internal
compiler error is encountered.
@end table
If you only want some of the stages of compilation, you can use
@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
one of the options @option{-c}, @option{-S}, or @option{-E} to say where
@command{gcc} is to stop. Note that some combinations (for example,
@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
@table @gcctabopt
@item -c
@opindex c
Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
By default, the object file name for a source file is made by replacing
the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
Unrecognized input files, not requiring compilation or assembly, are
ignored.
@item -S
@opindex S
Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each non-assembler input
file specified.
By default, the assembler file name for a source file is made by
replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
Input files that don't require compilation are ignored.
@item -E
@opindex E
Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
Input files that don't require preprocessing are ignored.
@cindex output file option
@item -o @var{file}
@opindex o
Place output in file @var{file}. This applies to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.
If @option{-o} is not specified, the default is to put an executable
file in @file{a.out}, the object file for
@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
assembler file in @file{@var{source}.s}, a precompiled header file in
@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
standard output.
@item -v
@opindex v
Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
@item -###
@opindex ###
Like @option{-v} except the commands are not executed and arguments
are quoted unless they contain only alphanumeric characters or @code{./-_}.
This is useful for shell scripts to capture the driver-generated command lines.
@item -pipe
@opindex pipe
Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.
@item --help
@opindex help
Print (on the standard output) a description of the command-line options
understood by @command{gcc}. If the @option{-v} option is also specified
then @option{--help} is also passed on to the various processes
invoked by @command{gcc}, so that they can display the command-line options
they accept. If the @option{-Wextra} option has also been specified
(prior to the @option{--help} option), then command-line options that
have no documentation associated with them are also displayed.
@item --target-help
@opindex target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific
information may also be printed.
@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
Print (on the standard output) a description of the command-line
options understood by the compiler that fit into all specified classes
and qualifiers. These are the supported classes:
@table @asis
@item @samp{optimizers}
Display all of the optimization options supported by the
compiler.
@item @samp{warnings}
Display all of the options controlling warning messages
produced by the compiler.
@item @samp{target}
Display target-specific options. Unlike the
@option{--target-help} option however, target-specific options of the
linker and assembler are not displayed. This is because those
tools do not currently support the extended @option{--help=} syntax.
@item @samp{params}
Display the values recognized by the @option{--param}
option.
@item @var{language}
Display the options supported for @var{language}, where
@var{language} is the name of one of the languages supported in this
version of GCC@.
@item @samp{common}
Display the options that are common to all languages.
@end table
These are the supported qualifiers:
@table @asis
@item @samp{undocumented}
Display only those options that are undocumented.
@item @samp{joined}
Display options taking an argument that appears after an equal
sign in the same continuous piece of text, such as:
@samp{--help=target}.
@item @samp{separate}
Display options taking an argument that appears as a separate word
following the original option, such as: @samp{-o output-file}.
@end table
Thus for example to display all the undocumented target-specific
switches supported by the compiler, use:
@smallexample
--help=target,undocumented
@end smallexample
The sense of a qualifier can be inverted by prefixing it with the
@samp{^} character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument) that have a description, use:
@smallexample
--help=warnings,^joined,^undocumented
@end smallexample
The argument to @option{--help=} should not consist solely of inverted
qualifiers.
Combining several classes is possible, although this usually
restricts the output so much that there is nothing to display. One
case where it does work, however, is when one of the classes is
@var{target}. For example, to display all the target-specific
optimization options, use:
@smallexample
--help=target,optimizers
@end smallexample
The @option{--help=} option can be repeated on the command line. Each
successive use displays its requested class of options, skipping
those that have already been displayed.
If the @option{-Q} option appears on the command line before the
@option{--help=} option, then the descriptive text displayed by
@option{--help=} is changed. Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the @option{--help=} option is used).
Here is a truncated example from the ARM port of @command{gcc}:
@smallexample
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]
@end smallexample
The output is sensitive to the effects of previous command-line
options, so for example it is possible to find out which optimizations
are enabled at @option{-O2} by using:
@smallexample
-Q -O2 --help=optimizers
@end smallexample
Alternatively you can discover which binary optimizations are enabled
by @option{-O3} by using:
@smallexample
gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
@end smallexample
@item -no-canonical-prefixes
@opindex no-canonical-prefixes
Do not expand any symbolic links, resolve references to @samp{/../}
or @samp{/./}, or make the path absolute when generating a relative
prefix.
@item --version
@opindex version
Display the version number and copyrights of the invoked GCC@.
@item -wrapper
@opindex wrapper
Invoke all subcommands under a wrapper program. The name of the
wrapper program and its parameters are passed as a comma separated
list.
@smallexample
gcc -c t.c -wrapper gdb,--args
@end smallexample
@noindent
This invokes all subprograms of @command{gcc} under
@samp{gdb --args}, thus the invocation of @command{cc1} is
@samp{gdb --args cc1 @dots{}}.
@item -fplugin=@var{name}.so
Load the plugin code in file @var{name}.so, assumed to be a
shared object to be dlopen'd by the compiler. The base name of
the shared object file is used to identify the plugin for the
purposes of argument parsing (See
@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
Each plugin should define the callback functions specified in the
Plugins API.
@item -fplugin-arg-@var{name}-@var{key}=@var{value}
Define an argument called @var{key} with a value of @var{value}
for the plugin called @var{name}.
@item -fdump-ada-spec@r{[}-slim@r{]}
For C and C++ source and include files, generate corresponding Ada
specs. @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
GNAT User's Guide}, which provides detailed documentation on this feature.
@item -fdump-go-spec=@var{file}
For input files in any language, generate corresponding Go
declarations in @var{file}. This generates Go @code{const},
@code{type}, @code{var}, and @code{func} declarations which may be a
useful way to start writing a Go interface to code written in some
other language.
@include @value{srcdir}/../libiberty/at-file.texi
@end table
@node Invoking G++
@section Compiling C++ Programs
@cindex suffixes for C++ source
@cindex C++ source file suffixes
C++ source files conventionally use one of the suffixes @samp{.C},
@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
@samp{.H}, or (for shared template code) @samp{.tcc}; and
preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name @command{gcc}).
@findex g++
@findex c++
However, the use of @command{gcc} does not add the C++ library.
@command{g++} is a program that calls GCC and automatically specifies linking
against the C++ library. It treats @samp{.c},
@samp{.h} and @samp{.i} files as C++ source files instead of C source
files unless @option{-x} is used. This program is also useful when
precompiling a C header file with a @samp{.h} extension for use in C++
compilations. On many systems, @command{g++} is also installed with
the name @command{c++}.
@cindex invoking @command{g++}
When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs.
@xref{C Dialect Options,,Options Controlling C Dialect}, for
explanations of options for languages related to C@.
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
explanations of options that are meaningful only for C++ programs.
@node C Dialect Options
@section Options Controlling C Dialect
@cindex dialect options
@cindex language dialect options
@cindex options, dialect
The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:
@table @gcctabopt
@cindex ANSI support
@cindex ISO support
@item -ansi
@opindex ansi
In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
equivalent to @option{-std=c++98}.
This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the @code{asm} and @code{typeof} keywords, and
predefined macros such as @code{unix} and @code{vax} that identify the
type of system you are using. It also enables the undesirable and
rarely used ISO trigraph feature. For the C compiler,
it disables recognition of C++ style @samp{//} comments as well as
the @code{inline} keyword.
The alternate keywords @code{__asm__}, @code{__extension__},
@code{__inline__} and @code{__typeof__} continue to work despite
@option{-ansi}. You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with @option{-ansi}. Alternate predefined macros
such as @code{__unix__} and @code{__vax__} are also available, with or
without @option{-ansi}.
The @option{-ansi} option does not cause non-ISO programs to be
rejected gratuitously. For that, @option{-Wpedantic} is required in
addition to @option{-ansi}. @xref{Warning Options}.
The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
option is used. Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.
Functions that are normally built in but do not have semantics
defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
functions when @option{-ansi} is used. @xref{Other Builtins,,Other
built-in functions provided by GCC}, for details of the functions
affected.
@item -std=
@opindex std
Determine the language standard. @xref{Standards,,Language Standards
Supported by GCC}, for details of these standard versions. This option
is currently only supported when compiling C or C++.
The compiler can accept several base standards, such as @samp{c90} or
@samp{c++98}, and GNU dialects of those standards, such as
@samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
compiler accepts all programs following that standard plus those
using GNU extensions that do not contradict it. For example,
@option{-std=c90} turns off certain features of GCC that are
incompatible with ISO C90, such as the @code{asm} and @code{typeof}
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a @code{?:}
expression. On the other hand, when a GNU dialect of a standard is
specified, all features supported by the compiler are enabled, even when
those features change the meaning of the base standard. As a result, some
strict-conforming programs may be rejected. The particular standard
is used by @option{-Wpedantic} to identify which features are GNU
extensions given that version of the standard. For example
@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
comments, while @option{-std=gnu99 -Wpedantic} does not.
A value for this option must be provided; possible values are
@table @samp
@item c90
@itemx c89
@itemx iso9899:1990
Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as @option{-ansi} for C code.
@item iso9899:199409
ISO C90 as modified in amendment 1.
@item c99
@itemx c9x
@itemx iso9899:1999
@itemx iso9899:199x
ISO C99. Note that this standard is not yet fully supported; see
@w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
names @samp{c9x} and @samp{iso9899:199x} are deprecated.
@item c11
@itemx c1x
@itemx iso9899:2011
ISO C11, the 2011 revision of the ISO C standard.
Support is incomplete and experimental. The name @samp{c1x} is
deprecated.
@item gnu90
@itemx gnu89
GNU dialect of ISO C90 (including some C99 features). This
is the default for C code.
@item gnu99
@itemx gnu9x
GNU dialect of ISO C99. When ISO C99 is fully implemented in GCC,
this will become the default. The name @samp{gnu9x} is deprecated.
@item gnu11
@itemx gnu1x
GNU dialect of ISO C11. Support is incomplete and experimental. The
name @samp{gnu1x} is deprecated.
@item c++98
@itemx c++03
The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
additional defect reports. Same as @option{-ansi} for C++ code.
@item gnu++98
@itemx gnu++03
GNU dialect of @option{-std=c++98}. This is the default for
C++ code.
@item c++11
@itemx c++0x
The 2011 ISO C++ standard plus amendments. Support for C++11 is still
experimental, and may change in incompatible ways in future releases.
The name @samp{c++0x} is deprecated.
@item gnu++11
@itemx gnu++0x
GNU dialect of @option{-std=c++11}. Support for C++11 is still
experimental, and may change in incompatible ways in future releases.
The name @samp{gnu++0x} is deprecated.
@item c++1y
The next revision of the ISO C++ standard, tentatively planned for
2014. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.
@item gnu++1y
GNU dialect of @option{-std=c++1y}. Support is highly experimental,
and will almost certainly change in incompatible ways in future
releases.
@end table
@item -fgnu89-inline
@opindex fgnu89-inline
The option @option{-fgnu89-inline} tells GCC to use the traditional
GNU semantics for @code{inline} functions when in C99 mode.
@xref{Inline,,An Inline Function is As Fast As a Macro}. This option
is accepted and ignored by GCC versions 4.1.3 up to but not including
4.3. In GCC versions 4.3 and later it changes the behavior of GCC in
C99 mode. Using this option is roughly equivalent to adding the
@code{gnu_inline} function attribute to all inline functions
(@pxref{Function Attributes}).
The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
specifies the default behavior). This option was first supported in
GCC 4.3. This option is not supported in @option{-std=c90} or
@option{-std=gnu90} mode.
The preprocessor macros @code{__GNUC_GNU_INLINE__} and
@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
in effect for @code{inline} functions. @xref{Common Predefined
Macros,,,cpp,The C Preprocessor}.
@item -aux-info @var{filename}
@opindex aux-info
Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C@.
Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
@samp{O} for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (@samp{C} or @samp{F}, respectively, in the following
character). In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
@item -fallow-parameterless-variadic-functions
Accept variadic functions without named parameters.
Although it is possible to define such a function, this is not very
useful as it is not possible to read the arguments. This is only
supported for C as this construct is allowed by C++.
@item -fno-asm
@opindex fno-asm
Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
keyword, so that code can use these words as identifiers. You can use
the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
instead. @option{-ansi} implies @option{-fno-asm}.
In C++, this switch only affects the @code{typeof} keyword, since
@code{asm} and @code{inline} are standard keywords. You may want to
use the @option{-fno-gnu-keywords} flag instead, which has the same
effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
switch only affects the @code{asm} and @code{typeof} keywords, since
@code{inline} is a standard keyword in ISO C99.
@item -fno-builtin
@itemx -fno-builtin-@var{function}
@opindex fno-builtin
@cindex built-in functions
Don't recognize built-in functions that do not begin with
@samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
functions provided by GCC}, for details of the functions affected,
including those which are not built-in functions when @option{-ansi} or
@option{-std} options for strict ISO C conformance are used because they
do not have an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to @code{alloca} may become single
instructions which adjust the stack directly, and calls to @code{memcpy}
may become inline copy loops. The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example,
warnings are given with @option{-Wformat} for bad calls to
@code{printf} when @code{printf} is built in and @code{strlen} is
known not to modify global memory.
With the @option{-fno-builtin-@var{function}} option
only the built-in function @var{function} is
disabled. @var{function} must not begin with @samp{__builtin_}. If a
function is named that is not built-in in this version of GCC, this
option is ignored. There is no corresponding
@option{-fbuiltin-@var{function}} option; if you wish to enable
built-in functions selectively when using @option{-fno-builtin} or
@option{-ffreestanding}, you may define macros such as:
@smallexample
#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
@end smallexample
@item -fhosted
@opindex fhosted
@cindex hosted environment
Assert that compilation targets a hosted environment. This implies
@option{-fbuiltin}. A hosted environment is one in which the
entire standard library is available, and in which @code{main} has a return
type of @code{int}. Examples are nearly everything except a kernel.
This is equivalent to @option{-fno-freestanding}.
@item -ffreestanding
@opindex ffreestanding
@cindex hosted environment
Assert that compilation targets a freestanding environment. This
implies @option{-fno-builtin}. A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at @code{main}. The most obvious example is an OS kernel.
This is equivalent to @option{-fno-hosted}.
@xref{Standards,,Language Standards Supported by GCC}, for details of
freestanding and hosted environments.
@item -fopenmp
@opindex fopenmp
@cindex OpenMP parallel
Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
@code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v3.0 @w{@uref{http://www.openmp.org/}}. This option
implies @option{-pthread}, and thus is only supported on targets that
have support for @option{-pthread}.
@item -fcilkplus
@opindex fcilkplus
@cindex Enable Cilk Plus
Enable the usage of Cilk Plus language extension features for C/C++.
When the option @option{-fcilkplus} is specified, enable the usage of
the Cilk Plus Language extension features for C/C++. The present
implementation follows ABI version 0.9. This is an experimental
feature that is only partially complete, and whose interface may
change in future versions of GCC as the official specification
changes. Currently only the array notation feature of the language
specification has been implemented. More features will be implemented
in subsequent release cycles.
@item -fgnu-tm
@opindex fgnu-tm
When the option @option{-fgnu-tm} is specified, the compiler
generates code for the Linux variant of Intel's current Transactional
Memory ABI specification document (Revision 1.1, May 6 2009). This is
an experimental feature whose interface may change in future versions
of GCC, as the official specification changes. Please note that not
all architectures are supported for this feature.
For more information on GCC's support for transactional memory,
@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
Transactional Memory Library}.
Note that the transactional memory feature is not supported with
non-call exceptions (@option{-fnon-call-exceptions}).
@item -fms-extensions
@opindex fms-extensions
Accept some non-standard constructs used in Microsoft header files.
In C++ code, this allows member names in structures to be similar
to previous types declarations.
@smallexample
typedef int UOW;
struct ABC @{
UOW UOW;
@};
@end smallexample
Some cases of unnamed fields in structures and unions are only
accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
fields within structs/unions}, for details.
@item -fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.
This enables @option{-fms-extensions}, permits passing pointers to
structures with anonymous fields to functions that expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
struct/union fields within structs/unions}, for details. This is only
supported for C, not C++.
@item -trigraphs
@opindex trigraphs
Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
options for strict ISO C conformance) implies @option{-trigraphs}.
@cindex traditional C language
@cindex C language, traditional
@item -traditional
@itemx -traditional-cpp
@opindex traditional-cpp
@opindex traditional
Formerly, these options caused GCC to attempt to emulate a pre-standard
C compiler. They are now only supported with the @option{-E} switch.
The preprocessor continues to support a pre-standard mode. See the GNU
CPP manual for details.
@item -fcond-mismatch
@opindex fcond-mismatch
Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option
is not supported for C++.
@item -flax-vector-conversions
@opindex flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be
used for new code.
@item -funsigned-char
@opindex funsigned-char
Let the type @code{char} be unsigned, like @code{unsigned char}.
Each kind of machine has a default for what @code{char} should
be. It is either like @code{unsigned char} by default or like
@code{signed char} by default.
Ideally, a portable program should always use @code{signed char} or
@code{unsigned char} when it depends on the signedness of an object.
But many programs have been written to use plain @code{char} and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let you
make such a program work with the opposite default.
The type @code{char} is always a distinct type from each of
@code{signed char} or @code{unsigned char}, even though its behavior
is always just like one of those two.
@item -fsigned-char
@opindex fsigned-char
Let the type @code{char} be signed, like @code{signed char}.
Note that this is equivalent to @option{-fno-unsigned-char}, which is
the negative form of @option{-funsigned-char}. Likewise, the option
@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
@item -fsigned-bitfields
@itemx -funsigned-bitfields
@itemx -fno-signed-bitfields
@itemx -fno-unsigned-bitfields
@opindex fsigned-bitfields
@opindex funsigned-bitfields
@opindex fno-signed-bitfields
@opindex fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the
declaration does not use either @code{signed} or @code{unsigned}. By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as @code{int} are signed types.
@end table
@node C++ Dialect Options
@section Options Controlling C++ Dialect
@cindex compiler options, C++
@cindex C++ options, command-line
@cindex options, C++
This section describes the command-line options that are only meaningful
for C++ programs. You can also use most of the GNU compiler options
regardless of what language your program is in. For example, you
might compile a file @code{firstClass.C} like this:
@smallexample
g++ -g -frepo -O -c firstClass.C
@end smallexample
@noindent
In this example, only @option{-frepo} is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC@.
Here is a list of options that are @emph{only} for compiling C++ programs:
@table @gcctabopt
@item -fabi-version=@var{n}
@opindex fabi-version
Use version @var{n} of the C++ ABI@. The default is version 2.
Version 0 refers to the version conforming most closely to
the C++ ABI specification. Therefore, the ABI obtained using version 0
will change in different versions of G++ as ABI bugs are fixed.
Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.
Version 3 corrects an error in mangling a constant address as a
template argument.
Version 4, which first appeared in G++ 4.5, implements a standard
mangling for vector types.
Version 5, which first appeared in G++ 4.6, corrects the mangling of
attribute const/volatile on function pointer types, decltype of a
plain decl, and use of a function parameter in the declaration of
another parameter.
Version 6, which first appeared in G++ 4.7, corrects the promotion
behavior of C++11 scoped enums and the mangling of template argument
packs, const/static_cast, prefix ++ and --, and a class scope function
used as a template argument.
See also @option{-Wabi}.
@item -fno-access-control
@opindex fno-access-control
Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
@item -fcheck-new
@opindex fcheck-new
Check that the pointer returned by @code{operator new} is non-null
before attempting to modify the storage allocated. This check is
normally unnecessary because the C++ standard specifies that
@code{operator new} only returns @code{0} if it is declared
@samp{throw()}, in which case the compiler always checks the
return value even without this option. In all other cases, when
@code{operator new} has a non-empty exception specification, memory
exhaustion is signalled by throwing @code{std::bad_alloc}. See also
@samp{new (nothrow)}.
@item -fconstexpr-depth=@var{n}
@opindex fconstexpr-depth
Set the maximum nested evaluation depth for C++11 constexpr functions
to @var{n}. A limit is needed to detect endless recursion during
constant expression evaluation. The minimum specified by the standard
is 512.
@item -fdeduce-init-list
@opindex fdeduce-init-list
Enable deduction of a template type parameter as
@code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
@smallexample
template <class T> auto forward(T t) -> decltype (realfn (t))
@{
return realfn (t);
@}
void f()
@{
forward(@{1,2@}); // call forward<std::initializer_list<int>>
@}
@end smallexample
This deduction was implemented as a possible extension to the
originally proposed semantics for the C++11 standard, but was not part
of the final standard, so it is disabled by default. This option is
deprecated, and may be removed in a future version of G++.
@item -ffriend-injection
@opindex ffriend-injection
Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared.
Friend functions were documented to work this way in the old Annotated
C++ Reference Manual, and versions of G++ before 4.1 always worked
that way. However, in ISO C++ a friend function that is not declared
in an enclosing scope can only be found using argument dependent
lookup. This option causes friends to be injected as they were in
earlier releases.
This option is for compatibility, and may be removed in a future
release of G++.
@item -fno-elide-constructors
@opindex fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary
that is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases.
@item -fno-enforce-eh-specs
@opindex fno-enforce-eh-specs
Don't generate code to check for violation of exception specifications
at run time. This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
@samp{NDEBUG}. This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.
@item -fextern-tls-init
@itemx -fno-extern-tls-init
@opindex fextern-tls-init
@opindex fno-extern-tls-init
The C++11 and OpenMP standards allow @samp{thread_local} and
@samp{threadprivate} variables to have dynamic (runtime)
initialization. To support this, any use of such a variable goes
through a wrapper function that performs any necessary initialization.
When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the
use is in a different translation unit there is significant overhead
even if the variable doesn't actually need dynamic initialization. If
the programmer can be sure that no use of the variable in a
non-defining TU needs to trigger dynamic initialization (either
because the variable is statically initialized, or a use of the
variable in the defining TU will be executed before any uses in
another TU), they can avoid this overhead with the
@option{-fno-extern-tls-init} option.
On targets that support symbol aliases, the default is
@option{-fextern-tls-init}. On targets that do not support symbol
aliases, the default is @option{-fno-extern-tls-init}.
@item -ffor-scope
@itemx -fno-for-scope
@opindex ffor-scope
@opindex fno-for-scope
If @option{-ffor-scope} is specified, the scope of variables declared in
a @i{for-init-statement} is limited to the @samp{for} loop itself,
as specified by the C++ standard.
If @option{-fno-for-scope} is specified, the scope of variables declared in
a @i{for-init-statement} extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of C++.
If neither flag is given, the default is to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.
@item -fno-gnu-keywords
@opindex fno-gnu-keywords
Do not recognize @code{typeof} as a keyword, so that code can use this
word as an identifier. You can use the keyword @code{__typeof__} instead.
@option{-ansi} implies @option{-fno-gnu-keywords}.
@item -fno-implicit-templates
@opindex fno-implicit-templates
Never emit code for non-inline templates that are instantiated
implicitly (i.e.@: by use); only emit code for explicit instantiations.
@xref{Template Instantiation}, for more information.
@item -fno-implicit-inline-templates
@opindex fno-implicit-inline-templates
Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization need the same set of explicit instantiations.
@item -fno-implement-inlines
@opindex fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions
controlled by @samp{#pragma implementation}. This causes linker
errors if these functions are not inlined everywhere they are called.
@item -fms-extensions
@opindex fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.
@item -fno-nonansi-builtins
@opindex fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by
ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
@code{index}, @code{bzero}, @code{conjf}, and other related functions.
@item -fnothrow-opt
@opindex fnothrow-opt
Treat a @code{throw()} exception specification as if it were a
@code{noexcept} specification to reduce or eliminate the text size
overhead relative to a function with no exception specification. If
the function has local variables of types with non-trivial
destructors, the exception specification actually makes the
function smaller because the EH cleanups for those variables can be
optimized away. The semantic effect is that an exception thrown out of
a function with such an exception specification results in a call
to @code{terminate} rather than @code{unexpected}.
@item -fno-operator-names
@opindex fno-operator-names
Do not treat the operator name keywords @code{and}, @code{bitand},
@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
synonyms as keywords.
@item -fno-optional-diags
@opindex fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.
@item -fpermissive
@opindex fpermissive
Downgrade some diagnostics about nonconformant code from errors to
warnings. Thus, using @option{-fpermissive} allows some
nonconforming code to compile.
@item -fno-pretty-templates
@opindex fno-pretty-templates
When an error message refers to a specialization of a function
template, the compiler normally prints the signature of the
template followed by the template arguments and any typedefs or
typenames in the signature (e.g. @code{void f(T) [with T = int]}
rather than @code{void f(int)}) so that it's clear which template is
involved. When an error message refers to a specialization of a class
template, the compiler omits any template arguments that match
the default template arguments for that template. If either of these
behaviors make it harder to understand the error message rather than
easier, you can use @option{-fno-pretty-templates} to disable them.
@item -frepo
@opindex frepo
Enable automatic template instantiation at link time. This option also
implies @option{-fno-implicit-templates}. @xref{Template
Instantiation}, for more information.
@item -fno-rtti
@opindex fno-rtti
Disable generation of information about every class with virtual
functions for use by the C++ run-time type identification features
(@samp{dynamic_cast} and @samp{typeid}). If you don't use those parts
of the language, you can save some space by using this flag. Note that
exception handling uses the same information, but G++ generates it as
needed. The @samp{dynamic_cast} operator can still be used for casts that
do not require run-time type information, i.e.@: casts to @code{void *} or to
unambiguous base classes.
@item -fstats
@opindex fstats
Emit statistics about front-end processing at the end of the compilation.
This information is generally only useful to the G++ development team.
@item -fstrict-enums
@opindex fstrict-enums
Allow the compiler to optimize using the assumption that a value of
enumerated type can only be one of the values of the enumeration (as
defined in the C++ standard; basically, a value that can be
represented in the minimum number of bits needed to represent all the
enumerators). This assumption may not be valid if the program uses a
cast to convert an arbitrary integer value to the enumerated type.
@item -ftemplate-backtrace-limit=@var{n}
@opindex ftemplate-backtrace-limit
Set the maximum number of template instantiation notes for a single
warning or error to @var{n}. The default value is 10.
@item -ftemplate-depth=@var{n}
@opindex ftemplate-depth
Set the maximum instantiation depth for template classes to @var{n}.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation. ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17
(changed to 1024 in C++11). The default value is 900, as the compiler
can run out of stack space before hitting 1024 in some situations.
@item -fno-threadsafe-statics
@opindex fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics. You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.
@item -fuse-cxa-atexit
@opindex fuse-cxa-atexit
Register destructors for objects with static storage duration with the
@code{__cxa_atexit} function rather than the @code{atexit} function.
This option is required for fully standards-compliant handling of static
destructors, but only works if your C library supports
@code{__cxa_atexit}.
@item -fno-use-cxa-get-exception-ptr
@opindex fno-use-cxa-get-exception-ptr
Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
causes @code{std::uncaught_exception} to be incorrect, but is necessary
if the runtime routine is not available.
@item -fvisibility-inlines-hidden
@opindex fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare
pointers to inline functions or methods where the addresses of the two functions
are taken in different shared objects.
The effect of this is that GCC may, effectively, mark inline methods with
@code{__attribute__ ((visibility ("hidden")))} so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO@. Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.
The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.
You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method. For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility. Marking the enclosing class with explicit
visibility has no effect.
Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
@xref{Template Instantiation}.
@item -fvisibility-ms-compat
@opindex fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC's C++
linkage model compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC's linkage model:
@enumerate
@item
It sets the default visibility to @code{hidden}, like
@option{-fvisibility=hidden}.
@item
Types, but not their members, are not hidden by default.
@item
The One Definition Rule is relaxed for types without explicit
visibility specifications that are defined in more than one
shared object: those declarations are permitted if they are
permitted when this option is not used.
@end enumerate
In new code it is better to use @option{-fvisibility=hidden} and
export those classes that are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.
Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects are different, so changing one does not change the other;
and that pointers to function members defined in different shared
objects may not compare equal. When this flag is given, it is a
violation of the ODR to define types with the same name differently.
@item -fvtable-verify=@var{std|preinit|none}
@opindex fvtable-verify
Turn on (or off, if using @option{-fvtable-verify=none}) the security
feature that verifies at runtime, for every virtual call that is made, that
the vtable pointer through which the call is made is valid for the type of
the object, and has not been corrupted or overwritten. If an invalid vtable
pointer is detected (at runtime), an error is reported and execution of the
program is immediately halted.
This option causes runtime data structures to be built, at program start up,
for verifying the vtable pointers. The options @code{std} and @code{preinit}
control the timing of when these data structures are built. In both cases the
data structures are built before execution reaches 'main'. The
@option{-fvtable-verify=std} causes these data structure to be built after the
shared libraries have been loaded and initialized.
@option{-fvtable-verify=preinit} causes them to be built before the shared
libraries have been loaded and initialized.
If this option appears multiple times in the compiler line, with different
values specified, 'none' will take highest priority over both 'std' and
'preinit'; 'preinit' will take priority over 'std'.
@item -fvtv-debug
@opindex (fvtv-debug)
Causes debug versions of the runtime functions for the vtable verification
feature to be called. This assumes the @option{-fvtable-verify=std} or
@option{-fvtable-verify=preinit} has been used. This flag will also cause the
compiler to keep track of which vtable pointers it found for each class, and
record that information in the file ``vtv_set_ptr_data.log'', in the dump
file directory on the user's machine.
Note: This feature APPENDS data to the log file. If you want a fresh log
file, be sure to delete any existing one.
@item -fvtv-counts
@opindex (fvtv-counts)
This is a debugging flag. When used in conjunction with
@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
causes the compiler to keep track of the total number of virtual calls
it encountered and the number of verifications it inserted. It also
counts the number of calls to certain runtime library functions
that it inserts. This information, for each compilation unit, is written
to a file named ``vtv_count_data.log'', in the dump_file directory on
the user's machine. It also counts the size of the vtable pointer sets
for each class, and writes this information to ``vtv_class_set_sizes.log''
in the same directory.
Note: This feature APPENDS data to the log files. To get a fresh log
files, be sure to delete any existing ones.
@item -fno-weak
@opindex fno-weak
Do not use weak symbol support, even if it is provided by the linker.
By default, G++ uses weak symbols if they are available. This
option exists only for testing, and should not be used by end-users;
it results in inferior code and has no benefits. This option may
be removed in a future release of G++.
@item -nostdinc++
@opindex nostdinc++
Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories. (This option
is used when building the C++ library.)
@end table
In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:
@table @gcctabopt
@item -fno-default-inline
@opindex fno-default-inline
Do not assume @samp{inline} for functions defined inside a class scope.
@xref{Optimize Options,,Options That Control Optimization}. Note that these
functions have linkage like inline functions; they just aren't
inlined by default.
@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
@opindex Wabi
@opindex Wno-abi
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI@. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code. There may also be
cases where warnings are emitted even though the code that is generated
is compatible.
You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.
The known incompatibilities in @option{-fabi-version=2} (the default) include:
@itemize @bullet
@item
A template with a non-type template parameter of reference type is
mangled incorrectly:
@smallexample
extern int N;
template <int &> struct S @{@};
void n (S<N>) @{2@}
@end smallexample
This is fixed in @option{-fabi-version=3}.
@item
SIMD vector types declared using @code{__attribute ((vector_size))} are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.
The mangling is changed in @option{-fabi-version=4}.
@end itemize
The known incompatibilities in @option{-fabi-version=1} include:
@itemize @bullet
@item
Incorrect handling of tail-padding for bit-fields. G++ may attempt to
pack data into the same byte as a base class. For example:
@smallexample
struct A @{ virtual void f(); int f1 : 1; @};
struct B : public A @{ int f2 : 1; @};
@end smallexample
@noindent
In this case, G++ places @code{B::f2} into the same byte
as @code{A::f1}; other compilers do not. You can avoid this problem
by explicitly padding @code{A} so that its size is a multiple of the
byte size on your platform; that causes G++ and other compilers to
lay out @code{B} identically.
@item
Incorrect handling of tail-padding for virtual bases. G++ does not use
tail padding when laying out virtual bases. For example:
@smallexample
struct A @{ virtual void f(); char c1; @};
struct B @{ B(); char c2; @};
struct C : public A, public virtual B @{@};
@end smallexample
@noindent
In this case, G++ does not place @code{B} into the tail-padding for
@code{A}; other compilers do. You can avoid this problem by
explicitly padding @code{A} so that its size is a multiple of its
alignment (ignoring virtual base classes); that causes G++ and other
compilers to lay out @code{C} identically.
@item
Incorrect handling of bit-fields with declared widths greater than that
of their underlying types, when the bit-fields appear in a union. For
example:
@smallexample
union U @{ int i : 4096; @};
@end smallexample
@noindent
Assuming that an @code{int} does not have 4096 bits, G++ makes the
union too small by the number of bits in an @code{int}.
@item
Empty classes can be placed at incorrect offsets. For example:
@smallexample
struct A @{@};
struct B @{
A a;
virtual void f ();
@};
struct C : public B, public A @{@};
@end smallexample
@noindent
G++ places the @code{A} base class of @code{C} at a nonzero offset;
it should be placed at offset zero. G++ mistakenly believes that the
@code{A} data member of @code{B} is already at offset zero.
@item
Names of template functions whose types involve @code{typename} or
template template parameters can be mangled incorrectly.
@smallexample
template <typename Q>
void f(typename Q::X) @{@}
template <template <typename> class Q>
void f(typename Q<int>::X) @{@}
@end smallexample
@noindent
Instantiations of these templates may be mangled incorrectly.
@end itemize
It also warns about psABI-related changes. The known psABI changes at this
point include:
@itemize @bullet
@item
For SysV/x86-64, unions with @code{long double} members are
passed in memory as specified in psABI. For example:
@smallexample
union U @{
long double ld;
int i;
@};
@end smallexample
@noindent
@code{union U} is always passed in memory.
@end itemize
@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
@opindex Wctor-dtor-privacy
@opindex Wno-ctor-dtor-privacy
Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions. Also warn if there are no non-private
methods, and there's at least one private member function that isn't
a constructor or destructor.
@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
@opindex Wdelete-non-virtual-dtor
@opindex Wno-delete-non-virtual-dtor
Warn when @samp{delete} is used to destroy an instance of a class that
has virtual functions and non-virtual destructor. It is unsafe to delete
an instance of a derived class through a pointer to a base class if the
base class does not have a virtual destructor. This warning is enabled
by @option{-Wall}.
@item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
@opindex Wliteral-suffix
@opindex Wno-literal-suffix
Warn when a string or character literal is followed by a ud-suffix which does
not begin with an underscore. As a conforming extension, GCC treats such
suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from @code{<inttypes.h>}.
For example:
@smallexample
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdio.h>
int main() @{
int64_t i64 = 123;
printf("My int64: %"PRId64"\n", i64);
@}
@end smallexample
In this case, @code{PRId64} is treated as a separate preprocessing token.
This warning is enabled by default.
@item -Wnarrowing @r{(C++ and Objective-C++ only)}
@opindex Wnarrowing
@opindex Wno-narrowing
Warn when a narrowing conversion prohibited by C++11 occurs within
@samp{@{ @}}, e.g.
@smallexample
int i = @{ 2.2 @}; // error: narrowing from double to int
@end smallexample
This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
required by the standard. Note that this does not affect the meaning
of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE context.
@item -Wnoexcept @r{(C++ and Objective-C++ only)}
@opindex Wnoexcept
@opindex Wno-noexcept
Warn when a noexcept-expression evaluates to false because of a call
to a function that does not have a non-throwing exception
specification (i.e. @samp{throw()} or @samp{noexcept}) but is known by
the compiler to never throw an exception.
@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
@opindex Wnon-virtual-dtor
@opindex Wno-non-virtual-dtor
Warn when a class has virtual functions and an accessible non-virtual
destructor, in which case it is possible but unsafe to delete
an instance of a derived class through a pointer to the base class.
This warning is also enabled if @option{-Weffc++} is specified.
@item -Wreorder @r{(C++ and Objective-C++ only)}
@opindex Wreorder
@opindex Wno-reorder
@cindex reordering, warning
@cindex warning for reordering of member initializers
Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
@smallexample
struct A @{
int i;
int j;
A(): j (0), i (1) @{ @}
@};
@end smallexample
@noindent
The compiler rearranges the member initializers for @samp{i}
and @samp{j} to match the declaration order of the members, emitting
a warning to that effect. This warning is enabled by @option{-Wall}.
@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
@opindex fext-numeric-literals
@opindex fno-ext-numeric-literals
Accept imaginary, fixed-point, or machine-defined
literal number suffixes as GNU extensions.
When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes.
This is on by default for all pre-C++11 dialects and all GNU dialects:
@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
@option{-std=gnu++1y}.
This option is off by default
for ISO C++11 onwards (@option{-std=c++11}, ...).
@end table
The following @option{-W@dots{}} options are not affected by @option{-Wall}.
@table @gcctabopt
@item -Weffc++ @r{(C++ and Objective-C++ only)}
@opindex Weffc++
@opindex Wno-effc++
Warn about violations of the following style guidelines from Scott Meyers'
@cite{Effective C++, Second Edition} book:
@itemize @bullet
@item
Item 11: Define a copy constructor and an assignment operator for classes
with dynamically-allocated memory.
@item
Item 12: Prefer initialization to assignment in constructors.
@item
Item 14: Make destructors virtual in base classes.
@item
Item 15: Have @code{operator=} return a reference to @code{*this}.
@item
Item 23: Don't try to return a reference when you must return an object.
@end itemize
Also warn about violations of the following style guidelines from
Scott Meyers' @cite{More Effective C++} book:
@itemize @bullet
@item
Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.
@item
Item 7: Never overload @code{&&}, @code{||}, or @code{,}.
@end itemize
When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use @samp{grep -v}
to filter out those warnings.
@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
@opindex Wstrict-null-sentinel
@opindex Wno-strict-null-sentinel
Warn about the use of an uncasted @code{NULL} as sentinel. When
compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
to @code{__null}. Although it is a null pointer constant rather than a
null pointer, it is guaranteed to be of the same size as a pointer.
But this use is not portable across different compilers.
@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
@opindex Wno-non-template-friend
@opindex Wnon-template-friend
Disable warnings when non-templatized friend functions are declared
within a template. Since the advent of explicit template specification
support in G++, if the name of the friend is an unqualified-id (i.e.,
@samp{friend foo(int)}), the C++ language specification demands that the
friend declare or define an ordinary, nontemplate function. (Section
14.5.3). Before G++ implemented explicit specification, unqualified-ids
could be interpreted as a particular specialization of a templatized
function. Because this non-conforming behavior is no longer the default
behavior for G++, @option{-Wnon-template-friend} allows the compiler to
check existing code for potential trouble spots and is on by default.
This new compiler behavior can be turned off with
@option{-Wno-non-template-friend}, which keeps the conformant compiler code
but disables the helpful warning.
@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
@opindex Wold-style-cast
@opindex Wno-old-style-cast
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (@samp{dynamic_cast},
@samp{static_cast}, @samp{reinterpret_cast}, and @samp{const_cast}) are
less vulnerable to unintended effects and much easier to search for.
@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
@opindex Woverloaded-virtual
@opindex Wno-overloaded-virtual
@cindex overloaded virtual function, warning
@cindex warning for overloaded virtual function
Warn when a function declaration hides virtual functions from a
base class. For example, in:
@smallexample
struct A @{
virtual void f();
@};
struct B: public A @{
void f(int);
@};
@end smallexample
the @code{A} class version of @code{f} is hidden in @code{B}, and code
like:
@smallexample
B* b;
b->f();
@end smallexample
@noindent
fails to compile.
@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
@opindex Wno-pmf-conversions
@opindex Wpmf-conversions
Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
@item -Wsign-promo @r{(C++ and Objective-C++ only)}
@opindex Wsign-promo
@opindex Wno-sign-promo
Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ tried to preserve
unsignedness, but the standard mandates the current behavior.
@end table
@node Objective-C and Objective-C++ Dialect Options
@section Options Controlling Objective-C and Objective-C++ Dialects
@cindex compiler options, Objective-C and Objective-C++
@cindex Objective-C and Objective-C++ options, command-line
@cindex options, Objective-C and Objective-C++
(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves. @xref{Standards,,Language Standards
Supported by GCC}, for references.)
This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs. You can also use most of
the language-independent GNU compiler options.
For example, you might compile a file @code{some_class.m} like this:
@smallexample
gcc -g -fgnu-runtime -O -c some_class.m
@end smallexample
@noindent
In this example, @option{-fgnu-runtime} is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC@.
Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
@option{-Wtraditional}). Similarly, Objective-C++ compilations may use
C++-specific options (e.g., @option{-Wabi}).
Here is a list of options that are @emph{only} for compiling Objective-C
and Objective-C++ programs:
@table @gcctabopt
@item -fconstant-string-class=@var{class-name}
@opindex fconstant-string-class
Use @var{class-name} as the name of the class to instantiate for each
literal string specified with the syntax @code{@@"@dots{}"}. The default
class name is @code{NXConstantString} if the GNU runtime is being used, and
@code{NSConstantString} if the NeXT runtime is being used (see below). The
@option{-fconstant-cfstrings} option, if also present, overrides the
@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
to be laid out as constant CoreFoundation strings.
@item -fgnu-runtime
@opindex fgnu-runtime
Generate object code compatible with the standard GNU Objective-C
runtime. This is the default for most types of systems.
@item -fnext-runtime
@opindex fnext-runtime
Generate output compatible with the NeXT runtime. This is the default
for NeXT-based systems, including Darwin and Mac OS X@. The macro
@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
used.
@item -fno-nil-receivers
@opindex fno-nil-receivers
Assume that all Objective-C message dispatches (@code{[receiver
message:arg]}) in this translation unit ensure that the receiver is
not @code{nil}. This allows for more efficient entry points in the
runtime to be used. This option is only available in conjunction with
the NeXT runtime and ABI version 0 or 1.
@item -fobjc-abi-version=@var{n}
@opindex fobjc-abi-version
Use version @var{n} of the Objective-C ABI for the selected runtime.
This option is currently supported only for the NeXT runtime. In that
case, Version 0 is the traditional (32-bit) ABI without support for
properties and other Objective-C 2.0 additions. Version 1 is the
traditional (32-bit) ABI with support for properties and other
Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
nothing is specified, the default is Version 0 on 32-bit target
machines, and Version 2 on 64-bit target machines.
@item -fobjc-call-cxx-cdtors
@opindex fobjc-call-cxx-cdtors
For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor. If so, synthesize a
special @code{- (id) .cxx_construct} instance method which runs
non-trivial default constructors on any such instance variables, in order,
and then return @code{self}. Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special @code{- (void) .cxx_destruct} method which runs
all such default destructors, in reverse order.
The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
methods thusly generated only operate on instance variables
declared in the current Objective-C class, and not those inherited
from superclasses. It is the responsibility of the Objective-C
runtime to invoke all such methods in an object's inheritance
hierarchy. The @code{- (id) .cxx_construct} methods are invoked
by the runtime immediately after a new object instance is allocated;
the @code{- (void) .cxx_destruct} methods are invoked immediately
before the runtime deallocates an object instance.
As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the @code{- (id) .cxx_construct} and
@code{- (void) .cxx_destruct} methods.
@item -fobjc-direct-dispatch
@opindex fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is
accomplished via the comm page.
@item -fobjc-exceptions
@opindex fobjc-exceptions
Enable syntactic support for structured exception handling in
Objective-C, similar to what is offered by C++ and Java. This option
is required to use the Objective-C keywords @code{@@try},
@code{@@throw}, @code{@@catch}, @code{@@finally} and
@code{@@synchronized}. This option is available with both the GNU
runtime and the NeXT runtime (but not available in conjunction with
the NeXT runtime on Mac OS X 10.2 and earlier).
@item -fobjc-gc
@opindex fobjc-gc
Enable garbage collection (GC) in Objective-C and Objective-C++
programs. This option is only available with the NeXT runtime; the
GNU runtime has a different garbage collection implementation that
does not require special compiler flags.
@item -fobjc-nilcheck
@opindex fobjc-nilcheck
For the NeXT runtime with version 2 of the ABI, check for a nil
receiver in method invocations before doing the actual method call.
This is the default and can be disabled using
@option{-fno-objc-nilcheck}. Class methods and super calls are never
checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older
version of the NeXT runtime ABI, is used.
@item -fobjc-std=objc1
@opindex fobjc-std
Conform to the language syntax of Objective-C 1.0, the language
recognized by GCC 4.0. This only affects the Objective-C additions to
the C/C++ language; it does not affect conformance to C/C++ standards,
which is controlled by the separate C/C++ dialect option flags. When
this option is used with the Objective-C or Objective-C++ compiler,
any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
This is useful if you need to make sure that your Objective-C code can
be compiled with older versions of GCC@.
@item -freplace-objc-classes
@opindex freplace-objc-classes
Emit a special marker instructing @command{ld(1)} not to statically link in
the resulting object file, and allow @command{dyld(1)} to load it in at
run time instead. This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself. Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.
@item -fzero-link
@opindex fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to @code{objc_getClass("@dots{}")} (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance. Specifying the @option{-fzero-link} flag
suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
to be retained. This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.
The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
regardless of command-line options.
@item -gen-decls
@opindex gen-decls
Dump interface declarations for all classes seen in the source file to a
file named @file{@var{sourcename}.decl}.
@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
@opindex Wassign-intercept
@opindex Wno-assign-intercept
Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
@opindex Wno-protocol
@opindex Wprotocol
If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the @option{-Wno-protocol} option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
@item -Wselector @r{(Objective-C and Objective-C++ only)}
@opindex Wselector
@opindex Wno-selector
Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods
in the final stage of compilation. Additionally, a check is performed
for each selector appearing in a @code{@@selector(@dots{})}
expression, and a corresponding method for that selector has been found
during compilation. Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the @option{-fsyntax-only} option is
being used.
@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
@opindex Wstrict-selector-match
@opindex Wno-strict-selector-match
Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type @code{id} or @code{Class}. When this flag
is off (which is the default behavior), the compiler omits such warnings
if any differences found are confined to types that share the same size
and alignment.
@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
@opindex Wundeclared-selector
@opindex Wno-undeclared-selector
Warn if a @code{@@selector(@dots{})} expression referring to an
undeclared selector is found. A selector is considered undeclared if no
method with that name has been declared before the
@code{@@selector(@dots{})} expression, either explicitly in an
@code{@@interface} or @code{@@protocol} declaration, or implicitly in
an @code{@@implementation} section. This option always performs its
checks as soon as a @code{@@selector(@dots{})} expression is found,
while @option{-Wselector} only performs its checks in the final stage of
compilation. This also enforces the coding style convention
that methods and selectors must be declared before being used.
@item -print-objc-runtime-info
@opindex print-objc-runtime-info
Generate C header describing the largest structure that is passed by
value, if any.
@end table
@node Language Independent Options
@section Options to Control Diagnostic Messages Formatting
@cindex options to control diagnostics formatting
@cindex diagnostic messages
@cindex message formatting
Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g.@: its width, @dots{}). You can use the
options described below
to control the formatting algorithm for diagnostic messages,
e.g.@: how many characters per line, how often source location
information should be reported. Note that some language front ends may not
honor these options.
@table @gcctabopt
@item -fmessage-length=@var{n}
@opindex fmessage-length
Try to format error messages so that they fit on lines of about @var{n}
characters. The default is 72 characters for @command{g++} and 0 for the rest of
the front ends supported by GCC@. If @var{n} is zero, then no
line-wrapping is done; each error message appears on a single
line.
@item -fdiagnostics-show-location=once
@opindex fdiagnostics-show-location
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit source location information @emph{once}; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines. This is the default
behavior.
@item -fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.
@item -fdiagnostics-color[=@var{WHEN}]
@itemx -fno-diagnostics-color
@opindex fdiagnostics-color
@cindex highlight, color, colour
@vindex GCC_COLORS @r{environment variable}
Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
or @samp{auto}. The default is @samp{never} if @env{GCC_COLORS} environment
variable isn't present in the environment, and @samp{auto} otherwise.
@samp{auto} means to use color only when the standard error is a terminal.
The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
aliases for @option{-fdiagnostics-color=always} and
@option{-fdiagnostics-color=never}, respectively.
The colors are defined by the environment variable @env{GCC_COLORS}.
Its value is a colon-separated list of capabilities and Select Graphic
Rendition (SGR) substrings. SGR commands are interpreted by the
terminal or terminal emulator. (See the section in the documentation
of your text terminal for permitted values and their meanings as
character attributes.) These substring values are integers in decimal
representation and can be concatenated with semicolons.
Common values to concatenate include
@samp{1} for bold,
@samp{4} for underline,
@samp{5} for blink,
@samp{7} for inverse,
@samp{39} for default foreground color,
@samp{30} to @samp{37} for foreground colors,
@samp{90} to @samp{97} for 16-color mode foreground colors,
@samp{38;5;0} to @samp{38;5;255}
for 88-color and 256-color modes foreground colors,
@samp{49} for default background color,
@samp{40} to @samp{47} for background colors,
@samp{100} to @samp{107} for 16-color mode background colors,
and @samp{48;5;0} to @samp{48;5;255}
for 88-color and 256-color modes background colors.
The default @env{GCC_COLORS} is
@samp{error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01}
where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
@samp{01;36} is bold cyan, @samp{01;32} is bold green and
@samp{01} is bold. Setting @env{GCC_COLORS} to the empty
string disables colors.
Supported capabilities are as follows.
@table @code
@item error=
@vindex error GCC_COLORS @r{capability}
SGR substring for error: markers.
@item warning=
@vindex warning GCC_COLORS @r{capability}
SGR substring for warning: markers.
@item note=
@vindex note GCC_COLORS @r{capability}
SGR substring for note: markers.
@item caret=
@vindex caret GCC_COLORS @r{capability}
SGR substring for caret line.
@item locus=
@vindex locus GCC_COLORS @r{capability}
SGR substring for location information, @samp{file:line} or
@samp{file:line:column} etc.
@item quote=
@vindex quote GCC_COLORS @r{capability}
SGR substring for information printed within quotes.
@end table
@item -fno-diagnostics-show-option
@opindex fno-diagnostics-show-option
@opindex fdiagnostics-show-option
By default, each diagnostic emitted includes text indicating the
command-line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery). Specifying the
@option{-fno-diagnostics-show-option} flag suppresses that behavior.
@item -fno-diagnostics-show-caret
@opindex fno-diagnostics-show-caret
@opindex fdiagnostics-show-caret
By default, each diagnostic emitted includes the original source line
and a caret '^' indicating the column. This option suppresses this
information.
@end table
@node Warning Options
@section Options to Request or Suppress Warnings
@cindex options to control warnings
@cindex warning messages
@cindex messages, warning
@cindex suppressing warnings
Warnings are diagnostic messages that report constructions that
are not inherently erroneous but that are risky or suggest there
may have been an error.
The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC@.
@table @gcctabopt
@cindex syntax checking
@item -fsyntax-only
@opindex fsyntax-only
Check the code for syntax errors, but don't do anything beyond that.
@item -fmax-errors=@var{n}
@opindex fmax-errors
Limits the maximum number of error messages to @var{n}, at which point
GCC bails out rather than attempting to continue processing the source
code. If @var{n} is 0 (the default), there is no limit on the number
of error messages produced. If @option{-Wfatal-errors} is also
specified, then @option{-Wfatal-errors} takes precedence over this
option.
@item -w
@opindex w
Inhibit all warning messages.
@item -Werror
@opindex Werror
@opindex Wno-error
Make all warnings into errors.
@item -Werror=
@opindex Werror=
@opindex Wno-error=
Make the specified warning into an error. The specifier for a warning
is appended; for example @option{-Werror=switch} turns the warnings
controlled by @option{-Wswitch} into errors. This switch takes a
negative form, to be used to negate @option{-Werror} for specific
warnings; for example @option{-Wno-error=switch} makes
@option{-Wswitch} warnings not be errors, even when @option{-Werror}
is in effect.
The warning message for each controllable warning includes the
option that controls the warning. That option can then be used with
@option{-Werror=} and @option{-Wno-error=} as described above.
(Printing of the option in the warning message can be disabled using the
@option{-fno-diagnostics-show-option} flag.)
Note that specifying @option{-Werror=}@var{foo} automatically implies
@option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
imply anything.
@item -Wfatal-errors
@opindex Wfatal-errors
@opindex Wno-fatal-errors
This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
@end table
You can request many specific warnings with options beginning with
@samp{-W}, for example @option{-Wimplicit} to request warnings on
implicit declarations. Each of these specific warning options also
has a negative form beginning @samp{-Wno-} to turn off warnings; for
example, @option{-Wno-implicit}. This manual lists only one of the
two forms, whichever is not the default. For further
language-specific options also refer to @ref{C++ Dialect Options} and
@ref{Objective-C and Objective-C++ Dialect Options}.
When an unrecognized warning option is requested (e.g.,
@option{-Wunknown-warning}), GCC emits a diagnostic stating
that the option is not recognized. However, if the @option{-Wno-} form
is used, the behavior is slightly different: no diagnostic is
produced for @option{-Wno-unknown-warning} unless other diagnostics
are being produced. This allows the use of new @option{-Wno-} options
with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.
@table @gcctabopt
@item -Wpedantic
@itemx -pedantic
@opindex pedantic
@opindex Wpedantic
Issue all the warnings demanded by strict ISO C and ISO C++;
reject all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++. For ISO C, follows the
version of the ISO C standard specified by any @option{-std} option used.
Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require @option{-ansi} or a
@option{-std} option specifying the required version of ISO C)@. However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well. With this option, they are rejected.
@option{-Wpedantic} does not cause warning messages for use of the
alternate keywords whose names begin and end with @samp{__}. Pedantic
warnings are also disabled in the expression that follows
@code{__extension__}. However, only system header files should use
these escape routes; application programs should avoid them.
@xref{Alternate Keywords}.
Some users try to use @option{-Wpedantic} to check programs for strict ISO
C conformance. They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all---only those for which
ISO C @emph{requires} a diagnostic, and some others for which
diagnostics have been added.
A feature to report any failure to conform to ISO C might be useful in
some instances, but would require considerable additional work and would
be quite different from @option{-Wpedantic}. We don't have plans to
support such a feature in the near future.
Where the standard specified with @option{-std} represents a GNU
extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
corresponding @dfn{base standard}, the version of ISO C on which the GNU
extended dialect is based. Warnings from @option{-Wpedantic} are given
where they are required by the base standard. (It does not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
@item -pedantic-errors
@opindex pedantic-errors
Like @option{-Wpedantic}, except that errors are produced rather than
warnings.
@item -Wall
@opindex Wall
@opindex Wno-all
This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in @ref{C++ Dialect
Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
@option{-Wall} turns on the following warning flags:
@gccoptlist{-Waddress @gol
-Warray-bounds @r{(only with} @option{-O2}@r{)} @gol
-Wc++11-compat @gol
-Wchar-subscripts @gol
-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
-Wimplicit-int @r{(C and Objective-C only)} @gol
-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
-Wcomment @gol
-Wformat @gol
-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
-Wmaybe-uninitialized @gol
-Wmissing-braces @r{(only for C/ObjC)} @gol
-Wnonnull @gol
-Wparentheses @gol
-Wpointer-sign @gol
-Wreorder @gol
-Wreturn-type @gol
-Wsequence-point @gol
-Wsign-compare @r{(only in C++)} @gol
-Wstrict-aliasing @gol
-Wstrict-overflow=1 @gol
-Wswitch @gol
-Wtrigraphs @gol
-Wuninitialized @gol
-Wunknown-pragmas @gol
-Wunused-function @gol
-Wunused-label @gol
-Wunused-value @gol
-Wunused-variable @gol
-Wvolatile-register-var @gol
}
Note that some warning flags are not implied by @option{-Wall}. Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by @option{-Wextra} but many of
them must be enabled individually.
@item -Wextra
@opindex W
@opindex Wextra
@opindex Wno-extra
This enables some extra warning flags that are not enabled by
@option{-Wall}. (This option used to be called @option{-W}. The older
name is still supported, but the newer name is more descriptive.)
@gccoptlist{-Wclobbered @gol
-Wempty-body @gol
-Wignored-qualifiers @gol
-Wmissing-field-initializers @gol
-Wmissing-parameter-type @r{(C only)} @gol
-Wold-style-declaration @r{(C only)} @gol
-Woverride-init @gol
-Wsign-compare @gol
-Wtype-limits @gol
-Wuninitialized @gol
-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
}
The option @option{-Wextra} also prints warning messages for the
following cases:
@itemize @bullet
@item
A pointer is compared against integer zero with @samp{<}, @samp{<=},
@samp{>}, or @samp{>=}.
@item
(C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.
@item
(C++ only) Ambiguous virtual bases.
@item
(C++ only) Subscripting an array that has been declared @samp{register}.
@item
(C++ only) Taking the address of a variable that has been declared
@samp{register}.
@item
(C++ only) A base class is not initialized in a derived class's copy
constructor.
@end itemize
@item -Wchar-subscripts
@opindex Wchar-subscripts
@opindex Wno-char-subscripts
Warn if an array subscript has type @code{char}. This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by @option{-Wall}.
@item -Wcomment
@opindex Wcomment
@opindex Wno-comment
Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
This warning is enabled by @option{-Wall}.
@item -Wno-coverage-mismatch
@opindex Wno-coverage-mismatch
Warn if feedback profiles do not match when using the
@option{-fprofile-use} option.
If a source file is changed between compiling with @option{-fprofile-gen} and
with @option{-fprofile-use}, the files with the profile feedback can fail
to match the source file and GCC cannot use the profile feedback
information. By default, this warning is enabled and is treated as an
error. @option{-Wno-coverage-mismatch} can be used to disable the
warning or @option{-Wno-error=coverage-mismatch} can be used to
disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the
case of very minor changes such as bug fixes to an existing code-base.
Completely disabling the warning is not recommended.
@item -Wno-cpp
@r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
Suppress warning messages emitted by @code{#warning} directives.
@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
@opindex Wdouble-promotion
@opindex Wno-double-promotion
Give a warning when a value of type @code{float} is implicitly
promoted to @code{double}. CPUs with a 32-bit ``single-precision''
floating-point unit implement @code{float} in hardware, but emulate
@code{double} in software. On such a machine, doing computations
using @code{double} values is much more expensive because of the
overhead required for software emulation.
It is easy to accidentally do computations with @code{double} because
floating-point literals are implicitly of type @code{double}. For
example, in:
@smallexample
@group
float area(float radius)
@{
return 3.14159 * radius * radius;
@}
@end group
@end smallexample
the compiler performs the entire computation with @code{double}
because the floating-point literal is a @code{double}.
@item -Wformat
@itemx -Wformat=@var{n}
@opindex Wformat
@opindex Wno-format
@opindex ffreestanding
@opindex fno-builtin
@opindex Wformat=
Check calls to @code{printf} and @code{scanf}, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense. This includes standard functions, and others specified by format
attributes (@pxref{Function Attributes}), in the @code{printf},
@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
@option{-ffreestanding} or @option{-fno-builtin}.
The formats are checked against the format features supported by GNU
libc version 2.2. These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions. Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations. However, if @option{-Wpedantic} is used
with @option{-Wformat}, warnings are given about format features not
in the selected standard version (but not for @code{strfmon} formats,
since those are not in any version of the C standard). @xref{C Dialect
Options,,Options Controlling C Dialect}.
@table @gcctabopt
@item -Wformat=1
@itemx -Wformat
Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
@option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
@option{-Wformat} also checks for null format arguments for several
functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
aspects of this level of format checking can be disabled by the
options: @option{-Wno-format-contains-nul},
@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
@option{-Wformat} is enabled by @option{-Wall}.
@item -Wno-format-contains-nul
@opindex Wno-format-contains-nul
@opindex Wformat-contains-nul
If @option{-Wformat} is specified, do not warn about format strings that
contain NUL bytes.
@item -Wno-format-extra-args
@opindex Wno-format-extra-args
@opindex Wformat-extra-args
If @option{-Wformat} is specified, do not warn about excess arguments to a
@code{printf} or @code{scanf} format function. The C standard specifies
that such arguments are ignored.
Where the unused arguments lie between used arguments that are
specified with @samp{$} operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to @code{va_arg} to skip the unused arguments. However,
in the case of @code{scanf} formats, this option suppresses the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.
@item -Wno-format-zero-length
@opindex Wno-format-zero-length
@opindex Wformat-zero-length
If @option{-Wformat} is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
@item -Wformat=2
Enable @option{-Wformat} plus additional format checks. Currently
equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k}.
@item -Wformat-nonliteral
@opindex Wformat-nonliteral
@opindex Wno-format-nonliteral
If @option{-Wformat} is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a @code{va_list}.
@item -Wformat-security
@opindex Wformat-security
@opindex Wno-format-security
If @option{-Wformat} is specified, also warn about uses of format
functions that represent possible security problems. At present, this
warns about calls to @code{printf} and @code{scanf} functions where the
format string is not a string literal and there are no format arguments,
as in @code{printf (foo);}. This may be a security hole if the format
string came from untrusted input and contains @samp{%n}. (This is
currently a subset of what @option{-Wformat-nonliteral} warns about, but
in future warnings may be added to @option{-Wformat-security} that are not
included in @option{-Wformat-nonliteral}.)
@item -Wformat-y2k
@opindex Wformat-y2k
@opindex Wno-format-y2k
If @option{-Wformat} is specified, also warn about @code{strftime}
formats that may yield only a two-digit year.
@end table
@item -Wnonnull
@opindex Wnonnull
@opindex Wno-nonnull
Warn about passing a null pointer for arguments marked as
requiring a non-null value by the @code{nonnull} function attribute.
@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
can be disabled with the @option{-Wno-nonnull} option.
@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
@opindex Winit-self
@opindex Wno-init-self
Warn about uninitialized variables that are initialized with themselves.
Note this option can only be used with the @option{-Wuninitialized} option.
For example, GCC warns about @code{i} being uninitialized in the
following snippet only when @option{-Winit-self} has been specified:
@smallexample
@group
int f()
@{
int i = i;
return i;
@}
@end group
@end smallexample
This warning is enabled by @option{-Wall} in C++.
@item -Wimplicit-int @r{(C and Objective-C only)}
@opindex Wimplicit-int
@opindex Wno-implicit-int
Warn when a declaration does not specify a type.
This warning is enabled by @option{-Wall}.
@item -Wimplicit-function-declaration @r{(C and Objective-C only)}
@opindex Wimplicit-function-declaration
@opindex Wno-implicit-function-declaration
Give a warning whenever a function is used before being declared. In
C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
enabled by default and it is made into an error by
@option{-pedantic-errors}. This warning is also enabled by
@option{-Wall}.
@item -Wimplicit @r{(C and Objective-C only)}
@opindex Wimplicit
@opindex Wno-implicit
Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
This warning is enabled by @option{-Wall}.
@item -Wignored-qualifiers @r{(C and C++ only)}
@opindex Wignored-qualifiers
@opindex Wno-ignored-qualifiers
Warn if the return type of a function has a type qualifier
such as @code{const}. For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or @code{void}.
ISO C prohibits qualified @code{void} return types on function
definitions, so such return types always receive a warning
even without this option.
This warning is also enabled by @option{-Wextra}.
@item -Wmain
@opindex Wmain
@opindex Wno-main
Warn if the type of @samp{main} is suspicious. @samp{main} should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning
is enabled by default in C++ and is enabled by either @option{-Wall}
or @option{-Wpedantic}.
@item -Wmissing-braces
@opindex Wmissing-braces
@opindex Wno-missing-braces
Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for @samp{a} is not fully
bracketed, but that for @samp{b} is fully bracketed. This warning is
enabled by @option{-Wall} in C.
@smallexample
int a[2][2] = @{ 0, 1, 2, 3 @};
int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
@end smallexample
This warning is enabled by @option{-Wall}.
@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
@opindex Wmissing-include-dirs
@opindex Wno-missing-include-dirs
Warn if a user-supplied include directory does not exist.
@item -Wparentheses
@opindex Wparentheses
@opindex Wno-parentheses
Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
Also warn if a comparison like @samp{x<=y<=z} appears; this is
equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different
interpretation from that of ordinary mathematical notation.
Also warn about constructions where there may be confusion to which
@code{if} statement an @code{else} branch belongs. Here is an example of
such a case:
@smallexample
@group
@{
if (a)
if (b)
foo ();
else
bar ();
@}
@end group
@end smallexample
In C/C++, every @code{else} branch belongs to the innermost possible
@code{if} statement, which in this example is @code{if (b)}. This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose. When there is the
potential for this confusion, GCC issues a warning when this flag
is specified. To eliminate the warning, add explicit braces around
the innermost @code{if} statement so there is no way the @code{else}
can belong to the enclosing @code{if}. The resulting code
looks like this:
@smallexample
@group
@{
if (a)
@{
if (b)
foo ();
else
bar ();
@}
@}
@end group
@end smallexample
Also warn for dangerous uses of the GNU extension to
@code{?:} with omitted middle operand. When the condition
in the @code{?}: operator is a boolean expression, the omitted value is
always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.
This warning is enabled by @option{-Wall}.
@item -Wsequence-point
@opindex Wsequence-point
@opindex Wno-sequence-point
Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.
The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of @dfn{sequence points}, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it. These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified. All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified. However, the standards committee have
ruled that function calls do not overlap.
It is not specified when between sequence points modifications to the
values of objects take effect. Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that ``Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.''. If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.
Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
= b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.
The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
@uref{http://gcc.gnu.org/@/readings.html}.
This warning is enabled by @option{-Wall} for C and C++.
@item -Wno-return-local-addr
@opindex Wno-return-local-addr
@opindex Wreturn-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a
variable that goes out of scope after the function returns.
@item -Wreturn-type
@opindex Wreturn-type
@opindex Wno-return-type
Warn whenever a function is defined with a return type that defaults
to @code{int}. Also warn about any @code{return} statement with no
return value in a function whose return type is not @code{void}
(falling off the end of the function body is considered returning
without a value), and about a @code{return} statement with an
expression in a function whose return type is @code{void}.
For C++, a function without return type always produces a diagnostic
message, even when @option{-Wno-return-type} is specified. The only
exceptions are @samp{main} and functions defined in system headers.
This warning is enabled by @option{-Wall}.
@item -Wswitch
@opindex Wswitch
@opindex Wno-switch
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration. (The presence of a @code{default} label prevents this
warning.) @code{case} labels outside the enumeration range also
provoke warnings when this option is used (even if there is a
@code{default} label).
This warning is enabled by @option{-Wall}.
@item -Wswitch-default
@opindex Wswitch-default
@opindex Wno-switch-default
Warn whenever a @code{switch} statement does not have a @code{default}
case.
@item -Wswitch-enum
@opindex Wswitch-enum
@opindex Wno-switch-enum
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration. @code{case} labels outside the enumeration range also
provoke warnings when this option is used. The only difference
between @option{-Wswitch} and this option is that this option gives a
warning about an omitted enumeration code even if there is a
@code{default} label.
@item -Wsync-nand @r{(C and C++ only)}
@opindex Wsync-nand
@opindex Wno-sync-nand
Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
built-in functions are used. These functions changed semantics in GCC 4.4.
@item -Wtrigraphs
@opindex Wtrigraphs
@opindex Wno-trigraphs
Warn if any trigraphs are encountered that might change the meaning of
the program (trigraphs within comments are not warned about).
This warning is enabled by @option{-Wall}.
@item -Wunused-but-set-parameter
@opindex Wunused-but-set-parameter
@opindex Wno-unused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
This warning is also enabled by @option{-Wunused} together with
@option{-Wextra}.
@item -Wunused-but-set-variable
@opindex Wunused-but-set-variable
@opindex Wno-unused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused
(aside from its declaration).
This warning is enabled by @option{-Wall}.
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
This warning is also enabled by @option{-Wunused}, which is enabled
by @option{-Wall}.
@item -Wunused-function
@opindex Wunused-function
@opindex Wno-unused-function
Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by @option{-Wall}.
@item -Wunused-label
@opindex Wunused-label
@opindex Wno-unused-label
Warn whenever a label is declared but not used.
This warning is enabled by @option{-Wall}.
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
@opindex Wunused-local-typedefs
Warn when a typedef locally defined in a function is not used.
This warning is enabled by @option{-Wall}.
@item -Wunused-parameter
@opindex Wunused-parameter
@opindex Wno-unused-parameter
Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
@item -Wno-unused-result
@opindex Wunused-result
@opindex Wno-unused-result
Do not warn if a caller of a function marked with attribute
@code{warn_unused_result} (@pxref{Function Attributes}) does not use
its return value. The default is @option{-Wunused-result}.
@item -Wunused-variable
@opindex Wunused-variable
@opindex Wno-unused-variable
Warn whenever a local variable or non-constant static variable is unused
aside from its declaration.
This warning is enabled by @option{-Wall}.
To suppress this warning use the @samp{unused} attribute
(@pxref{Variable Attributes}).
@item -Wunused-value
@opindex Wunused-value
@opindex Wno-unused-value
Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
@samp{void}. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as @samp{x[i,j]} causes a warning, while
@samp{x[(void)i,j]} does not.
This warning is enabled by @option{-Wall}.
@item -Wunused
@opindex Wunused
@opindex Wno-unused
All the above @option{-Wunused} options combined.
In order to get a warning about an unused function parameter, you must
either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
@item -Wuninitialized
@opindex Wuninitialized
@opindex Wno-uninitialized
Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a @code{setjmp} call. In C++,
warn if a non-static reference or non-static @samp{const} member
appears in a class without constructors.
If you want to warn about code that uses the uninitialized value of the
variable in its own initializer, use the @option{-Winit-self} option.
These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables that are uninitialized or clobbered as a whole. They do
not occur for variables or elements declared @code{volatile}. Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings depends on the precise optimization
options and version of GCC used.
Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
@item -Wmaybe-uninitialized
@opindex Wmaybe-uninitialized
@opindex Wno-maybe-uninitialized
For an automatic variable, if there exists a path from the function
entry to a use of the variable that is initialized, but there exist
some other paths for which the variable is not initialized, the compiler
emits a warning if it cannot prove the uninitialized paths are not
executed at run time. These warnings are made optional because GCC is
not smart enough to see all the reasons why the code might be correct
in spite of appearing to have an error. Here is one example of how
this can happen:
@smallexample
@group
@{
int x;
switch (y)
@{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
@}
foo (x);
@}
@end group
@end smallexample
@noindent
If the value of @code{y} is always 1, 2 or 3, then @code{x} is
always initialized, but GCC doesn't know this. To suppress the
warning, you need to provide a default case with assert(0) or
similar code.
@cindex @code{longjmp} warnings
This option also warns when a non-volatile automatic variable might be
changed by a call to @code{longjmp}. These warnings as well are possible
only in optimizing compilation.
The compiler sees only the calls to @code{setjmp}. It cannot know
where @code{longjmp} will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a warning
even when there is in fact no problem because @code{longjmp} cannot
in fact be called at the place that would cause a problem.
Some spurious warnings can be avoided if you declare all the functions
you use that never return as @code{noreturn}. @xref{Function
Attributes}.
This warning is enabled by @option{-Wall} or @option{-Wextra}.
@item -Wunknown-pragmas
@opindex Wunknown-pragmas
@opindex Wno-unknown-pragmas
@cindex warning for unknown pragmas
@cindex unknown pragmas, warning
@cindex pragmas, warning of unknown
Warn when a @code{#pragma} directive is encountered that is not understood by
GCC@. If this command-line option is used, warnings are even issued
for unknown pragmas in system header files. This is not the case if
the warnings are only enabled by the @option{-Wall} command-line option.
@item -Wno-pragmas
@opindex Wno-pragmas
@opindex Wpragmas
Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
@option{-Wunknown-pragmas}.
@item -Wstrict-aliasing
@opindex Wstrict-aliasing
@opindex Wno-strict-aliasing
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all
cases, but does attempt to catch the more common pitfalls. It is
included in @option{-Wall}.
It is equivalent to @option{-Wstrict-aliasing=3}
@item -Wstrict-aliasing=n
@opindex Wstrict-aliasing=n
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way @option{-O}
works.
@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
false negatives. However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced. Runs in the front end only.
Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken. Warns about
incomplete types. Runs in the front end only.
Level 3 (default for @option{-Wstrict-aliasing}):
Should have very few false positives and few false
negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common pun+dereference pattern in the front end:
@code{*(int*)&some_float}.
If optimization is enabled, it also runs in the back end, where it deals
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.
@item -Wstrict-overflow
@itemx -Wstrict-overflow=@var{n}
@opindex Wstrict-overflow
@opindex Wno-strict-overflow
This option is only active when @option{-fstrict-overflow} is active.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur. Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization. Thus
this warning depends on the optimization level.
An optimization that assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code that is not
actually a problem. To help focus on important issues, several
warning levels are defined. No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
requires, in particular when determining whether a loop will be
executed at all.
@table @gcctabopt
@item -Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example, with @option{-fstrict-overflow}, the compiler simplifies
@code{x + 1 > x} to @code{1}. This level of
@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
are not, and must be explicitly requested.
@item -Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to a
constant. For example: @code{abs (x) >= 0}. This can only be
simplified when @option{-fstrict-overflow} is in effect, because
@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
zero. @option{-Wstrict-overflow} (with no level) is the same as
@option{-Wstrict-overflow=2}.
@item -Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: @code{x + 1 > 1} is simplified to @code{x > 0}.
@item -Wstrict-overflow=4
Also warn about other simplifications not covered by the above cases.
For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
@item -Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: @code{x + 2 > y} is
simplified to @code{x + 1 >= y}. This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level gives a very large number of
false positives.
@end table
@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
@opindex Wsuggest-attribute=
@opindex Wno-suggest-attribute=
Warn for cases where adding an attribute may be beneficial. The
attributes currently supported are listed below.
@table @gcctabopt
@item -Wsuggest-attribute=pure
@itemx -Wsuggest-attribute=const
@itemx -Wsuggest-attribute=noreturn
@opindex Wsuggest-attribute=pure
@opindex Wno-suggest-attribute=pure
@opindex Wsuggest-attribute=const
@opindex Wno-suggest-attribute=const
@opindex Wsuggest-attribute=noreturn
@opindex Wno-suggest-attribute=noreturn
Warn about functions that might be candidates for attributes
@code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
functions visible in other compilation units or (in the case of @code{pure} and
@code{const}) if it cannot prove that the function returns normally. A function
returns normally if it doesn't contain an infinite loop or return abnormally
by throwing, calling @code{abort()} or trapping. This analysis requires option
@option{-fipa-pure-const}, which is enabled by default at @option{-O} and
higher. Higher optimization levels improve the accuracy of the analysis.
@item -Wsuggest-attribute=format
@itemx -Wmissing-format-attribute
@opindex Wsuggest-attribute=format
@opindex Wmissing-format-attribute
@opindex Wno-suggest-attribute=format
@opindex Wno-missing-format-attribute
@opindex Wformat
@opindex Wno-format
Warn about function pointers that might be candidates for @code{format}
attributes. Note these are only possible candidates, not absolute ones.
GCC guesses that function pointers with @code{format} attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding @code{format} attribute in the
resulting type. I.e.@: the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a @code{format}
attribute to avoid the warning.
GCC also warns about function definitions that might be
candidates for @code{format} attributes. Again, these are only
possible candidates. GCC guesses that @code{format} attributes
might be appropriate for any function that calls a function like
@code{vprintf} or @code{vscanf}, but this might not always be the
case, and some functions for which @code{format} attributes are
appropriate may not be detected.
@end table
@item -Warray-bounds
@opindex Wno-array-bounds
@opindex Warray-bounds
This option is only active when @option{-ftree-vrp} is active
(default for @option{-O2} and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by @option{-Wall}.
@item -Wno-div-by-zero
@opindex Wno-div-by-zero
@opindex Wdiv-by-zero
Do not warn about compile-time integer division by zero. Floating-point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
@item -Wsystem-headers
@opindex Wsystem-headers
@opindex Wno-system-headers
@cindex warnings from system headers
@cindex system headers, warnings from
Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command-line option tells
GCC to emit warnings from system headers as if they occurred in user
code. However, note that using @option{-Wall} in conjunction with this
option does @emph{not} warn about unknown pragmas in system
headers---for that, @option{-Wunknown-pragmas} must also be used.
@item -Wtrampolines
@opindex Wtrampolines
@opindex Wno-trampolines
Warn about trampolines generated for pointers to nested functions.
A trampoline is a small piece of data or code that is created at run
time on the stack when the address of a nested function is taken, and
is used to call the nested function indirectly. For some targets, it
is made up of data only and thus requires no special treatment. But,
for most targets, it is made up of code and thus requires the stack
to be made executable in order for the program to work properly.
@item -Wfloat-equal
@opindex Wfloat-equal
@opindex Wno-float-equal
Warn if floating-point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem). In particular, instead of testing for equality, you
should check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
@item -Wtraditional @r{(C and Objective-C only)}
@opindex Wtraditional
@opindex Wno-traditional
Warn about certain constructs that behave differently in traditional and
ISO C@. Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs that should be avoided.
@itemize @bullet
@item
Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but in ISO C it does not.
@item
In traditional C, some preprocessor directives did not exist.
Traditional preprocessors only considered a line to be a directive
if the @samp{#} appeared in column 1 on the line. Therefore
@option{-Wtraditional} warns about directives that traditional C
understands but ignores because the @samp{#} does not appear as the
first character on the line. It also suggests you hide directives like
@samp{#pragma} not understood by traditional C by indenting them. Some
traditional implementations do not recognize @samp{#elif}, so this option
suggests avoiding it altogether.
@item
A function-like macro that appears without arguments.
@item
The unary plus operator.
@item
The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
constant suffixes. (Traditional C does support the @samp{L} suffix on integer
constants.) Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
Use of these macros in user code might normally lead to spurious
warnings, however GCC's integrated preprocessor has enough context to
avoid warning in these cases.
@item
A function declared external in one block and then used after the end of
the block.
@item
A @code{switch} statement has an operand of type @code{long}.
@item
A non-@code{static} function declaration follows a @code{static} one.
This construct is not accepted by some traditional C compilers.
@item
The ISO type of an integer constant has a different width or
signedness from its traditional type. This warning is only issued if
the base of the constant is ten. I.e.@: hexadecimal or octal values, which
typically represent bit patterns, are not warned about.
@item
Usage of ISO string concatenation is detected.
@item
Initialization of automatic aggregates.
@item
Identifier conflicts with labels. Traditional C lacks a separate
namespace for labels.
@item
Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.
@item
Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible
conversion warnings; for the full set use @option{-Wtraditional-conversion}.
@item
Use of ISO C style function definitions. This warning intentionally is
@emph{not} issued for prototype declarations or variadic functions
because these ISO C features appear in your code when using
libiberty's traditional C compatibility macros, @code{PARAMS} and
@code{VPARAMS}. This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.
@end itemize
@item -Wtraditional-conversion @r{(C and Objective-C only)}
@opindex Wtraditional-conversion
@opindex Wno-traditional-conversion
Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed-point argument
except when the same as the default promotion.
@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
@opindex Wdeclaration-after-statement
@opindex Wno-declaration-after-statement
Warn when a declaration is found after a statement in a block. This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC@. It is not supported by ISO C90 and was not supported by
GCC versions before GCC 3.0. @xref{Mixed Declarations}.
@item -Wundef
@opindex Wundef
@opindex Wno-undef
Warn if an undefined identifier is evaluated in an @samp{#if} directive.
@item -Wno-endif-labels
@opindex Wno-endif-labels
@opindex Wendif-labels
Do not warn whenever an @samp{#else} or an @samp{#endif} are followed by text.
@item -Wshadow
@opindex Wshadow
@opindex Wno-shadow
Warn whenever a local variable or type declaration shadows another variable,
parameter, type, or class member (in C++), or whenever a built-in function
is shadowed. Note that in C++, the compiler warns if a local variable
shadows an explicit typedef, but not if it shadows a struct/class/enum.
@item -Wlarger-than=@var{len}
@opindex Wlarger-than=@var{len}
@opindex Wlarger-than-@var{len}
Warn whenever an object of larger than @var{len} bytes is defined.
@item -Wframe-larger-than=@var{len}
@opindex Wframe-larger-than
Warn if the size of a function frame is larger than @var{len} bytes.
The computation done to determine the stack frame size is approximate
and not conservative.
The actual requirements may be somewhat greater than @var{len}
even if you do not get a warning. In addition, any space allocated
via @code{alloca}, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.
@item -Wno-free-nonheap-object
@opindex Wno-free-nonheap-object
@opindex Wfree-nonheap-object
Do not warn when attempting to free an object that was not allocated
on the heap.
@item -Wstack-usage=@var{len}
@opindex Wstack-usage
Warn if the stack usage of a function might be larger than @var{len} bytes.
The computation done to determine the stack usage is conservative.
Any space allocated via @code{alloca}, variable-length arrays, or related
constructs is included by the compiler when determining whether or not to
issue a warning.
The message is in keeping with the output of @option{-fstack-usage}.
@itemize
@item
If the stack usage is fully static but exceeds the specified amount, it's:
@smallexample
warning: stack usage is 1120 bytes
@end smallexample
@item
If the stack usage is (partly) dynamic but bounded, it's:
@smallexample
warning: stack usage might be 1648 bytes
@end smallexample
@item
If the stack usage is (partly) dynamic and not bounded, it's:
@smallexample
warning: stack usage might be unbounded
@end smallexample
@end itemize
@item -Wunsafe-loop-optimizations
@opindex Wunsafe-loop-optimizations
@opindex Wno-unsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler cannot
assume anything on the bounds of the loop indices. With
@option{-funsafe-loop-optimizations} warn if the compiler makes
such assumptions.
@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
@opindex Wno-pedantic-ms-format
@opindex Wpedantic-ms-format
When used in combination with @option{-Wformat}
and @option{-pedantic} without GNU extensions, this option
disables the warnings about non-ISO @code{printf} / @code{scanf} format
width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
which depend on the MS runtime.
@item -Wpointer-arith
@opindex Wpointer-arith
@opindex Wno-pointer-arith
Warn about anything that depends on the ``size of'' a function type or
of @code{void}. GNU C assigns these types a size of 1, for
convenience in calculations with @code{void *} pointers and pointers
to functions. In C++, warn also when an arithmetic operation involves
@code{NULL}. This warning is also enabled by @option{-Wpedantic}.
@item -Wtype-limits
@opindex Wtype-limits
@opindex Wno-type-limits
Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions. For
example, warn if an unsigned variable is compared against zero with
@samp{<} or @samp{>=}. This warning is also enabled by
@option{-Wextra}.
@item -Wbad-function-cast @r{(C and Objective-C only)}
@opindex Wbad-function-cast
@opindex Wno-bad-function-cast
Warn whenever a function call is cast to a non-matching type.
For example, warn if @code{int malloc()} is cast to @code{anything *}.
@item -Wc++-compat @r{(C and Objective-C only)}
Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g.@: request for implicit conversion from
@code{void *} to a pointer to non-@code{void} type.
@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 1998
and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
enabled by @option{-Wall}.
@item -Wcast-qual
@opindex Wcast-qual
@opindex Wno-cast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from
the target type. For example, warn if a @code{const char *} is cast
to an ordinary @code{char *}.
Also warn when making a cast that introduces a type qualifier in an
unsafe way. For example, casting @code{char **} to @code{const char **}
is unsafe, as in this example:
@smallexample
/* p is char ** value. */
const char **q = (const char **) p;
/* Assignment of readonly string to const char * is OK. */
*q = "string";
/* Now char** pointer points to read-only memory. */
**p = 'b';
@end smallexample
@item -Wcast-align
@opindex Wcast-align
@opindex Wno-cast-align
Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a @code{char *} is cast to
an @code{int *} on machines where integers can only be accessed at
two- or four-byte boundaries.
@item -Wwrite-strings
@opindex Wwrite-strings
@opindex Wno-write-strings
When compiling C, give string constants the type @code{const
char[@var{length}]} so that copying the address of one into a
non-@code{const} @code{char *} pointer produces a warning. These
warnings help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using @code{const} in declarations and prototypes. Otherwise, it is
just a nuisance. This is why we did not make @option{-Wall} request
these warnings.
When compiling C++, warn about the deprecated conversion from string
literals to @code{char *}. This warning is enabled by default for C++
programs.
@item -Wclobbered
@opindex Wclobbered
@opindex Wno-clobbered
Warn for variables that might be changed by @samp{longjmp} or
@samp{vfork}. This warning is also enabled by @option{-Wextra}.
@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
@opindex Wconditionally-supported
@opindex Wno-conditionally-supported
Warn for conditionally-supported (C++11 [intro.defs]) constructs.
@item -Wconversion
@opindex Wconversion
@opindex Wno-conversion
Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like @code{abs (x)} when
@code{x} is @code{double}; conversions between signed and unsigned,
like @code{unsigned ui = -1}; and conversions to smaller types, like
@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
changed by the conversion like in @code{abs (2.0)}. Warnings about
conversions between signed and unsigned integers can be disabled by
using @option{-Wno-sign-conversion}.
For C++, also warn for confusing overload resolution for user-defined
conversions; and conversions that never use a type conversion
operator: conversions to @code{void}, the same type, a base class or a
reference to them. Warnings about conversions between signed and
unsigned integers are disabled by default in C++ unless
@option{-Wsign-conversion} is explicitly enabled.
@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
@opindex Wconversion-null
@opindex Wno-conversion-null
Do not warn for conversions between @code{NULL} and non-pointer
types. @option{-Wconversion-null} is enabled by default.
@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
@opindex Wzero-as-null-pointer-constant
@opindex Wno-zero-as-null-pointer-constant
Warn when a literal '0' is used as null pointer constant. This can
be useful to facilitate the conversion to @code{nullptr} in C++11.
@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
@opindex Wuseless-cast
@opindex Wno-useless-cast
Warn when an expression is casted to its own type.
@item -Wempty-body
@opindex Wempty-body
@opindex Wno-empty-body
Warn if an empty body occurs in an @samp{if}, @samp{else} or @samp{do
while} statement. This warning is also enabled by @option{-Wextra}.
@item -Wenum-compare
@opindex Wenum-compare
@opindex Wno-enum-compare
Warn about a comparison between values of different enumerated types.
In C++ enumeral mismatches in conditional expressions are also
diagnosed and the warning is enabled by default. In C this warning is
enabled by @option{-Wall}.
@item -Wjump-misses-init @r{(C, Objective-C only)}
@opindex Wjump-misses-init
@opindex Wno-jump-misses-init
Warn if a @code{goto} statement or a @code{switch} statement jumps
forward across the initialization of a variable, or jumps backward to a
label after the variable has been initialized. This only warns about
variables that are initialized when they are declared. This warning is
only supported for C and Objective-C; in C++ this sort of branch is an
error in any case.
@option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
can be disabled with the @option{-Wno-jump-misses-init} option.
@item -Wsign-compare
@opindex Wsign-compare
@opindex Wno-sign-compare
@cindex warning for comparison of signed and unsigned values
@cindex comparison of signed and unsigned values, warning
@cindex signed and unsigned values, comparison warning
Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned.
This warning is also enabled by @option{-Wextra}; to get the other warnings
of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
@item -Wsign-conversion
@opindex Wsign-conversion
@opindex Wno-sign-conversion
Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by @option{-Wconversion}.
@item -Wsizeof-pointer-memaccess
@opindex Wsizeof-pointer-memaccess
@opindex Wno-sizeof-pointer-memaccess
Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses @code{sizeof}. This warning warns e.g.@:
about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
but a pointer, and suggests a possible fix, or about
@code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
@option{-Wall}.
@item -Waddress
@opindex Waddress
@opindex Wno-address
Warn about suspicious uses of memory addresses. These include using
the address of a function in a conditional expression, such as
@code{void func(void); if (func)}, and comparisons against the memory
address of a string literal, such as @code{if (x == "abc")}. Such
uses typically indicate a programmer error: the address of a function
always evaluates to true, so their use in a conditional usually
indicate that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified
behavior and are not portable in C, so they usually indicate that the
programmer intended to use @code{strcmp}. This warning is enabled by
@option{-Wall}.
@item -Wlogical-op
@opindex Wlogical-op
@opindex Wno-logical-op
Warn about suspicious uses of logical operators in expressions.
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected.
@item -Waggregate-return
@opindex Waggregate-return
@opindex Wno-aggregate-return
Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits
a warning.)
@item -Wno-aggressive-loop-optimizations
@opindex Wno-aggressive-loop-optimizations
@opindex Waggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects
undefined behavior in some statement during one or more of the iterations.
@item -Wno-attributes
@opindex Wno-attributes
@opindex Wattributes
Do not warn if an unexpected @code{__attribute__} is used, such as
unrecognized attributes, function attributes applied to variables,
etc. This does not stop errors for incorrect use of supported
attributes.
@item -Wno-builtin-macro-redefined
@opindex Wno-builtin-macro-redefined
@opindex Wbuiltin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses
warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
@item -Wstrict-prototypes @r{(C and Objective-C only)}
@opindex Wstrict-prototypes
@opindex Wno-strict-prototypes
Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted without
a warning if preceded by a declaration that specifies the argument
types.)
@item -Wold-style-declaration @r{(C and Objective-C only)}
@opindex Wold-style-declaration
@opindex Wno-old-style-declaration
Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
@code{static} are not the first things in a declaration. This warning
is also enabled by @option{-Wextra}.
@item -Wold-style-definition @r{(C and Objective-C only)}
@opindex Wold-style-definition
@opindex Wno-old-style-definition
Warn if an old-style function definition is used. A warning is given
even if there is a previous prototype.
@item -Wmissing-parameter-type @r{(C and Objective-C only)}
@opindex Wmissing-parameter-type
@opindex Wno-missing-parameter-type
A function parameter is declared without a type specifier in K&R-style
functions:
@smallexample
void foo(bar) @{ @}
@end smallexample
This warning is also enabled by @option{-Wextra}.
@item -Wmissing-prototypes @r{(C and Objective-C only)}
@opindex Wmissing-prototypes
@opindex Wno-missing-prototypes
Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. Use this option to detect global functions
that do not have a matching prototype declaration in a header file.
This option is not valid for C++ because all function declarations
provide prototypes and a non-matching declaration will declare an
overload rather than conflict with an earlier declaration.
Use @option{-Wmissing-declarations} to detect missing declarations in C++.
@item -Wmissing-declarations
@opindex Wmissing-declarations
@opindex Wno-missing-declarations
Warn if a global function is defined without a previous declaration.
Do so even if the definition itself provides a prototype.
Use this option to detect global functions that are not declared in
header files. In C, no warnings are issued for functions with previous
non-prototype declarations; use @option{-Wmissing-prototype} to detect
missing prototypes. In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.
@item -Wmissing-field-initializers
@opindex Wmissing-field-initializers
@opindex Wno-missing-field-initializers
@opindex W
@opindex Wextra
@opindex Wno-extra
Warn if a structure's initializer has some fields missing. For
example, the following code causes such a warning, because
@code{x.h} is implicitly zero:
@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ 3, 4 @};
@end smallexample
This option does not warn about designated initializers, so the following
modification does not trigger a warning:
@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ .f = 3, .g = 4 @};
@end smallexample
This warning is included in @option{-Wextra}. To get other @option{-Wextra}
warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
@item -Wno-multichar
@opindex Wno-multichar
@opindex Wmultichar
Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
Usually they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable code.
@item -Wnormalized=<none|id|nfc|nfkc>
@opindex Wnormalized=
@cindex NFC
@cindex NFKC
@cindex character set, input normalization
In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters. However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same. To avoid confusion,
the ISO 10646 standard sets out some @dfn{normalization rules} which
when applied ensure that two sequences that look the same are turned into
the same sequence. GCC can warn you if you are using identifiers that
have not been normalized; this option controls that warning.
There are four levels of warning supported by GCC@. The default is
@option{-Wnormalized=nfc}, which warns about any identifier that is
not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
recommended form for most uses.
Unfortunately, there are some characters allowed in identifiers by
ISO C and ISO C++ that, when turned into NFC, are not allowed in
identifiers. That is, there's no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC@.
@option{-Wnormalized=id} suppresses the warning for these characters.
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
You can switch the warning off for all characters by writing
@option{-Wnormalized=none}. You should only do this if you
are using some other normalization scheme (like ``D''), because
otherwise you can easily create bugs that are literally impossible to see.
Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
LETTER N'', displays just like a regular @code{n} that has been
placed in a superscript. ISO 10646 defines the @dfn{NFKC}
normalization scheme to convert all these into a standard form as
well, and GCC warns if your code is not in NFKC if you use
@option{-Wnormalized=nfkc}. This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.
@item -Wno-deprecated
@opindex Wno-deprecated
@opindex Wdeprecated
Do not warn about usage of deprecated features. @xref{Deprecated Features}.
@item -Wno-deprecated-declarations
@opindex Wno-deprecated-declarations
@opindex Wdeprecated-declarations
Do not warn about uses of functions (@pxref{Function Attributes}),
variables (@pxref{Variable Attributes}), and types (@pxref{Type
Attributes}) marked as deprecated by using the @code{deprecated}
attribute.
@item -Wno-overflow
@opindex Wno-overflow
@opindex Woverflow
Do not warn about compile-time overflow in constant expressions.
@item -Woverride-init @r{(C and Objective-C only)}
@opindex Woverride-init
@opindex Wno-override-init
@opindex W
@opindex Wextra
@opindex Wno-extra
Warn if an initialized field without side effects is overridden when
using designated initializers (@pxref{Designated Inits, , Designated
Initializers}).
This warning is included in @option{-Wextra}. To get other
@option{-Wextra} warnings without this one, use @option{-Wextra
-Wno-override-init}.
@item -Wpacked
@opindex Wpacked
@opindex Wno-packed
Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure.
Such structures may be mis-aligned for little benefit. For
instance, in this code, the variable @code{f.x} in @code{struct bar}
is misaligned even though @code{struct bar} does not itself
have the packed attribute:
@smallexample
@group
struct foo @{
int x;
char a, b, c, d;
@} __attribute__((packed));
struct bar @{
char z;
struct foo f;
@};
@end group
@end smallexample
@item -Wpacked-bitfield-compat
@opindex Wpacked-bitfield-compat
@opindex Wno-packed-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
the change can lead to differences in the structure layout. GCC
informs you when the offset of such a field has changed in GCC 4.4.
For example there is no longer a 4-bit padding between field @code{a}
and @code{b} in this structure:
@smallexample
struct foo
@{
char a:4;
char b:8;
@} __attribute__ ((packed));
@end smallexample
This warning is enabled by default. Use
@option{-Wno-packed-bitfield-compat} to disable this warning.
@item -Wpadded
@opindex Wpadded
@opindex Wno-padded
Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure. Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.
@item -Wredundant-decls
@opindex Wredundant-decls
@opindex Wno-redundant-decls
Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.
@item -Wnested-externs @r{(C and Objective-C only)}
@opindex Wnested-externs
@opindex Wno-nested-externs
Warn if an @code{extern} declaration is encountered within a function.
@item -Wno-inherited-variadic-ctor
@opindex Winherited-variadic-ctor
@opindex Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the
base class inherited from has a C variadic constructor; the warning is
on by default because the ellipsis is not inherited.
@item -Winline
@opindex Winline
@opindex Wno-inline
Warn if a function that is declared as inline cannot be inlined.
Even with this option, the compiler does not warn about failures to
inline functions declared in system headers.
The compiler uses a variety of heuristics to determine whether or not
to inline a function. For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function. Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by @option{-Winline} to appear or disappear.
@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
@opindex Wno-invalid-offsetof
@opindex Winvalid-offsetof
Suppress warnings from applying the @samp{offsetof} macro to a non-POD
type. According to the 1998 ISO C++ standard, applying @samp{offsetof}
to a non-POD type is undefined. In existing C++ implementations,
however, @samp{offsetof} typically gives meaningful results even when
applied to certain kinds of non-POD types (such as a simple
@samp{struct} that fails to be a POD type only by virtue of having a
constructor). This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.
The restrictions on @samp{offsetof} may be relaxed in a future version
of the C++ standard.
@item -Wno-int-to-pointer-cast
@opindex Wno-int-to-pointer-cast
@opindex Wint-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a
different size. In C++, casting to a pointer type of smaller size is
an error. @option{Wint-to-pointer-cast} is enabled by default.
@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
@opindex Wno-pointer-to-int-cast
@opindex Wpointer-to-int-cast
Suppress warnings from casts from a pointer to an integer type of a
different size.
@item -Winvalid-pch
@opindex Winvalid-pch
@opindex Wno-invalid-pch
Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
the search path but can't be used.
@item -Wlong-long
@opindex Wlong-long
@opindex Wno-long-long
Warn if @samp{long long} type is used. This is enabled by either
@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
modes. To inhibit the warning messages, use @option{-Wno-long-long}.
@item -Wvariadic-macros
@opindex Wvariadic-macros
@opindex Wno-variadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default.
To inhibit the warning messages, use @option{-Wno-variadic-macros}.
@item -Wvarargs
@opindex Wvarargs
@opindex Wno-varargs
Warn upon questionable usage of the macros used to handle variable
arguments like @samp{va_start}. This is default. To inhibit the
warning messages, use @option{-Wno-varargs}.
@item -Wvector-operation-performance
@opindex Wvector-operation-performance
@opindex Wno-vector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the
architecture. Mainly useful for the performance tuning.
Vector operation can be implemented @code{piecewise}, which means that the
scalar operation is performed on every vector element;
@code{in parallel}, which means that the vector operation is implemented
using scalars of wider type, which normally is more performance efficient;
and @code{as a single scalar}, which means that vector fits into a
scalar type.
@item -Wno-virtual-move-assign
@opindex Wvirtual-move-assign
@opindex Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a
non-trivial C++11 move assignment operator. This is dangerous because
if the virtual base is reachable along more than one path, it will be
moved multiple times, which can mean both objects end up in the
moved-from state. If the move assignment operator is written to avoid
moving from a moved-from object, this warning can be disabled.
@item -Wvla
@opindex Wvla
@opindex Wno-vla
Warn if variable length array is used in the code.
@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
the variable length array.
@item -Wvolatile-register-var
@opindex Wvolatile-register-var
@opindex Wno-volatile-register-var
Warn if a register variable is declared volatile. The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables. This warning is enabled by
@option{-Wall}.
@item -Wdisabled-optimization
@opindex Wdisabled-optimization
@opindex Wno-disabled-optimization
Warn if a requested optimization pass is disabled. This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC's optimizers are unable to handle the code
effectively. Often, the problem is that your code is too big or too
complex; GCC refuses to optimize programs when the optimization
itself is likely to take inordinate amounts of time.
@item -Wpointer-sign @r{(C and Objective-C only)}
@opindex Wpointer-sign
@opindex Wno-pointer-sign
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C@. It is implied by
@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
@option{-Wno-pointer-sign}.
@item -Wstack-protector
@opindex Wstack-protector
@opindex Wno-stack-protector
This option is only active when @option{-fstack-protector} is active. It
warns about functions that are not protected against stack smashing.
@item -Wno-mudflap
@opindex Wno-mudflap
Suppress warnings about constructs that cannot be instrumented by
@option{-fmudflap}.
@item -Woverlength-strings
@opindex Woverlength-strings
@opindex Wno-overlength-strings
Warn about string constants that are longer than the ``minimum
maximum'' length specified in the C standard. Modern compilers
generally allow string constants that are much longer than the
standard's minimum limit, but very portable programs should avoid
using longer strings.
The limit applies @emph{after} string constant concatenation, and does
not count the trailing NUL@. In C90, the limit was 509 characters; in
C99, it was raised to 4095. C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++@.
This option is implied by @option{-Wpedantic}, and can be disabled with
@option{-Wno-overlength-strings}.
@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
@opindex Wunsuffixed-float-constants
Issue a warning for any floating constant that does not have
a suffix. When used together with @option{-Wsystem-headers} it
warns about such constants in system header files. This can be useful
when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
from the decimal floating-point extension to C99.
@end table
@node Debugging Options
@section Options for Debugging Your Program or GCC
@cindex options, debugging
@cindex debugging information options
GCC has various special options that are used for debugging
either your program or GCC:
@table @gcctabopt
@item -g
@opindex g
Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
information.
On most systems that use stabs format, @option{-g} enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but probably makes other debuggers
crash or
refuse to read the program. If you want to control for certain whether
to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
GCC allows you to use @option{-g} with
@option{-O}. The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values are already at hand; some statements may
execute in different places because they have been moved out of loops.
Nevertheless it proves possible to debug optimized output. This makes
it reasonable to use the optimizer for programs that might have bugs.
The following options are useful when GCC is generated with the
capability for more than one debugging format.
@item -gsplit-dwarf
@opindex gsplit-dwarf
Separate as much dwarf debugging information as possible into a
separate output file with the extension .dwo. This option allows
the build system to avoid linking files with debug information. To
be useful, this option requires a debugger capable of reading .dwo
files.
@item -ggdb
@opindex ggdb
Produce debugging information for use by GDB@. This means to use the
most expressive format available (DWARF 2, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.
@item -gpubnames
@opindex gpubnames
Generate dwarf .debug_pubnames and .debug_pubtypes sections.
@item -gstabs
@opindex gstabs
Produce debugging information in stabs format (if that is supported),
without GDB extensions. This is the format used by DBX on most BSD
systems. On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output that is not understood by DBX or SDB@.
On System V Release 4 systems this option requires the GNU assembler.
@item -feliminate-unused-debug-symbols
@opindex feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported),
for only symbols that are actually used.
@item -femit-class-debug-always
Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class. This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option increases the size of debugging information by as much as a
factor of two.
@item -fdebug-types-section
@opindex fdebug-types-section
@opindex fno-debug-types-section
When using DWARF Version 4 or higher, type DIEs can be put into
their own @code{.debug_types} section instead of making them part of the
@code{.debug_info} section. It is more efficient to put them in a separate
comdat sections since the linker can then remove duplicates.
But not all DWARF consumers support @code{.debug_types} sections yet
and on some objects @code{.debug_types} produces larger instead of smaller
debugging information.
@item -gstabs+
@opindex gstabs+
Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB)@. The
use of these extensions is likely to make other debuggers crash or
refuse to read the program.
@item -gcoff
@opindex gcoff
Produce debugging information in COFF format (if that is supported).
This is the format used by SDB on most System V systems prior to
System V Release 4.
@item -gxcoff
@opindex gxcoff
Produce debugging information in XCOFF format (if that is supported).
This is the format used by the DBX debugger on IBM RS/6000 systems.
@item -gxcoff+
@opindex gxcoff+
Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB)@. The
use of these extensions is likely to make other debuggers crash or
refuse to read the program, and may cause assemblers other than the GNU
assembler (GAS) to fail with an error.
@item -gdwarf-@var{version}
@opindex gdwarf-@var{version}
Produce debugging information in DWARF format (if that is supported).
The value of @var{version} may be either 2, 3 or 4; the default version
for most targets is 4.
Note that with DWARF Version 2, some ports require and always
use some non-conflicting DWARF 3 extensions in the unwind tables.
Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
for maximum benefit.
@item -grecord-gcc-switches
@opindex grecord-gcc-switches
This switch causes the command-line options used to invoke the
compiler that may affect code generation to be appended to the
DW_AT_producer attribute in DWARF debugging information. The options
are concatenated with spaces separating them from each other and from
the compiler version. See also @option{-frecord-gcc-switches} for another
way of storing compiler options into the object file. This is the default.
@item -gno-record-gcc-switches
@opindex gno-record-gcc-switches
Disallow appending command-line options to the DW_AT_producer attribute
in DWARF debugging information.
@item -gstrict-dwarf
@opindex gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected
with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
DWARF extensions from later standard versions is allowed.
@item -gno-strict-dwarf
@opindex gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
@option{-gdwarf-@var{version}}.
@item -gvms
@opindex gvms
Produce debugging information in Alpha/VMS debug format (if that is
supported). This is the format used by DEBUG on Alpha/VMS systems.
@item -g@var{level}
@itemx -ggdb@var{level}
@itemx -gstabs@var{level}
@itemx -gcoff@var{level}
@itemx -gxcoff@var{level}
@itemx -gvms@var{level}
Request debugging information and also use @var{level} to specify how
much information. The default level is 2.
Level 0 produces no debug information at all. Thus, @option{-g0} negates
@option{-g}.
Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don't plan to debug. This includes
descriptions of functions and external variables, but no information
about local variables and no line numbers.
Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when
you use @option{-g3}.
@option{-gdwarf-2} does not accept a concatenated debug level, because
GCC used to support an option @option{-gdwarf} that meant to generate
debug information in version 1 of the DWARF format (which is very
different from version 2), and it would have been too confusing. That
debug format is long obsolete, but the option cannot be changed now.
Instead use an additional @option{-g@var{level}} option to change the
debug level for DWARF.
@item -gtoggle
@opindex gtoggle
Turn off generation of debug info, if leaving out this option
generates it, or turn it on at level 2 otherwise. The position of this
argument in the command line does not matter; it takes effect after all
other options are processed, and it does so only once, no matter how
many times it is given. This is mainly intended to be used with
@option{-fcompare-debug}.
@item -fsanitize=address
Enable AddressSanitizer, a fast memory error detector.
Memory access instructions will be instrumented to detect
out-of-bounds and use-after-free bugs.
See @uref{http://code.google.com/p/address-sanitizer/} for more details.
@item -fsanitize=thread
Enable ThreadSanitizer, a fast data race detector.
Memory access instructions will be instrumented to detect
data race bugs.
See @uref{http://code.google.com/p/data-race-test/wiki/ThreadSanitizer} for more details.
@item -fsanitize=undefined
Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector
Various computations will be instrumented to detect undefined behavior
at runtime, e.g.@: division by zero or various overflows.
While @option{-ftrapv} causes traps for signed overflows to be emitted,
@option{-fsanitize=undefined} gives a diagnostic message.
This currently works only for the C family of languages.
@item -fdump-final-insns@r{[}=@var{file}@r{]}
@opindex fdump-final-insns
Dump the final internal representation (RTL) to @var{file}. If the
optional argument is omitted (or if @var{file} is @code{.}), the name
of the dump file is determined by appending @code{.gkd} to the
compilation output file name.
@item -fcompare-debug@r{[}=@var{opts}@r{]}
@opindex fcompare-debug
@opindex fno-compare-debug
If no error occurs during compilation, run the compiler a second time,
adding @var{opts} and @option{-fcompare-debug-second} to the arguments
passed to the second compilation. Dump the final internal
representation in both compilations, and print an error if they differ.
If the equal sign is omitted, the default @option{-gtoggle} is used.
The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
and nonzero, implicitly enables @option{-fcompare-debug}. If
@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
then it is used for @var{opts}, otherwise the default @option{-gtoggle}
is used.
@option{-fcompare-debug=}, with the equal sign but without @var{opts},
is equivalent to @option{-fno-compare-debug}, which disables the dumping
of the final representation and the second compilation, preventing even
@env{GCC_COMPARE_DEBUG} from taking effect.
To verify full coverage during @option{-fcompare-debug} testing, set
@env{GCC_COMPARE_DEBUG} to say @samp{-fcompare-debug-not-overridden},
which GCC rejects as an invalid option in any actual compilation
(rather than preprocessing, assembly or linking). To get just a
warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
not overridden} will do.
@item -fcompare-debug-second
@opindex fcompare-debug-second
This option is implicitly passed to the compiler for the second
compilation requested by @option{-fcompare-debug}, along with options to
silence warnings, and omitting other options that would cause
side-effect compiler outputs to files or to the standard output. Dump
files and preserved temporary files are renamed so as to contain the
@code{.gk} additional extension during the second compilation, to avoid
overwriting those generated by the first.
When this option is passed to the compiler driver, it causes the
@emph{first} compilation to be skipped, which makes it useful for little
other than debugging the compiler proper.
@item -feliminate-dwarf2-dups
@opindex feliminate-dwarf2-dups
Compress DWARF 2 debugging information by eliminating duplicated
information about each symbol. This option only makes sense when
generating DWARF 2 debugging information with @option{-gdwarf-2}.
@item -femit-struct-debug-baseonly
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct is defined.
This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See @option{-femit-struct-debug-reduced} for a less aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.
This option works only with DWARF 2.
@item -femit-struct-debug-reduced
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.
This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger.
See @option{-femit-struct-debug-baseonly} for a more aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.
This option works only with DWARF 2.
@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
Specify the struct-like types
for which the compiler generates debug information.
The intent is to reduce duplicate struct debug information
between different object files within the same program.
This option is a detailed version of
@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
which serves for most needs.
A specification has the syntax@*
[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
The optional first word limits the specification to
structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
A struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect.
An example is
@samp{struct one direct; struct two * indirect;}.
The optional second word limits the specification to
ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
Generic structs are a bit complicated to explain.
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above.
Other programming languages have generics,
but @option{-femit-struct-debug-detailed} does not yet implement them.
The third word specifies the source files for those
structs for which the compiler should emit debug information.
The values @samp{none} and @samp{any} have the normal meaning.
The value @samp{base} means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file.
In practice, this means that when compiling @file{foo.c}, debug information
is generated for types declared in that file and @file{foo.h},
but not other header files.
The value @samp{sys} means those types satisfying @samp{base}
or declared in system or compiler headers.
You may need to experiment to determine the best settings for your application.
The default is @option{-femit-struct-debug-detailed=all}.
This option works only with DWARF 2.
@item -fno-merge-debug-strings
@opindex fmerge-debug-strings
@opindex fno-merge-debug-strings
Direct the linker to not merge together strings in the debugging
information that are identical in different object files. Merging is
not supported by all assemblers or linkers. Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time. Merging is enabled by default.
@item -fdebug-prefix-map=@var{old}=@var{new}
@opindex fdebug-prefix-map
When compiling files in directory @file{@var{old}}, record debugging
information describing them as in @file{@var{new}} instead.
@item -fno-dwarf2-cfi-asm
@opindex fdwarf2-cfi-asm
@opindex fno-dwarf2-cfi-asm
Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
instead of using GAS @code{.cfi_*} directives.
@cindex @command{prof}
@item -p
@opindex p
Generate extra code to write profile information suitable for the
analysis program @command{prof}. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
@cindex @command{gprof}
@item -pg
@opindex pg
Generate extra code to write profile information suitable for the
analysis program @command{gprof}. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
@item -Q
@opindex Q
Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.
@item -ftime-report
@opindex ftime-report
Makes the compiler print some statistics about the time consumed by each
pass when it finishes.
@item -fmem-report
@opindex fmem-report
Makes the compiler print some statistics about permanent memory
allocation when it finishes.
@item -fmem-report-wpa
@opindex fmem-report-wpa
Makes the compiler print some statistics about permanent memory
allocation for the WPA phase only.
@item -fpre-ipa-mem-report
@opindex fpre-ipa-mem-report
@item -fpost-ipa-mem-report
@opindex fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.
@item -fprofile-report
@opindex fprofile-report
Makes the compiler print some statistics about consistency of the
(estimated) profile and effect of individual passes.
@item -fstack-usage
@opindex fstack-usage
Makes the compiler output stack usage information for the program, on a
per-function basis. The filename for the dump is made by appending
@file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
the output file, if explicitly specified and it is not an executable,
otherwise it is the basename of the source file. An entry is made up
of three fields:
@itemize
@item
The name of the function.
@item
A number of bytes.
@item
One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
@end itemize
The qualifier @code{static} means that the function manipulates the stack
statically: a fixed number of bytes are allocated for the frame on function
entry and released on function exit; no stack adjustments are otherwise made
in the function. The second field is this fixed number of bytes.
The qualifier @code{dynamic} means that the function manipulates the stack
dynamically: in addition to the static allocation described above, stack
adjustments are made in the body of the function, for example to push/pop
arguments around function calls. If the qualifier @code{bounded} is also
present, the amount of these adjustments is bounded at compile time and
the second field is an upper bound of the total amount of stack used by
the function. If it is not present, the amount of these adjustments is
not bounded at compile time and the second field only represents the
bounded part.
@item -fprofile-arcs
@opindex fprofile-arcs
Add code so that program flow @dfn{arcs} are instrumented. During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns. When the compiled
program exits it saves this data to a file called
@file{@var{auxname}.gcda} for each source file. The data may be used for
profile-directed optimizations (@option{-fbranch-probabilities}), or for
test coverage analysis (@option{-ftest-coverage}). Each object file's
@var{auxname} is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file. In both cases any suffix is removed
(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
@xref{Cross-profiling}.
@cindex @command{gcov}
@item --coverage
@opindex coverage
This option is used to compile and link code instrumented for coverage
analysis. The option is a synonym for @option{-fprofile-arcs}
@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
linking). See the documentation for those options for more details.
@itemize
@item
Compile the source files with @option{-fprofile-arcs} plus optimization
and code generation options. For test coverage analysis, use the
additional @option{-ftest-coverage} option. You do not need to profile
every source file in a program.
@item
Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
(the latter implies the former).
@item
Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also
@code{fork} calls are detected and correctly handled (double counting
will not happen).
@item
For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
Control Optimization}).
@item
For test coverage analysis, use @command{gcov} to produce human readable
information from the @file{.gcno} and @file{.gcda} files. Refer to the
@command{gcov} documentation for further information.
@end itemize
With @option{-fprofile-arcs}, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph.
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.
@need 2000
@item -ftest-coverage
@opindex ftest-coverage
Produce a notes file that the @command{gcov} code-coverage utility
(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
show program coverage. Each source file's note file is called
@file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
above for a description of @var{auxname} and instructions on how to
generate test coverage data. Coverage data matches the source files
more closely if you do not optimize.
@item -fdbg-cnt-list
@opindex fdbg-cnt-list
Print the name and the counter upper bound for all debug counters.
@item -fdbg-cnt=@var{counter-value-list}
@opindex fdbg-cnt
Set the internal debug counter upper bound. @var{counter-value-list}
is a comma-separated list of @var{name}:@var{value} pairs
which sets the upper bound of each debug counter @var{name} to @var{value}.
All debug counters have the initial upper bound of @code{UINT_MAX};
thus @code{dbg_cnt()} returns true always unless the upper bound
is set by this option.
For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
@code{dbg_cnt(dce)} returns true only for first 10 invocations.
@item -fenable-@var{kind}-@var{pass}
@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
@opindex fdisable-
@opindex fenable-
This is a set of options that are used to explicitly disable/enable
optimization passes. These options are intended for use for debugging GCC.
Compiler users should use regular options for enabling/disabling
passes instead.
@table @gcctabopt
@item -fdisable-ipa-@var{pass}
Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
@item -fdisable-rtl-@var{pass}
@itemx -fdisable-rtl-@var{pass}=@var{range-list}
Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1. @var{range-list} is a
comma-separated list of function ranges or assembler names. Each range is a number
pair separated by a colon. The range is inclusive in both ends. If the range
is trivial, the number pair can be simplified as a single number. If the
function's call graph node's @var{uid} falls within one of the specified ranges,
the @var{pass} is disabled for that function. The @var{uid} is shown in the
function header of a dump file, and the pass names can be dumped by using
option @option{-fdump-passes}.
@item -fdisable-tree-@var{pass}
@itemx -fdisable-tree-@var{pass}=@var{range-list}
Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
option arguments.
@item -fenable-ipa-@var{pass}
Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
@item -fenable-rtl-@var{pass}
@itemx -fenable-rtl-@var{pass}=@var{range-list}
Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
description and examples.
@item -fenable-tree-@var{pass}
@itemx -fenable-tree-@var{pass}=@var{range-list}
Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
of option arguments.
@end table
Here are some examples showing uses of these options.
@smallexample
# disable ccp1 for all functions
-fdisable-tree-ccp1
# disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
# disable gcse2 for functions at the following ranges [1,1],
# [300,400], and [400,1000]
# disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo2
# disable early inlining
-fdisable-tree-einline
# disable ipa inlining
-fdisable-ipa-inline
# enable tree full unroll
-fenable-tree-unroll
@end smallexample
@item -d@var{letters}
@itemx -fdump-rtl-@var{pass}
@itemx -fdump-rtl-@var{pass}=@var{filename}
@opindex d
Says to make debugging dumps during compilation at times specified by
@var{letters}. This is used for debugging the RTL-based passes of the
compiler. The file names for most of the dumps are made by appending
a pass number and a word to the @var{dumpname}, and the files are
created in the directory of the output file. In case of
@option{=@var{filename}} option, the dump is output on the given file
instead of the pass numbered dump files. Note that the pass number is
computed statically as passes get registered into the pass manager.
Thus the numbering is not related to the dynamic order of execution of
passes. In particular, a pass installed by a plugin could have a
number over 200 even if it executed quite early. @var{dumpname} is
generated from the name of the output file, if explicitly specified
and it is not an executable, otherwise it is the basename of the
source file. These switches may have different effects when
@option{-E} is used for preprocessing.
Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
@option{-d} option @var{letters}. Here are the possible
letters for use in @var{pass} and @var{letters}, and their meanings:
@table @gcctabopt
@item -fdump-rtl-alignments
@opindex fdump-rtl-alignments
Dump after branch alignments have been computed.
@item -fdump-rtl-asmcons
@opindex fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out constraints.
@item -fdump-rtl-auto_inc_dec
@opindex fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on
architectures that have auto inc or auto dec instructions.
@item -fdump-rtl-barriers
@opindex fdump-rtl-barriers
Dump after cleaning up the barrier instructions.
@item -fdump-rtl-bbpart
@opindex fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.
@item -fdump-rtl-bbro
@opindex fdump-rtl-bbro
Dump after block reordering.
@item -fdump-rtl-btl1
@itemx -fdump-rtl-btl2
@opindex fdump-rtl-btl2
@opindex fdump-rtl-btl2
@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
after the two branch
target load optimization passes.
@item -fdump-rtl-bypass
@opindex fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.
@item -fdump-rtl-combine
@opindex fdump-rtl-combine
Dump after the RTL instruction combination pass.
@item -fdump-rtl-compgotos
@opindex fdump-rtl-compgotos
Dump after duplicating the computed gotos.
@item -fdump-rtl-ce1
@itemx -fdump-rtl-ce2
@itemx -fdump-rtl-ce3
@opindex fdump-rtl-ce1
@opindex fdump-rtl-ce2
@opindex fdump-rtl-ce3
@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
@option{-fdump-rtl-ce3} enable dumping after the three
if conversion passes.
@item -fdump-rtl-cprop_hardreg
@opindex fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.
@item -fdump-rtl-csa
@opindex fdump-rtl-csa
Dump after combining stack adjustments.
@item -fdump-rtl-cse1
@itemx -fdump-rtl-cse2
@opindex fdump-rtl-cse1
@opindex fdump-rtl-cse2
@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
the two common subexpression elimination passes.
@item -fdump-rtl-dce
@opindex fdump-rtl-dce
Dump after the standalone dead code elimination passes.
@item -fdump-rtl-dbr
@opindex fdump-rtl-dbr
Dump after delayed branch scheduling.
@item -fdump-rtl-dce1
@itemx -fdump-rtl-dce2
@opindex fdump-rtl-dce1
@opindex fdump-rtl-dce2
@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
the two dead store elimination passes.
@item -fdump-rtl-eh
@opindex fdump-rtl-eh
Dump after finalization of EH handling code.
@item -fdump-rtl-eh_ranges
@opindex fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.
@item -fdump-rtl-expand
@opindex fdump-rtl-expand
Dump after RTL generation.
@item -fdump-rtl-fwprop1
@itemx -fdump-rtl-fwprop2
@opindex fdump-rtl-fwprop1
@opindex fdump-rtl-fwprop2
@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
dumping after the two forward propagation passes.
@item -fdump-rtl-gcse1
@itemx -fdump-rtl-gcse2
@opindex fdump-rtl-gcse1
@opindex fdump-rtl-gcse2
@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
after global common subexpression elimination.
@item -fdump-rtl-init-regs
@opindex fdump-rtl-init-regs
Dump after the initialization of the registers.
@item -fdump-rtl-initvals
@opindex fdump-rtl-initvals
Dump after the computation of the initial value sets.
@item -fdump-rtl-into_cfglayout
@opindex fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.
@item -fdump-rtl-ira
@opindex fdump-rtl-ira
Dump after iterated register allocation.
@item -fdump-rtl-jump
@opindex fdump-rtl-jump
Dump after the second jump optimization.
@item -fdump-rtl-loop2
@opindex fdump-rtl-loop2
@option{-fdump-rtl-loop2} enables dumping after the rtl
loop optimization passes.
@item -fdump-rtl-mach
@opindex fdump-rtl-mach
Dump after performing the machine dependent reorganization pass, if that
pass exists.
@item -fdump-rtl-mode_sw
@opindex fdump-rtl-mode_sw
Dump after removing redundant mode switches.
@item -fdump-rtl-rnreg
@opindex fdump-rtl-rnreg
Dump after register renumbering.
@item -fdump-rtl-outof_cfglayout
@opindex fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.
@item -fdump-rtl-peephole2
@opindex fdump-rtl-peephole2
Dump after the peephole pass.
@item -fdump-rtl-postreload
@opindex fdump-rtl-postreload
Dump after post-reload optimizations.
@item -fdump-rtl-pro_and_epilogue
@opindex fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.
@item -fdump-rtl-regmove
@opindex fdump-rtl-regmove
Dump after the register move pass.
@item -fdump-rtl-sched1
@itemx -fdump-rtl-sched2
@opindex fdump-rtl-sched1
@opindex fdump-rtl-sched2
@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
after the basic block scheduling passes.
@item -fdump-rtl-see
@opindex fdump-rtl-see
Dump after sign extension elimination.
@item -fdump-rtl-seqabstr
@opindex fdump-rtl-seqabstr
Dump after common sequence discovery.
@item -fdump-rtl-shorten
@opindex fdump-rtl-shorten
Dump after shortening branches.
@item -fdump-rtl-sibling
@opindex fdump-rtl-sibling
Dump after sibling call optimizations.
@item -fdump-rtl-split1
@itemx -fdump-rtl-split2
@itemx -fdump-rtl-split3
@itemx -fdump-rtl-split4
@itemx -fdump-rtl-split5
@opindex fdump-rtl-split1
@opindex fdump-rtl-split2
@opindex fdump-rtl-split3
@opindex fdump-rtl-split4
@opindex fdump-rtl-split5
@option{-fdump-rtl-split1}, @option{-fdump-rtl-split2},
@option{-fdump-rtl-split3}, @option{-fdump-rtl-split4} and
@option{-fdump-rtl-split5} enable dumping after five rounds of
instruction splitting.
@item -fdump-rtl-sms
@opindex fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.
@item -fdump-rtl-stack
@opindex fdump-rtl-stack
Dump after conversion from GCC's ``flat register file'' registers to the
x87's stack-like registers. This pass is only run on x86 variants.
@item -fdump-rtl-subreg1
@itemx -fdump-rtl-subreg2
@opindex fdump-rtl-subreg1
@opindex fdump-rtl-subreg2
@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
the two subreg expansion passes.
@item -fdump-rtl-unshare
@opindex fdump-rtl-unshare
Dump after all rtl has been unshared.
@item -fdump-rtl-vartrack
@opindex fdump-rtl-vartrack
Dump after variable tracking.
@item -fdump-rtl-vregs
@opindex fdump-rtl-vregs
Dump after converting virtual registers to hard registers.
@item -fdump-rtl-web
@opindex fdump-rtl-web
Dump after live range splitting.
@item -fdump-rtl-regclass
@itemx -fdump-rtl-subregs_of_mode_init
@itemx -fdump-rtl-subregs_of_mode_finish
@itemx -fdump-rtl-dfinit
@itemx -fdump-rtl-dfinish
@opindex fdump-rtl-regclass
@opindex fdump-rtl-subregs_of_mode_init
@opindex fdump-rtl-subregs_of_mode_finish
@opindex fdump-rtl-dfinit
@opindex fdump-rtl-dfinish
These dumps are defined but always produce empty files.
@item -da
@itemx -fdump-rtl-all
@opindex da
@opindex fdump-rtl-all
Produce all the dumps listed above.
@item -dA
@opindex dA
Annotate the assembler output with miscellaneous debugging information.
@item -dD
@opindex dD
Dump all macro definitions, at the end of preprocessing, in addition to
normal output.
@item -dH
@opindex dH
Produce a core dump whenever an error occurs.
@item -dp
@opindex dp
Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length of each instruction is
also printed.
@item -dP
@opindex dP
Dump the RTL in the assembler output as a comment before each instruction.
Also turns on @option{-dp} annotation.
@item -dx
@opindex dx
Just generate RTL for a function instead of compiling it. Usually used
with @option{-fdump-rtl-expand}.
@end table
@item -fdump-noaddr
@opindex fdump-noaddr
When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.
@item -fdump-unnumbered
@opindex fdump-unnumbered
When doing debugging dumps, suppress instruction numbers and address output.
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
@option{-g}.
@item -fdump-unnumbered-links
@opindex fdump-unnumbered-links
When doing debugging dumps (see @option{-d} option above), suppress
instruction numbers for the links to the previous and next instructions
in a sequence.
@item -fdump-translation-unit @r{(C++ only)}
@itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
@opindex fdump-translation-unit
Dump a representation of the tree structure for the entire translation
unit to a file. The file name is made by appending @file{.tu} to the
source file name, and the file is created in the same directory as the
output file. If the @samp{-@var{options}} form is used, @var{options}
controls the details of the dump as described for the
@option{-fdump-tree} options.
@item -fdump-class-hierarchy @r{(C++ only)}
@itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
@opindex fdump-class-hierarchy
Dump a representation of each class's hierarchy and virtual function
table layout to a file. The file name is made by appending
@file{.class} to the source file name, and the file is created in the
same directory as the output file. If the @samp{-@var{options}} form
is used, @var{options} controls the details of the dump as described
for the @option{-fdump-tree} options.
@item -fdump-ipa-@var{switch}
@opindex fdump-ipa
Control the dumping at various stages of inter-procedural analysis
language tree to a file. The file name is generated by appending a
switch specific suffix to the source file name, and the file is created
in the same directory as the output file. The following dumps are
possible:
@table @samp
@item all
Enables all inter-procedural analysis dumps.
@item cgraph
Dumps information about call-graph optimization, unused function removal,
and inlining decisions.
@item inline
Dump after function inlining.
@end table
@item -fdump-passes
@opindex fdump-passes
Dump the list of optimization passes that are turned on and off by
the current command-line options.
@item -fdump-statistics-@var{option}
@opindex fdump-statistics
Enable and control dumping of pass statistics in a separate file. The
file name is generated by appending a suffix ending in
@samp{.statistics} to the source file name, and the file is created in
the same directory as the output file. If the @samp{-@var{option}}
form is used, @samp{-stats} causes counters to be summed over the
whole compilation unit while @samp{-details} dumps every event as
the passes generate them. The default with no option is to sum
counters for each function compiled.
@item -fdump-tree-@var{switch}
@itemx -fdump-tree-@var{switch}-@var{options}
@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
@opindex fdump-tree
Control the dumping at various stages of processing the intermediate
language tree to a file. The file name is generated by appending a
switch-specific suffix to the source file name, and the file is
created in the same directory as the output file. In case of
@option{=@var{filename}} option, the dump is output on the given file
instead of the auto named dump files. If the @samp{-@var{options}}
form is used, @var{options} is a list of @samp{-} separated options
which control the details of the dump. Not all options are applicable
to all dumps; those that are not meaningful are ignored. The
following options are available
@table @samp
@item address
Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.
@item asmname
If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
in the dump instead of @code{DECL_NAME}. Its primary use is ease of
use working backward from mangled names in the assembly file.
@item slim
When dumping front-end intermediate representations, inhibit dumping
of members of a scope or body of a function merely because that scope
has been reached. Only dump such items when they are directly reachable
by some other path.
When dumping pretty-printed trees, this option inhibits dumping the
bodies of control structures.
When dumping RTL, print the RTL in slim (condensed) form instead of
the default LISP-like representation.
@item raw
Print a raw representation of the tree. By default, trees are
pretty-printed into a C-like representation.
@item details
Enable more detailed dumps (not honored by every dump option). Also
include information from the optimization passes.
@item stats
Enable dumping various statistics about the pass (not honored by every dump
option).
@item blocks
Enable showing basic block boundaries (disabled in raw dumps).
@item graph
For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
dump a representation of the control flow graph suitable for viewing with
GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
the file is pretty-printed as a subgraph, so that GraphViz can render them
all in a single plot.
This option currently only works for RTL dumps, and the RTL is always
dumped in slim form.
@item vops
Enable showing virtual operands for every statement.
@item lineno
Enable showing line numbers for statements.
@item uid
Enable showing the unique ID (@code{DECL_UID}) for each variable.
@item verbose
Enable showing the tree dump for each statement.
@item eh
Enable showing the EH region number holding each statement.
@item scev
Enable showing scalar evolution analysis details.
@item optimized
Enable showing optimization information (only available in certain
passes).
@item missed
Enable showing missed optimization information (only available in certain
passes).
@item notes
Enable other detailed optimization information (only available in
certain passes).
@item =@var{filename}
Instead of an auto named dump file, output into the given file
name. The file names @file{stdout} and @file{stderr} are treated
specially and are considered already open standard streams. For
example,
@smallexample
gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
-fdump-tree-pre=stderr file.c
@end smallexample
outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
output on to @file{stderr}. If two conflicting dump filenames are
given for the same pass, then the latter option overrides the earlier
one.
@item all
Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
and @option{lineno}.
@item optall
Turn on all optimization options, i.e., @option{optimized},
@option{missed}, and @option{note}.
@end table
The following tree dumps are possible:
@table @samp
@item original
@opindex fdump-tree-original
Dump before any tree based optimization, to @file{@var{file}.original}.
@item optimized
@opindex fdump-tree-optimized
Dump after all tree based optimization, to @file{@var{file}.optimized}.
@item gimple
@opindex fdump-tree-gimple
Dump each function before and after the gimplification pass to a file. The
file name is made by appending @file{.gimple} to the source file name.
@item cfg
@opindex fdump-tree-cfg
Dump the control flow graph of each function to a file. The file name is
made by appending @file{.cfg} to the source file name.
@item ch
@opindex fdump-tree-ch
Dump each function after copying loop headers. The file name is made by
appending @file{.ch} to the source file name.
@item ssa
@opindex fdump-tree-ssa
Dump SSA related information to a file. The file name is made by appending
@file{.ssa} to the source file name.
@item alias
@opindex fdump-tree-alias
Dump aliasing information for each function. The file name is made by
appending @file{.alias} to the source file name.
@item ccp
@opindex fdump-tree-ccp
Dump each function after CCP@. The file name is made by appending
@file{.ccp} to the source file name.
@item storeccp
@opindex fdump-tree-storeccp
Dump each function after STORE-CCP@. The file name is made by appending
@file{.storeccp} to the source file name.
@item pre
@opindex fdump-tree-pre
Dump trees after partial redundancy elimination. The file name is made
by appending @file{.pre} to the source file name.
@item fre
@opindex fdump-tree-fre
Dump trees after full redundancy elimination. The file name is made
by appending @file{.fre} to the source file name.
@item copyprop
@opindex fdump-tree-copyprop
Dump trees after copy propagation. The file name is made
by appending @file{.copyprop} to the source file name.
@item store_copyprop
@opindex fdump-tree-store_copyprop
Dump trees after store copy-propagation. The file name is made
by appending @file{.store_copyprop} to the source file name.
@item dce
@opindex fdump-tree-dce
Dump each function after dead code elimination. The file name is made by
appending @file{.dce} to the source file name.
@item mudflap
@opindex fdump-tree-mudflap
Dump each function after adding mudflap instrumentation. The file name is
made by appending @file{.mudflap} to the source file name.
@item sra
@opindex fdump-tree-sra
Dump each function after performing scalar replacement of aggregates. The
file name is made by appending @file{.sra} to the source file name.
@item sink
@opindex fdump-tree-sink
Dump each function after performing code sinking. The file name is made
by appending @file{.sink} to the source file name.
@item dom
@opindex fdump-tree-dom
Dump each function after applying dominator tree optimizations. The file
name is made by appending @file{.dom} to the source file name.
@item dse
@opindex fdump-tree-dse
Dump each function after applying dead store elimination. The file
name is made by appending @file{.dse} to the source file name.
@item phiopt
@opindex fdump-tree-phiopt
Dump each function after optimizing PHI nodes into straightline code. The file
name is made by appending @file{.phiopt} to the source file name.
@item forwprop
@opindex fdump-tree-forwprop
Dump each function after forward propagating single use variables. The file
name is made by appending @file{.forwprop} to the source file name.
@item copyrename
@opindex fdump-tree-copyrename
Dump each function after applying the copy rename optimization. The file
name is made by appending @file{.copyrename} to the source file name.
@item nrv
@opindex fdump-tree-nrv
Dump each function after applying the named return value optimization on
generic trees. The file name is made by appending @file{.nrv} to the source
file name.
@item vect
@opindex fdump-tree-vect
Dump each function after applying vectorization of loops. The file name is
made by appending @file{.vect} to the source file name.
@item slp
@opindex fdump-tree-slp
Dump each function after applying vectorization of basic blocks. The file name
is made by appending @file{.slp} to the source file name.
@item vrp
@opindex fdump-tree-vrp
Dump each function after Value Range Propagation (VRP). The file name
is made by appending @file{.vrp} to the source file name.
@item all
@opindex fdump-tree-all
Enable all the available tree dumps with the flags provided in this option.
@end table
@item -fopt-info
@itemx -fopt-info-@var{options}
@itemx -fopt-info-@var{options}=@var{filename}
@opindex fopt-info
Controls optimization dumps from various optimization passes. If the
@samp{-@var{options}} form is used, @var{options} is a list of
@samp{-} separated options to select the dump details and
optimizations. If @var{options} is not specified, it defaults to
@option{optimized} for details and @option{optall} for optimization
groups. If the @var{filename} is not specified, it defaults to
@file{stderr}. Note that the output @var{filename} will be overwritten
in case of multiple translation units. If a combined output from
multiple translation units is desired, @file{stderr} should be used
instead.
The options can be divided into two groups, 1) options describing the
verbosity of the dump, and 2) options describing which optimizations
should be included. The options from both the groups can be freely
mixed as they are non-overlapping. However, in case of any conflicts,
the latter options override the earlier options on the command
line. Though multiple -fopt-info options are accepted, only one of
them can have @option{=filename}. If other filenames are provided then
all but the first one are ignored.
The dump verbosity has the following options
@table @samp
@item optimized
Print information when an optimization is successfully applied. It is
up to a pass to decide which information is relevant. For example, the
vectorizer passes print the source location of loops which got
successfully vectorized.
@item missed
Print information about missed optimizations. Individual passes
control which information to include in the output. For example,
@smallexample
gcc -O2 -ftree-vectorize -fopt-info-vec-missed
@end smallexample
will print information about missed optimization opportunities from
vectorization passes on stderr.
@item note
Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.
@item all
Print detailed optimization information. This includes
@var{optimized}, @var{missed}, and @var{note}.
@end table
The second set of options describes a group of optimizations and may
include one or more of the following.
@table @samp
@item ipa
Enable dumps from all interprocedural optimizations.
@item loop
Enable dumps from all loop optimizations.
@item inline
Enable dumps from all inlining optimizations.
@item vec
Enable dumps from all vectorization optimizations.
@item optall
Enable dumps from all optimizations. This is a superset of
the optimization groups listed above.
@end table
For example,
@smallexample
gcc -O3 -fopt-info-missed=missed.all
@end smallexample
outputs missed optimization report from all the passes into
@file{missed.all}.
As another example,
@smallexample
gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
@end smallexample
will output information about missed optimizations as well as
optimized locations from all the inlining passes into
@file{inline.txt}.
If the @var{filename} is provided, then the dumps from all the
applicable optimizations are concatenated into the @file{filename}.
Otherwise the dump is output onto @file{stderr}. If @var{options} is
omitted, it defaults to @option{all-optall}, which means dump all
available optimization info from all the passes. In the following
example, all optimization info is output on to @file{stderr}.
@smallexample
gcc -O3 -fopt-info
@end smallexample
Note that @option{-fopt-info-vec-missed} behaves the same as
@option{-fopt-info-missed-vec}.
As another example, consider
@smallexample
gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
@end smallexample
Here the two output filenames @file{vec.miss} and @file{loop.opt} are
in conflict since only one output file is allowed. In this case, only
the first option takes effect and the subsequent options are
ignored. Thus only the @file{vec.miss} is produced which cotaints
dumps from the vectorizer about missed opportunities.
@item -ftree-vectorizer-verbose=@var{n}
@opindex ftree-vectorizer-verbose
This option is deprecated and is implemented in terms of
@option{-fopt-info}. Please use @option{-fopt-info-@var{kind}} form
instead, where @var{kind} is one of the valid opt-info options. It
prints additional optimization information. For @var{n}=0 no
diagnostic information is reported. If @var{n}=1 the vectorizer
reports each loop that got vectorized, and the total number of loops
that got vectorized. If @var{n}=2 the vectorizer reports locations
which could not be vectorized and the reasons for those. For any
higher verbosity levels all the analysis and transformation
information from the vectorizer is reported.
Note that the information output by @option{-ftree-vectorizer-verbose}
option is sent to @file{stderr}. If the equivalent form
@option{-fopt-info-@var{options}=@var{filename}} is used then the
output is sent into @var{filename} instead.
@item -frandom-seed=@var{string}
@opindex frandom-seed
This option provides a seed that GCC uses in place of
random numbers in generating certain symbol names
that have to be different in every compiled file. It is also used to
place unique stamps in coverage data files and the object files that
produce them. You can use the @option{-frandom-seed} option to produce
reproducibly identical object files.
The @var{string} should be different for every file you compile.
@item -fsched-verbose=@var{n}
@opindex fsched-verbose
On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints. This information is
written to standard error, unless @option{-fdump-rtl-sched1} or
@option{-fdump-rtl-sched2} is specified, in which case it is output
to the usual dump listing file, @file{.sched1} or @file{.sched2}
respectively. However for @var{n} greater than nine, the output is
always printed to standard error.
For @var{n} greater than zero, @option{-fsched-verbose} outputs the
same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
For @var{n} greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info. For @var{n} greater
than two, it includes RTL at abort point, control-flow and regions info.
And for @var{n} over four, @option{-fsched-verbose} also includes
dependence info.
@item -save-temps
@itemx -save-temps=cwd
@opindex save-temps
Store the usual ``temporary'' intermediate files permanently; place them
in the current directory and name them based on the source file. Thus,
compiling @file{foo.c} with @option{-c -save-temps} produces files
@file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
preprocessed @file{foo.i} output file even though the compiler now
normally uses an integrated preprocessor.
When used in combination with the @option{-x} command-line option,
@option{-save-temps} is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file.
The corresponding intermediate file may be obtained by renaming the
source file before using @option{-save-temps}.
If you invoke GCC in parallel, compiling several different source
files that share a common base name in different subdirectories or the
same source file compiled for multiple output destinations, it is
likely that the different parallel compilers will interfere with each
other, and overwrite the temporary files. For instance:
@smallexample
gcc -save-temps -o outdir1/foo.o indir1/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
@end smallexample
may result in @file{foo.i} and @file{foo.o} being written to
simultaneously by both compilers.
@item -save-temps=obj
@opindex save-temps=obj
Store the usual ``temporary'' intermediate files permanently. If the
@option{-o} option is used, the temporary files are based on the
object file. If the @option{-o} option is not used, the
@option{-save-temps=obj} switch behaves like @option{-save-temps}.
For example:
@smallexample
gcc -save-temps=obj -c foo.c
gcc -save-temps=obj -c bar.c -o dir/xbar.o
gcc -save-temps=obj foobar.c -o dir2/yfoobar
@end smallexample
@noindent
creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
@file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
@file{dir2/yfoobar.o}.
@item -time@r{[}=@var{file}@r{]}
@opindex time
Report the CPU time taken by each subprocess in the compilation
sequence. For C source files, this is the compiler proper and assembler
(plus the linker if linking is done).
Without the specification of an output file, the output looks like this:
@smallexample
# cc1 0.12 0.01
# as 0.00 0.01
@end smallexample
The first number on each line is the ``user time'', that is time spent
executing the program itself. The second number is ``system time'',
time spent executing operating system routines on behalf of the program.
Both numbers are in seconds.
With the specification of an output file, the output is appended to the
named file, and it looks like this:
@smallexample
0.12 0.01 cc1 @var{options}
0.00 0.01 as @var{options}
@end smallexample
The ``user time'' and the ``system time'' are moved before the program
name, and the options passed to the program are displayed, so that one
can later tell what file was being compiled, and with which options.
@item -fvar-tracking
@opindex fvar-tracking
Run variable tracking pass. It computes where variables are stored at each
position in code. Better debugging information is then generated
(if the debugging information format supports this information).
It is enabled by default when compiling with optimization (@option{-Os},
@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
the debug info format supports it.
@item -fvar-tracking-assignments
@opindex fvar-tracking-assignments
@opindex fno-var-tracking-assignments
Annotate assignments to user variables early in the compilation and
attempt to carry the annotations over throughout the compilation all the
way to the end, in an attempt to improve debug information while
optimizing. Use of @option{-gdwarf-4} is recommended along with it.
It can be enabled even if var-tracking is disabled, in which case
annotations are created and maintained, but discarded at the end.
@item -fvar-tracking-assignments-toggle
@opindex fvar-tracking-assignments-toggle
@opindex fno-var-tracking-assignments-toggle
Toggle @option{-fvar-tracking-assignments}, in the same way that
@option{-gtoggle} toggles @option{-g}.
@item -print-file-name=@var{library}
@opindex print-file-name
Print the full absolute name of the library file @var{library} that
would be used when linking---and don't do anything else. With this
option, GCC does not compile or link anything; it just prints the
file name.
@item -print-multi-directory
@opindex print-multi-directory
Print the directory name corresponding to the multilib selected by any
other switches present in the command line. This directory is supposed
to exist in @env{GCC_EXEC_PREFIX}.
@item -print-multi-lib
@opindex print-multi-lib
Print the mapping from multilib directory names to compiler switches
that enable them. The directory name is separated from the switches by
@samp{;}, and each switch starts with an @samp{@@} instead of the
@samp{-}, without spaces between multiple switches. This is supposed to
ease shell processing.
@item -print-multi-os-directory
@opindex print-multi-os-directory
Print the path to OS libraries for the selected
multilib, relative to some @file{lib} subdirectory. If OS libraries are
present in the @file{lib} subdirectory and no multilibs are used, this is
usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
@item -print-multiarch
@opindex print-multiarch
Print the path to OS libraries for the selected multiarch,
relative to some @file{lib} subdirectory.
@item -print-prog-name=@var{program}
@opindex print-prog-name
Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.
@item -print-libgcc-file-name
@opindex print-libgcc-file-name
Same as @option{-print-file-name=libgcc.a}.
This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
but you do want to link with @file{libgcc.a}. You can do:
@smallexample
gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
@end smallexample
@item -print-search-dirs
@opindex print-search-dirs
Print the name of the configured installation directory and a list of
program and library directories @command{gcc} searches---and don't do anything else.
This is useful when @command{gcc} prints the error message
@samp{installation problem, cannot exec cpp0: No such file or directory}.
To resolve this you either need to put @file{cpp0} and the other compiler
components where @command{gcc} expects to find them, or you can set the environment
variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
Don't forget the trailing @samp{/}.
@xref{Environment Variables}.
@item -print-sysroot
@opindex print-sysroot
Print the target sysroot directory that is used during
compilation. This is the target sysroot specified either at configure
time or using the @option{--sysroot} option, possibly with an extra
suffix that depends on compilation options. If no target sysroot is
specified, the option prints nothing.
@item -print-sysroot-headers-suffix
@opindex print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix---and don't do anything else.
@item -dumpmachine
@opindex dumpmachine
Print the compiler's target machine (for example,
@samp{i686-pc-linux-gnu})---and don't do anything else.
@item -dumpversion
@opindex dumpversion
Print the compiler version (for example, @samp{3.0})---and don't do
anything else.
@item -dumpspecs
@opindex dumpspecs
Print the compiler's built-in specs---and don't do anything else. (This
is used when GCC itself is being built.) @xref{Spec Files}.
@item -fno-eliminate-unused-debug-types
@opindex feliminate-unused-debug-types
@opindex fno-eliminate-unused-debug-types
Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit, for example
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared). More often,
however, this results in a significant amount of wasted space.
@end table
@node Optimize Options
@section Options That Control Optimization
@cindex optimize options
@cindex options, optimization
These options control various sorts of optimizations.
Without any optimization option, the compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you expect from the source
code.
Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.
The compiler performs optimization based on the knowledge it has of the
program. Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.
Not all optimizations are controlled directly by a flag. Only
optimizations that have a flag are listed in this section.
Most optimizations are only enabled if an @option{-O} level is set on
the command line. Otherwise they are disabled, even if individual
optimization flags are specified.
Depending on the target and how GCC was configured, a slightly different
set of optimizations may be enabled at each @option{-O} level than
those listed here. You can invoke GCC with @option{-Q --help=optimizers}
to find out the exact set of optimizations that are enabled at each level.
@xref{Overall Options}, for examples.
@table @gcctabopt
@item -O
@itemx -O1
@opindex O
@opindex O1
Optimize. Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.
With @option{-O}, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.
@option{-O} turns on the following optimization flags:
@gccoptlist{
-fauto-inc-dec @gol
-fcompare-elim @gol
-fcprop-registers @gol
-fdce @gol
-fdefer-pop @gol
-fdelayed-branch @gol
-fdse @gol
-fguess-branch-probability @gol
-fif-conversion2 @gol
-fif-conversion @gol
-fipa-pure-const @gol
-fipa-profile @gol
-fipa-reference @gol
-fmerge-constants
-fsplit-wide-types @gol
-ftree-bit-ccp @gol
-ftree-builtin-call-dce @gol
-ftree-ccp @gol
-ftree-ch @gol
-ftree-copyrename @gol
-ftree-dce @gol
-ftree-dominator-opts @gol
-ftree-dse @gol
-ftree-forwprop @gol
-ftree-fre @gol
-ftree-phiprop @gol
-ftree-slsr @gol
-ftree-sra @gol
-ftree-pta @gol
-ftree-ter @gol
-funit-at-a-time}
@option{-O} also turns on @option{-fomit-frame-pointer} on machines
where doing so does not interfere with debugging.
@item -O2
@opindex O2
Optimize even more. GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff.
As compared to @option{-O}, this option increases both compilation time
and the performance of the generated code.
@option{-O2} turns on all optimization flags specified by @option{-O}. It
also turns on the following optimization flags:
@gccoptlist{-fthread-jumps @gol
-falign-functions -falign-jumps @gol
-falign-loops -falign-labels @gol
-fcaller-saves @gol
-fcrossjumping @gol
-fcse-follow-jumps -fcse-skip-blocks @gol
-fdelete-null-pointer-checks @gol
-fdevirtualize -fdevirtualize-speculatively @gol
-fexpensive-optimizations @gol
-fgcse -fgcse-lm @gol
-fhoist-adjacent-loads @gol
-finline-small-functions @gol
-findirect-inlining @gol
-fipa-sra @gol
-foptimize-sibling-calls @gol
-fpartial-inlining @gol
-fpeephole2 @gol
-fregmove @gol
-freorder-blocks -freorder-functions @gol
-frerun-cse-after-loop @gol
-fsched-interblock -fsched-spec @gol
-fschedule-insns -fschedule-insns2 @gol
-fstrict-aliasing -fstrict-overflow @gol
-ftree-switch-conversion -ftree-tail-merge @gol
-ftree-pre @gol
-ftree-vrp}
Please note the warning under @option{-fgcse} about
invoking @option{-O2} on programs that use computed gotos.
@item -O3
@opindex O3
Optimize yet more. @option{-O3} turns on all optimizations specified
by @option{-O2} and also turns on the @option{-finline-functions},
@option{-funswitch-loops}, @option{-fpredictive-commoning},
@option{-fgcse-after-reload}, @option{-ftree-vectorize},
@option{-fvect-cost-model},
@option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
@item -O0
@opindex O0
Reduce compilation time and make debugging produce the expected
results. This is the default.
@item -Os
@opindex Os
Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
do not typically increase code size. It also performs further
optimizations designed to reduce code size.
@option{-Os} disables the following optimization flags:
@gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
-falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
-fprefetch-loop-arrays -ftree-vect-loop-version}
@item -Ofast
@opindex Ofast
Disregard strict standards compliance. @option{-Ofast} enables all
@option{-O3} optimizations. It also enables optimizations that are not
valid for all standard-compliant programs.
It turns on @option{-ffast-math} and the Fortran-specific
@option{-fno-protect-parens} and @option{-fstack-arrays}.
@item -Og
@opindex Og
Optimize debugging experience. @option{-Og} enables optimizations
that do not interfere with debugging. It should be the optimization
level of choice for the standard edit-compile-debug cycle, offering
a reasonable level of optimization while maintaining fast compilation
and a good debugging experience.
If you use multiple @option{-O} options, with or without level numbers,
the last such option is the one that is effective.
@end table
Options of the form @option{-f@var{flag}} specify machine-independent
flags. Most flags have both positive and negative forms; the negative
form of @option{-ffoo} is @option{-fno-foo}. In the table
below, only one of the forms is listed---the one you typically
use. You can figure out the other form by either removing @samp{no-}
or adding it.
The following options control specific optimizations. They are either
activated by @option{-O} options or are related to ones that are. You
can use the following flags in the rare cases when ``fine-tuning'' of
optimizations to be performed is desired.
@table @gcctabopt
@item -fno-default-inline
@opindex fno-default-inline
Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you specify
@w{@option{-O}}, member functions defined inside class scope are compiled
inline by default; i.e., you don't need to add @samp{inline} in front of
the member function name.
@item -fno-defer-pop
@opindex fno-defer-pop
Always pop the arguments to each function call as soon as that function
returns. For machines that must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.
Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fforward-propagate
@opindex fforward-propagate
Perform a forward propagation pass on RTL@. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.
This option is enabled by default at optimization levels @option{-O},
@option{-O2}, @option{-O3}, @option{-Os}.
@item -ffp-contract=@var{style}
@opindex ffp-contract
@option{-ffp-contract=off} disables floating-point expression contraction.
@option{-ffp-contract=fast} enables floating-point expression contraction
such as forming of fused multiply-add operations if the target has
native support for them.
@option{-ffp-contract=on} enables floating-point expression contraction
if allowed by the language standard. This is currently not implemented
and treated equal to @option{-ffp-contract=off}.
The default is @option{-ffp-contract=fast}.
@item -fomit-frame-pointer
@opindex fomit-frame-pointer
Don't keep the frame pointer in a register for functions that
don't need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions. @strong{It also makes debugging impossible on
some machines.}
On some machines, such as the VAX, this flag has no effect, because
the standard calling sequence automatically handles the frame pointer
and nothing is saved by pretending it doesn't exist. The
machine-description macro @code{FRAME_POINTER_REQUIRED} controls
whether a target machine supports this flag. @xref{Registers,,Register
Usage, gccint, GNU Compiler Collection (GCC) Internals}.
Starting with GCC version 4.6, the default setting (when not optimizing for
size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets has been changed to
@option{-fomit-frame-pointer}. The default can be reverted to
@option{-fno-omit-frame-pointer} by configuring GCC with the
@option{--enable-frame-pointer} configure option.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -foptimize-sibling-calls
@opindex foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fno-inline
@opindex fno-inline
Do not expand any functions inline apart from those marked with
the @code{always_inline} attribute. This is the default when not
optimizing.
Single functions can be exempted from inlining by marking them
with the @code{noinline} attribute.
@item -finline-small-functions
@opindex finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way. This inlining applies to all functions, even those not declared
inline.
Enabled at level @option{-O2}.
@item -findirect-inlining
@opindex findirect-inlining
Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining. This option has any effect only
when inlining itself is turned on by the @option{-finline-functions}
or @option{-finline-small-functions} options.
Enabled at level @option{-O2}.
@item -finline-functions
@opindex finline-functions
Consider all functions for inlining, even if they are not declared inline.
The compiler heuristically decides which functions are worth integrating
in this way.
If all calls to a given function are integrated, and the function is
declared @code{static}, then the function is normally not output as
assembler code in its own right.
Enabled at level @option{-O3}.
@item -finline-functions-called-once
@opindex finline-functions-called-once
Consider all @code{static} functions called once for inlining into their
caller even if they are not marked @code{inline}. If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
@item -fearly-inlining
@opindex fearly-inlining
Inline functions marked by @code{always_inline} and functions whose body seems
smaller than the function call overhead early before doing
@option{-fprofile-generate} instrumentation and real inlining pass. Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.
Enabled by default.
@item -fipa-sra
@opindex fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference
by parameters passed by value.
Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
@item -finline-limit=@var{n}
@opindex finline-limit
By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. @var{n} is the size of functions that
can be inlined in number of pseudo instructions.
Inlining is actually controlled by a number of parameters, which may be
specified individually by using @option{--param @var{name}=@var{value}}.
The @option{-finline-limit=@var{n}} option sets some of these parameters
as follows:
@table @gcctabopt
@item max-inline-insns-single
is set to @var{n}/2.
@item max-inline-insns-auto
is set to @var{n}/2.
@end table
See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.
@emph{Note:} there may be no value to @option{-finline-limit} that results
in default behavior.
@emph{Note:} pseudo instruction represents, in this particular context, an
abstract measurement of function's size. In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.
@item -fno-keep-inline-dllexport
@opindex -fno-keep-inline-dllexport
This is a more fine-grained version of @option{-fkeep-inline-functions},
which applies only to functions that are declared using the @code{dllexport}
attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
Functions}.)
@item -fkeep-inline-functions
@opindex fkeep-inline-functions
In C, emit @code{static} functions that are declared @code{inline}
into the object file, even if the function has been inlined into all
of its callers. This switch does not affect functions using the
@code{extern inline} extension in GNU C90@. In C++, emit any and all
inline functions into the object file.
@item -fkeep-static-consts
@opindex fkeep-static-consts
Emit variables declared @code{static const} when optimization isn't turned
on, even if the variables aren't referenced.
GCC enables this option by default. If you want to force the compiler to
check if a variable is referenced, regardless of whether or not
optimization is turned on, use the @option{-fno-keep-static-consts} option.
@item -fmerge-constants
@opindex fmerge-constants
Attempt to merge identical constants (string constants and floating-point
constants) across compilation units.
This option is the default for optimized compilation if the assembler and
linker support it. Use @option{-fno-merge-constants} to inhibit this
behavior.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fmerge-all-constants
@opindex fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies @option{-fmerge-constants}. In addition to
@option{-fmerge-constants} this considers e.g.@: even constant initialized
arrays or initialized constant variables with integral or floating-point
types. Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option results in non-conforming
behavior.
@item -fmodulo-sched
@opindex fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling
pass. This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.
@item -fmodulo-sched-allow-regmoves
@opindex fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are
deleted, which triggers the generation of reg-moves based on the
life-range analysis. This option is effective only with
@option{-fmodulo-sched} enabled.
@item -fno-branch-count-reg
@opindex fno-branch-count-reg
Do not use ``decrement and branch'' instructions on a count register,
but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result.
This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390.
The default is @option{-fbranch-count-reg}.
@item -fno-function-cse
@opindex fno-function-cse
Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.
This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.
The default is @option{-ffunction-cse}
@item -fno-zero-initialized-in-bss
@opindex fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS@. This can save space in the resulting
code.
This option turns off this behavior because some programs explicitly
rely on variables going to the data section---e.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.
The default is @option{-fzero-initialized-in-bss}.
@item -fmudflap -fmudflapth -fmudflapir
@opindex fmudflap
@opindex fmudflapth
@opindex fmudflapir
@cindex bounds checking
@cindex mudflap
For front-ends that support it (C and C++), instrument all risky
pointer/array dereferencing operations, some standard library
string/heap functions, and some other associated constructs with
range/validity tests. Modules so instrumented should be immune to
buffer overflows, invalid heap use, and some other classes of C/C++
programming errors. The instrumentation relies on a separate runtime
library (@file{libmudflap}), which is linked into a program if
@option{-fmudflap} is given at link time. Run-time behavior of the
instrumented program is controlled by the @env{MUDFLAP_OPTIONS}
environment variable. See @code{env MUDFLAP_OPTIONS=-help a.out}
for its options.
Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to
link if your program is multi-threaded. Use @option{-fmudflapir}, in
addition to @option{-fmudflap} or @option{-fmudflapth}, if
instrumentation should ignore pointer reads. This produces less
instrumentation (and therefore faster execution) and still provides
some protection against outright memory corrupting writes, but allows
erroneously read data to propagate within a program.
@item -fthread-jumps
@opindex fthread-jumps
Perform optimizations that check to see if a jump branches to a
location where another comparison subsumed by the first is found. If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fsplit-wide-types
@opindex fsplit-wide-types
When using a type that occupies multiple registers, such as @code{long
long} on a 32-bit system, split the registers apart and allocate them
independently. This normally generates better code for those types,
but may make debugging more difficult.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
@option{-Os}.
@item -fcse-follow-jumps
@opindex fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an @code{if} statement with an
@code{else} clause, CSE follows the jump when the condition
tested is false.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fcse-skip-blocks
@opindex fcse-skip-blocks
This is similar to @option{-fcse-follow-jumps}, but causes CSE to
follow jumps that conditionally skip over blocks. When CSE
encounters a simple @code{if} statement with no else clause,
@option{-fcse-skip-blocks} causes CSE to follow the jump around the
body of the @code{if}.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -frerun-cse-after-loop
@opindex frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations are
performed.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fgcse
@opindex fgcse
Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.
@emph{Note:} When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you disable
the global common subexpression elimination pass by adding
@option{-fno-gcse} to the command line.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fgcse-lm
@opindex fgcse-lm
When @option{-fgcse-lm} is enabled, global common subexpression elimination
attempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
Enabled by default when @option{-fgcse} is enabled.
@item -fgcse-sm
@opindex fgcse-sm
When @option{-fgcse-sm} is enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts to move
stores out of loops. When used in conjunction with @option{-fgcse-lm},
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.
Not enabled at any optimization level.
@item -fgcse-las
@opindex fgcse-las
When @option{-fgcse-las} is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
Not enabled at any optimization level.
@item -fgcse-after-reload
@opindex fgcse-after-reload
When @option{-fgcse-after-reload} is enabled, a redundant load elimination
pass is performed after reload. The purpose of this pass is to clean up
redundant spilling.
@item -faggressive-loop-optimizations
@opindex faggressive-loop-optimizations
This option tells the loop optimizer to use language constraints to
derive bounds for the number of iterations of a loop. This assumes that
loop code does not invoke undefined behavior by for example causing signed
integer overflows or out-of-bound array accesses. The bounds for the
number of iterations of a loop are used to guide loop unrolling and peeling
and loop exit test optimizations.
This option is enabled by default.
@item -funsafe-loop-optimizations
@opindex funsafe-loop-optimizations
This option tells the loop optimizer to assume that loop indices do not
overflow, and that loops with nontrivial exit condition are not
infinite. This enables a wider range of loop optimizations even if
the loop optimizer itself cannot prove that these assumptions are valid.
If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
if it finds this kind of loop.
@item -fcrossjumping
@opindex fcrossjumping
Perform cross-jumping transformation.
This transformation unifies equivalent code and saves code size. The
resulting code may or may not perform better than without cross-jumping.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fauto-inc-dec
@opindex fauto-inc-dec
Combine increments or decrements of addresses with memory accesses.
This pass is always skipped on architectures that do not have
instructions to support this. Enabled by default at @option{-O} and
higher on architectures that support this.
@item -fdce
@opindex fdce
Perform dead code elimination (DCE) on RTL@.
Enabled by default at @option{-O} and higher.
@item -fdse
@opindex fdse
Perform dead store elimination (DSE) on RTL@.
Enabled by default at @option{-O} and higher.
@item -fif-conversion
@opindex fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by @code{if-conversion2}.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fif-conversion2
@opindex fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fdelete-null-pointer-checks
@opindex fdelete-null-pointer-checks
Assume that programs cannot safely dereference null pointers, and that
no code or data element resides there. This enables simple constant
folding optimizations at all optimization levels. In addition, other
optimization passes in GCC use this flag to control global dataflow
analyses that eliminate useless checks for null pointers; these assume
that if a pointer is checked after it has already been dereferenced,
it cannot be null.
Note however that in some environments this assumption is not true.
Use @option{-fno-delete-null-pointer-checks} to disable this optimization
for programs that depend on that behavior.
Some targets, especially embedded ones, disable this option at all levels.
Otherwise it is enabled at all levels: @option{-O0}, @option{-O1},
@option{-O2}, @option{-O3}, @option{-Os}. Passes that use the information
are enabled independently at different optimization levels.
@item -fdevirtualize
@opindex fdevirtualize
Attempt to convert calls to virtual functions to direct calls. This
is done both within a procedure and interprocedurally as part of
indirect inlining (@code{-findirect-inlining}) and interprocedural constant
propagation (@option{-fipa-cp}).
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fdevirtualize-speculatively
@opindex fdevirtualize-speculatively
Attempt to convert calls to virtual functions to speculative direct calls.
Based on the analysis of the type inheritance graph, determine for a given call
the set of likely targets. If the set is small, preferably of size 1, change
the call into an conditional deciding on direct and indirect call. The
speculative calls enable more optimizations, such as inlining. When they seem
useless after further optimization, they are converted back into original form.
@item -fexpensive-optimizations
@opindex fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -free
@opindex free
Attempt to remove redundant extension instructions. This is especially
helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
registers after writing to their lower 32-bit half.
Enabled for x86 at levels @option{-O2}, @option{-O3}.
@item -foptimize-register-move
@itemx -fregmove
@opindex foptimize-register-move
@opindex fregmove
Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the amount of
register tying. This is especially helpful on machines with two-operand
instructions.
Note @option{-fregmove} and @option{-foptimize-register-move} are the same
optimization.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fira-algorithm=@var{algorithm}
Use the specified coloring algorithm for the integrated register
allocator. The @var{algorithm} argument can be @samp{priority}, which
specifies Chow's priority coloring, or @samp{CB}, which specifies
Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
for all architectures, but for those targets that do support it, it is
the default because it generates better code.
@item -fira-region=@var{region}
Use specified regions for the integrated register allocator. The
@var{region} argument should be one of the following:
@table @samp
@item all
Use all loops as register allocation regions.
This can give the best results for machines with a small and/or
irregular register set.
@item mixed
Use all loops except for loops with small register pressure
as the regions. This value usually gives
the best results in most cases and for most architectures,
and is enabled by default when compiling with optimization for speed
(@option{-O}, @option{-O2}, @dots{}).
@item one
Use all functions as a single region.
This typically results in the smallest code size, and is enabled by default for
@option{-Os} or @option{-O0}.
@end table
@item -fira-hoist-pressure
@opindex fira-hoist-pressure
Use IRA to evaluate register pressure in the code hoisting pass for
decisions to hoist expressions. This option usually results in smaller
code, but it can slow the compiler down.
This option is enabled at level @option{-Os} for all targets.
@item -fira-loop-pressure
@opindex fira-loop-pressure
Use IRA to evaluate register pressure in loops for decisions to move
loop invariants. This option usually results in generation
of faster and smaller code on machines with large register files (>= 32
registers), but it can slow the compiler down.
This option is enabled at level @option{-O3} for some targets.
@item -fno-ira-share-save-slots
@opindex fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard
registers living through a call. Each hard register gets a
separate stack slot, and as a result function stack frames are
larger.
@item -fno-ira-share-spill-slots
@opindex fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each
pseudo-register that does not get a hard register gets a separate
stack slot, and as a result function stack frames are larger.
@item -fira-verbose=@var{n}
@opindex fira-verbose
Control the verbosity of the dump file for the integrated register allocator.
The default value is 5. If the value @var{n} is greater or equal to 10,
the dump output is sent to stderr using the same format as @var{n} minus 10.
@item -fdelayed-branch
@opindex fdelayed-branch
If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fschedule-insns
@opindex fschedule-insns
If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating-point instruction is required.
Enabled at levels @option{-O2}, @option{-O3}.
@item -fschedule-insns2
@opindex fschedule-insns2
Similar to @option{-fschedule-insns}, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fno-sched-interblock
@opindex fno-sched-interblock
Don't schedule instructions across basic blocks. This is normally
enabled by default when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.
@item -fno-sched-spec
@opindex fno-sched-spec
Don't allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.
@item -fsched-pressure
@opindex fsched-pressure
Enable register pressure sensitive insn scheduling before register
allocation. This only makes sense when scheduling before register
allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
@option{-O2} or higher. Usage of this option can improve the
generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent
spills in register allocation.
@item -fsched-spec-load
@opindex fsched-spec-load
Allow speculative motion of some load instructions. This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.
@item -fsched-spec-load-dangerous
@opindex fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.
@item -fsched-stalled-insns
@itemx -fsched-stalled-insns=@var{n}
@opindex fsched-stalled-insns
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
@option{-fno-sched-stalled-insns} means that no insns are moved
prematurely, @option{-fsched-stalled-insns=0} means there is no limit
on how many queued insns can be moved prematurely.
@option{-fsched-stalled-insns} without a value is equivalent to
@option{-fsched-stalled-insns=1}.
@item -fsched-stalled-insns-dep
@itemx -fsched-stalled-insns-dep=@var{n}
@opindex fsched-stalled-insns-dep
Define how many insn groups (cycles) are examined for a dependency
on a stalled insn that is a candidate for premature removal from the queue
of stalled insns. This has an effect only during the second scheduling pass,
and only if @option{-fsched-stalled-insns} is used.
@option{-fno-sched-stalled-insns-dep} is equivalent to
@option{-fsched-stalled-insns-dep=0}.
@option{-fsched-stalled-insns-dep} without a value is equivalent to
@option{-fsched-stalled-insns-dep=1}.
@item -fsched2-use-superblocks
@opindex fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling.
This allows motion across basic block boundaries,
resulting in faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
This only makes sense when scheduling after register allocation, i.e.@: with
@option{-fschedule-insns2} or at @option{-O2} or higher.
@item -fsched-group-heuristic
@opindex fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors
the instruction that belongs to a schedule group. This is enabled
by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
or @option{-fschedule-insns2} or at @option{-O2} or higher.
@item -fsched-critical-path-heuristic
@opindex fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors
instructions on the critical path. This is enabled by default when
scheduling is enabled, i.e.@: with @option{-fschedule-insns}
or @option{-fschedule-insns2} or at @option{-O2} or higher.
@item -fsched-spec-insn-heuristic
@opindex fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This
heuristic favors speculative instructions with greater dependency weakness.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2}
or at @option{-O2} or higher.
@item -fsched-rank-heuristic
@opindex fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors
the instruction belonging to a basic block with greater size or frequency.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@item -fsched-last-insn-heuristic
@opindex fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic
favors the instruction that is less dependent on the last instruction
scheduled. This is enabled by default when scheduling is enabled,
i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@item -fsched-dep-count-heuristic
@opindex fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic
favors the instruction that has more instructions depending on it.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@item -freschedule-modulo-scheduled-loops
@opindex freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop
is modulo scheduled, later scheduling passes may change its schedule.
Use this option to control that behavior.
@item -fselective-scheduling
@opindex fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the first scheduler pass.
@item -fselective-scheduling2
@opindex fselective-scheduling2
Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the second scheduler pass.
@item -fsel-sched-pipelining
@opindex fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of @option{-fselective-scheduling} or
@option{-fselective-scheduling2} is turned on.
@item -fsel-sched-pipelining-outer-loops
@opindex fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
@item -fshrink-wrap
@opindex fshrink-wrap
Emit function prologues only before parts of the function that need it,
rather than at the top of the function. This flag is enabled by default at
@option{-O} and higher.
@item -fcaller-saves
@opindex fcaller-saves
Enable allocation of values to registers that are clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code.
This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fcombine-stack-adjustments
@opindex fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references
and then tries to find ways to combine them.
Enabled by default at @option{-O1} and higher.
@item -fconserve-stack
@opindex fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less
stack space, even if that makes the program slower. This option
implies setting the @option{large-stack-frame} parameter to 100
and the @option{large-stack-frame-growth} parameter to 400.
@item -ftree-reassoc
@opindex ftree-reassoc
Perform reassociation on trees. This flag is enabled by default
at @option{-O} and higher.
@item -ftree-pre
@opindex ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is
enabled by default at @option{-O2} and @option{-O3}.
@item -ftree-partial-pre
@opindex ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is
enabled by default at @option{-O3}.
@item -ftree-forwprop
@opindex ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default
at @option{-O} and higher.
@item -ftree-fre
@opindex ftree-fre
Perform full redundancy elimination (FRE) on trees. The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation.
This analysis is faster than PRE, though it exposes fewer redundancies.
This flag is enabled by default at @option{-O} and higher.
@item -ftree-phiprop
@opindex ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This
pass is enabled by default at @option{-O} and higher.
@item -fhoist-adjacent-loads
@opindex hoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the
loads are from adjacent locations in the same structure and the target
architecture has a conditional move instruction. This flag is enabled
by default at @option{-O2} and higher.
@item -ftree-copy-prop
@opindex ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary
copy operations. This flag is enabled by default at @option{-O} and
higher.
@item -fipa-pure-const
@opindex fipa-pure-const
Discover which functions are pure or constant.
Enabled by default at @option{-O} and higher.
@item -fipa-reference
@opindex fipa-reference
Discover which static variables do not escape the
compilation unit.
Enabled by default at @option{-O} and higher.
@item -fipa-pta
@opindex fipa-pta
Perform interprocedural pointer analysis and interprocedural modification
and reference analysis. This option can cause excessive memory and
compile-time usage on large compilation units. It is not enabled by
default at any optimization level.
@item -fipa-profile
@opindex fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as
@code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
functions and loop less parts of functions executed once are then optimized for
size.
Enabled by default at @option{-O} and higher.
@item -fipa-cp
@opindex fipa-cp
Perform interprocedural constant propagation.
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly.
This optimization can substantially increase performance
if the application has constants passed to functions.
This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
@item -fipa-cp-clone
@opindex fipa-cp-clone
Perform function cloning to make interprocedural constant propagation stronger.
When enabled, interprocedural constant propagation performs function cloning
when externally visible function can be called with constant arguments.
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see @option{--param ipcp-unit-growth=@var{value}}).
This flag is enabled by default at @option{-O3}.
@item -ftree-sink
@opindex ftree-sink
Perform forward store motion on trees. This flag is
enabled by default at @option{-O} and higher.
@item -ftree-bit-ccp
@opindex ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information.
This pass only operates on local scalar variables and is enabled by default
at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
@item -ftree-ccp
@opindex ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This
pass only operates on local scalar variables and is enabled by default
at @option{-O} and higher.
@item -ftree-switch-conversion
Perform conversion of simple initializations in a switch to
initializations from a scalar array. This flag is enabled by default
at @option{-O2} and higher.
@item -ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump to the
other. This optimization is known as tail merging or cross jumping. This flag
is enabled by default at @option{-O2} and higher. The compilation time
in this pass can
be limited using @option{max-tail-merge-comparisons} parameter and
@option{max-tail-merge-iterations} parameter.
@item -ftree-dce
@opindex ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by
default at @option{-O} and higher.
@item -ftree-builtin-call-dce
@opindex ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set @code{errno} but are otherwise side-effect free. This flag is
enabled by default at @option{-O2} and higher if @option{-Os} is not also
specified.
@item -ftree-dominator-opts
@opindex ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal. This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at @option{-O} and higher.
@item -ftree-dse
@opindex ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into
a memory location that is later overwritten by another store without
any intervening loads. In this case the earlier store can be deleted. This
flag is enabled by default at @option{-O} and higher.
@item -ftree-ch
@opindex ftree-ch
Perform loop header copying on trees. This is beneficial since it increases
effectiveness of code motion optimizations. It also saves one jump. This flag
is enabled by default at @option{-O} and higher. It is not enabled
for @option{-Os}, since it usually increases code size.
@item -ftree-loop-optimize
@opindex ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default
at @option{-O} and higher.
@item -ftree-loop-linear
@opindex ftree-loop-linear
Perform loop interchange transformations on tree. Same as
@option{-floop-interchange}. To use this code transformation, GCC has
to be configured with @option{--with-ppl} and @option{--with-cloog} to
enable the Graphite loop transformation infrastructure.
@item -floop-interchange
@opindex floop-interchange
Perform loop interchange transformations on loops. Interchanging two
nested loops switches the inner and outer loops. For example, given a
loop like:
@smallexample
DO J = 1, M
DO I = 1, N
A(J, I) = A(J, I) * C
ENDDO
ENDDO
@end smallexample
loop interchange transforms the loop as if it were written:
@smallexample
DO I = 1, N
DO J = 1, M
A(J, I) = A(J, I) * C
ENDDO
ENDDO
@end smallexample
which can be beneficial when @code{N} is larger than the caches,
because in Fortran, the elements of an array are stored in memory
contiguously by column, and the original loop iterates over rows,
potentially creating at each access a cache miss. This optimization
applies to all the languages supported by GCC and is not limited to
Fortran. To use this code transformation, GCC has to be configured
with @option{--with-ppl} and @option{--with-cloog} to enable the
Graphite loop transformation infrastructure.
@item -floop-strip-mine
@opindex floop-strip-mine
Perform loop strip mining transformations on loops. Strip mining
splits a loop into two nested loops. The outer loop has strides
equal to the strip size and the inner loop has strides of the
original loop within a strip. The strip length can be changed
using the @option{loop-block-tile-size} parameter. For example,
given a loop like:
@smallexample
DO I = 1, N
A(I) = A(I) + C
ENDDO
@end smallexample
loop strip mining transforms the loop as if it were written:
@smallexample
DO II = 1, N, 51
DO I = II, min (II + 50, N)
A(I) = A(I) + C
ENDDO
ENDDO
@end smallexample
This optimization applies to all the languages supported by GCC and is
not limited to Fortran. To use this code transformation, GCC has to
be configured with @option{--with-ppl} and @option{--with-cloog} to
enable the Graphite loop transformation infrastructure.
@item -floop-block
@opindex floop-block
Perform loop blocking transformations on loops. Blocking strip mines
each loop in the loop nest such that the memory accesses of the
element loops fit inside caches. The strip length can be changed
using the @option{loop-block-tile-size} parameter. For example, given
a loop like:
@smallexample
DO I = 1, N
DO J = 1, M
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
@end smallexample
loop blocking transforms the loop as if it were written:
@smallexample
DO II = 1, N, 51
DO JJ = 1, M, 51
DO I = II, min (II + 50, N)
DO J = JJ, min (JJ + 50, M)
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
ENDDO
ENDDO
@end smallexample
which can be beneficial when @code{M} is larger than the caches,
because the innermost loop iterates over a smaller amount of data
which can be kept in the caches. This optimization applies to all the
languages supported by GCC and is not limited to Fortran. To use this
code transformation, GCC has to be configured with @option{--with-ppl}
and @option{--with-cloog} to enable the Graphite loop transformation
infrastructure.
@item -fgraphite-identity
@opindex fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we generate
the polyhedral representation and transform it back to gimple. Using
@option{-fgraphite-identity} we can check the costs or benefits of the
GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
are also performed by the code generator CLooG, like index splitting and
dead code elimination in loops.
@item -floop-nest-optimize
@opindex floop-nest-optimize
Enable the ISL based loop nest optimizer. This is a generic loop nest
optimizer based on the Pluto optimization algorithms. It calculates a loop
structure optimized for data-locality and parallelism. This option
is experimental.
@item -floop-parallelize-all
@opindex floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can
be parallelized. Parallelize all the loops that can be analyzed to
not contain loop carried dependences without checking that it is
profitable to parallelize the loops.
@item -fcheck-data-deps
@opindex fcheck-data-deps
Compare the results of several data dependence analyzers. This option
is used for debugging the data dependence analyzers.
@item -ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to
branch-less equivalents. The intent is to remove control-flow from
the innermost loops in order to improve the ability of the
vectorization pass to handle these loops. This is enabled by default
if vectorization is enabled.
@item -ftree-loop-if-convert-stores
Attempt to also if-convert conditional jumps containing memory writes.
This transformation can be unsafe for multi-threaded programs as it
transforms conditional memory writes into unconditional memory writes.
For example,
@smallexample
for (i = 0; i < N; i++)
if (cond)
A[i] = expr;
@end smallexample
is transformed to
@smallexample
for (i = 0; i < N; i++)
A[i] = cond ? expr : A[i];
@end smallexample
potentially producing data races.
@item -ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place. For example, the loop
@smallexample
DO I = 1, N
A(I) = B(I) + C
D(I) = E(I) * F
ENDDO
@end smallexample
is transformed to
@smallexample
DO I = 1, N
A(I) = B(I) + C
ENDDO
DO I = 1, N
D(I) = E(I) * F
ENDDO
@end smallexample
@item -ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with
calls to a library. This flag is enabled by default at @option{-O3}.
This pass distributes the initialization loops and generates a call to
memset zero. For example, the loop
@smallexample
DO I = 1, N
A(I) = 0
B(I) = A(I) + I
ENDDO
@end smallexample
is transformed to
@smallexample
DO I = 1, N
A(I) = 0
ENDDO
DO I = 1, N
B(I) = A(I) + I
ENDDO
@end smallexample
and the initialization loop is transformed into a call to memset zero.
@item -ftree-loop-im
@opindex ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.
@item -ftree-loop-ivcanon
@opindex ftree-loop-ivcanon
Create a canonical counter for number of iterations in loops for which
determining number of iterations requires complicated analysis. Later
optimizations then may determine the number easily. Useful especially
in connection with unrolling.
@item -fivopts
@opindex fivopts
Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.
@item -ftree-parallelize-loops=n
@opindex ftree-parallelize-loops
Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered. The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g.@: by memory bandwidth. This option
implies @option{-pthread}, and thus is only supported on targets
that have support for @option{-pthread}.
@item -ftree-pta
@opindex ftree-pta
Perform function-local points-to analysis on trees. This flag is
enabled by default at @option{-O} and higher.
@item -ftree-sra
@opindex ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure
references with scalars to prevent committing structures to memory too
early. This flag is enabled by default at @option{-O} and higher.
@item -ftree-copyrename
@opindex ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler
temporaries to other variables at copy locations, usually resulting in
variable names which more closely resemble the original variables. This flag
is enabled by default at @option{-O} and higher.
@item -ftree-coalesce-inlined-vars
Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
combine small user-defined variables too, but only if they were inlined
from other functions. It is a more limited form of
@option{-ftree-coalesce-vars}. This may harm debug information of such
inlined variables, but it will keep variables of the inlined-into
function apart from each other, such that they are more likely to
contain the expected values in a debugging session. This was the
default in GCC versions older than 4.7.
@item -ftree-coalesce-vars
Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
combine small user-defined variables too, instead of just compiler
temporaries. This may severely limit the ability to debug an optimized
program compiled with @option{-fno-var-tracking-assignments}. In the
negated form, this flag prevents SSA coalescing of user variables,
including inlined ones. This option is enabled by default.
@item -ftree-ter
@opindex ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Single
use/single def temporaries are replaced at their use location with their
defining expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This is
enabled by default at @option{-O} and higher.
@item -ftree-slsr
@opindex ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related
expressions involving multiplications and replaces them by less expensive
calculations when possible. This is enabled by default at @option{-O} and
higher.
@item -ftree-vectorize
@opindex ftree-vectorize
Perform loop vectorization on trees. This flag is enabled by default at
@option{-O3}.
@item -ftree-slp-vectorize
@opindex ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
@option{-O3} and when @option{-ftree-vectorize} is enabled.
@item -ftree-vect-loop-version
@opindex ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence cannot
be determined at compile time, then vectorized and non-vectorized versions of
the loop are generated along with run-time checks for alignment or dependence
to control which version is executed. This option is enabled by default
except at level @option{-Os} where it is disabled.
@item -fvect-cost-model
@opindex fvect-cost-model
Enable cost model for vectorization. This option is enabled by default at
@option{-O3}.
@item -ftree-vrp
@opindex ftree-vrp
Perform Value Range Propagation on trees. This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated. This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks. This is
enabled by default at @option{-O2} and higher. Null pointer check
elimination is only done if @option{-fdelete-null-pointer-checks} is
enabled.
@item -ftracer
@opindex ftracer
Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
a better job.
@item -funroll-loops
@opindex funroll-loops
Unroll loops whose number of iterations can be determined at compile
time or upon entry to the loop. @option{-funroll-loops} implies
@option{-frerun-cse-after-loop}. This option makes code larger,
and may or may not make it run faster.
@item -funroll-all-loops
@opindex funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops},
@item -fsplit-ivs-in-unroller
@opindex fsplit-ivs-in-unroller
Enables expression of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration. This breaks
long dependency chains, thus improving efficiency of the scheduling passes.
A combination of @option{-fweb} and CSE is often sufficient to obtain the
same effect. However, that is not reliable in cases where the loop body
is more complicated than a single basic block. It also does not work at all
on some architectures due to restrictions in the CSE pass.
This optimization is enabled by default.
@item -fvariable-expansion-in-unroller
@opindex fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some
local variables when unrolling a loop, which can result in superior code.
@item -fpartial-inlining
@opindex fpartial-inlining
Inline parts of functions. This option has any effect only
when inlining itself is turned on by the @option{-finline-functions}
or @option{-finline-small-functions} options.
Enabled at level @option{-O2}.
@item -fpredictive-commoning
@opindex fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.
This option is enabled at level @option{-O3}.
@item -fprefetch-loop-arrays
@opindex fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.
This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.
Disabled at level @option{-Os}.
@item -fno-peephole
@itemx -fno-peephole2
@opindex fno-peephole
@opindex fno-peephole2
Disable any machine-specific peephole optimizations. The difference
between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.
@option{-fpeephole} is enabled by default.
@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fno-guess-branch-probability
@opindex fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC uses heuristics to guess branch probabilities if they are
not provided by profiling feedback (@option{-fprofile-arcs}). These
heuristics are based on the control flow graph. If some branch probabilities
are specified by @samp{__builtin_expect}, then the heuristics are
used to guess branch probabilities for the rest of the control flow graph,
taking the @samp{__builtin_expect} info into account. The interactions
between the heuristics and @samp{__builtin_expect} can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of @samp{__builtin_expect} are easier to understand.
The default is @option{-fguess-branch-probability} at levels
@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -freorder-blocks
@opindex freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels @option{-O2}, @option{-O3}.
@item -freorder-blocks-and-partition
@opindex freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and .o files, to improve
paging and cache locality performance.
This optimization is automatically turned off in the presence of
exception handling, for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections.
@item -freorder-functions
@opindex freorder-functions
Reorder functions in the object file in order to
improve code locality. This is implemented by using special
subsections @code{.text.hot} for most frequently executed functions and
@code{.text.unlikely} for unlikely executed functions. Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.
Also profile feedback must be available to make this option effective. See
@option{-fprofile-arcs} for details.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@item -fstrict-aliasing
@opindex fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates
optimizations based on the type of expressions. In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For
example, an @code{unsigned int} can alias an @code{int}, but not a
@code{void*} or a @code{double}. A character type may alias any other
type.
@anchor{Type-punning}Pay special attention to code like this:
@smallexample
union a_union @{
int i;
double d;
@};
int f() @{
union a_union t;
t.d = 3.0;
return t.i;
@}
@end smallexample
The practice of reading from a different union member than the one most
recently written to (called ``type-punning'') is common. Even with
@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
is accessed through the union type. So, the code above works as
expected. @xref{Structures unions enumerations and bit-fields
implementation}. However, this code might not:
@smallexample
int f() @{
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
@}
@end smallexample
Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
@smallexample
int f() @{
double d = 3.0;
return ((union a_union *) &d)->i;
@}
@end smallexample
The @option{-fstrict-aliasing} option is enabled at levels
@option{-O2}, @option{-O3}, @option{-Os}.
@item -fstrict-overflow
@opindex fstrict-overflow
Allow the compiler to assume strict signed overflow rules, depending
on the language being compiled. For C (and C++) this means that
overflow when doing arithmetic with signed numbers is undefined, which
means that the compiler may assume that it does not happen. This
permits various optimizations. For example, the compiler assumes
that an expression like @code{i + 10 > i} is always true for
signed @code{i}. This assumption is only valid if signed overflow is
undefined, as the expression is false if @code{i + 10} overflows when
using twos complement arithmetic. When this option is in effect any
attempt to determine whether an operation on signed numbers
overflows must be written carefully to not actually involve overflow.
This option also allows the compiler to assume strict pointer
semantics: given a pointer to an object, if adding an offset to that
pointer does not produce a pointer to the same object, the addition is
undefined. This permits the compiler to conclude that @code{p + u >
p} is always true for a pointer @code{p} and unsigned integer
@code{u}. This assumption is only valid because pointer wraparound is
undefined, as the expression is false if @code{p + u} overflows using
twos complement arithmetic.
See also the @option{-fwrapv} option. Using @option{-fwrapv} means
that integer signed overflow is fully defined: it wraps. When
@option{-fwrapv} is used, there is no difference between
@option{-fstrict-overflow} and @option{-fno-strict-overflow} for
integers. With @option{-fwrapv} certain types of overflow are
permitted. For example, if the compiler gets an overflow when doing
arithmetic on constants, the overflowed value can still be used with
@option{-fwrapv}, but not otherwise.
The @option{-fstrict-overflow} option is enabled at levels
@option{-O2}, @option{-O3}, @option{-Os}.
@item -falign-functions
@itemx -falign-functions=@var{n}
@opindex falign-functions
Align the start of functions to the next power-of-two greater than
@var{n}, skipping up to @var{n} bytes. For instance,
@option{-falign-functions=32} aligns functions to the next 32-byte
boundary, but @option{-falign-functions=24} aligns to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.
@option{-fno-align-functions} and @option{-falign-functions=1} are
equivalent and mean that functions are not aligned.
Some assemblers only support this flag when @var{n} is a power of two;
in that case, it is rounded up.
If @var{n} is not specified or is zero, use a machine-dependent default.
Enabled at levels @option{-O2}, @option{-O3}.
@item -falign-labels
@itemx -falign-labels=@var{n}
@opindex falign-labels
Align all branch targets to a power-of-two boundary, skipping up to
@var{n} bytes like @option{-falign-functions}. This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
@option{-fno-align-labels} and @option{-falign-labels=1} are
equivalent and mean that labels are not aligned.
If @option{-falign-loops} or @option{-falign-jumps} are applicable and
are greater than this value, then their values are used instead.
If @var{n} is not specified or is zero, use a machine-dependent default
which is very likely to be @samp{1}, meaning no alignment.
Enabled at levels @option{-O2}, @option{-O3}.
@item -falign-loops
@itemx -falign-loops=@var{n}
@opindex falign-loops
Align loops to a power-of-two boundary, skipping up to @var{n} bytes
like @option{-falign-functions}. If the loops are
executed many times, this makes up for any execution of the dummy
operations.
@option{-fno-align-loops} and @option{-falign-loops=1} are
equivalent and mean that loops are not aligned.
If @var{n} is not specified or is zero, use a machine-dependent default.
Enabled at levels @option{-O2}, @option{-O3}.
@item -falign-jumps
@itemx -falign-jumps=@var{n}
@opindex falign-jumps
Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to @var{n}
bytes like @option{-falign-functions}. In this case, no dummy operations
need be executed.
@option{-fno-align-jumps} and @option{-falign-jumps=1} are
equivalent and mean that loops are not aligned.
If @var{n} is not specified or is zero, use a machine-dependent default.
Enabled at levels @option{-O2}, @option{-O3}.
@item -funit-at-a-time
@opindex funit-at-a-time
This option is left for compatibility reasons. @option{-funit-at-a-time}
has no effect, while @option{-fno-unit-at-a-time} implies
@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
Enabled by default.
@item -fno-toplevel-reorder
@opindex fno-toplevel-reorder
Do not reorder top-level functions, variables, and @code{asm}
statements. Output them in the same order that they appear in the
input file. When this option is used, unreferenced static variables
are not removed. This option is intended to support existing code
that relies on a particular ordering. For new code, it is better to
use attributes.
Enabled at level @option{-O0}. When disabled explicitly, it also implies
@option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
targets.
@item -fweb
@opindex fweb
Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a
``home register''.
Enabled by default with @option{-funroll-loops}.
@item -fwhole-program
@opindex fwhole-program
Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of @code{main}
and those merged by attribute @code{externally_visible} become static functions
and in effect are optimized more aggressively by interprocedural optimizers.
This option should not be used in combination with @code{-flto}.
Instead relying on a linker plugin should provide safer and more precise
information.
@item -flto[=@var{n}]
@opindex flto
This option runs the standard link-time optimizer. When invoked
with source code, it generates GIMPLE (one of GCC's internal
representations) and writes it to special ELF sections in the object
file. When the object files are linked together, all the function
bodies are read from these ELF sections and instantiated as if they
had been part of the same translation unit.
To use the link-time optimizer, @option{-flto} needs to be specified at
compile time and during the final link. For example:
@smallexample
gcc -c -O2 -flto foo.c
gcc -c -O2 -flto bar.c
gcc -o myprog -flto -O2 foo.o bar.o
@end smallexample
The first two invocations to GCC save a bytecode representation
of GIMPLE into special ELF sections inside @file{foo.o} and
@file{bar.o}. The final invocation reads the GIMPLE bytecode from
@file{foo.o} and @file{bar.o}, merges the two files into a single
internal image, and compiles the result as usual. Since both
@file{foo.o} and @file{bar.o} are merged into a single image, this
causes all the interprocedural analyses and optimizations in GCC to
work across the two files as if they were a single one. This means,
for example, that the inliner is able to inline functions in
@file{bar.o} into functions in @file{foo.o} and vice-versa.
Another (simpler) way to enable link-time optimization is:
@smallexample
gcc -o myprog -flto -O2 foo.c bar.c
@end smallexample
The above generates bytecode for @file{foo.c} and @file{bar.c},
merges them together into a single GIMPLE representation and optimizes
them as usual to produce @file{myprog}.
The only important thing to keep in mind is that to enable link-time
optimizations the @option{-flto} flag needs to be passed to both the
compile and the link commands.
To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know
what functions and variables can be accessed by libraries and runtime
outside of the link-time optimized unit. When supported by the linker,
the linker plugin (see @option{-fuse-linker-plugin}) passes information
to the compiler about used and externally visible symbols. When
the linker plugin is not available, @option{-fwhole-program} should be
used to allow the compiler to make these assumptions, which leads
to more aggressive optimization decisions.
Note that when a file is compiled with @option{-flto}, the generated
object file is larger than a regular object file because it
contains GIMPLE bytecodes and the usual final code. This means that
object files with LTO information can be linked as normal object
files; if @option{-flto} is not passed to the linker, no
interprocedural optimizations are applied.
Additionally, the optimization flags used to compile individual files
are not necessarily related to those used at link time. For instance,
@smallexample
gcc -c -O0 -flto foo.c
gcc -c -O0 -flto bar.c
gcc -o myprog -flto -O3 foo.o bar.o
@end smallexample
This produces individual object files with unoptimized assembler
code, but the resulting binary @file{myprog} is optimized at
@option{-O3}. If, instead, the final binary is generated without
@option{-flto}, then @file{myprog} is not optimized.
When producing the final binary with @option{-flto}, GCC only
applies link-time optimizations to those files that contain bytecode.
Therefore, you can mix and match object files and libraries with
GIMPLE bytecodes and final object code. GCC automatically selects
which files to optimize in LTO mode and which files to link without
further processing.
There are some code generation flags preserved by GCC when
generating bytecodes, as they need to be used during the final link
stage. Currently, the following options are saved into the GIMPLE
bytecode files: @option{-fPIC}, @option{-fcommon} and all the
@option{-m} target flags.
At link time, these options are read in and reapplied. Note that the
current implementation makes no attempt to recognize conflicting
values for these options. If different files have conflicting option
values (e.g., one file is compiled with @option{-fPIC} and another
isn't), the compiler simply uses the last value read from the
bytecode files. It is recommended, then, that you compile all the files
participating in the same link with the same options.
If LTO encounters objects with C linkage declared with incompatible
types in separate translation units to be linked together (undefined
behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
issued. The behavior is still undefined at run time.
Another feature of LTO is that it is possible to apply interprocedural
optimizations on files written in different languages. This requires
support in the language front end. Currently, the C, C++ and
Fortran front ends are capable of emitting GIMPLE bytecodes, so
something like this should work:
@smallexample
gcc -c -flto foo.c
g++ -c -flto bar.cc
gfortran -c -flto baz.f90
g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
@end smallexample
Notice that the final link is done with @command{g++} to get the C++
runtime libraries and @option{-lgfortran} is added to get the Fortran
runtime libraries. In general, when mixing languages in LTO mode, you
should use the same link command options as when mixing languages in a
regular (non-LTO) compilation; all you need to add is @option{-flto} to
all the compile and link commands.
If object files containing GIMPLE bytecode are stored in a library archive, say
@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
are using a linker with plugin support. To enable this feature, use
the flag @option{-fuse-linker-plugin} at link time:
@smallexample
gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
@end smallexample
With the linker plugin enabled, the linker extracts the needed
GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
to make them part of the aggregated GIMPLE image to be optimized.
If you are not using a linker with plugin support and/or do not
enable the linker plugin, then the objects inside @file{libfoo.a}
are extracted and linked as usual, but they do not participate
in the LTO optimization process.
Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is
possible to combine @option{-flto} and @option{-fwhole-program} to allow
the interprocedural optimizers to use more aggressive assumptions which may
lead to improved optimization opportunities.
Use of @option{-fwhole-program} is not needed when linker plugin is
active (see @option{-fuse-linker-plugin}).
The current implementation of LTO makes no
attempt to generate bytecode that is portable between different
types of hosts. The bytecode files are versioned and there is a
strict version check, so bytecode files generated in one version of
GCC will not work with an older/newer version of GCC@.
Link-time optimization does not work well with generation of debugging
information. Combining @option{-flto} with
@option{-g} is currently experimental and expected to produce wrong
results.
If you specify the optional @var{n}, the optimization and code
generation done at link time is executed in parallel using @var{n}
parallel jobs by utilizing an installed @command{make} program. The
environment variable @env{MAKE} may be used to override the program
used. The default value for @var{n} is 1.
You can also specify @option{-flto=jobserver} to use GNU make's
job server mode to determine the number of parallel jobs. This
is useful when the Makefile calling GCC is already executing in parallel.
You must prepend a @samp{+} to the command recipe in the parent Makefile
for this to work. This option likely only works if @env{MAKE} is
GNU make.
This option is disabled by default.
@item -flto-partition=@var{alg}
@opindex flto-partition
Specify the partitioning algorithm used by the link-time optimizer.
The value is either @code{1to1} to specify a partitioning mirroring
the original source files or @code{balanced} to specify partitioning
into equally sized chunks (whenever possible) or @code{max} to create
new partition for every symbol where possible. Specifying @code{none}
as an algorithm disables partitioning and streaming completely.
The default value is @code{balanced}. While @code{1to1} can be used
as an workaround for various code ordering issues, the @code{max}
partitioning is intended for internal testing only.
@item -flto-compression-level=@var{n}
This option specifies the level of compression used for intermediate
language written to LTO object files, and is only meaningful in
conjunction with LTO mode (@option{-flto}). Valid
values are 0 (no compression) to 9 (maximum compression). Values
outside this range are clamped to either 0 or 9. If the option is not
given, a default balanced compression setting is used.
@item -flto-report
Prints a report with internal details on the workings of the link-time
optimizer. The contents of this report vary from version to version.
It is meant to be useful to GCC developers when processing object
files in LTO mode (via @option{-flto}).
Disabled by default.
@item -flto-report-wpa
Like @option{-flto-report}, but only print for the WPA phase of Link
Time Optimization.
@item -fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This
option relies on plugin support in the linker, which is available in gold
or in GNU ld 2.21 or newer.
This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing
more code to the link-time optimizer. This information specifies what
symbols can be accessed externally (by non-LTO object or during dynamic
linking). Resulting code quality improvements on binaries (and shared
libraries that use hidden visibility) are similar to @code{-fwhole-program}.
See @option{-flto} for a description of the effect of this flag and how to
use it.
This option is enabled by default when LTO support in GCC is enabled
and GCC was configured for use with
a linker supporting plugins (GNU ld 2.21 or newer or gold).
@item -ffat-lto-objects
@opindex ffat-lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with @option{-flto}
and is ignored at link time.
@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
requires the complete toolchain to be aware of LTO. It requires a linker with
linker plugin support for basic functionality. Additionally,
@command{nm}, @command{ar} and @command{ranlib}
need to support linker plugins to allow a full-featured build environment
(capable of building static libraries etc). GCC provides the @command{gcc-ar},
@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
to these tools. With non fat LTO makefiles need to be modified to use them.
The default is @option{-ffat-lto-objects} but this default is intended to
change in future releases when linker plugin enabled environments become more
common.
@item -fcompare-elim
@opindex fcompare-elim
After register allocation and post-register allocation instruction splitting,
identify arithmetic instructions that compute processor flags similar to a
comparison operation based on that arithmetic. If possible, eliminate the
explicit comparison operation.
This pass only applies to certain targets that cannot explicitly represent
the comparison operation before register allocation is complete.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fuse-ld=bfd
Use the @command{bfd} linker instead of the default linker.
@item -fuse-ld=gold
Use the @command{gold} linker instead of the default linker.
@item -fcprop-registers
@opindex fcprop-registers
After register allocation and post-register allocation instruction splitting,
perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.
Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@item -fprofile-correction
@opindex fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.
@item -fprofile-dir=@var{path}
@opindex fprofile-dir
Set the directory to search for the profile data files in to @var{path}.
This option affects only the profile data generated by
@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
and its related options. Both absolute and relative paths can be used.
By default, GCC uses the current directory as @var{path}, thus the
profile data file appears in the same directory as the object file.
@item -fprofile-generate
@itemx -fprofile-generate=@var{path}
@opindex fprofile-generate
Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use @option{-fprofile-generate} both when
compiling and when linking your program.
The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values}, @code{-fvpt}.
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
@item -fprofile-use
@itemx -fprofile-use=@var{path}
@opindex fprofile-use
Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.
The following options are enabled: @code{-fbranch-probabilities}, @code{-fvpt},
@code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer}, @code{-ftree-vectorize},
@code{ftree-loop-distribute-patterns}
By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
@option{-Wcoverage-mismatch}. Note this may result in poorly optimized
code.
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
@end table
The following options control compiler behavior regarding floating-point
arithmetic. These options trade off between speed and
correctness. All must be specifically enabled.
@table @gcctabopt
@item -ffloat-store
@opindex ffloat-store
Do not store floating-point variables in registers, and inhibit other
options that might change whether a floating-point value is taken from a
register or memory.
@cindex floating-point precision
This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a @code{double} is supposed to have. Similarly for the
x86 architecture. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point. Use @option{-ffloat-store} for such programs, after modifying
them to store all pertinent intermediate computations into variables.
@item -fexcess-precision=@var{style}
@opindex fexcess-precision
This option allows further control over excess precision on machines
where floating-point registers have more precision than the IEEE
@code{float} and @code{double} types and the processor does not
support operations rounding to those types. By default,
@option{-fexcess-precision=fast} is in effect; this means that
operations are carried out in the precision of the registers and that
it is unpredictable when rounding to the types specified in the source
code takes place. When compiling C, if
@option{-fexcess-precision=standard} is specified then excess
precision follows the rules specified in ISO C99; in particular,
both casts and assignments cause values to be rounded to their
semantic types (whereas @option{-ffloat-store} only affects
assignments). This option is enabled by default for C if a strict
conformance option such as @option{-std=c99} is used.
@opindex mfpmath
@option{-fexcess-precision=standard} is not implemented for languages
other than C, and has no effect if
@option{-funsafe-math-optimizations} or @option{-ffast-math} is
specified. On the x86, it also has no effect if @option{-mfpmath=sse}
or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
semantics apply without excess precision, and in the latter, rounding
is unpredictable.
@item -ffast-math
@opindex ffast-math
Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
@option{-ffinite-math-only}, @option{-fno-rounding-math},
@option{-fno-signaling-nans} and @option{-fcx-limited-range}.
This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output for programs
that depend on an exact implementation of IEEE or ISO rules/specifications
for math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
@item -fno-math-errno
@opindex fno-math-errno
Do not set @code{errno} after calling math functions that are executed
with a single instruction, e.g., @code{sqrt}. A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.
This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
The default is @option{-fmath-errno}.
On Darwin systems, the math library never sets @code{errno}. There is
therefore no reason for the compiler to consider the possibility that
it might, and @option{-fno-math-errno} is the default.
@item -funsafe-math-optimizations
@opindex funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards. When used at link-time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.
This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
@option{-fassociative-math} and @option{-freciprocal-math}.
The default is @option{-fno-unsafe-math-optimizations}.
@item -fassociative-math
@opindex fassociative-math
Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result. NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on code that relies on rounding behavior like
@code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required.
This option requires that both @option{-fno-signed-zeros} and
@option{-fno-trapping-math} be in effect. Moreover, it doesn't make
much sense with @option{-frounding-math}. For Fortran the option
is automatically enabled when both @option{-fno-signed-zeros} and
@option{-fno-trapping-math} are in effect.
The default is @option{-fno-associative-math}.
@item -freciprocal-math
@opindex freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations. For example @code{x / y}
can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
is subject to common subexpression elimination. Note that this loses
precision and increases the number of flops operating on the value.
The default is @option{-fno-reciprocal-math}.
@item -ffinite-math-only
@opindex ffinite-math-only
Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.
This option is not turned on by any @option{-O} option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
The default is @option{-fno-finite-math-only}.
@item -fno-signed-zeros
@opindex fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the
signedness of zero. IEEE arithmetic specifies the behavior of
distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
This option implies that the sign of a zero result isn't significant.
The default is @option{-fsigned-zeros}.
@item -fno-trapping-math
@opindex fno-trapping-math
Compile code assuming that floating-point operations cannot generate
user-visible traps. These traps include division by zero, overflow,
underflow, inexact result and invalid operation. This option requires
that @option{-fno-signaling-nans} be in effect. Setting this option may
allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
This option should never be turned on by any @option{-O} option since
it can result in incorrect output for programs that depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions.
The default is @option{-ftrapping-math}.
@item -frounding-math
@opindex frounding-math
Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations. This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode. This option disables constant folding of
floating-point expressions at compile time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.
The default is @option{-fno-rounding-math}.
This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting
using C99's @code{FENV_ACCESS} pragma. This command-line option
will be used to specify the default state for @code{FENV_ACCESS}.
@item -fsignaling-nans
@opindex fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs. This option implies @option{-ftrapping-math}.
This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
be defined.
The default is @option{-fno-signaling-nans}.
This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.
@item -fsingle-precision-constant
@opindex fsingle-precision-constant
Treat floating-point constants as single precision instead of
implicitly converting them to double-precision constants.
@item -fcx-limited-range
@opindex fcx-limited-range
When enabled, this option states that a range reduction step is not
needed when performing complex division. Also, there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case. The
default is @option{-fno-cx-limited-range}, but is enabled by
@option{-ffast-math}.
This option controls the default setting of the ISO C99
@code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
all languages.
@item -fcx-fortran-rules
@opindex fcx-fortran-rules
Complex multiplication and division follow Fortran rules. Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case.
The default is @option{-fno-cx-fortran-rules}.
@end table
The following options control optimizations that may improve
performance, but are not enabled by any @option{-O} options. This
section includes experimental options that may produce broken code.
@table @gcctabopt
@item -fbranch-probabilities
@opindex fbranch-probabilities
After running a program compiled with @option{-fprofile-arcs}
(@pxref{Debugging Options,, Options for Debugging Your Program or
@command{gcc}}), you can compile it a second time using
@option{-fbranch-probabilities}, to improve optimizations based on
the number of times each branch was taken. When a program
compiled with @option{-fprofile-arcs} exits, it saves arc execution
counts to a file called @file{@var{sourcename}.gcda} for each source
file. The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.
With @option{-fbranch-probabilities}, GCC puts a
@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
These can be used to improve optimization. Currently, they are only
used in one place: in @file{reorg.c}, instead of guessing which path a
branch is most likely to take, the @samp{REG_BR_PROB} values are used to
exactly determine which path is taken more often.
@item -fprofile-values
@opindex fprofile-values
If combined with @option{-fprofile-arcs}, it adds code so that some
data about values of expressions in the program is gathered.
With @option{-fbranch-probabilities}, it reads back the data gathered
from profiling values of expressions for usage in optimizations.
Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
@item -fvpt
@opindex fvpt
If combined with @option{-fprofile-arcs}, this option instructs the compiler
to add code to gather information about values of expressions.
With @option{-fbranch-probabilities}, it reads back the data gathered
and actually performs the optimizations based on them.
Currently the optimizations include specialization of division operations
using the knowledge about the value of the denominator.
@item -frename-registers
@opindex frename-registers
Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation. This optimization
most benefits processors with lots of registers. Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables no longer stay in
a ``home register''.
Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
@item -ftracer
@opindex ftracer
Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
a better job.
Enabled with @option{-fprofile-use}.
@item -funroll-loops
@opindex funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. @option{-funroll-loops} implies
@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
It also turns on complete loop peeling (i.e.@: complete removal of loops with
a small constant number of iterations). This option makes code larger, and may
or may not make it run faster.
Enabled with @option{-fprofile-use}.
@item -funroll-all-loops
@opindex funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops}.
@item -fpeel-loops
@opindex fpeel-loops
Peels loops for which there is enough information that they do not
roll much (from profile feedback). It also turns on complete loop peeling
(i.e.@: complete removal of loops with small constant number of iterations).
Enabled with @option{-fprofile-use}.
@item -fmove-loop-invariants
@opindex fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
at level @option{-O1}
@item -funswitch-loops
@opindex funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).
@item -ffunction-sections
@itemx -fdata-sections
@opindex ffunction-sections
@opindex fdata-sections
Place each function or data item into its own section in the output
file if the target supports arbitrary sections. The name of the
function or the name of the data item determines the section's name
in the output file.
Use these options on systems where the linker can perform optimizations
to improve locality of reference in the instruction space. Most systems
using the ELF object format and SPARC processors running Solaris 2 have
linkers with such optimizations. AIX may have these optimizations in
the future.
Only use these options when there are significant benefits from doing
so. When you specify these options, the assembler and linker
create larger object and executable files and are also slower.
You cannot use @code{gprof} on all systems if you
specify this option, and you may have problems with debugging if
you specify both this option and @option{-g}.
@item -fbranch-target-load-optimize
@opindex fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading.
The use of target registers can typically be exposed only during reload,
thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.
@item -fbranch-target-load-optimize2
@opindex fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.
@item -fbtr-bb-exclusive
@opindex fbtr-bb-exclusive
When performing branch target register load optimization, don't reuse
branch target registers within any basic block.
@item -fstack-protector
@opindex fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call @code{alloca}, and
functions with buffers larger than 8 bytes. The guards are initialized
when a function is entered and then checked when the function exits.
If a guard check fails, an error message is printed and the program exits.
@item -fstack-protector-all
@opindex fstack-protector-all
Like @option{-fstack-protector} except that all functions are protected.
@item -fstack-protector-strong
@opindex fstack-protector-strong
Like @option{-fstack-protector} but includes additional functions to
be protected --- those that have local array definitions, or have
references to local frame addresses.
@item -fsection-anchors
@opindex fsection-anchors
Try to reduce the number of symbolic address calculations by using
shared ``anchor'' symbols to address nearby objects. This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.
For example, the implementation of the following function @code{foo}:
@smallexample
static int a, b, c;
int foo (void) @{ return a + b + c; @}
@end smallexample
@noindent
usually calculates the addresses of all three variables, but if you
compile it with @option{-fsection-anchors}, it accesses the variables
from a common anchor point instead. The effect is similar to the
following pseudocode (which isn't valid C):
@smallexample
int foo (void)
@{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
@}
@end smallexample
Not all targets support this option.
@item --param @var{name}=@var{value}
@opindex param
In some places, GCC uses various constants to control the amount of
optimization that is done. For example, GCC does not inline functions
that contain more than a certain number of instructions. You can
control some of these constants on the command line using the
@option{--param} option.
The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.
In each case, the @var{value} is an integer. The allowable choices for
@var{name} are:
@table @gcctabopt
@item predictable-branch-outcome
When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable. The default is 10.
@item max-crossjump-edges
The maximum number of incoming edges to consider for cross-jumping.
The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
the number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compilation time increase with
probably small improvement in executable size.
@item min-crossjump-insns
The minimum number of instructions that must be matched at the end
of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched. The default value is 5.
@item max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.
@item max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that jumps
to a computed goto. To avoid @math{O(N^2)} behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible. Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored. The default value is 8.
@item max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions are searched, the time savings from filling the delay slot
are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with probably
small improvement in execution time.
@item max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.
@item max-gcse-memory
The approximate maximum amount of memory that can be allocated in
order to perform the global common subexpression elimination
optimization. If more memory than specified is required, the
optimization is not done.
@item max-gcse-insertion-ratio
If the ratio of expression insertions to deletions is larger than this value
for any expression, then RTL PRE inserts or removes the expression and thus
leaves partially redundant computations in the instruction stream. The default value is 20.
@item max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.
@item max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should make
when modulo scheduling a loop. Larger values can exponentially increase
compilation time.
@item max-inline-insns-single
Several parameters control the tree inliner used in GCC@.
This number sets the maximum number of instructions (counted in GCC's
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared
inline and methods implemented in a class declaration (C++).
The default value is 400.
@item max-inline-insns-auto
When you use @option{-finline-functions} (included in @option{-O3}),
a lot of functions that would otherwise not be considered for inlining
by the compiler are investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied.
The default value is 40.
@item inline-min-speedup
When estimated performance improvement of caller + callee runtime exceeds this
threshold (in precent), the function can be inlined regardless the limit on
@option{--param max-inline-insns-single} and @option{--param
max-inline-insns-auto}.
@item large-function-insns
The limit specifying really large functions. For functions larger than this
limit after inlining, inlining is constrained by
@option{--param large-function-growth}. This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
back end.
The default value is 2700.
@item large-function-growth
Specifies maximal growth of large function caused by inlining in percents.
The default value is 100 which limits large function growth to 2.0 times
the original size.
@item large-unit-insns
The limit specifying large translation unit. Growth caused by inlining of
units larger than this limit is limited by @option{--param inline-unit-growth}.
For small units this might be too tight.
For example, consider a unit consisting of function A
that is inline and B that just calls A three times. If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlineable functions, however, the overall unit
growth limit is needed to avoid exponential explosion of code size. Thus for
smaller units, the size is increased to @option{--param large-unit-insns}
before applying @option{--param inline-unit-growth}. The default is 10000.
@item inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by inlining.
The default value is 30 which limits unit growth to 1.3 times the original
size.
@item ipcp-unit-growth
Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation. The default value is 10 which limits
unit growth to 1.1 times the original size.
@item large-stack-frame
The limit specifying large stack frames. While inlining the algorithm is trying
to not grow past this limit too much. The default value is 256 bytes.
@item large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in percents.
The default value is 1000 which limits large stack frame growth to 11 times
the original size.
@item max-inline-insns-recursive
@itemx max-inline-insns-recursive-auto
Specifies the maximum number of instructions an out-of-line copy of a
self-recursive inline
function can grow into by performing recursive inlining.
For functions declared inline, @option{--param max-inline-insns-recursive} is
taken into account. For functions not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled and @option{--param max-inline-insns-recursive-auto} is used. The
default value is 450.
@item max-inline-recursive-depth
@itemx max-inline-recursive-depth-auto
Specifies the maximum recursion depth used for recursive inlining.
For functions declared inline, @option{--param max-inline-recursive-depth} is
taken into account. For functions not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled and @option{--param max-inline-recursive-depth-auto} is used. The
default value is 8.
@item min-inline-recursive-probability
Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.
When profile feedback is available (see @option{-fprofile-generate}) the actual
recursion depth can be guessed from probability that function recurses via a
given call expression. This parameter limits inlining only to call expressions
whose probability exceeds the given threshold (in percents).
The default value is 10.
@item early-inlining-insns
Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.
The default value is 10.
@item max-early-inliner-iterations
@itemx max-early-inliner-iterations
Limit of iterations of the early inliner. This basically bounds
the number of nested indirect calls the early inliner can resolve.
Deeper chains are still handled by late inlining.
@item comdat-sharing-probability
@itemx comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat visibility
are shared across multiple compilation units. The default value is 20.
@item min-vect-loop-bound
The minimum number of iterations under which loops are not vectorized
when @option{-ftree-vectorize} is used. The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization. The default value is 0.
@item gcse-cost-distance-ratio
Scaling factor in calculation of maximum distance an expression
can be moved by GCSE optimizations. This is currently supported only in the
code hoisting pass. The bigger the ratio, the more aggressive code hoisting
is with simple expressions, i.e., the expressions that have cost
less than @option{gcse-unrestricted-cost}. Specifying 0 disables
hoisting of simple expressions. The default value is 10.
@item gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain
the distance an expression can travel. This is currently
supported only in the code hoisting pass. The lesser the cost,
the more aggressive code hoisting is. Specifying 0
allows all expressions to travel unrestricted distances.
The default value is 3.
@item max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm.
The value of 0 does not limit on the search, but may slow down compilation
of huge functions. The default value is 30.
@item max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This is used to
avoid quadratic behavior in tree tail merging. The default value is 10.
@item max-tail-merge-iterations
The maximum amount of iterations of the pass over the function. This is used to
limit compilation time in tree tail merging. The default value is 2.
@item max-unrolled-insns
The maximum number of instructions that a loop may have to be unrolled.
If a loop is unrolled, this parameter also determines how many times
the loop code is unrolled.
@item max-average-unrolled-insns
The maximum number of instructions biased by probabilities of their execution
that a loop may have to be unrolled. If a loop is unrolled,
this parameter also determines how many times the loop code is unrolled.
@item max-unroll-times
The maximum number of unrollings of a single loop.
@item max-peeled-insns
The maximum number of instructions that a loop may have to be peeled.
If a loop is peeled, this parameter also determines how many times
the loop code is peeled.
@item max-peel-times
The maximum number of peelings of a single loop.
@item max-peel-branches
The maximum number of branches on the hot path through the peeled sequence.
@item max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.
@item max-completely-peel-times
The maximum number of iterations of a loop to be suitable for complete peeling.
@item max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.
@item max-unswitch-insns
The maximum number of insns of an unswitched loop.
@item max-unswitch-level
The maximum number of branches unswitched in a single loop.
@item lim-expensive
The minimum cost of an expensive expression in the loop invariant motion.
@item iv-consider-all-candidates-bound
Bound on number of candidates for induction variables, below which
all candidates are considered for each use in induction variable
optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time complexity.
@item iv-max-considered-uses
The induction variable optimizations give up on loops that contain more
induction variable uses.
@item iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set
when adding a new one.
@item scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.
@item scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions analyzer.
Complex expressions slow the analyzer.
@item omega-max-vars
The maximum number of variables in an Omega constraint system.
The default value is 128.
@item omega-max-geqs
The maximum number of inequalities in an Omega constraint system.
The default value is 256.
@item omega-max-eqs
The maximum number of equalities in an Omega constraint system.
The default value is 128.
@item omega-max-wild-cards
The maximum number of wildcard variables that the Omega solver is
able to insert. The default value is 18.
@item omega-hash-table-size
The size of the hash table in the Omega solver. The default value is
550.
@item omega-max-keys
The maximal number of keys used by the Omega solver. The default
value is 500.
@item omega-eliminate-redundant-constraints
When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.
@item vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed when
doing loop versioning for alignment in the vectorizer. See option
@option{-ftree-vect-loop-version} for more information.
@item vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed when
doing loop versioning for alias in the vectorizer. See option
@option{-ftree-vect-loop-version} for more information.
@item max-iterations-to-track
The maximum number of iterations of a loop the brute-force algorithm
for analysis of the number of iterations of the loop tries to evaluate.
@item hot-bb-count-ws-permille
A basic block profile count is considered hot if it contributes to
the given permillage (i.e. 0...1000) of the entire profiled execution.
@item hot-bb-frequency-fraction
Select fraction of the entry block frequency of executions of basic block in
function given basic block needs to have to be considered hot.
@item max-predicted-iterations
The maximum number of loop iterations we predict statically. This is useful
in cases where a function contains a single loop with known bound and
another loop with unknown bound.
The known number of iterations is predicted correctly, while
the unknown number of iterations average to roughly 10. This means that the
loop without bounds appears artificially cold relative to the other one.
@item align-threshold
Select fraction of the maximal frequency of executions of a basic block in
a function to align the basic block.
@item align-loop-iterations
A loop expected to iterate at least the selected number of iterations is
aligned.
@item tracer-dynamic-coverage
@itemx tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given percentage of
executed instructions is covered. This limits unnecessary code size
expansion.
The @option{tracer-dynamic-coverage-feedback} is used only when profile
feedback is available. The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.
@item tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage. This is
a rather artificial limit, as most of the duplicates are eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.
@item tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).
@item tracer-min-branch-ratio
@itemx tracer-min-branch-ratio-feedback
Stop forward growth if the best edge has probability lower than this
threshold.
Similarly to @option{tracer-dynamic-coverage} two values are present, one for
compilation for profile feedback and one for compilation without. The value
for compilation with profile feedback needs to be more conservative (higher) in
order to make tracer effective.
@item max-cse-path-length
The maximum number of basic blocks on path that CSE considers.
The default is 10.
@item max-cse-insns
The maximum number of instructions CSE processes before flushing.
The default is 1000.
@item ggc-min-expand
GCC uses a garbage collector to manage its own memory allocation. This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections.
Tuning this may improve compilation speed; it has no effect on code
generation.
The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used. Setting this parameter and
@option{ggc-min-heapsize} to zero causes a full collection to occur at
every opportunity. This is extremely slow, but can be useful for
debugging.
@item ggc-min-heapsize
Minimum size of the garbage collector's heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands
by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
tuning this may improve compilation speed, and has no effect on code
generation.
The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes). If GCC is not able to calculate RAM on a
particular platform, the lower bound is used. Setting this parameter
very large effectively disables garbage collection. Setting this
parameter and @option{ggc-min-expand} to zero causes a full collection
to occur at every opportunity.
@item max-reload-search-insns
The maximum number of instruction reload should look backward for equivalent
register. Increasing values mean more aggressive optimization, making the
compilation time increase with probably slightly better performance.
The default value is 100.
@item max-cselib-memory-locations
The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the compilation time
increase with probably slightly better performance. The default value is 500.
@item reorder-blocks-duplicate
@itemx reorder-blocks-duplicate-feedback
Used by the basic block reordering pass to decide whether to use unconditional
branch or duplicate the code on its destination. Code is duplicated when its
estimated size is smaller than this value multiplied by the estimated size of
unconditional jump in the hot spots of the program.
The @option{reorder-block-duplicate-feedback} is used only when profile
feedback is available. It may be set to higher values than
@option{reorder-block-duplicate} since information about the hot spots is more
accurate.
@item max-sched-ready-insns
The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass. Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit. The default value is 100.
@item max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.
@item max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.
@item max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.
@item max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.
@item min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.
@item max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 (the default) disables region extensions.
@item max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for speculative motion.
The default value is 3.
@item sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so that
speculative insns are scheduled.
The default value is 40.
@item sched-spec-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to save its
state across it.
The default value is 10.
@item sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting same
memory locations. The default value is 1.
@item selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling. It is a
depth of search for available instructions.
The default value is 50.
@item selsched-max-sched-times
The maximum number of times that an instruction is scheduled during
selective scheduling. This is the limit on the number of iterations
through which the instruction may be pipelined. The default value is 2.
@item selsched-max-insns-to-rename
The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler. The default value is 2.
@item sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates. The default value is 2.
@item max-last-value-rtl
The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register. The default
is 10000.
@item integer-share-limit
Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed. This sets the maximum
value of a shared integer constant. The default value is 256.
@item ssp-buffer-size
The minimum size of buffers (i.e.@: arrays) that receive stack smashing
protection when @option{-fstack-protection} is used.
@item max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.
@item max-fields-for-field-sensitive
Maximum number of fields in a structure treated in
a field sensitive manner during pointer analysis. The default is zero
for @option{-O0} and @option{-O1},
and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
@item prefetch-latency
Estimate on average number of instructions that are executed before
prefetch finishes. The distance prefetched ahead is proportional
to this constant. Increasing this number may also lead to less
streams being prefetched (see @option{simultaneous-prefetches}).
@item simultaneous-prefetches
Maximum number of prefetches that can run at the same time.
@item l1-cache-line-size
The size of cache line in L1 cache, in bytes.
@item l1-cache-size
The size of L1 cache, in kilobytes.
@item l2-cache-size
The size of L2 cache, in kilobytes.
@item min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.
@item prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.
@item use-canonical-types
Whether the compiler should use the ``canonical'' type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.
@item switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are
bigger than @option{switch-conversion-max-branch-ratio} times the number of
branches in the switch.
@item max-partial-antic-length
Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (@option{-ftree-pre}) when
optimizing at @option{-O3} and above. For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for
this parameter allows an unlimited set length.
@item sccvn-max-scc-size
Maximum size of a strongly connected component (SCC) during SCCVN
processing. If this limit is hit, SCCVN processing for the whole
function is not done and optimizations depending on it are
disabled. The default maximum SCC size is 10000.
@item sccvn-max-alias-queries-per-access
Maximum number of alias-oracle queries we perform when looking for
redundancies for loads and stores. If this limit is hit the search
is aborted and the load or store is not considered redundant. The
number of queries is algorithmically limited to the number of
stores on all paths from the load to the function entry.
The default maxmimum number of queries is 1000.
@item ira-max-loops-num
IRA uses regional register allocation by default. If a function
contains more loops than the number given by this parameter, only at most
the given number of the most frequently-executed loops form regions
for regional register allocation. The default value of the
parameter is 100.
@item ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm to compress the conflict
table, the table can still require excessive amounts of memory for
huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality
algorithm that does not require building a pseudo-register conflict table.
The default value of the parameter is 2000.
@item ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in loops
for decisions to move loop invariants (see @option{-O3}). The number
of available registers reserved for some other purposes is given
by this parameter. The default value of the parameter is 2, which is
the minimal number of registers needed by typical instructions.
This value is the best found from numerous experiments.
@item loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation time and
in amount of needed compile-time memory, with very large loops. Loops
with more basic blocks than this parameter won't have loop invariant
motion optimization performed on them. The default value of the
parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
@item loop-max-datarefs-for-datadeps
Building data dapendencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies.
The default value is 1000.
@item max-vartrack-size
Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.
@item max-vartrack-expr-depth
Sets a maximum number of recursion levels when attempting to map
variable names or debug temporaries to value expressions. This trades
compilation time for more complete debug information. If this is set too
low, value expressions that are available and could be represented in
debug information may end up not being used; setting this higher may
enable the compiler to find more complex debug expressions, but compile
time and memory use may grow. The default is 12.
@item min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range below
the parameter is reserved exclusively for debug insns created by
@option{-fvar-tracking-assignments}, but debug insns may get
(non-overlapping) uids above it if the reserved range is exhausted.
@item ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more new
parameters only when their cumulative size is less or equal to
@option{ipa-sra-ptr-growth-factor} times the size of the original
pointer parameter.
@item tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are
saved with the logging functions as opposed to save/restore code
sequence pairs. This option only applies when using
@option{-fgnu-tm}.
@item graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded. The
default value is 10 parameters. A variable whose value is unknown at
compilation time and defined outside a SCoP is a parameter of the SCoP.
@item graphite-max-bbs-per-function
To avoid exponential effects in the detection of SCoPs, the size of
the functions analyzed by Graphite is bounded. The default value is
100 basic blocks.
@item loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
loop in the loop nest by a given number of iterations. The strip
length can be changed using the @option{loop-block-tile-size}
parameter. The default value is 51 iterations.
@item ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a function's
parameter in order to propagate them and perform devirtualization.
@option{ipa-cp-value-list-size} is the maximum number of values and types it
stores per one formal parameter of a function.
@item lto-partitions
Specify desired number of partitions produced during WHOPR compilation.
The number of partitions should exceed the number of CPUs used for compilation.
The default value is 32.
@item lto-minpartition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too many
partitions.
@item cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions when C++
name lookup fails for an identifier. The default is 1000.
@item sink-frequency-threshold
The maximum relative execution frequency (in percents) of the target block
relative to a statement's original block to allow statement sinking of a
statement. Larger numbers result in more aggressive statement sinking.
The default value is 75. A small positive adjustment is applied for
statements with memory operands as those are even more profitable so sink.
@item max-stores-to-sink
The maximum number of conditional stores paires that can be sunk. Set to 0
if either vectorization (@option{-ftree-vectorize}) or if-conversion
(@option{-ftree-loop-if-convert}) is disabled. The default is 2.
@item allow-load-data-races
Allow optimizers to introduce new data races on loads.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the @option{-fmemory-model=} option.
@item allow-store-data-races
Allow optimizers to introduce new data races on stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the @option{-fmemory-model=} option.
@item allow-packed-load-data-races
Allow optimizers to introduce new data races on packed data loads.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the @option{-fmemory-model=} option.
@item allow-packed-store-data-races
Allow optimizers to introduce new data races on packed data stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the @option{-fmemory-model=} option.
@item case-values-threshold
The smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. If the value is
0, use the default for the machine. The default is 0.
@item tree-reassoc-width
Set the maximum number of instructions executed in parallel in
reassociated tree. This parameter overrides target dependent
heuristics used by default if has non zero value.
@item sched-pressure-algorithm
Choose between the two available implementations of
@option{-fsched-pressure}. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the relatively
conservative approach taken by algorithm 1 and the rather aggressive
approach taken by the default scheduler. It relies more heavily on
having a regular register file and accurate register pressure classes.
See @file{haifa-sched.c} in the GCC sources for more details.
The default choice depends on the target.
@item max-slsr-cand-scan
Set the maximum number of existing candidates that will be considered when
seeking a basis for a new straight-line strength reduction candidate.
@end table
@end table
@node Preprocessor Options
@section Options Controlling the Preprocessor
@cindex preprocessor options
@cindex options, preprocessor
These options control the C preprocessor, which is run on each C source
file before actual compilation.
If you use the @option{-E} option, nothing is done except preprocessing.
Some of these options make sense only together with @option{-E} because
they cause the preprocessor output to be unsuitable for actual
compilation.
@table @gcctabopt
@item -Wp,@var{option}
@opindex Wp
You can use @option{-Wp,@var{option}} to bypass the compiler driver
and pass @var{option} directly through to the preprocessor. If
@var{option} contains commas, it is split into multiple options at the
commas. However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
@option{-Wp} forcibly bypasses this phase. The preprocessor's direct
interface is undocumented and subject to change, so whenever possible
you should avoid using @option{-Wp} and let the driver handle the
options instead.
@item -Xpreprocessor @var{option}
@opindex Xpreprocessor
Pass @var{option} as an option to the preprocessor. You can use this to
supply system-specific preprocessor options that GCC does not
recognize.
If you want to pass an option that takes an argument, you must use
@option{-Xpreprocessor} twice, once for the option and once for the argument.
@item -no-integrated-cpp
@opindex no-integrated-cpp
Perform preprocessing as a separate pass before compilation.
By default, GCC performs preprocessing as an integrated part of
input tokenization and parsing.
If this option is provided, the appropriate language front end
(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation
of the preprocessed input.
This option may be useful in conjunction with the @option{-B} or
@option{-wrapper} options to specify an alternate preprocessor or
perform additional processing of the program source between
normal preprocessing and compilation.
@end table
@include cppopts.texi
@node Assembler Options
@section Passing Options to the Assembler
@c prevent bad page break with this line
You can pass options to the assembler.
@table @gcctabopt
@item -Wa,@var{option}
@opindex Wa
Pass @var{option} as an option to the assembler. If @var{option}
contains commas, it is split into multiple options at the commas.
@item -Xassembler @var{option}
@opindex Xassembler
Pass @var{option} as an option to the assembler. You can use this to
supply system-specific assembler options that GCC does not
recognize.
If you want to pass an option that takes an argument, you must use
@option{-Xassembler} twice, once for the option and once for the argument.
@end table
@node Link Options
@section Options for Linking
@cindex link options
@cindex options, linking
These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is
not doing a link step.
@table @gcctabopt
@cindex file names
@item @var{object-file-name}
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as input
to the linker.
@item -c
@itemx -S
@itemx -E
@opindex c
@opindex S
@opindex E
If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. @xref{Overall
Options}.
@cindex Libraries
@item -l@var{library}
@itemx -l @var{library}
@opindex l
Search the library named @var{library} when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
to functions in @samp{z}, those functions may not be loaded.
The linker searches a standard list of directories for the library,
which is actually a file named @file{lib@var{library}.a}. The linker
then uses this file as if it had been specified precisely by name.
The directories searched include several standard system directories
plus any that you specify with @option{-L}.
Normally the files found this way are library files---archive files
whose members are object files. The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an @option{-l} option and specifying a file name
is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
and searches several directories.
@item -lobjc
@opindex lobjc
You need this special case of the @option{-l} option in order to
link an Objective-C or Objective-C++ program.
@item -nostartfiles
@opindex nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless @option{-nostdlib}
or @option{-nodefaultlibs} is used.
@item -nodefaultlibs
@opindex nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify are passed to the linker, and options
specifying linkage of the system libraries, such as @code{-static-libgcc}
or @code{-shared-libgcc}, are ignored.
The standard startup files are used normally, unless @option{-nostartfiles}
is used.
The compiler may generate calls to @code{memcmp},
@code{memset}, @code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
@item -nostdlib
@opindex nostdlib
Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify are passed to
the linker, and options specifying linkage of the system libraries, such as
@code{-static-libgcc} or @code{-shared-libgcc}, are ignored.
The compiler may generate calls to @code{memcmp}, @code{memset},
@code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
@cindex @option{-lgcc}, use with @option{-nostdlib}
@cindex @option{-nostdlib} and unresolved references
@cindex unresolved references and @option{-nostdlib}
@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
@cindex @option{-nodefaultlibs} and unresolved references
@cindex unresolved references and @option{-nodefaultlibs}
One of the standard libraries bypassed by @option{-nostdlib} and
@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
which GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
Collection (GCC) Internals},
for more discussion of @file{libgcc.a}.)
In most cases, you need @file{libgcc.a} even when you want to avoid
other standard libraries. In other words, when you specify @option{-nostdlib}
or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
This ensures that you have no unresolved references to internal GCC
library subroutines.
(An example of such an internal subroutine is @samp{__main}, used to ensure C++
constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
GNU Compiler Collection (GCC) Internals}.)
@item -pie
@opindex pie
Produce a position independent executable on targets that support it.
For predictable results, you must also specify the same set of options
used for compilation (@option{-fpie}, @option{-fPIE},
or model suboptions) when you specify this linker option.
@item -rdynamic
@opindex rdynamic
Pass the flag @option{-export-dynamic} to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of @code{dlopen} or to allow obtaining backtraces
from within a program.
@item -s
@opindex s
Remove all symbol table and relocation information from the executable.
@item -static
@opindex static
On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.
@item -shared
@opindex shared
Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options used for compilation
(@option{-fpic}, @option{-fPIC}, or model suboptions) when
you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
needs to build supplementary stub code for constructors to work. On
multi-libbed systems, @samp{gcc -shared} must select the correct support
libraries to link against. Failing to supply the correct flags may lead
to subtle defects. Supplying them in cases where they are not necessary
is innocuous.}
@item -shared-libgcc
@itemx -static-libgcc
@opindex shared-libgcc
@opindex static-libgcc
On systems that provide @file{libgcc} as a shared library, these options
force the use of either the shared or static version, respectively.
If no shared version of @file{libgcc} was built when the compiler was
configured, these options have no effect.
There are several situations in which an application should use the
shared @file{libgcc} instead of the static version. The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries
as well as the application itself should use the shared @file{libgcc}.
Therefore, the G++ and GCJ drivers automatically add
@option{-shared-libgcc} whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may
find that they are not always linked with the shared @file{libgcc}.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option @option{--eh-frame-hdr},
it links the shared version of @file{libgcc} into shared libraries
by default. Otherwise, it takes advantage of the linker and optimizes
away the linking with the shared version of @file{libgcc}, linking with
the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.
However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
@option{-shared-libgcc}, such that it is linked with the shared
@file{libgcc}.
@item -static-libasan
When the @option{-fsanitize=address} option is used to link a program,
the GCC driver automatically links against @option{libasan}. If
@file{libasan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libasan}. The @option{-static-libasan} option directs the GCC
driver to link @file{libasan} statically, without necessarily linking
other libraries statically.
@item -static-libtsan
When the @option{-fsanitize=thread} option is used to link a program,
the GCC driver automatically links against @option{libtsan}. If
@file{libtsan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libtsan}. The @option{-static-libtsan} option directs the GCC
driver to link @file{libtsan} statically, without necessarily linking
other libraries statically.
@item -static-libubsan
When the @option{-fsanitize=undefined} option is used to link a program,
the GCC driver automatically links against @option{libubsan}. If
@file{libubsan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libubsan}. The @option{-static-libubsan} option directs the GCC
driver to link @file{libubsan} statically, without necessarily linking
other libraries statically.
@item -static-libstdc++
When the @command{g++} program is used to link a C++ program, it
normally automatically links against @option{libstdc++}. If
@file{libstdc++} is available as a shared library, and the
@option{-static} option is not used, then this links against the
shared version of @file{libstdc++}. That is normally fine. However, it
is sometimes useful to freeze the version of @file{libstdc++} used by
the program without going all the way to a fully static link. The
@option{-static-libstdc++} option directs the @command{g++} driver to
link @file{libstdc++} statically, without necessarily linking other
libraries statically.
@item -symbolic
@opindex symbolic
Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
this option.
@item -T @var{script}
@opindex T
@cindex linker script
Use @var{script} as the linker script. This option is supported by most
systems using the GNU linker. On some targets, such as bare-board
targets without an operating system, the @option{-T} option may be required
when linking to avoid references to undefined symbols.
@item -Xlinker @var{option}
@opindex Xlinker
Pass @var{option} as an option to the linker. You can use this to
supply system-specific linker options that GCC does not recognize.
If you want to pass an option that takes a separate argument, you must use
@option{-Xlinker} twice, once for the option and once for the argument.
For example, to pass @option{-assert definitions}, you must write
@option{-Xlinker -assert -Xlinker definitions}. It does not work to write
@option{-Xlinker "-assert definitions"}, because this passes the entire
string as a single argument, which is not what the linker expects.
When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the @option{@var{option}=@var{value}}
syntax than as separate arguments. For example, you can specify
@option{-Xlinker -Map=output.map} rather than
@option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
this syntax for command-line options.
@item -Wl,@var{option}
@opindex Wl
Pass @var{option} as an option to the linker. If @var{option} contains
commas, it is split into multiple options at the commas. You can use this
syntax to pass an argument to the option.
For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
linker. When using the GNU linker, you can also get the same effect with
@option{-Wl,-Map=output.map}.
@item -u @var{symbol}
@opindex u
Pretend the symbol @var{symbol} is undefined, to force linking of
library modules to define it. You can use @option{-u} multiple times with
different symbols to force loading of additional library modules.
@end table
@node Directory Options
@section Options for Directory Search
@cindex directory options
@cindex options, directory search
@cindex search path
These options specify directories to search for header files, for
libraries and for parts of the compiler:
@table @gcctabopt
@item -I@var{dir}
@opindex I
Add the directory @var{dir} to the head of the list of directories to be
searched for header files. This can be used to override a system header
file, substituting your own version, since these directories are
searched before the system header file directories. However, you should
not use this option to add directories that contain vendor-supplied
system header files (use @option{-isystem} for that). If you use more than
one @option{-I} option, the directories are scanned in left-to-right
order; the standard system directories come after.
If a standard system include directory, or a directory specified with
@option{-isystem}, is also specified with @option{-I}, the @option{-I}
option is ignored. The directory is still searched but as a
system directory at its normal position in the system include chain.
This is to ensure that GCC's procedure to fix buggy system headers and
the ordering for the @code{include_next} directive are not inadvertently changed.
If you really need to change the search order for system directories,
use the @option{-nostdinc} and/or @option{-isystem} options.
@item -iplugindir=@var{dir}
Set the directory to search for plugins that are passed
by @option{-fplugin=@var{name}} instead of
@option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
to be used by the user, but only passed by the driver.
@item -iquote@var{dir}
@opindex iquote
Add the directory @var{dir} to the head of the list of directories to
be searched for header files only for the case of @samp{#include
"@var{file}"}; they are not searched for @samp{#include <@var{file}>},
otherwise just like @option{-I}.
@item -L@var{dir}
@opindex L
Add directory @var{dir} to the list of directories to be searched
for @option{-l}.
@item -B@var{prefix}
@opindex B
This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
The compiler driver program runs one or more of the subprograms
@command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
@var{prefix} as a prefix for each program it tries to run, both with and
without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
For each subprogram to be run, the compiler driver first tries the
@option{-B} prefix, if any. If that name is not found, or if @option{-B}
is not specified, the driver tries two standard prefixes,
@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
@env{PATH} environment variable.
The compiler checks to see if the path provided by the @option{-B}
refers to a directory, and if necessary it adds a directory
separator character at the end of the path.
@option{-B} prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into @option{-L} options for the linker. They also apply to
includes files in the preprocessor, because the compiler translates these
options into @option{-isystem} options for the preprocessor. In this case,
the compiler appends @samp{include} to the prefix.
The runtime support file @file{libgcc.a} can also be searched for using
the @option{-B} prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is left
out of the link if it is not found by those means.
Another way to specify a prefix much like the @option{-B} prefix is to use
the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
Variables}.
As a special kludge, if the path provided by @option{-B} is
@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
9, then it is replaced by @file{[dir/]include}. This is to help
with boot-strapping the compiler.
@item -specs=@var{file}
@opindex specs
Process @var{file} after the compiler reads in the standard @file{specs}
file, in order to override the defaults which the @command{gcc} driver
program uses when determining what switches to pass to @command{cc1},
@command{cc1plus}, @command{as}, @command{ld}, etc. More than one
@option{-specs=@var{file}} can be specified on the command line, and they
are processed in order, from left to right.
@item --sysroot=@var{dir}
@opindex sysroot
Use @var{dir} as the logical root directory for headers and libraries.
For example, if the compiler normally searches for headers in
@file{/usr/include} and libraries in @file{/usr/lib}, it instead
searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
If you use both this option and the @option{-isysroot} option, then
the @option{--sysroot} option applies to libraries, but the
@option{-isysroot} option applies to header files.
The GNU linker (beginning with version 2.16) has the necessary support
for this option. If your linker does not support this option, the
header file aspect of @option{--sysroot} still works, but the
library aspect does not.
@item --no-sysroot-suffix
@opindex no-sysroot-suffix
For some targets, a suffix is added to the root directory specified
with @option{--sysroot}, depending on the other options used, so that
headers may for example be found in
@file{@var{dir}/@var{suffix}/usr/include} instead of
@file{@var{dir}/usr/include}. This option disables the addition of
such a suffix.
@item -I-
@opindex I-
This option has been deprecated. Please use @option{-iquote} instead for
@option{-I} directories before the @option{-I-} and remove the @option{-I-}.
Any directories you specify with @option{-I} options before the @option{-I-}
option are searched only for the case of @samp{#include "@var{file}"};
they are not searched for @samp{#include <@var{file}>}.
If additional directories are specified with @option{-I} options after
the @option{-I-}, these directories are searched for all @samp{#include}
directives. (Ordinarily @emph{all} @option{-I} directories are used
this way.)
In addition, the @option{-I-} option inhibits the use of the current
directory (where the current input file came from) as the first search
directory for @samp{#include "@var{file}"}. There is no way to
override this effect of @option{-I-}. With @option{-I.} you can specify
searching the directory that is current when the compiler is
invoked. That is not exactly the same as what the preprocessor does
by default, but it is often satisfactory.
@option{-I-} does not inhibit the use of the standard system directories
for header files. Thus, @option{-I-} and @option{-nostdinc} are
independent.
@end table
@c man end
@node Spec Files
@section Specifying subprocesses and the switches to pass to them
@cindex Spec Files
@command{gcc} is a driver program. It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking. GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled
by @dfn{spec strings}. In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior. The spec strings built into GCC can
be overridden by using the @option{-specs=} command-line switch to specify
a spec file.
@dfn{Spec files} are plaintext files that are used to construct spec
strings. They consist of a sequence of directives separated by blank
lines. The type of directive is determined by the first non-whitespace
character on the line, which can be one of the following:
@table @code
@item %@var{command}
Issues a @var{command} to the spec file processor. The commands that can
appear here are:
@table @code
@item %include <@var{file}>
@cindex @code{%include}
Search for @var{file} and insert its text at the current point in the
specs file.
@item %include_noerr <@var{file}>
@cindex @code{%include_noerr}
Just like @samp{%include}, but do not generate an error message if the include
file cannot be found.
@item %rename @var{old_name} @var{new_name}
@cindex @code{%rename}
Rename the spec string @var{old_name} to @var{new_name}.
@end table
@item *[@var{spec_name}]:
This tells the compiler to create, override or delete the named spec
string. All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string. If this
results in an empty string then the spec is deleted. (Or, if the
spec did not exist, then nothing happens.) Otherwise, if the spec
does not currently exist a new spec is created. If the spec does
exist then its contents are overridden by the text of this
directive, unless the first character of that text is the @samp{+}
character, in which case the text is appended to the spec.
@item [@var{suffix}]:
Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix. When the compiler encounters an
input file with the named suffix, it processes the spec string in
order to work out how to compile that file. For example:
@smallexample
.ZZ:
z-compile -input %i
@end smallexample
This says that any input file whose name ends in @samp{.ZZ} should be
passed to the program @samp{z-compile}, which should be invoked with the
command-line switch @option{-input} and with the result of performing the
@samp{%i} substitution. (See below.)
As an alternative to providing a spec string, the text following a
suffix directive can be one of the following:
@table @code
@item @@@var{language}
This says that the suffix is an alias for a known @var{language}. This is
similar to using the @option{-x} command-line switch to GCC to specify a
language explicitly. For example:
@smallexample
.ZZ:
@@c++
@end smallexample
Says that .ZZ files are, in fact, C++ source files.
@item #@var{name}
This causes an error messages saying:
@smallexample
@var{name} compiler not installed on this system.
@end smallexample
@end table
GCC already has an extensive list of suffixes built into it.
This directive adds an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.
@end table
GCC has the following spec strings built into it. Spec files can
override these strings or create their own. Note that individual
targets can also add their own spec strings to this list.
@smallexample
asm Options to pass to the assembler
asm_final Options to pass to the assembler post-processor
cpp Options to pass to the C preprocessor
cc1 Options to pass to the C compiler
cc1plus Options to pass to the C++ compiler
endfile Object files to include at the end of the link
link Options to pass to the linker
lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker
predefines Defines to be passed to the C preprocessor
signed_char Defines to pass to CPP to say whether @code{char} is signed
by default
startfile Object files to include at the start of the link
@end smallexample
Here is a small example of a spec file:
@smallexample
%rename lib old_lib
*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)
@end smallexample
This example renames the spec called @samp{lib} to @samp{old_lib} and
then overrides the previous definition of @samp{lib} with a new one.
The new definition adds in some extra command-line options before
including the text of the old definition.
@dfn{Spec strings} are a list of command-line options to be passed to their
corresponding program. In addition, the spec strings can contain
@samp{%}-prefixed sequences to substitute variable text or to
conditionally insert text into the command line. Using these constructs
it is possible to generate quite complex command lines.
Here is a table of all defined @samp{%}-sequences for spec
strings. Note that spaces are not generated automatically around the
results of expanding these sequences. Therefore you can concatenate them
together or combine them with constant text in a single argument.
@table @code
@item %%
Substitute one @samp{%} into the program name or argument.
@item %i
Substitute the name of the input file being processed.
@item %b
Substitute the basename of the input file being processed.
This is the substring up to (and not including) the last period
and not including the directory.
@item %B
This is the same as @samp{%b}, but include the file suffix (text after
the last period).
@item %d
Marks the argument containing or following the @samp{%d} as a
temporary file name, so that that file is deleted if GCC exits
successfully. Unlike @samp{%g}, this contributes no text to the
argument.
@item %g@var{suffix}
Substitute a file name that has suffix @var{suffix} and is chosen
once per compilation, and mark the argument in the same way as
@samp{%d}. To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.
@item %u@var{suffix}
Like @samp{%g}, but generates a new temporary file name
each time it appears instead of once per compilation.
@item %U@var{suffix}
Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
new one if there is no such last file name. In the absence of any
@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
involves the generation of two distinct file names, one
for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
simply substituted with a file name chosen for the previous @samp{%u},
without regard to any appended suffix.
@item %j@var{suffix}
Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
writable, and if @option{-save-temps} is not used;
otherwise, substitute the name
of a temporary file, just like @samp{%u}. This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.
@item %|@var{suffix}
@itemx %m@var{suffix}
Like @samp{%g}, except if @option{-pipe} is in effect. In that case
@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
all. These are the two most common ways to instruct a program that it
should read from standard input or write to standard output. If you
need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
construct: see for example @file{f/lang-specs.h}.
@item %.@var{SUFFIX}
Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
when it is subsequently output with @samp{%*}. @var{SUFFIX} is
terminated by the next space or %.
@item %w
Marks the argument containing or following the @samp{%w} as the
designated output file of this compilation. This puts the argument
into the sequence of arguments that @samp{%o} substitutes.
@item %o
Substitutes the names of all the output files, with spaces
automatically placed around them. You should write spaces
around the @samp{%o} as well or the results are undefined.
@samp{%o} is for use in the specs for running the linker.
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they are
linked.
@item %O
Substitutes the suffix for object files. Note that this is
handled specially when it immediately follows @samp{%g, %u, or %U},
because of the need for those to form complete file names. The
handling is such that @samp{%O} is treated exactly as if it had already
been substituted, except that @samp{%g, %u, and %U} do not currently
support additional @var{suffix} characters following @samp{%O} as they do
following, for example, @samp{.o}.
@item %p
Substitutes the standard macro predefinitions for the
current target machine. Use this when running @code{cpp}.
@item %P
Like @samp{%p}, but puts @samp{__} before and after the name of each
predefined macro, except for macros that start with @samp{__} or with
@samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
C@.
@item %I
Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
and @option{-imultilib} as necessary.
@item %s
Current argument is the name of a library or startup file of some sort.
Search for that file in a standard list of directories and substitute
the full name found. The current working directory is included in the
list of directories scanned.
@item %T
Current argument is the name of a linker script. Search for that file
in the current list of directories to scan for libraries. If the file
is located insert a @option{--script} option into the command line
followed by the full path name found. If the file is not found then
generate an error message. Note: the current working directory is not
searched.
@item %e@var{str}
Print @var{str} as an error message. @var{str} is terminated by a newline.
Use this when inconsistent options are detected.
@item %(@var{name})
Substitute the contents of spec string @var{name} at this point.
@item %x@{@var{option}@}
Accumulate an option for @samp{%X}.
@item %X
Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
spec string.
@item %Y
Output the accumulated assembler options specified by @option{-Wa}.
@item %Z
Output the accumulated preprocessor options specified by @option{-Wp}.
@item %a
Process the @code{asm} spec. This is used to compute the
switches to be passed to the assembler.
@item %A
Process the @code{asm_final} spec. This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.
@item %l
Process the @code{link} spec. This is the spec for computing the
command line passed to the linker. Typically it makes use of the
@samp{%L %G %S %D and %E} sequences.
@item %D
Dump out a @option{-L} option for each directory that GCC believes might
contain startup files. If the target supports multilibs then the
current multilib directory is prepended to each of these paths.
@item %L
Process the @code{lib} spec. This is a spec string for deciding which
libraries are included on the command line to the linker.
@item %G
Process the @code{libgcc} spec. This is a spec string for deciding
which GCC support library is included on the command line to the linker.
@item %S
Process the @code{startfile} spec. This is a spec for deciding which
object files are the first ones passed to the linker. Typically
this might be a file named @file{crt0.o}.
@item %E
Process the @code{endfile} spec. This is a spec string that specifies
the last object files that are passed to the linker.
@item %C
Process the @code{cpp} spec. This is used to construct the arguments
to be passed to the C preprocessor.
@item %1
Process the @code{cc1} spec. This is used to construct the options to be
passed to the actual C compiler (@samp{cc1}).
@item %2
Process the @code{cc1plus} spec. This is used to construct the options to be
passed to the actual C++ compiler (@samp{cc1plus}).
@item %*
Substitute the variable part of a matched option. See below.
Note that each comma in the substituted string is replaced by
a single space.
@item %<@code{S}
Remove all occurrences of @code{-S} from the command line. Note---this
command is position dependent. @samp{%} commands in the spec string
before this one see @code{-S}, @samp{%} commands in the spec string
after this one do not.
@item %:@var{function}(@var{args})
Call the named function @var{function}, passing it @var{args}.
@var{args} is first processed as a nested spec string, then split
into an argument vector in the usual fashion. The function returns
a string which is processed as if it had appeared literally as part
of the current spec.
The following built-in spec functions are provided:
@table @code
@item @code{getenv}
The @code{getenv} spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
@smallexample
%:getenv(TOPDIR /include)
@end smallexample
expands to @file{/path/to/top/include}.
@item @code{if-exists}
The @code{if-exists} spec function takes one argument, an absolute
pathname to a file. If the file exists, @code{if-exists} returns the
pathname. Here is a small example of its usage:
@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
@end smallexample
@item @code{if-exists-else}
The @code{if-exists-else} spec function is similar to the @code{if-exists}
spec function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, @code{if-exists-else}
returns the pathname. If it does not exist, it returns the second argument.
This way, @code{if-exists-else} can be used to select one file or another,
based on the existence of the first. Here is a small example of its usage:
@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) \
%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
@end smallexample
@item @code{replace-outfile}
The @code{replace-outfile} spec function takes two arguments. It looks for the
first argument in the outfiles array and replaces it with the second argument. Here
is a small example of its usage:
@smallexample
%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
@end smallexample
@item @code{remove-outfile}
The @code{remove-outfile} spec function takes one argument. It looks for the
first argument in the outfiles array and removes it. Here is a small example
its usage:
@smallexample
%:remove-outfile(-lm)
@end smallexample
@item @code{pass-through-libs}
The @code{pass-through-libs} spec function takes any number of arguments. It
finds any @option{-l} options and any non-options ending in @file{.a} (which it
assumes are the names of linker input library archive files) and returns a
result containing all the found arguments each prepended by
@option{-plugin-opt=-pass-through=} and joined by spaces. This list is
intended to be passed to the LTO linker plugin.
@smallexample
%:pass-through-libs(%G %L %G)
@end smallexample
@item @code{print-asm-header}
The @code{print-asm-header} function takes no arguments and simply
prints a banner like:
@smallexample
Assembler options
=================
Use "-Wa,OPTION" to pass "OPTION" to the assembler.
@end smallexample
It is used to separate compiler options from assembler options
in the @option{--target-help} output.
@end table
@item %@{@code{S}@}
Substitutes the @code{-S} switch, if that switch is given to GCC@.
If that switch is not specified, this substitutes nothing. Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed. Thus the spec
string @samp{%@{foo@}} matches the command-line option @option{-foo}
and outputs the command-line option @option{-foo}.
@item %W@{@code{S}@}
Like %@{@code{S}@} but mark last argument supplied within as a file to be
deleted on failure.
@item %@{@code{S}*@}
Substitutes all the switches specified to GCC whose names start
with @code{-S}, but which also take an argument. This is used for
switches like @option{-o}, @option{-D}, @option{-I}, etc.
GCC considers @option{-o foo} as being
one switch whose name starts with @samp{o}. %@{o*@} substitutes this
text, including the space. Thus two arguments are generated.
@item %@{@code{S}*&@code{T}*@}
Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
(the order of @code{S} and @code{T} in the spec is not significant).
There can be any number of ampersand-separated variables; for each the
wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
@item %@{@code{S}:@code{X}@}
Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
@item %@{!@code{S}:@code{X}@}
Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
@item %@{@code{S}*:@code{X}@}
Substitutes @code{X} if one or more switches whose names start with
@code{-S} are specified to GCC@. Normally @code{X} is substituted only
once, no matter how many such switches appeared. However, if @code{%*}
appears somewhere in @code{X}, then @code{X} is substituted once
for each matching switch, with the @code{%*} replaced by the part of
that switch matching the @code{*}.
@item %@{.@code{S}:@code{X}@}
Substitutes @code{X}, if processing a file with suffix @code{S}.
@item %@{!.@code{S}:@code{X}@}
Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
@item %@{,@code{S}:@code{X}@}
Substitutes @code{X}, if processing a file for language @code{S}.
@item %@{!,@code{S}:@code{X}@}
Substitutes @code{X}, if not processing a file for language @code{S}.
@item %@{@code{S}|@code{P}:@code{X}@}
Substitutes @code{X} if either @code{-S} or @code{-P} is given to
GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
@code{*} sequences as well, although they have a stronger binding than
the @samp{|}. If @code{%*} appears in @code{X}, all of the
alternatives must be starred, and only the first matching alternative
is substituted.
For example, a spec string like this:
@smallexample
%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
@end smallexample
@noindent
outputs the following command-line options from the following input
command-line options:
@smallexample
fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle
@end smallexample
@item %@{S:X; T:Y; :D@}
If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
be as many clauses as you need. This may be combined with @code{.},
@code{,}, @code{!}, @code{|}, and @code{*} as needed.
@end table
The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
construct may contain other nested @samp{%} constructs or spaces, or
even newlines. They are processed as usual, as described above.
Trailing white space in @code{X} is ignored. White space may also
appear anywhere on the left side of the colon in these constructs,
except between @code{.} or @code{*} and the corresponding word.
The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
handled specifically in these constructs. If another value of
@option{-O} or the negated form of a @option{-f}, @option{-m}, or
@option{-W} switch is found later in the command line, the earlier
switch value is ignored, except with @{@code{S}*@} where @code{S} is
just one letter, which passes all matching options.
The character @samp{|} at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if @option{-pipe} is specified.
It is built into GCC which switches take arguments and which do not.
(You might think it would be useful to generalize this to allow each
compiler's spec to say which switches take arguments. But this cannot
be done in a consistent fashion. GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).
GCC also knows implicitly that arguments starting in @option{-l} are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.
@c man begin OPTIONS
@node Target Options
@section Specifying Target Machine and Compiler Version
@cindex target options
@cindex cross compiling
@cindex specifying machine version
@cindex specifying compiler version and target machine
@cindex compiler version, specifying
@cindex target machine, specifying
The usual way to run GCC is to run the executable called @command{gcc}, or
@command{@var{machine}-gcc} when cross-compiling, or
@command{@var{machine}-gcc-@var{version}} to run a version other than the
one that was installed last.
@node Submodel Options
@section Hardware Models and Configurations
@cindex submodel options
@cindex specifying hardware config
@cindex hardware models and configurations, specifying
@cindex machine dependent options
Each target machine types can have its own
special options, starting with @samp{-m}, to choose among various
hardware models or configurations---for example, 68010 vs 68020,
floating coprocessor or none. A single installed version of the
compiler can compile for any model or configuration, according to the
options specified.
Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.
@c This list is ordered alphanumerically by subsection name.
@c It should be the same order and spelling as these options are listed
@c in Machine Dependent Options
@menu
* AArch64 Options::
* Adapteva Epiphany Options::
* ARM Options::
* AVR Options::
* Blackfin Options::
* C6X Options::
* CRIS Options::
* CR16 Options::
* Darwin Options::
* DEC Alpha Options::
* FR30 Options::
* FRV Options::
* GNU/Linux Options::
* H8/300 Options::
* HPPA Options::
* i386 and x86-64 Options::
* i386 and x86-64 Windows Options::
* IA-64 Options::
* LM32 Options::
* M32C Options::
* M32R/D Options::
* M680x0 Options::
* MCore Options::
* MeP Options::
* MicroBlaze Options::
* MIPS Options::
* MMIX Options::
* MN10300 Options::
* Moxie Options::
* PDP-11 Options::
* picoChip Options::
* PowerPC Options::
* RL78 Options::
* RS/6000 and PowerPC Options::
* RX Options::
* S/390 and zSeries Options::
* Score Options::
* SH Options::
* Solaris 2 Options::
* SPARC Options::
* SPU Options::
* System V Options::
* TILE-Gx Options::
* TILEPro Options::
* V850 Options::
* VAX Options::
* VMS Options::
* VxWorks Options::
* x86-64 Options::
* Xstormy16 Options::
* Xtensa Options::
* zSeries Options::
@end menu
@node AArch64 Options
@subsection AArch64 Options
@cindex AArch64 Options
These options are defined for AArch64 implementations:
@table @gcctabopt
@item -mabi=@var{name}
@opindex mabi
Generate code for the specified data model. Permissible values
are @samp{ilp32} for SysV-like data model where int, long int and pointer
are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
but long int and pointer are 64-bit.
The default depends on the specific target configuration. Note that
the LP64 and ILP32 ABIs are not link-compatible; you must compile your
entire program with the same ABI, and link with a compatible set of libraries.
@item -mbig-endian
@opindex mbig-endian
Generate big-endian code. This is the default when GCC is configured for an
@samp{aarch64_be-*-*} target.
@item -mgeneral-regs-only
@opindex mgeneral-regs-only
Generate code which uses only the general registers.
@item -mlittle-endian
@opindex mlittle-endian
Generate little-endian code. This is the default when GCC is configured for an
@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
@item -mcmodel=tiny
@opindex mcmodel=tiny
Generate code for the tiny code model. The program and its statically defined
symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This model is not fully implemented and
mostly treated as @samp{small}.
@item -mcmodel=small
@opindex mcmodel=small
Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.
@item -mcmodel=large
@opindex mcmodel=large
Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Pointers are 64 bits. Programs can be
statically linked only.
@item -mstrict-align
@opindex mstrict-align
Do not assume that unaligned memory references will be handled by the system.
@item -momit-leaf-frame-pointer
@itemx -mno-omit-leaf-frame-pointer
@opindex momit-leaf-frame-pointer
@opindex mno-omit-leaf-frame-pointer
Omit or keep the frame pointer in leaf functions. The former behaviour is the
default.
@item -mtls-dialect=desc
@opindex mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.
@item -mtls-dialect=traditional
@opindex mtls-dialect=traditional
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.
@item -march=@var{name}
@opindex march
Specify the name of the target architecture, optionally suffixed by one or
more feature modifiers. This option has the form
@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
only value for @var{arch} is @samp{armv8-a}. The possible values for
@var{feature} are documented in the sub-section below.
Where conflicting feature modifiers are specified, the right-most feature is
used.
GCC uses this name to determine what kind of instructions it can emit when
generating assembly code. This option can be used in conjunction with or
instead of the @option{-mcpu=} option.
@item -mcpu=@var{name}
@opindex mcpu
Specify the name of the target processor, optionally suffixed by one or more
feature modifiers. This option has the form
@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
possible values for @var{cpu} are @samp{generic}, @samp{large}. The
possible values for @var{feature} are documented in the sub-section
below.
Where conflicting feature modifiers are specified, the right-most feature is
used.
GCC uses this name to determine what kind of instructions it can emit when
generating assembly code.
@item -mtune=@var{name}
@opindex mtune
Specify the name of the processor to tune the performance for. The code will
be tuned as if the target processor were of the type specified in this option,
but still using instructions compatible with the target processor specified
by a @option{-mcpu=} option. This option cannot be suffixed by feature
modifiers.
@end table
@subsubsection @option{-march} and @option{-mcpu} feature modifiers
@cindex @option{-march} feature modifiers
@cindex @option{-mcpu} feature modifiers
Feature modifiers used with @option{-march} and @option{-mcpu} can be one
the following:
@table @samp
@item crypto
Enable Crypto extension. This implies Advanced SIMD is enabled.
@item fp
Enable floating-point instructions.
@item simd
Enable Advanced SIMD instructions. This implies floating-point instructions
are enabled. This is the default for all current possible values for options
@option{-march} and @option{-mcpu=}.
@end table
@node Adapteva Epiphany Options
@subsection Adapteva Epiphany Options
These @samp{-m} options are defined for Adapteva Epiphany:
@table @gcctabopt
@item -mhalf-reg-file
@opindex mhalf-reg-file
Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
That allows code to run on hardware variants that lack these registers.
@item -mprefer-short-insn-regs
@opindex mprefer-short-insn-regs
Preferrentially allocate registers that allow short instruction generation.
This can result in increased instruction count, so this may either reduce or
increase overall code size.
@item -mbranch-cost=@var{num}
@opindex mbranch-cost
Set the cost of branches to roughly @var{num} ``simple'' instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases.
@item -mcmove
@opindex mcmove
Enable the generation of conditional moves.
@item -mnops=@var{num}
@opindex mnops
Emit @var{num} NOPs before every other generated instruction.
@item -mno-soft-cmpsf
@opindex mno-soft-cmpsf
For single-precision floating-point comparisons, emit an @code{fsub} instruction
and test the flags. This is faster than a software comparison, but can
get incorrect results in the presence of NaNs, or when two different small
numbers are compared such that their difference is calculated as zero.
The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
software comparisons.
@item -mstack-offset=@var{num}
@opindex mstack-offset
Set the offset between the top of the stack and the stack pointer.
E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
can be used by leaf functions without stack allocation.
Values other than @samp{8} or @samp{16} are untested and unlikely to work.
Note also that this option changes the ABI; compiling a program with a
different stack offset than the libraries have been compiled with
generally does not work.
This option can be useful if you want to evaluate if a different stack
offset would give you better code, but to actually use a different stack
offset to build working programs, it is recommended to configure the
toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
@item -mno-round-nearest
@opindex mno-round-nearest
Make the scheduler assume that the rounding mode has been set to
truncating. The default is @option{-mround-nearest}.
@item -mlong-calls
@opindex mlong-calls
If not otherwise specified by an attribute, assume all calls might be beyond
the offset range of the @code{b} / @code{bl} instructions, and therefore load the
function address into a register before performing a (otherwise direct) call.
This is the default.
@item -mshort-calls
@opindex short-calls
If not otherwise specified by an attribute, assume all direct calls are
in the range of the @code{b} / @code{bl} instructions, so use these instructions
for direct calls. The default is @option{-mlong-calls}.
@item -msmall16
@opindex msmall16
Assume addresses can be loaded as 16-bit unsigned values. This does not
apply to function addresses for which @option{-mlong-calls} semantics
are in effect.
@item -mfp-mode=@var{mode}
@opindex mfp-mode
Set the prevailing mode of the floating-point unit.
This determines the floating-point mode that is provided and expected
at function call and return time. Making this mode match the mode you
predominantly need at function start can make your programs smaller and
faster by avoiding unnecessary mode switches.
@var{mode} can be set to one the following values:
@table @samp
@item caller
Any mode at function entry is valid, and retained or restored when
the function returns, and when it calls other functions.
This mode is useful for compiling libraries or other compilation units
you might want to incorporate into different programs with different
prevailing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would be needed
with a more specific choice of prevailing FPU mode.
@item truncate
This is the mode used for floating-point calculations with
truncating (i.e.@: round towards zero) rounding mode. That includes
conversion from floating point to integer.
@item round-nearest
This is the mode used for floating-point calculations with
round-to-nearest-or-even rounding mode.
@item int
This is the mode used to perform integer calculations in the FPU, e.g.@:
integer multiply, or integer multiply-and-accumulate.
@end table
The default is @option{-mfp-mode=caller}
@item -mnosplit-lohi
@itemx -mno-postinc
@itemx -mno-postmodify
@opindex mnosplit-lohi
@opindex mno-postinc
@opindex mno-postmodify
Code generation tweaks that disable, respectively, splitting of 32-bit
loads, generation of post-increment addresses, and generation of
post-modify addresses. The defaults are @option{msplit-lohi},
@option{-mpost-inc}, and @option{-mpost-modify}.
@item -mnovect-double
@opindex mno-vect-double
Change the preferred SIMD mode to SImode. The default is
@option{-mvect-double}, which uses DImode as preferred SIMD mode.
@item -max-vect-align=@var{num}
@opindex max-vect-align
The maximum alignment for SIMD vector mode types.
@var{num} may be 4 or 8. The default is 8.
Note that this is an ABI change, even though many library function
interfaces are unaffected if they don't use SIMD vector modes
in places that affect size and/or alignment of relevant types.
@item -msplit-vecmove-early
@opindex msplit-vecmove-early
Split vector moves into single word moves before reload. In theory this
can give better register allocation, but so far the reverse seems to be
generally the case.
@item -m1reg-@var{reg}
@opindex m1reg-
Specify a register to hold the constant @minus{}1, which makes loading small negative
constants and certain bitmasks faster.
Allowable values for @var{reg} are @samp{r43} and @samp{r63},
which specify use of that register as a fixed register,
and @samp{none}, which means that no register is used for this
purpose. The default is @option{-m1reg-none}.
@end table
@node ARM Options
@subsection ARM Options
@cindex ARM options
These @samp{-m} options are defined for Advanced RISC Machines (ARM)
architectures:
@table @gcctabopt
@item -mabi=@var{name}
@opindex mabi
Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
@item -mapcs-frame
@opindex mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code. Specifying @option{-fomit-frame-pointer}
with this option causes the stack frames not to be generated for
leaf functions. The default is @option{-mno-apcs-frame}.
@item -mapcs
@opindex mapcs
This is a synonym for @option{-mapcs-frame}.
@ignore
@c not currently implemented
@item -mapcs-stack-check
@opindex mapcs-stack-check
Generate code to check the amount of stack space available upon entry to
every function (that actually uses some stack space). If there is
insufficient space available then either the function
@samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} is
called, depending upon the amount of stack space required. The runtime
system is required to provide these functions. The default is
@option{-mno-apcs-stack-check}, since this produces smaller code.
@c not currently implemented
@item -mapcs-float
@opindex mapcs-float
Pass floating-point arguments using the floating-point registers. This is
one of the variants of the APCS@. This option is recommended if the
target hardware has a floating-point unit or if a lot of floating-point
arithmetic is going to be performed by the code. The default is
@option{-mno-apcs-float}, since the size of integer-only code is
slightly increased if @option{-mapcs-float} is used.
@c not currently implemented
@item -mapcs-reentrant
@opindex mapcs-reentrant
Generate reentrant, position-independent code. The default is
@option{-mno-apcs-reentrant}.
@end ignore
@item -mthumb-interwork
@opindex mthumb-interwork
Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the
two instruction sets cannot be reliably used inside one program. The
default is @option{-mno-thumb-interwork}, since slightly larger code
is generated when @option{-mthumb-interwork} is specified. In AAPCS
configurations this option is meaningless.
@item -mno-sched-prolog
@opindex mno-sched-prolog
Prevent the reordering of instructions in the function prologue, or the
merging of those instruction with the instructions in the function's
body. This means that all functions start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start of functions inside an executable piece of code. The
default is @option{-msched-prolog}.
@item -mfloat-abi=@var{name}
@opindex mfloat-abi
Specifies which floating-point ABI to use. Permissible values
are: @samp{soft}, @samp{softfp} and @samp{hard}.
Specifying @samp{soft} causes GCC to generate output containing
library calls for floating-point operations.
@samp{softfp} allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
@samp{hard} allows generation of floating-point instructions
and uses FPU-specific calling conventions.
The default depends on the specific target configuration. Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.
@item -mlittle-endian
@opindex mlittle-endian
Generate code for a processor running in little-endian mode. This is
the default for all standard configurations.
@item -mbig-endian
@opindex mbig-endian
Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.
@item -mwords-little-endian
@opindex mwords-little-endian
This option only applies when generating code for big-endian processors.
Generate code for a little-endian word order but a big-endian byte
order. That is, a byte order of the form @samp{32107654}. Note: this
option should only be used if you require compatibility with code for
big-endian ARM processors generated by versions of the compiler prior to
2.8. This option is now deprecated.
@item -mcpu=@var{name}
@opindex mcpu
This specifies the name of the target ARM processor. GCC uses this name
to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: @samp{arm2}, @samp{arm250},
@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
@samp{arm720},
@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
@samp{arm710t}, @samp{arm720t}, @samp{arm740t},
@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
@samp{strongarm1110},
@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
@samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
@samp{cortex-a15}, @samp{cortex-a53}, @samp{cortex-r4}, @samp{cortex-r4f},
@samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m4}, @samp{cortex-m3},
@samp{cortex-m1},
@samp{cortex-m0},
@samp{cortex-m0plus},
@samp{marvell-pj4},
@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
@samp{fa526}, @samp{fa626},
@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te}.
@option{-mcpu=generic-@var{arch}} is also permissible, and is
equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
See @option{-mtune} for more information.
@option{-mcpu=native} causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
Linux, and not all architectures are recognized. If the auto-detect is
unsuccessful the option has no effect.
@item -mtune=@var{name}
@opindex mtune
This option is very similar to the @option{-mcpu=} option, except that
instead of specifying the actual target processor type, and hence
restricting which instructions can be used, it specifies that GCC should
tune the performance of the code as if the target were of the type
specified in this option, but still choosing the instructions it
generates based on the CPU specified by a @option{-mcpu=} option.
For some ARM implementations better performance can be obtained by using
this option.
@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
performance for a blend of processors within architecture @var{arch}.
The aim is to generate code that run well on the current most popular
processors, balancing between optimizations that benefit some CPUs in the
range, and avoiding performance pitfalls of other CPUs. The effects of
this option may change in future GCC versions as CPU models come and go.
@option{-mtune=native} causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
Linux, and not all architectures are recognized. If the auto-detect is
unsuccessful the option has no effect.
@item -march=@var{name}
@opindex march
This specifies the name of the target ARM architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. This option can be used in conjunction with or instead
of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
@samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
@samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
@samp{armv6}, @samp{armv6j},
@samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
@samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m},
@samp{armv8-a},
@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
@option{-march=native} causes the compiler to auto-detect the architecture
of the build computer. At present, this feature is only supported on
Linux, and not all architectures are recognized. If the auto-detect is
unsuccessful the option has no effect.
@item -mfpu=@var{name}
@opindex mfpu
This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
@samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
@samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
If @option{-msoft-float} is specified this specifies the format of
floating-point values.
If the selected floating-point hardware includes the NEON extension
(e.g. @option{-mfpu}=@samp{neon}), note that floating-point
operations are not generated by GCC's auto-vectorization pass unless
@option{-funsafe-math-optimizations} is also specified. This is
because NEON hardware does not fully implement the IEEE 754 standard for
floating-point arithmetic (in particular denormal values are treated as
zero), so the use of NEON instructions may lead to a loss of precision.
@item -mfp16-format=@var{name}
@opindex mfp16-format
Specify the format of the @code{__fp16} half-precision floating-point type.
Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
the default is @samp{none}, in which case the @code{__fp16} type is not
defined. @xref{Half-Precision}, for more information.
@item -mstructure-size-boundary=@var{n}
@opindex mstructure-size-boundary
The sizes of all structures and unions are rounded up to a multiple
of the number of bits set by this option. Permissible values are 8, 32
and 64. The default value varies for different toolchains. For the COFF
targeted toolchain the default value is 8. A value of 64 is only allowed
if the underlying ABI supports it.
Specifying a larger number can produce faster, more efficient code, but
can also increase the size of the program. Different values are potentially
incompatible. Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.
@item -mabort-on-noreturn
@opindex mabort-on-noreturn
Generate a call to the function @code{abort} at the end of a
@code{noreturn} function. It is executed if the function tries to
return.
@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 64-megabyte addressing range of the offset-based
version of subroutine call instruction.
Even if this switch is enabled, not all function calls are turned
into long calls. The heuristic is that static functions, functions
that have the @samp{short-call} attribute, functions that are inside
the scope of a @samp{#pragma no_long_calls} directive, and functions whose
definitions have already been compiled within the current compilation
unit are not turned into long calls. The exceptions to this rule are
that weak function definitions, functions with the @samp{long-call}
attribute or the @samp{section} attribute, and functions that are within
the scope of a @samp{#pragma long_calls} directive are always
turned into long calls.
This feature is not enabled by default. Specifying
@option{-mno-long-calls} restores the default behavior, as does
placing the function calls within the scope of a @samp{#pragma
long_calls_off} directive. Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.
@item -msingle-pic-base
@opindex msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
@item -mpic-register=@var{reg}
@opindex mpic-register
Specify the register to be used for PIC addressing. The default is R10
unless stack-checking is enabled, when R9 is used.
@item -mpoke-function-name
@opindex mpoke-function-name
Write the name of each function into the text section, directly
preceding the function prologue. The generated code is similar to this:
@smallexample
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - t0)
arm_poke_function_name
mov ip, sp
stmfd sp!, @{fp, ip, lr, pc@}
sub fp, ip, #4
@end smallexample
When performing a stack backtrace, code can inspect the value of
@code{pc} stored at @code{fp + 0}. If the trace function then looks at
location @code{pc - 12} and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length @code{((pc[-3]) & 0xff000000)}.
@item -mthumb
@itemx -marm
@opindex marm
@opindex mthumb
Select between generating code that executes in ARM and Thumb
states. The default for most configurations is to generate code
that executes in ARM state, but the default can be changed by
configuring GCC with the @option{--with-mode=}@var{state}
configure option.
@item -mtpcs-frame
@opindex mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions. (A leaf function is one that does
not call any other functions.) The default is @option{-mno-tpcs-frame}.
@item -mtpcs-leaf-frame
@opindex mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions. (A leaf function is one that does
not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
@item -mcallee-super-interworking
@opindex mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function. This allows these functions to be called from
non-interworking code. This option is not valid in AAPCS configurations
because interworking is enabled by default.
@item -mcaller-super-interworking
@opindex mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not. There is a small overhead in the cost
of executing a function pointer if this option is enabled. This option
is not valid in AAPCS configurations because interworking is enabled
by default.
@item -mtp=@var{name}
@opindex mtp
Specify the access model for the thread local storage pointer. The valid
models are @option{soft}, which generates calls to @code{__aeabi_read_tp},
@option{cp15}, which fetches the thread pointer from @code{cp15} directly
(supported in the arm6k architecture), and @option{auto}, which uses the
best available method for the selected processor. The default setting is
@option{auto}.
@item -mtls-dialect=@var{dialect}
@opindex mtls-dialect
Specify the dialect to use for accessing thread local storage. Two
@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
@samp{gnu} dialect selects the original GNU scheme for supporting
local and global dynamic TLS models. The @samp{gnu2} dialect
selects the GNU descriptor scheme, which provides better performance
for shared libraries. The GNU descriptor scheme is compatible with
the original scheme, but does require new assembler, linker and
library support. Initial and local exec TLS models are unaffected by
this option and always use the original scheme.
@item -mword-relocations
@opindex mword-relocations
Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
is specified.
@item -mfix-cortex-m3-ldrd
@opindex mfix-cortex-m3-ldrd
Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
with overlapping destination and base registers are used. This option avoids
generating these instructions. This option is enabled by default when
@option{-mcpu=cortex-m3} is specified.
@item -munaligned-access
@itemx -mno-unaligned-access
@opindex munaligned-access
@opindex mno-unaligned-access
Enables (or disables) reading and writing of 16- and 32- bit values
from addresses that are not 16- or 32- bit aligned. By default
unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
architectures, and enabled for all other architectures. If unaligned
access is not enabled then words in packed data structures will be
accessed a byte at a time.
The ARM attribute @code{Tag_CPU_unaligned_access} will be set in the
generated object file to either true or false, depending upon the
setting of this option. If unaligned access is enabled then the
preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} will also be
defined.
@item -mneon-for-64bits
@opindex mneon-for-64bits
Enables using Neon to handle scalar 64-bits operations. This is
disabled by default since the cost of moving data from core registers
to Neon is high.
@item -mrestrict-it
@opindex mrestrict-it
Restricts generation of IT blocks to conform to the rules of ARMv8.
IT blocks can only contain a single 16-bit instruction from a select
set of instructions. This option is on by default for ARMv8 Thumb mode.
@end table
@node AVR Options
@subsection AVR Options
@cindex AVR Options
These options are defined for AVR implementations:
@table @gcctabopt
@item -mmcu=@var{mcu}
@opindex mmcu
Specify Atmel AVR instruction set architectures (ISA) or MCU type.
The default for this option is@tie{}@code{avr2}.
GCC supports the following AVR devices and ISAs:
@include avr-mmcu.texi
@item -maccumulate-args
@opindex maccumulate-args
Accumulate outgoing function arguments and acquire/release the needed
stack space for outgoing function arguments once in function
prologue/epilogue. Without this option, outgoing arguments are pushed
before calling a function and popped afterwards.
Popping the arguments after the function call can be expensive on
AVR so that accumulating the stack space might lead to smaller
executables because arguments need not to be removed from the
stack after such a function call.
This option can lead to reduced code size for functions that perform
several calls to functions that get their arguments on the stack like
calls to printf-like functions.
@item -mbranch-cost=@var{cost}
@opindex mbranch-cost
Set the branch costs for conditional branch instructions to
@var{cost}. Reasonable values for @var{cost} are small, non-negative
integers. The default branch cost is 0.
@item -mcall-prologues
@opindex mcall-prologues
Functions prologues/epilogues are expanded as calls to appropriate
subroutines. Code size is smaller.
@item -mint8
@opindex mint8
Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
and @code{long long} is 4 bytes. Please note that this option does not
conform to the C standards, but it results in smaller code
size.
@item -mno-interrupts
@opindex mno-interrupts
Generated code is not compatible with hardware interrupts.
Code size is smaller.
@item -mrelax
@opindex mrelax
Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
Setting @code{-mrelax} just adds the @code{--relax} option to the
linker command line when the linker is called.
Jump relaxing is performed by the linker because jump offsets are not
known before code is located. Therefore, the assembler code generated by the
compiler is the same, but the instructions in the executable may
differ from instructions in the assembler code.
Relaxing must be turned on if linker stubs are needed, see the
section on @code{EIND} and linker stubs below.
@item -msp8
@opindex msp8
Treat the stack pointer register as an 8-bit register,
i.e.@: assume the high byte of the stack pointer is zero.
In general, you don't need to set this option by hand.
This option is used internally by the compiler to select and
build multilibs for architectures @code{avr2} and @code{avr25}.
These architectures mix devices with and without @code{SPH}.
For any setting other than @code{-mmcu=avr2} or @code{-mmcu=avr25}
the compiler driver will add or remove this option from the compiler
proper's command line, because the compiler then knows if the device
or architecture has an 8-bit stack pointer and thus no @code{SPH}
register or not.
@item -mstrict-X
@opindex mstrict-X
Use address register @code{X} in a way proposed by the hardware. This means
that @code{X} is only used in indirect, post-increment or
pre-decrement addressing.
Without this option, the @code{X} register may be used in the same way
as @code{Y} or @code{Z} which then is emulated by additional
instructions.
For example, loading a value with @code{X+const} addressing with a
small non-negative @code{const < 64} to a register @var{Rn} is
performed as
@example
adiw r26, const ; X += const
ld @var{Rn}, X ; @var{Rn} = *X
sbiw r26, const ; X -= const
@end example
@item -mtiny-stack
@opindex mtiny-stack
Only change the lower 8@tie{}bits of the stack pointer.
@item -Waddr-space-convert
@opindex Waddr-space-convert
Warn about conversions between address spaces in the case where the
resulting address space is not contained in the incoming address space.
@end table
@subsubsection @code{EIND} and Devices with more than 128 Ki Bytes of Flash
@cindex @code{EIND}
Pointers in the implementation are 16@tie{}bits wide.
The address of a function or label is represented as word address so
that indirect jumps and calls can target any code address in the
range of 64@tie{}Ki words.
In order to facilitate indirect jump on devices with more than 128@tie{}Ki
bytes of program memory space, there is a special function register called
@code{EIND} that serves as most significant part of the target address
when @code{EICALL} or @code{EIJMP} instructions are used.
Indirect jumps and calls on these devices are handled as follows by
the compiler and are subject to some limitations:
@itemize @bullet
@item
The compiler never sets @code{EIND}.
@item
The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
instructions or might read @code{EIND} directly in order to emulate an
indirect call/jump by means of a @code{RET} instruction.
@item
The compiler assumes that @code{EIND} never changes during the startup
code or during the application. In particular, @code{EIND} is not
saved/restored in function or interrupt service routine
prologue/epilogue.
@item
For indirect calls to functions and computed goto, the linker
generates @emph{stubs}. Stubs are jump pads sometimes also called
@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
The stub contains a direct jump to the desired address.
@item
Linker relaxation must be turned on so that the linker will generate
the stubs correctly an all situaltion. See the compiler option
@code{-mrelax} and the linler option @code{--relax}.
There are corner cases where the linker is supposed to generate stubs
but aborts without relaxation and without a helpful error message.
@item
The default linker script is arranged for code with @code{EIND = 0}.
If code is supposed to work for a setup with @code{EIND != 0}, a custom
linker script has to be used in order to place the sections whose
name start with @code{.trampolines} into the segment where @code{EIND}
points to.
@item
The startup code from libgcc never sets @code{EIND}.
Notice that startup code is a blend of code from libgcc and AVR-LibC.
For the impact of AVR-LibC on @code{EIND}, see the
@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
@item
It is legitimate for user-specific startup code to set up @code{EIND}
early, for example by means of initialization code located in
section @code{.init3}. Such code runs prior to general startup code
that initializes RAM and calls constructors, but after the bit
of startup code from AVR-LibC that sets @code{EIND} to the segment
where the vector table is located.
@example
#include <avr/io.h>
static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
@{
__asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
"out %i0,r24" :: "n" (&EIND) : "r24","memory");
@}
@end example
@noindent
The @code{__trampolines_start} symbol is defined in the linker script.
@item
Stubs are generated automatically by the linker if
the following two conditions are met:
@itemize @minus
@item The address of a label is taken by means of the @code{gs} modifier
(short for @emph{generate stubs}) like so:
@example
LDI r24, lo8(gs(@var{func}))
LDI r25, hi8(gs(@var{func}))
@end example
@item The final location of that label is in a code segment
@emph{outside} the segment where the stubs are located.
@end itemize
@item
The compiler emits such @code{gs} modifiers for code labels in the
following situations:
@itemize @minus
@item Taking address of a function or code label.
@item Computed goto.
@item If prologue-save function is used, see @option{-mcall-prologues}
command-line option.
@item Switch/case dispatch tables. If you do not want such dispatch
tables you can specify the @option{-fno-jump-tables} command-line option.
@item C and C++ constructors/destructors called during startup/shutdown.
@item If the tools hit a @code{gs()} modifier explained above.
@end itemize
@item
Jumping to non-symbolic addresses like so is @emph{not} supported:
@example
int main (void)
@{
/* Call function at word address 0x2 */
return ((int(*)(void)) 0x2)();
@}
@end example
Instead, a stub has to be set up, i.e.@: the function has to be called
through a symbol (@code{func_4} in the example):
@example
int main (void)
@{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();
@}
@end example
and the application be linked with @code{-Wl,--defsym,func_4=0x4}.
Alternatively, @code{func_4} can be defined in the linker script.
@end itemize
@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
@cindex @code{RAMPD}
@cindex @code{RAMPX}
@cindex @code{RAMPY}
@cindex @code{RAMPZ}
Some AVR devices support memories larger than the 64@tie{}KiB range
that can be accessed with 16-bit pointers. To access memory locations
outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
register is used as high part of the address:
The @code{X}, @code{Y}, @code{Z} address register is concatenated
with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
register, respectively, to get a wide address. Similarly,
@code{RAMPD} is used together with direct addressing.
@itemize
@item
The startup code initializes the @code{RAMP} special function
registers with zero.
@item
If a @ref{AVR Named Address Spaces,named address space} other than
generic or @code{__flash} is used, then @code{RAMPZ} is set
as needed before the operation.
@item
If the device supports RAM larger than 64@tie{KiB} and the compiler
needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
is reset to zero after the operation.
@item
If the device comes with a specific @code{RAMP} register, the ISR
prologue/epilogue saves/restores that SFR and initializes it with
zero in case the ISR code might (implicitly) use it.
@item
RAM larger than 64@tie{KiB} is not supported by GCC for AVR targets.
If you use inline assembler to read from locations outside the
16-bit address range and change one of the @code{RAMP} registers,
you must reset it to zero after the access.
@end itemize
@subsubsection AVR Built-in Macros
GCC defines several built-in macros so that the user code can test
for the presence or absence of features. Almost any of the following
built-in macros are deduced from device capabilities and thus
triggered by the @code{-mmcu=} command-line option.
For even more AVR-specific built-in macros see
@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
@table @code
@item __AVR_ARCH__
Build-in macro that resolves to a decimal number that identifies the
architecture and depends on the @code{-mmcu=@var{mcu}} option.
Possible values are:
@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
@code{4}, @code{5}, @code{51}, @code{6}, @code{102}, @code{104},
@code{105}, @code{106}, @code{107}
for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3},
@code{avr31}, @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51},
@code{avr6}, @code{avrxmega2}, @code{avrxmega4}, @code{avrxmega5},
@code{avrxmega6}, @code{avrxmega7}, respectively.
If @var{mcu} specifies a device, this built-in macro is set
accordingly. For example, with @code{-mmcu=atmega8} the macro will be
defined to @code{4}.
@item __AVR_@var{Device}__
Setting @code{-mmcu=@var{device}} defines this built-in macro which reflects
the device's name. For example, @code{-mmcu=atmega8} defines the
built-in macro @code{__AVR_ATmega8__}, @code{-mmcu=attiny261a} defines
@code{__AVR_ATtiny261A__}, etc.
The built-in macros' names follow
the scheme @code{__AVR_@var{Device}__} where @var{Device} is
the device name as from the AVR user manual. The difference between
@var{Device} in the built-in macro and @var{device} in
@code{-mmcu=@var{device}} is that the latter is always lowercase.
If @var{device} is not a device but only a core architecture like
@code{avr51}, this macro will not be defined.
@item __AVR_XMEGA__
The device / architecture belongs to the XMEGA family of devices.
@item __AVR_HAVE_ELPM__
The device has the the @code{ELPM} instruction.
@item __AVR_HAVE_ELPMX__
The device has the @code{ELPM R@var{n},Z} and @code{ELPM
R@var{n},Z+} instructions.
@item __AVR_HAVE_MOVW__
The device has the @code{MOVW} instruction to perform 16-bit
register-register moves.
@item __AVR_HAVE_LPMX__
The device has the @code{LPM R@var{n},Z} and
@code{LPM R@var{n},Z+} instructions.
@item __AVR_HAVE_MUL__
The device has a hardware multiplier.
@item __AVR_HAVE_JMP_CALL__
The device has the @code{JMP} and @code{CALL} instructions.
This is the case for devices with at least 16@tie{}KiB of program
memory.
@item __AVR_HAVE_EIJMP_EICALL__
@itemx __AVR_3_BYTE_PC__
The device has the @code{EIJMP} and @code{EICALL} instructions.
This is the case for devices with more than 128@tie{}KiB of program memory.
This also means that the program counter
(PC) is 3@tie{}bytes wide.
@item __AVR_2_BYTE_PC__
The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
with up to 128@tie{}KiB of program memory.
@item __AVR_HAVE_8BIT_SP__
@itemx __AVR_HAVE_16BIT_SP__
The stack pointer (SP) register is treated as 8-bit respectively
16-bit register by the compiler.
The definition of these macros is affected by @code{-mtiny-stack}.
@item __AVR_HAVE_SPH__
@itemx __AVR_SP8__
The device has the SPH (high part of stack pointer) special function
register or has an 8-bit stack pointer, respectively.
The definition of these macros is affected by @code{-mmcu=} and
in the cases of @code{-mmcu=avr2} and @code{-mmcu=avr25} also
by @code{-msp8}.
@item __AVR_HAVE_RAMPD__
@itemx __AVR_HAVE_RAMPX__
@itemx __AVR_HAVE_RAMPY__
@itemx __AVR_HAVE_RAMPZ__
The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
@code{RAMPZ} special function register, respectively.
@item __NO_INTERRUPTS__
This macro reflects the @code{-mno-interrupts} command line option.
@item __AVR_ERRATA_SKIP__
@itemx __AVR_ERRATA_SKIP_JMP_CALL__
Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
instructions because of a hardware erratum. Skip instructions are
@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
set.
@item __AVR_SFR_OFFSET__=@var{offset}
Instructions that can address I/O special function registers directly
like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
address as if addressed by an instruction to access RAM like @code{LD}
or @code{STS}. This offset depends on the device architecture and has
to be subtracted from the RAM address in order to get the
respective I/O@tie{}address.
@item __WITH_AVRLIBC__
The compiler is configured to be used together with AVR-Libc.
See the @code{--with-avrlibc} configure option.
@end table
@node Blackfin Options
@subsection Blackfin Options
@cindex Blackfin Options
@table @gcctabopt
@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
@opindex mcpu=
Specifies the name of the target Blackfin processor. Currently, @var{cpu}
can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
@samp{bf561}, @samp{bf592}.
The optional @var{sirevision} specifies the silicon revision of the target
Blackfin processor. Any workarounds available for the targeted silicon revision
are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
are enabled. The @code{__SILICON_REVISION__} macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
is not defined. If @var{sirevision} is @samp{any}, the
@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
If this optional @var{sirevision} is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.
GCC defines a preprocessor macro for the specified @var{cpu}.
For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
provided by libgloss to be linked in if @option{-msim} is not given.
Without this option, @samp{bf532} is used as the processor by default.
Note that support for @samp{bf561} is incomplete. For @samp{bf561},
only the preprocessor macro is defined.
@item -msim
@opindex msim
Specifies that the program will be run on the simulator. This causes
the simulator BSP provided by libgloss to be linked in. This option
has effect only for @samp{bfin-elf} toolchain.
Certain other options, such as @option{-mid-shared-library} and
@option{-mfdpic}, imply @option{-msim}.
@item -momit-leaf-frame-pointer
@opindex momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions. The option
@option{-fomit-frame-pointer} removes the frame pointer for all functions,
which might make debugging harder.
@item -mspecld-anomaly
@opindex mspecld-anomaly
When enabled, the compiler ensures that the generated code does not
contain speculative loads after jump instructions. If this option is used,
@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
@item -mno-specld-anomaly
@opindex mno-specld-anomaly
Don't generate extra code to prevent speculative loads from occurring.
@item -mcsync-anomaly
@opindex mcsync-anomaly
When enabled, the compiler ensures that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
@item -mno-csync-anomaly
@opindex mno-csync-anomaly
Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.
@item -mlow-64k
@opindex mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.
@item -mno-low-64k
@opindex mno-low-64k
Assume that the program is arbitrarily large. This is the default.
@item -mstack-check-l1
@opindex mstack-check-l1
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.
@item -mid-shared-library
@opindex mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies @option{-fPIC}.
With a @samp{bfin-elf} target, this option implies @option{-msim}.
@item -mno-id-shared-library
@opindex mno-id-shared-library
Generate code that doesn't assume ID-based shared libraries are being used.
This is the default.
@item -mleaf-id-shared-library
@opindex mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries. That allows the compiler to use faster code for jumps
and calls.
@item -mno-leaf-id-shared-library
@opindex mno-leaf-id-shared-library
Do not assume that the code being compiled won't link against any ID shared
libraries. Slower code is generated for jump and call insns.
@item -mshared-library-id=n
@opindex mshared-library-id
Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library but is no more space- or time-efficient than omitting this option.
@item -msep-data
@opindex msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.
@item -mno-sep-data
@opindex mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.
@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 24-bit addressing range of the offset-based
version of subroutine call instruction.
This feature is not enabled by default. Specifying
@option{-mno-long-calls} restores the default behavior. Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.
@item -mfast-fp
@opindex mfast-fp
Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.
@item -minline-plt
@opindex minline-plt
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without @option{-mfdpic}.
@item -mmulticore
@opindex mmulticore
Build a standalone application for multicore Blackfin processors.
This option causes proper start files and link scripts supporting
multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
This option can be used with @option{-mcorea} or @option{-mcoreb}, which
selects the one-application-per-core programming model. Without
@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
programming model is used. In this model, the main function of Core B
should be named as @code{coreb_main}.
If this option is not used, the single-core application programming
model is used.
@item -mcorea
@opindex mcorea
Build a standalone application for Core A of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core A, and the macro
@code{__BFIN_COREA} is defined.
This option can only be used in conjunction with @option{-mmulticore}.
@item -mcoreb
@opindex mcoreb
Build a standalone application for Core B of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core B, and the macro
@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
should be used instead of @code{main}.
This option can only be used in conjunction with @option{-mmulticore}.
@item -msdram
@opindex msdram
Build a standalone application for SDRAM. Proper start files and
link scripts are used to put the application into SDRAM, and the macro
@code{__BFIN_SDRAM} is defined.
The loader should initialize SDRAM before loading the application.
@item -micplb
@opindex micplb
Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
@end table
@node C6X Options
@subsection C6X Options
@cindex C6X Options
@table @gcctabopt
@item -march=@var{name}
@opindex march
This specifies the name of the target architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: @samp{c62x},
@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
@item -mbig-endian
@opindex mbig-endian
Generate code for a big-endian target.
@item -mlittle-endian
@opindex mlittle-endian
Generate code for a little-endian target. This is the default.
@item -msim
@opindex msim
Choose startup files and linker script suitable for the simulator.
@item -msdata=default
@opindex msdata=default
Put small global and static data in the @samp{.neardata} section,
which is pointed to by register @code{B14}. Put small uninitialized
global and static data in the @samp{.bss} section, which is adjacent
to the @samp{.neardata} section. Put small read-only data into the
@samp{.rodata} section. The corresponding sections used for large
pieces of data are @samp{.fardata}, @samp{.far} and @samp{.const}.
@item -msdata=all
@opindex msdata=all
Put all data, not just small objects, into the sections reserved for
small data, and use addressing relative to the @code{B14} register to
access them.
@item -msdata=none
@opindex msdata=none
Make no use of the sections reserved for small data, and use absolute
addresses to access all data. Put all initialized global and static
data in the @samp{.fardata} section, and all uninitialized data in the
@samp{.far} section. Put all constant data into the @samp{.const}
section.
@end table
@node CRIS Options
@subsection CRIS Options
@cindex CRIS Options
These options are defined specifically for the CRIS ports.
@table @gcctabopt
@item -march=@var{architecture-type}
@itemx -mcpu=@var{architecture-type}
@opindex march
@opindex mcpu
Generate code for the specified architecture. The choices for
@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
@samp{v10}.
@item -mtune=@var{architecture-type}
@opindex mtune
Tune to @var{architecture-type} everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for @var{architecture-type} are the same as for
@option{-march=@var{architecture-type}}.
@item -mmax-stack-frame=@var{n}
@opindex mmax-stack-frame
Warn when the stack frame of a function exceeds @var{n} bytes.
@item -metrax4
@itemx -metrax100
@opindex metrax4
@opindex metrax100
The options @option{-metrax4} and @option{-metrax100} are synonyms for
@option{-march=v3} and @option{-march=v8} respectively.
@item -mmul-bug-workaround
@itemx -mno-mul-bug-workaround
@opindex mmul-bug-workaround
@opindex mno-mul-bug-workaround
Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
models where it applies. This option is active by default.
@item -mpdebug
@opindex mpdebug
Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect of turning off the @samp{#NO_APP}
formatted-code indicator to the assembler at the beginning of the
assembly file.
@item -mcc-init
@opindex mcc-init
Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
@item -mno-side-effects
@opindex mno-side-effects
Do not emit instructions with side effects in addressing modes other than
post-increment.
@item -mstack-align
@itemx -mno-stack-align
@itemx -mdata-align
@itemx -mno-data-align
@itemx -mconst-align
@itemx -mno-const-align
@opindex mstack-align
@opindex mno-stack-align
@opindex mdata-align
@opindex mno-data-align
@opindex mconst-align
@opindex mno-const-align
These options (@samp{no-} options) arrange (eliminate arrangements) for the
stack frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model. The default is to
arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
@item -m32-bit
@itemx -m16-bit
@itemx -m8-bit
@opindex m32-bit
@opindex m16-bit
@opindex m8-bit
Similar to the stack- data- and const-align options above, these options
arrange for stack frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
@item -mno-prologue-epilogue
@itemx -mprologue-epilogue
@opindex mno-prologue-epilogue
@opindex mprologue-epilogue
With @option{-mno-prologue-epilogue}, the normal function prologue and
epilogue which set up the stack frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variables needs to be allocated.
@item -mno-gotplt
@itemx -mgotplt
@opindex mno-gotplt
@opindex mgotplt
With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT@. The default is @option{-mgotplt}.
@item -melf
@opindex melf
Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.
@item -mlinux
@opindex mlinux
Legacy no-op option only recognized with the cris-axis-linux-gnu target.
@item -sim
@opindex sim
This option, recognized for the cris-axis-elf, arranges
to link with input-output functions from a simulator library. Code,
initialized data and zero-initialized data are allocated consecutively.
@item -sim2
@opindex sim2
Like @option{-sim}, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
@end table
@node CR16 Options
@subsection CR16 Options
@cindex CR16 Options
These options are defined specifically for the CR16 ports.
@table @gcctabopt
@item -mmac
@opindex mmac
Enable the use of multiply-accumulate instructions. Disabled by default.
@item -mcr16cplus
@itemx -mcr16c
@opindex mcr16cplus
@opindex mcr16c
Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
is default.
@item -msim
@opindex msim
Links the library libsim.a which is in compatible with simulator. Applicable
to ELF compiler only.
@item -mint32
@opindex mint32
Choose integer type as 32-bit wide.
@item -mbit-ops
@opindex mbit-ops
Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
@item -mdata-model=@var{model}
@opindex mdata-model
Choose a data model. The choices for @var{model} are @samp{near},
@samp{far} or @samp{medium}. @samp{medium} is default.
However, @samp{far} is not valid with @option{-mcr16c}, as the
CR16C architecture does not support the far data model.
@end table
@node Darwin Options
@subsection Darwin Options
@cindex Darwin options
These options are defined for all architectures running the Darwin operating
system.
FSF GCC on Darwin does not create ``fat'' object files; it creates
an object file for the single architecture that GCC was built to
target. Apple's GCC on Darwin does create ``fat'' files if multiple
@option{-arch} options are used; it does so by running the compiler or
linker multiple times and joining the results together with
@file{lipo}.
The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
@samp{i686}) is determined by the flags that specify the ISA
that GCC is targeting, like @option{-mcpu} or @option{-march}. The
@option{-force_cpusubtype_ALL} option can be used to override this.
The Darwin tools vary in their behavior when presented with an ISA
mismatch. The assembler, @file{as}, only permits instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in a @samp{ppc750} object file.
The linker for shared libraries, @file{/usr/bin/libtool}, fails
and prints an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
for executables, @command{ld}, quietly gives the executable the most
restrictive subtype of any of its input files.
@table @gcctabopt
@item -F@var{dir}
@opindex F
Add the framework directory @var{dir} to the head of the list of
directories to be searched for header files. These directories are
interleaved with those specified by @option{-I} options and are
scanned in a left-to-right order.
A framework directory is a directory with frameworks in it. A
framework is a directory with a @file{Headers} and/or
@file{PrivateHeaders} directory contained directly in it that ends
in @file{.framework}. The name of a framework is the name of this
directory excluding the @file{.framework}. Headers associated with
the framework are found in one of those two directories, with
@file{Headers} being searched first. A subframework is a framework
directory that is in a framework's @file{Frameworks} directory.
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header. Two subframeworks are siblings if they occur in the same
framework. A subframework should not have the same name as a
framework; a warning is issued if this is violated. Currently a
subframework cannot have subframeworks; in the future, the mechanism
may be extended to support this. The standard frameworks can be found
in @file{/System/Library/Frameworks} and
@file{/Library/Frameworks}. An example include looks like
@code{#include <Framework/header.h>}, where @file{Framework} denotes
the name of the framework and @file{header.h} is found in the
@file{PrivateHeaders} or @file{Headers} directory.
@item -iframework@var{dir}
@opindex iframework
Like @option{-F} except the directory is a treated as a system
directory. The main difference between this @option{-iframework} and
@option{-F} is that with @option{-iframework} the compiler does not
warn about constructs contained within header files found via
@var{dir}. This option is valid only for the C family of languages.
@item -gused
@opindex gused
Emit debugging information for symbols that are used. For stabs
debugging format, this enables @option{-feliminate-unused-debug-symbols}.
This is by default ON@.
@item -gfull
@opindex gfull
Emit debugging information for all symbols and types.
@item -mmacosx-version-min=@var{version}
The earliest version of MacOS X that this executable will run on
is @var{version}. Typical values of @var{version} include @code{10.1},
@code{10.2}, and @code{10.3.9}.
If the compiler was built to use the system's headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices that
are compatible with as many systems and code bases as possible.
@item -mkernel
@opindex mkernel
Enable kernel development mode. The @option{-mkernel} option sets
@option{-static}, @option{-fno-common}, @option{-fno-cxa-atexit},
@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
applicable. This mode also sets @option{-mno-altivec},
@option{-msoft-float}, @option{-fno-builtin} and
@option{-mlong-branch} for PowerPC targets.
@item -mone-byte-bool
@opindex mone-byte-bool
Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}.
By default @samp{sizeof(bool)} is @samp{4} when compiling for
Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this
option has no effect on x86.
@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
to generate code that is not binary compatible with code generated
without that switch. Using this switch may require recompiling all
other modules in a program, including system libraries. Use this
switch to conform to a non-default data model.
@item -mfix-and-continue
@itemx -ffix-and-continue
@itemx -findirect-data
@opindex mfix-and-continue
@opindex ffix-and-continue
@opindex findirect-data
Generate code suitable for fast turnaround development, such as to
allow GDB to dynamically load @code{.o} files into already-running
programs. @option{-findirect-data} and @option{-ffix-and-continue}
are provided for backwards compatibility.
@item -all_load
@opindex all_load
Loads all members of static archive libraries.
See man ld(1) for more information.
@item -arch_errors_fatal
@opindex arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture
to be fatal.
@item -bind_at_load
@opindex bind_at_load
Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.
@item -bundle
@opindex bundle
Produce a Mach-o bundle format file.
See man ld(1) for more information.
@item -bundle_loader @var{executable}
@opindex bundle_loader
This option specifies the @var{executable} that will load the build
output file being linked. See man ld(1) for more information.
@item -dynamiclib
@opindex dynamiclib
When passed this option, GCC produces a dynamic library instead of
an executable when linking, using the Darwin @file{libtool} command.
@item -force_cpusubtype_ALL
@opindex force_cpusubtype_ALL
This causes GCC's output file to have the @var{ALL} subtype, instead of
one controlled by the @option{-mcpu} or @option{-march} option.
@item -allowable_client @var{client_name}
@itemx -client_name
@itemx -compatibility_version
@itemx -current_version
@itemx -dead_strip
@itemx -dependency-file
@itemx -dylib_file
@itemx -dylinker_install_name
@itemx -dynamic
@itemx -exported_symbols_list
@itemx -filelist
@need 800
@itemx -flat_namespace
@itemx -force_flat_namespace
@itemx -headerpad_max_install_names
@itemx -image_base
@itemx -init
@itemx -install_name
@itemx -keep_private_externs
@itemx -multi_module
@itemx -multiply_defined
@itemx -multiply_defined_unused
@need 800
@itemx -noall_load
@itemx -no_dead_strip_inits_and_terms
@itemx -nofixprebinding
@itemx -nomultidefs
@itemx -noprebind
@itemx -noseglinkedit
@itemx -pagezero_size
@itemx -prebind
@itemx -prebind_all_twolevel_modules
@itemx -private_bundle
@need 800
@itemx -read_only_relocs
@itemx -sectalign
@itemx -sectobjectsymbols
@itemx -whyload
@itemx -seg1addr
@itemx -sectcreate
@itemx -sectobjectsymbols
@itemx -sectorder
@itemx -segaddr
@itemx -segs_read_only_addr
@need 800
@itemx -segs_read_write_addr
@itemx -seg_addr_table
@itemx -seg_addr_table_filename
@itemx -seglinkedit
@itemx -segprot
@itemx -segs_read_only_addr
@itemx -segs_read_write_addr
@itemx -single_module
@itemx -static
@itemx -sub_library
@need 800
@itemx -sub_umbrella
@itemx -twolevel_namespace
@itemx -umbrella
@itemx -undefined
@itemx -unexported_symbols_list
@itemx -weak_reference_mismatches
@itemx -whatsloaded
@opindex allowable_client
@opindex client_name
@opindex compatibility_version
@opindex current_version
@opindex dead_strip
@opindex dependency-file
@opindex dylib_file
@opindex dylinker_install_name
@opindex dynamic
@opindex exported_symbols_list
@opindex filelist
@opindex flat_namespace
@opindex force_flat_namespace
@opindex headerpad_max_install_names
@opindex image_base
@opindex init
@opindex install_name
@opindex keep_private_externs
@opindex multi_module
@opindex multiply_defined
@opindex multiply_defined_unused
@opindex noall_load
@opindex no_dead_strip_inits_and_terms
@opindex nofixprebinding
@opindex nomultidefs
@opindex noprebind
@opindex noseglinkedit
@opindex pagezero_size
@opindex prebind
@opindex prebind_all_twolevel_modules
@opindex private_bundle
@opindex read_only_relocs
@opindex sectalign
@opindex sectobjectsymbols
@opindex whyload
@opindex seg1addr
@opindex sectcreate
@opindex sectobjectsymbols
@opindex sectorder
@opindex segaddr
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex seg_addr_table
@opindex seg_addr_table_filename
@opindex seglinkedit
@opindex segprot
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex single_module
@opindex static
@opindex sub_library
@opindex sub_umbrella
@opindex twolevel_namespace
@opindex umbrella
@opindex undefined
@opindex unexported_symbols_list
@opindex weak_reference_mismatches
@opindex whatsloaded
These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
@end table
@node DEC Alpha Options
@subsection DEC Alpha Options
These @samp{-m} options are defined for the DEC Alpha implementations:
@table @gcctabopt
@item -mno-soft-float
@itemx -msoft-float
@opindex mno-soft-float
@opindex msoft-float
Use (do not use) the hardware floating-point instructions for
floating-point operations. When @option{-msoft-float} is specified,
functions in @file{libgcc.a} are used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point
operations. If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.
Note that Alpha implementations without floating-point operations are
required to have floating-point registers.
@item -mfp-reg
@itemx -mno-fp-regs
@opindex mfp-reg
@opindex mno-fp-regs
Generate code that uses (does not use) the floating-point register set.
@option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
register set is not used, floating-point operands are passed in integer
registers as if they were integers and floating-point results are passed
in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with @option{-mno-fp-regs} must also be compiled with that
option.
A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.
@item -mieee
@opindex mieee
The Alpha architecture implements floating-point hardware optimized for
maximum performance. It is mostly compliant with the IEEE floating-point
standard. However, for full compliance, software assistance is
required. This option generates code fully IEEE-compliant code
@emph{except} that the @var{inexact-flag} is not maintained (see below).
If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
defined during compilation. The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity. Other Alpha
compilers call this option @option{-ieee_with_no_inexact}.
@item -mieee-with-inexact
@opindex mieee-with-inexact
This is like @option{-mieee} except the generated code also maintains
the IEEE @var{inexact-flag}. Turning on this option causes the
generated code to implement fully-compliant IEEE math. In addition to
@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
macro. On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default. Since there is
very little code that depends on the @var{inexact-flag}, you should
normally not specify this option. Other Alpha compilers call this
option @option{-ieee_with_inexact}.
@item -mfp-trap-mode=@var{trap-mode}
@opindex mfp-trap-mode
This option controls what floating-point related traps are enabled.
Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
The trap mode can be set to one of four values:
@table @samp
@item n
This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).
@item u
In addition to the traps enabled by @samp{n}, underflow traps are enabled
as well.
@item su
Like @samp{u}, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).
@item sui
Like @samp{su}, but inexact traps are enabled as well.
@end table
@item -mfp-rounding-mode=@var{rounding-mode}
@opindex mfp-rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option
@option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
of:
@table @samp
@item n
Normal IEEE rounding mode. Floating-point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.
@item m
Round towards minus infinity.
@item c
Chopped rounding mode. Floating-point numbers are rounded towards zero.
@item d
Dynamic rounding mode. A field in the floating-point control register
(@var{fpcr}, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies the
@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
@end table
@item -mtrap-precision=@var{trap-precision}
@opindex mtrap-precision
In the Alpha architecture, floating-point traps are imprecise. This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated.
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating-point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:
@table @samp
@item p
Program precision. This option is the default and means a trap handler
can only identify which program caused a floating-point exception.
@item f
Function precision. The trap handler can determine the function that
caused a floating-point exception.
@item i
Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.
@end table
Other Alpha compilers provide the equivalent options called
@option{-scope_safe} and @option{-resumption_safe}.
@item -mieee-conformant
@opindex mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify @option{-mtrap-precision=i} and either
@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
is to emit the line @samp{.eflag 48} in the function prologue of the
generated assembly file.
@item -mbuild-constants
@opindex mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions. If it cannot, it outputs the constant as a literal and
generates code to load it from the data segment at run time.
Use this option to require GCC to construct @emph{all} integer constants
using code, even if it takes more instructions (the maximum is six).
You typically use this option to build a shared library dynamic
loader. Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.
@item -mbwx
@itemx -mno-bwx
@itemx -mcix
@itemx -mno-cix
@itemx -mfix
@itemx -mno-fix
@itemx -mmax
@itemx -mno-max
@opindex mbwx
@opindex mno-bwx
@opindex mcix
@opindex mno-cix
@opindex mfix
@opindex mno-fix
@opindex mmax
@opindex mno-max
Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets. The default is to use the instruction
sets supported by the CPU type specified via @option{-mcpu=} option or that
of the CPU on which GCC was built if none is specified.
@item -mfloat-vax
@itemx -mfloat-ieee
@opindex mfloat-vax
@opindex mfloat-ieee
Generate code that uses (does not use) VAX F and G floating-point
arithmetic instead of IEEE single and double precision.
@item -mexplicit-relocs
@itemx -mno-explicit-relocs
@opindex mexplicit-relocs
@opindex mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros. Use of these macros does not allow
optimal instruction scheduling. GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions. This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.
@item -msmall-data
@itemx -mlarge-data
@opindex msmall-data
@opindex mlarge-data
When @option{-mexplicit-relocs} is in effect, static data is
accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
(the @code{.sdata} and @code{.sbss} sections) and are accessed via
16-bit relocations off of the @code{$gp} register. This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.
The default is @option{-mlarge-data}. With this option the data area
is limited to just below 2GB@. Programs that require more than 2GB of
data must use @code{malloc} or @code{mmap} to allocate the data in the
heap instead of in the program's data segment.
When generating code for shared libraries, @option{-fpic} implies
@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
@item -msmall-text
@itemx -mlarge-text
@opindex msmall-text
@opindex mlarge-text
When @option{-msmall-text} is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction. When @option{-msmall-data}
is used, the compiler can assume that all local symbols share the
same @code{$gp} value, and thus reduce the number of instructions
required for a function call from 4 to 1.
The default is @option{-mlarge-text}.
@item -mcpu=@var{cpu_type}
@opindex mcpu
Set the instruction set and instruction scheduling parameters for
machine type @var{cpu_type}. You can specify either the @samp{EV}
style name or the corresponding chip number. GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and
chooses the default values for the instruction set from the processor
you specify. If you do not specify a processor type, GCC defaults
to the processor on which the compiler was built.
Supported values for @var{cpu_type} are
@table @samp
@item ev4
@itemx ev45
@itemx 21064
Schedules as an EV4 and has no instruction set extensions.
@item ev5
@itemx 21164
Schedules as an EV5 and has no instruction set extensions.
@item ev56
@itemx 21164a
Schedules as an EV5 and supports the BWX extension.
@item pca56
@itemx 21164pc
@itemx 21164PC
Schedules as an EV5 and supports the BWX and MAX extensions.
@item ev6
@itemx 21264
Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
@item ev67
@itemx 21264a
Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
@end table
Native toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mcpu=native} has no effect if GCC does not recognize
the processor.
@item -mtune=@var{cpu_type}
@opindex mtune
Set only the instruction scheduling parameters for machine type
@var{cpu_type}. The instruction set is not changed.
Native toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mtune=native} has no effect if GCC does not recognize
the processor.
@item -mmemory-latency=@var{time}
@opindex mmemory-latency
Sets the latency the scheduler should assume for typical memory
references as seen by the application. This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.
Valid options for @var{time} are
@table @samp
@item @var{number}
A decimal number representing clock cycles.
@item L1
@itemx L2
@itemx L3
@itemx main
The compiler contains estimates of the number of clock cycles for
``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.
@end table
@end table
@node FR30 Options
@subsection FR30 Options
@cindex FR30 Options
These options are defined specifically for the FR30 port.
@table @gcctabopt
@item -msmall-model
@opindex msmall-model
Use the small address space model. This can produce smaller code, but
it does assume that all symbolic values and addresses fit into a
20-bit range.
@item -mno-lsim
@opindex mno-lsim
Assume that runtime support has been provided and so there is no need
to include the simulator library (@file{libsim.a}) on the linker
command line.
@end table
@node FRV Options
@subsection FRV Options
@cindex FRV Options
@table @gcctabopt
@item -mgpr-32
@opindex mgpr-32
Only use the first 32 general-purpose registers.
@item -mgpr-64
@opindex mgpr-64
Use all 64 general-purpose registers.
@item -mfpr-32
@opindex mfpr-32
Use only the first 32 floating-point registers.
@item -mfpr-64
@opindex mfpr-64
Use all 64 floating-point registers.
@item -mhard-float
@opindex mhard-float
Use hardware instructions for floating-point operations.
@item -msoft-float
@opindex msoft-float
Use library routines for floating-point operations.
@item -malloc-cc
@opindex malloc-cc
Dynamically allocate condition code registers.
@item -mfixed-cc
@opindex mfixed-cc
Do not try to dynamically allocate condition code registers, only
use @code{icc0} and @code{fcc0}.
@item -mdword
@opindex mdword
Change ABI to use double word insns.
@item -mno-dword
@opindex mno-dword
Do not use double word instructions.
@item -mdouble
@opindex mdouble
Use floating-point double instructions.
@item -mno-double
@opindex mno-double
Do not use floating-point double instructions.
@item -mmedia
@opindex mmedia
Use media instructions.
@item -mno-media
@opindex mno-media
Do not use media instructions.
@item -mmuladd
@opindex mmuladd
Use multiply and add/subtract instructions.
@item -mno-muladd
@opindex mno-muladd
Do not use multiply and add/subtract instructions.
@item -mfdpic
@opindex mfdpic
Select the FDPIC ABI, which uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it
implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
are computed with 32 bits.
With a @samp{bfin-elf} target, this option implies @option{-msim}.
@item -minline-plt
@opindex minline-plt
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without @option{-mfdpic}.
It's enabled by default if optimizing for speed and compiling for
shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
optimization option such as @option{-O3} or above is present in the
command line.
@item -mTLS
@opindex mTLS
Assume a large TLS segment when generating thread-local code.
@item -mtls
@opindex mtls
Do not assume a large TLS segment when generating thread-local code.
@item -mgprel-ro
@opindex mgprel-ro
Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
that is known to be in read-only sections. It's enabled by default,
except for @option{-fpic} or @option{-fpie}: even though it may help
make the global offset table smaller, it trades 1 instruction for 4.
With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it's more likely to be a
win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
@item -multilib-library-pic
@opindex multilib-library-pic
Link with the (library, not FD) pic libraries. It's implied by
@option{-mlibrary-pic}, as well as by @option{-fPIC} and
@option{-fpic} without @option{-mfdpic}. You should never have to use
it explicitly.
@item -mlinked-fp
@opindex mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated. This option is enabled by default and can
be disabled with @option{-mno-linked-fp}.
@item -mlong-calls
@opindex mlong-calls
Use indirect addressing to call functions outside the current
compilation unit. This allows the functions to be placed anywhere
within the 32-bit address space.
@item -malign-labels
@opindex malign-labels
Try to align labels to an 8-byte boundary by inserting NOPs into the
previous packet. This option only has an effect when VLIW packing
is enabled. It doesn't create new packets; it merely adds NOPs to
existing ones.
@item -mlibrary-pic
@opindex mlibrary-pic
Generate position-independent EABI code.
@item -macc-4
@opindex macc-4
Use only the first four media accumulator registers.
@item -macc-8
@opindex macc-8
Use all eight media accumulator registers.
@item -mpack
@opindex mpack
Pack VLIW instructions.
@item -mno-pack
@opindex mno-pack
Do not pack VLIW instructions.
@item -mno-eflags
@opindex mno-eflags
Do not mark ABI switches in e_flags.
@item -mcond-move
@opindex mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-cond-move
@opindex mno-cond-move
Disable the use of conditional-move instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mscc
@opindex mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-scc
@opindex mno-scc
Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mcond-exec
@opindex mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-cond-exec
@opindex mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mvliw-branch
@opindex mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-vliw-branch
@opindex mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mmulti-cond-exec
@opindex mmulti-cond-exec
Enable optimization of @code{&&} and @code{||} in conditional execution
(default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-multi-cond-exec
@opindex mno-multi-cond-exec
Disable optimization of @code{&&} and @code{||} in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mnested-cond-exec
@opindex mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -mno-nested-cond-exec
@opindex mno-nested-cond-exec
Disable nested conditional execution optimizations.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@item -moptimize-membar
@opindex moptimize-membar
This switch removes redundant @code{membar} instructions from the
compiler-generated code. It is enabled by default.
@item -mno-optimize-membar
@opindex mno-optimize-membar
This switch disables the automatic removal of redundant @code{membar}
instructions from the generated code.
@item -mtomcat-stats
@opindex mtomcat-stats
Cause gas to print out tomcat statistics.
@item -mcpu=@var{cpu}
@opindex mcpu
Select the processor type for which to generate code. Possible values are
@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
@end table
@node GNU/Linux Options
@subsection GNU/Linux Options
These @samp{-m} options are defined for GNU/Linux targets:
@table @gcctabopt
@item -mglibc
@opindex mglibc
Use the GNU C library. This is the default except
on @samp{*-*-linux-*uclibc*} and @samp{*-*-linux-*android*} targets.
@item -muclibc
@opindex muclibc
Use uClibc C library. This is the default on
@samp{*-*-linux-*uclibc*} targets.
@item -mbionic
@opindex mbionic
Use Bionic C library. This is the default on
@samp{*-*-linux-*android*} targets.
@item -mandroid
@opindex mandroid
Compile code compatible with Android platform. This is the default on
@samp{*-*-linux-*android*} targets.
When compiling, this option enables @option{-mbionic}, @option{-fPIC},
@option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
this option makes the GCC driver pass Android-specific options to the linker.
Finally, this option causes the preprocessor macro @code{__ANDROID__}
to be defined.
@item -tno-android-cc
@opindex tno-android-cc
Disable compilation effects of @option{-mandroid}, i.e., do not enable
@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
@option{-fno-rtti} by default.
@item -tno-android-ld
@opindex tno-android-ld
Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
linking options to the linker.
@end table
@node H8/300 Options
@subsection H8/300 Options
These @samp{-m} options are defined for the H8/300 implementations:
@table @gcctabopt
@item -mrelax
@opindex mrelax
Shorten some address references at link time, when possible; uses the
linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
ld, Using ld}, for a fuller description.
@item -mh
@opindex mh
Generate code for the H8/300H@.
@item -ms
@opindex ms
Generate code for the H8S@.
@item -mn
@opindex mn
Generate code for the H8S and H8/300H in the normal mode. This switch
must be used either with @option{-mh} or @option{-ms}.
@item -ms2600
@opindex ms2600
Generate code for the H8S/2600. This switch must be used with @option{-ms}.
@item -mexr
@opindex mexr
Extended registers are stored on stack before execution of function
with monitor attribute. Default option is @option{-mexr}.
This option is valid only for H8S targets.
@item -mno-exr
@opindex mno-exr
Extended registers are not stored on stack before execution of function
with monitor attribute. Default option is @option{-mno-exr}.
This option is valid only for H8S targets.
@item -mint32
@opindex mint32
Make @code{int} data 32 bits by default.
@item -malign-300
@opindex malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on
4-byte boundaries.
@option{-malign-300} causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.
@end table
@node HPPA Options
@subsection HPPA Options
@cindex HPPA Options
These @samp{-m} options are defined for the HPPA family of computers:
@table @gcctabopt
@item -march=@var{architecture-type}
@opindex march
Generate code for the specified architecture. The choices for
@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
1.1, and @samp{2.0} for PA 2.0 processors. Refer to
@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered
architectures runs on higher numbered architectures, but not the
other way around.
@item -mpa-risc-1-0
@itemx -mpa-risc-1-1
@itemx -mpa-risc-2-0
@opindex mpa-risc-1-0
@opindex mpa-risc-1-1
@opindex mpa-risc-2-0
Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
@item -mjump-in-delay
@opindex mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions
by modifying the return pointer for the function call to be the target
of the conditional jump.
@item -mdisable-fpregs
@opindex mdisable-fpregs
Prevent floating-point registers from being used in any manner. This is
necessary for compiling kernels that perform lazy context switching of
floating-point registers. If you use this option and attempt to perform
floating-point operations, the compiler aborts.
@item -mdisable-indexing
@opindex mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH@.
@item -mno-space-regs
@opindex mno-space-regs
Generate code that assumes the target has no space registers. This allows
GCC to generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.
@item -mfast-indirect-calls
@opindex mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This
allows GCC to emit code that performs faster indirect calls.
This option does not work in the presence of shared libraries or nested
functions.
@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@item -mlong-load-store
@opindex mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
the HP compilers.
@item -mportable-runtime
@opindex mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.
@item -mgas
@opindex mgas
Enable the use of assembler directives only GAS understands.
@item -mschedule=@var{cpu-type}
@opindex mschedule
Schedule code according to the constraints for the machine type
@var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
to @file{/usr/lib/sched.models} on an HP-UX system to determine the
proper scheduling option for your machine. The default scheduling is
@samp{8000}.
@item -mlinker-opt
@opindex mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.
@item -msoft-float
@opindex msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.
@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option. In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.
@item -msio
@opindex msio
Generate the predefine, @code{_SIO}, for server IO@. The default is
@option{-mwsio}. This generates the predefines, @code{__hp9000s700},
@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
options are available under HP-UX and HI-UX@.
@item -mgnu-ld
@opindex mgnu-ld
Use options specific to GNU @command{ld}.
This passes @option{-shared} to @command{ld} when
building a shared library. It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker. This option does not
affect which @command{ld} is called; it only changes what parameters
are passed to that @command{ld}.
The @command{ld} that is called is determined by the
@option{--with-ld} configure option, GCC's program search path, and
finally by the user's @env{PATH}. The linker used by GCC can be printed
using @samp{which `gcc -print-prog-name=ld`}. This option is only available
on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
@item -mhp-ld
@opindex mhp-ld
Use options specific to HP @command{ld}.
This passes @option{-b} to @command{ld} when building
a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
links. It is the default when GCC is configured, explicitly or
implicitly, with the HP linker. This option does not affect
which @command{ld} is called; it only changes what parameters are passed to that
@command{ld}.
The @command{ld} that is called is determined by the @option{--with-ld}
configure option, GCC's program search path, and finally by the user's
@env{PATH}. The linker used by GCC can be printed using @samp{which
`gcc -print-prog-name=ld`}. This option is only available on the 64-bit
HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
@item -mlong-calls
@opindex mno-long-calls
Generate code that uses long call sequences. This ensures that a call
is always able to reach linker generated stubs. The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used. The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
240,000 bytes.
Distances are measured from the beginning of functions when using the
@option{-ffunction-sections} option, or when using the @option{-mgas}
and @option{-mno-portable-runtime} options together under HP-UX with
the SOM linker.
It is normally not desirable to use this option as it degrades
performance. However, it may be useful in large applications,
particularly when partial linking is used to build the application.
The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated. The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.
@item -munix=@var{unix-std}
@opindex march
Generate compiler predefines and select a startfile for the specified
UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
11.11 and later. The default values are @samp{93} for HP-UX 10.00,
@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
and later.
@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
It is @emph{important} to note that this option changes the interfaces
for various library routines. It also affects the operational behavior
of the C library. Thus, @emph{extreme} care is needed in using this
option.
Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable @var{__xpg4_extended_mask}
as appropriate. Most GNU software doesn't provide this capability.
@item -nolibdld
@opindex nolibdld
Suppress the generation of link options to search libdld.sl when the
@option{-static} option is specified on HP-UX 10 and later.
@item -static
@opindex static
The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl. There isn't an archive version of libdld.sl. Thus,
when the @option{-static} option is specified, special link options
are needed to resolve this dependency.
On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the @option{-static} option is specified.
This causes the resulting binary to be dynamic. On the 64-bit port,
the linkers generate dynamic binaries by default in any case. The
@option{-nolibdld} option can be used to prevent the GCC driver from
adding these link options.
@item -threads
@opindex threads
Add support for multithreading with the @dfn{dce thread} library
under HP-UX@. This option sets flags for both the preprocessor and
linker.
@end table
@node i386 and x86-64 Options
@subsection Intel 386 and AMD x86-64 Options
@cindex i386 Options
@cindex x86-64 Options
@cindex Intel 386 Options
@cindex AMD x86-64 Options
These @samp{-m} options are defined for the i386 and x86-64 family of
computers:
@table @gcctabopt
@item -march=@var{cpu-type}
@opindex march
Generate instructions for the machine type @var{cpu-type}. In contrast to
@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
to generate code that may not run at all on processors other than the one
indicated. Specifying @option{-march=@var{cpu-type}} implies
@option{-mtune=@var{cpu-type}}.
The choices for @var{cpu-type} are:
@table @samp
@item native
This selects the CPU to generate code for at compilation time by determining
the processor type of the compiling machine. Using @option{-march=native}
enables all instruction subsets supported by the local machine (hence
the result might not run on different machines). Using @option{-mtune=native}
produces code optimized for the local machine under the constraints
of the selected instruction set.
@item i386
Original Intel i386 CPU@.
@item i486
Intel i486 CPU@. (No scheduling is implemented for this chip.)
@item i586
@itemx pentium
Intel Pentium CPU with no MMX support.
@item pentium-mmx
Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
@item pentiumpro
Intel Pentium Pro CPU@.
@item i686
When used with @option{-march}, the Pentium Pro
instruction set is used, so the code runs on all i686 family chips.
When used with @option{-mtune}, it has the same meaning as @samp{generic}.
@item pentium2
Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
support.
@item pentium3
@itemx pentium3m
Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
set support.
@item pentium-m
Intel Pentium M; low-power version of Intel Pentium III CPU
with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
@item pentium4
@itemx pentium4m
Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
@item prescott
Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
set support.
@item nocona
Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support.
@item core2
Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
@item corei7
Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1
and SSE4.2 instruction set support.
@item corei7-avx
Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set support.
@item core-avx-i
Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction
set support.
@item core-avx2
Intel Core CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2
and F16C instruction set support.
@item atom
Intel Atom CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
@item slm
Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1 and SSE4.2 instruction set support.
@item k6
AMD K6 CPU with MMX instruction set support.
@item k6-2
@itemx k6-3
Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
@item athlon
@itemx athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
support.
@item athlon-4
@itemx athlon-xp
@itemx athlon-mp
Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
instruction set support.
@item k8
@itemx opteron
@itemx athlon64
@itemx athlon-fx
Processors based on the AMD K8 core with x86-64 instruction set support,
including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
instruction set extensions.)
@item k8-sse3
@itemx opteron-sse3
@itemx athlon64-sse3
Improved versions of AMD K8 cores with SSE3 instruction set support.
@item amdfam10
@itemx barcelona
CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
instruction set extensions.)
@item bdver1
CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
@item bdver2
AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
extensions.)
@item bdver3
AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
extensions.
@item btver1
CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
instruction set extensions.)
@item btver2
CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
@item winchip-c6
IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support.
@item winchip2
IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
instruction set support.
@item c3
VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
implemented for this chip.)
@item c3-2
VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
(No scheduling is
implemented for this chip.)
@item geode
AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
@end table
@item -mtune=@var{cpu-type}
@opindex mtune
Tune to @var{cpu-type} everything applicable about the generated code, except
for the ABI and the set of available instructions.
While picking a specific @var{cpu-type} schedules things appropriately
for that particular chip, the compiler does not generate any code that
cannot run on the default machine type unless you use a
@option{-march=@var{cpu-type}} option.
For example, if GCC is configured for i686-pc-linux-gnu
then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
but still runs on i686 machines.
The choices for @var{cpu-type} are the same as for @option{-march}.
In addition, @option{-mtune} supports an extra choice for @var{cpu-type}:
@table @samp
@item generic
Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
If you know the CPU on which your code will run, then you should use
the corresponding @option{-mtune} or @option{-march} option instead of
@option{-mtune=generic}. But, if you do not know exactly what CPU users
of your application will have, then you should use this option.
As new processors are deployed in the marketplace, the behavior of this
option will change. Therefore, if you upgrade to a newer version of
GCC, code generation controlled by this option will change to reflect
the processors
that are most common at the time that version of GCC is released.
There is no @option{-march=generic} option because @option{-march}
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors. In contrast,
@option{-mtune} indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
@end table
@item -mcpu=@var{cpu-type}
@opindex mcpu
A deprecated synonym for @option{-mtune}.
@item -mfpmath=@var{unit}
@opindex mfpmath
Generate floating-point arithmetic for selected unit @var{unit}. The choices
for @var{unit} are:
@table @samp
@item 387
Use the standard 387 floating-point coprocessor present on the majority of chips and
emulated otherwise. Code compiled with this option runs almost everywhere.
The temporary results are computed in 80-bit precision instead of the precision
specified by the type, resulting in slightly different results compared to most
of other chips. See @option{-ffloat-store} for more detailed description.
This is the default choice for i386 compiler.
@item sse
Use scalar floating-point instructions present in the SSE instruction set.
This instruction set is supported by Pentium III and newer chips,
and in the AMD line
by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
instruction set supports only single-precision arithmetic, thus the double and
extended-precision arithmetic are still done using 387. A later version, present
only in Pentium 4 and AMD x86-64 chips, supports double-precision
arithmetic too.
For the i386 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
or @option{-msse2} switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by default.
The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80 bits.
This is the default choice for the x86-64 compiler.
@item sse,387
@itemx sse+387
@itemx both
Attempt to utilize both instruction sets at once. This effectively doubles the
amount of available registers, and on chips with separate execution units for
387 and SSE the execution resources too. Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well, resulting in unstable performance.
@end table
@item -masm=@var{dialect}
@opindex masm=@var{dialect}
Output assembly instructions using selected @var{dialect}. Supported
choices are @samp{intel} or @samp{att} (the default). Darwin does
not support @samp{intel}.
@item -mieee-fp
@itemx -mno-ieee-fp
@opindex mieee-fp
@opindex mno-ieee-fp
Control whether or not the compiler uses IEEE floating-point
comparisons. These correctly handle the case where the result of a
comparison is unordered.
@item -msoft-float
@opindex msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not part of GCC@.
Normally the facilities of the machine's usual C compiler are used, but
this can't be done directly in cross-compilation. You must make your
own arrangements to provide suitable library functions for
cross-compilation.
On machines where a function returns floating-point results in the 80387
register stack, some floating-point opcodes may be emitted even if
@option{-msoft-float} is used.
@item -mno-fp-ret-in-387
@opindex mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types
@code{float} and @code{double} in an FPU register, even if there
is no FPU@. The idea is that the operating system should emulate
an FPU@.
The option @option{-mno-fp-ret-in-387} causes such values to be returned
in ordinary CPU registers instead.
@item -mno-fancy-math-387
@opindex mno-fancy-math-387
Some 387 emulators do not support the @code{sin}, @code{cos} and
@code{sqrt} instructions for the 387. Specify this option to avoid
generating those instructions. This option is the default on FreeBSD,
OpenBSD and NetBSD@. This option is overridden when @option{-march}
indicates that the target CPU always has an FPU and so the
instruction does not need emulation. These
instructions are not generated unless you also use the
@option{-funsafe-math-optimizations} switch.
@item -malign-double
@itemx -mno-align-double
@opindex malign-double
@opindex mno-align-double
Control whether GCC aligns @code{double}, @code{long double}, and
@code{long long} variables on a two-word boundary or a one-word
boundary. Aligning @code{double} variables on a two-word boundary
produces code that runs somewhat faster on a Pentium at the
expense of more memory.
On x86-64, @option{-malign-double} is enabled by default.
@strong{Warning:} if you use the @option{-malign-double} switch,
structures containing the above types are aligned differently than
the published application binary interface specifications for the 386
and are not binary compatible with structures in code compiled
without that switch.
@item -m96bit-long-double
@itemx -m128bit-long-double
@opindex m96bit-long-double
@opindex m128bit-long-double
These switches control the size of @code{long double} type. The i386
application binary interface specifies the size to be 96 bits,
so @option{-m96bit-long-double} is the default in 32-bit mode.
Modern architectures (Pentium and newer) prefer @code{long double}
to be aligned to an 8- or 16-byte boundary. In arrays or structures
conforming to the ABI, this is not possible. So specifying
@option{-m128bit-long-double} aligns @code{long double}
to a 16-byte boundary by padding the @code{long double} with an additional
32-bit zero.
In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
its ABI specifies that @code{long double} is aligned on 16-byte boundary.
Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a @code{long double}.
@strong{Warning:} if you override the default value for your target ABI, this
changes the size of
structures and arrays containing @code{long double} variables,
as well as modifying the function calling convention for functions taking
@code{long double}. Hence they are not binary-compatible
with code compiled without that switch.
@item -mlong-double-64
@itemx -mlong-double-80
@opindex mlong-double-64
@opindex mlong-double-80
These switches control the size of @code{long double} type. A size
of 64 bits makes the @code{long double} type equivalent to the @code{double}
type. This is the default for Bionic C library.
@strong{Warning:} if you override the default value for your target ABI, this
changes the size of
structures and arrays containing @code{long double} variables,
as well as modifying the function calling convention for functions taking
@code{long double}. Hence they are not binary-compatible
with code compiled without that switch.
@item -mlarge-data-threshold=@var{threshold}
@opindex mlarge-data-threshold
When @option{-mcmodel=medium} is specified, data objects larger than
@var{threshold} are placed in the large data section. This value must be the
same across all objects linked into the binary, and defaults to 65535.
@item -mrtd
@opindex mrtd
Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the @code{ret @var{num}}
instruction, which pops their arguments while returning. This saves one
instruction in the caller since there is no need to pop the arguments
there.
You can specify that an individual function is called with this calling
sequence with the function attribute @samp{stdcall}. You can also
override the @option{-mrtd} option by using the function attribute
@samp{cdecl}. @xref{Function Attributes}.
@strong{Warning:} this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code is generated for calls to those
functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
@item -mregparm=@var{num}
@opindex mregparm
Control how many registers are used to pass integer arguments. By
default, no registers are used to pass arguments, and at most 3
registers can be used. You can control this behavior for a specific
function by using the function attribute @samp{regparm}.
@xref{Function Attributes}.
@strong{Warning:} if you use this switch, and
@var{num} is nonzero, then you must build all modules with the same
value, including any libraries. This includes the system libraries and
startup modules.
@item -msseregparm
@opindex msseregparm
Use SSE register passing conventions for float and double arguments
and return values. You can control this behavior for a specific
function by using the function attribute @samp{sseregparm}.
@xref{Function Attributes}.
@strong{Warning:} if you use this switch then you must build all
modules with the same value, including any libraries. This includes
the system libraries and startup modules.
@item -mvect8-ret-in-mem
@opindex mvect8-ret-in-mem
Return 8-byte vectors in memory instead of MMX registers. This is the
default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
Studio compilers until version 12. Later compiler versions (starting
with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
you need to remain compatible with existing code produced by those
previous compiler versions or older versions of GCC@.
@item -mpc32
@itemx -mpc64
@itemx -mpc80
@opindex mpc32
@opindex mpc64
@opindex mpc80
Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); @option{-mpc64} rounds the
significands of results of floating-point operations to 53 bits (double
precision) and @option{-mpc80} rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default. When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.
Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more. Note that some mathematical
libraries assume that extended-precision (80-bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called ``catastrophic cancellation'',
when this option is used to set the precision to less than extended precision.
@item -mstackrealign
@opindex mstackrealign
Realign the stack at entry. On the Intel x86, the @option{-mstackrealign}
option generates an alternate prologue and epilogue that realigns the
run-time stack if necessary. This supports mixing legacy codes that keep
4-byte stack alignment with modern codes that keep 16-byte stack alignment for
SSE compatibility. See also the attribute @code{force_align_arg_pointer},
applicable to individual functions.
@item -mpreferred-stack-boundary=@var{num}
@opindex mpreferred-stack-boundary
Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
the default is 4 (16 bytes or 128 bits).
@strong{Warning:} When generating code for the x86-64 architecture with
SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
used to keep the stack boundary aligned to 8 byte boundary. Since
x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
intended to be used in controlled environment where stack space is
important limitation. This option will lead to wrong code when functions
compiled with 16 byte stack alignment (such as functions from a standard
library) are called with misaligned stack. In this case, SSE
instructions may lead to misaligned memory access traps. In addition,
variable arguments will be handled incorrectly for 16 byte aligned
objects (including x87 long double and __int128), leading to wrong
results. You must build all modules with
@option{-mpreferred-stack-boundary=3}, including any libraries. This
includes the system libraries and startup modules.
@item -mincoming-stack-boundary=@var{num}
@opindex mincoming-stack-boundary
Assume the incoming stack is aligned to a 2 raised to @var{num} byte
boundary. If @option{-mincoming-stack-boundary} is not specified,
the one specified by @option{-mpreferred-stack-boundary} is used.
On Pentium and Pentium Pro, @code{double} and @code{long double} values
should be aligned to an 8-byte boundary (see @option{-malign-double}) or
suffer significant run time performance penalties. On Pentium III, the
Streaming SIMD Extension (SSE) data type @code{__m128} may not work
properly if it is not 16-byte aligned.
To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack.
Further, every function must be generated such that it keeps the stack
aligned. Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary most likely misaligns the stack. It is recommended that
libraries that use callbacks always use the default setting.
This extra alignment does consume extra stack space, and generally
increases code size. Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to @option{-mpreferred-stack-boundary=2}.
@item -mmmx
@itemx -mno-mmx
@itemx -msse
@itemx -mno-sse
@itemx -msse2
@itemx -mno-sse2
@itemx -msse3
@itemx -mno-sse3
@itemx -mssse3
@itemx -mno-ssse3
@itemx -msse4.1
@need 800
@itemx -mno-sse4.1
@itemx -msse4.2
@itemx -mno-sse4.2
@itemx -msse4
@itemx -mno-sse4
@itemx -mavx
@itemx -mno-avx
@itemx -mavx2
@itemx -mno-avx2
@itemx -mavx512f
@itemx -mno-avx512f
@need 800
@itemx -mavx512pf
@itemx -mno-avx512pf
@itemx -mavx512er
@itemx -mno-avx512er
@itemx -mavx512cd
@itemx -mno-avx512cd
@itemx -maes
@itemx -mno-aes
@itemx -mpclmul
@itemx -mno-pclmul
@need 800
@itemx -mfsgsbase
@itemx -mno-fsgsbase
@itemx -mrdrnd
@itemx -mno-rdrnd
@itemx -mf16c
@itemx -mno-f16c
@itemx -mfma
@itemx -mno-fma
@itemx -msse4a
@itemx -mno-sse4a
@itemx -mfma4
@itemx -mno-fma4
@need 800
@itemx -mxop
@itemx -mno-xop
@itemx -mlwp
@itemx -mno-lwp
@itemx -m3dnow
@itemx -mno-3dnow
@itemx -mpopcnt
@itemx -mno-popcnt
@itemx -mabm
@itemx -mno-abm
@itemx -mbmi
@itemx -mbmi2
@itemx -mno-bmi
@itemx -mno-bmi2
@itemx -mlzcnt
@itemx -mno-lzcnt
@itemx -mrtm
@itemx -mtbm
@itemx -mno-tbm
@opindex mmmx
@opindex mno-mmx
@opindex msse
@opindex mno-sse
@opindex m3dnow
@opindex mno-3dnow
These switches enable or disable the use of instructions in the MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2,
LZCNT, RTM or 3DNow!@:
extended instruction sets.
These extensions are also available as built-in functions: see
@ref{X86 Built-in Functions}, for details of the functions enabled and
disabled by these switches.
To generate SSE/SSE2 instructions automatically from floating-point
code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.
These options enable GCC to use these extended instructions in
generated code, even without @option{-mfpmath=sse}. Applications that
perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
@item -mdump-tune-features
@opindex mdump-tune-features
This option instructs GCC to dump the names of the x86 performance
tuning features and default settings. The names can be used in
@option{-mtune-ctrl=@var{feature-list}}.
@item -mtune-ctrl=@var{feature-list}
@opindex mtune-ctrl=@var{feature-list}
This option is used to do fine grain control of x86 code generation features.
@var{feature-list} is a comma separated list of @var{feature} names. See also
@option{-mdump-tune-features}. When specified, the @var{feature} will be turned
on if it is not preceded with @code{^}, otherwise, it will be turned off.
@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
developers. Using it may lead to code paths not covered by testing and can
potentially result in compiler ICEs or runtime errors.
@item -mno-default
@opindex mno-default
This option instructs GCC to turn off all tunable features. See also
@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
@item -mcld
@opindex mcld
This option instructs GCC to emit a @code{cld} instruction in the prologue
of functions that use string instructions. String instructions depend on
the DF flag to select between autoincrement or autodecrement mode. While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers. The exception handler can be invoked with the DF flag
set, which leads to wrong direction mode when string instructions are used.
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
instructions can be suppressed with the @option{-mno-cld} compiler option
in this case.
@item -mvzeroupper
@opindex mvzeroupper
This option instructs GCC to emit a @code{vzeroupper} instruction
before a transfer of control flow out of the function to minimize
the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
intrinsics.
@item -mprefer-avx128
@opindex mprefer-avx128
This option instructs GCC to use 128-bit AVX instructions instead of
256-bit AVX instructions in the auto-vectorizer.
@item -mcx16
@opindex mcx16
This option enables GCC to generate @code{CMPXCHG16B} instructions.
@code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
(or oword) data types.
This is useful for high-resolution counters that can be updated
by multiple processors (or cores). This instruction is generated as part of
atomic built-in functions: see @ref{__sync Builtins} or
@ref{__atomic Builtins} for details.
@item -msahf
@opindex msahf
This option enables generation of @code{SAHF} instructions in 64-bit code.
Early Intel Pentium 4 CPUs with Intel 64 support,
prior to the introduction of Pentium 4 G1 step in December 2005,
lacked the @code{LAHF} and @code{SAHF} instructions
which were supported by AMD64.
These are load and store instructions, respectively, for certain status flags.
In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
@code{drem}, and @code{remainder} built-in functions;
see @ref{Other Builtins} for details.
@item -mmovbe
@opindex mmovbe
This option enables use of the @code{movbe} instruction to implement
@code{__builtin_bswap32} and @code{__builtin_bswap64}.
@item -mcrc32
@opindex mcrc32
This option enables built-in functions @code{__builtin_ia32_crc32qi},
@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
@item -mrecip
@opindex mrecip
This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
with an additional Newton-Raphson step
to increase precision instead of @code{DIVSS} and @code{SQRTSS}
(and their vectorized
variants) for single-precision floating-point arguments. These instructions
are generated only when @option{-funsafe-math-optimizations} is enabled
together with @option{-finite-math-only} and @option{-fno-trapping-math}.
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
combination), and doesn't need @option{-mrecip}.
Also note that GCC emits the above sequence with additional Newton-Raphson step
for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
already with @option{-ffast-math} (or the above option combination), and
doesn't need @option{-mrecip}.
@item -mrecip=@var{opt}
@opindex mrecip=opt
This option controls which reciprocal estimate instructions
may be used. @var{opt} is a comma-separated list of options, which may
be preceded by a @samp{!} to invert the option:
@table @samp
@item all
Enable all estimate instructions.
@item default
Enable the default instructions, equivalent to @option{-mrecip}.
@item none
Disable all estimate instructions, equivalent to @option{-mno-recip}.
@item div
Enable the approximation for scalar division.
@item vec-div
Enable the approximation for vectorized division.
@item sqrt
Enable the approximation for scalar square root.
@item vec-sqrt
Enable the approximation for vectorized square root.
@end table
So, for example, @option{-mrecip=all,!sqrt} enables
all of the reciprocal approximations, except for square root.
@item -mveclibabi=@var{type}
@opindex mveclibabi
Specifies the ABI type to use for vectorizing intrinsics using an
external library. Supported values for @var{type} are @samp{svml}
for the Intel short
vector math library and @samp{acml} for the AMD math core library.
To use this option, both @option{-ftree-vectorize} and
@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
ABI-compatible library must be specified at link time.
GCC currently emits calls to @code{vmldExp2},
@code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
when @option{-mveclibabi=acml} is used.
@item -mabi=@var{name}
@opindex mabi
Generate code for the specified calling convention. Permissible values
are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
@samp{ms} for the Microsoft ABI. The default is to use the Microsoft
ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
You can control this behavior for a specific function by
using the function attribute @samp{ms_abi}/@samp{sysv_abi}.
@xref{Function Attributes}.
@item -mtls-dialect=@var{type}
@opindex mtls-dialect
Generate code to access thread-local storage using the @samp{gnu} or
@samp{gnu2} conventions. @samp{gnu} is the conservative default;
@samp{gnu2} is more efficient, but it may add compile- and run-time
requirements that cannot be satisfied on all systems.
@item -mpush-args
@itemx -mno-push-args
@opindex mpush-args
@opindex mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.
@item -maccumulate-outgoing-args
@opindex maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments is
computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when the preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies @option{-mno-push-args}.
@item -mthreads
@opindex mthreads
Support thread-safe exception handling on MinGW. Programs that rely
on thread-safe exception handling must compile and link all code with the
@option{-mthreads} option. When compiling, @option{-mthreads} defines
@code{-D_MT}; when linking, it links in a special thread helper library
@option{-lmingwthrd} which cleans up per-thread exception-handling data.
@item -mno-align-stringops
@opindex mno-align-stringops
Do not align the destination of inlined string operations. This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn't know about it.
@item -minline-all-stringops
@opindex minline-all-stringops
By default GCC inlines string operations only when the destination is
known to be aligned to least a 4-byte boundary.
This enables more inlining and increases code
size, but may improve performance of code that depends on fast
@code{memcpy}, @code{strlen},
and @code{memset} for short lengths.
@item -minline-stringops-dynamically
@opindex minline-stringops-dynamically
For string operations of unknown size, use run-time checks with
inline code for small blocks and a library call for large blocks.
@item -mstringop-strategy=@var{alg}
@opindex mstringop-strategy=@var{alg}
Override the internal decision heuristic for the particular algorithm to use
for inlining string operations. The allowed values for @var{alg} are:
@table @samp
@item rep_byte
@itemx rep_4byte
@itemx rep_8byte
Expand using i386 @code{rep} prefix of the specified size.
@item byte_loop
@itemx loop
@itemx unrolled_loop
Expand into an inline loop.
@item libcall
Always use a library call.
@end table
@item -mmemcpy-strategy=@var{strategy}
@opindex mmemcpy-strategy=@var{strategy}
Override the internal decision heuristic to decide if @code{__builtin_memcpy}
should be inlined and what inline algorithm to use when the expected size
of the copy operation is known. @var{strategy}
is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
the max byte size with which inline algorithm @var{alg} is allowed. For the last
triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
in the list must be specified in increasing order. The minimal byte size for
@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
preceding range.
@item -mmemset-strategy=@var{strategy}
@opindex mmemset-strategy=@var{strategy}
The option is similar to @option{-mmemcpy-strategy=} except that it is to control
@code{__builtin_memset} expansion.
@item -momit-leaf-frame-pointer
@opindex momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up, and restore frame pointers and
makes an extra register available in leaf functions. The option
@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
which might make debugging harder.
@item -mtls-direct-seg-refs
@itemx -mno-tls-direct-seg-refs
@opindex mtls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the
TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
or whether the thread base pointer must be added. Whether or not this
is valid depends on the operating system, and whether it maps the
segment to cover the entire TLS area.
For systems that use the GNU C Library, the default is on.
@item -msse2avx
@itemx -mno-sse2avx
@opindex msse2avx
Specify that the assembler should encode SSE instructions with VEX
prefix. The option @option{-mavx} turns this on by default.
@item -mfentry
@itemx -mno-fentry
@opindex mfentry
If profiling is active (@option{-pg}), put the profiling
counter call before the prologue.
Note: On x86 architectures the attribute @code{ms_hook_prologue}
isn't possible at the moment for @option{-mfentry} and @option{-pg}.
@item -m8bit-idiv
@itemx -mno-8bit-idiv
@opindex 8bit-idiv
On some processors, like Intel Atom, 8-bit unsigned integer divide is
much faster than 32-bit/64-bit integer divide. This option generates a
run-time check. If both dividend and divisor are within range of 0
to 255, 8-bit unsigned integer divide is used instead of
32-bit/64-bit integer divide.
@item -mavx256-split-unaligned-load
@itemx -mavx256-split-unaligned-store
@opindex avx256-split-unaligned-load
@opindex avx256-split-unaligned-store
Split 32-byte AVX unaligned load and store.
@item -mstack-protector-guard=@var{guard}
@opindex mstack-protector-guard=@var{guard}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for global canary or @samp{tls} for per-thread
canary in the TLS block (the default). This option has effect only when
@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
@end table
These @samp{-m} switches are supported in addition to the above
on x86-64 processors in 64-bit environments.
@table @gcctabopt
@item -m32
@itemx -m64
@itemx -mx32
@opindex m32
@opindex m64
@opindex mx32
Generate code for a 32-bit or 64-bit environment.
The @option{-m32} option sets @code{int}, @code{long}, and pointer types
to 32 bits, and
generates code that runs on any i386 system.
The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
types to 64 bits, and generates code for the x86-64 architecture.
For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
and @option{-mdynamic-no-pic} options.
The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
to 32 bits, and
generates code for the x86-64 architecture.
@item -mno-red-zone
@opindex mno-red-zone
Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
by the x86-64 ABI; it is a 128-byte area beyond the location of the
stack pointer that is not modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer. The flag @option{-mno-red-zone} disables this red zone.
@item -mcmodel=small
@opindex mcmodel=small
Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default
code model.
@item -mcmodel=kernel
@opindex mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the
negative 2 GB of the address space.
This model has to be used for Linux kernel code.
@item -mcmodel=medium
@opindex mcmodel=medium
Generate code for the medium model: the program is linked in the lower 2
GB of the address space. Small symbols are also placed there. Symbols
with sizes larger than @option{-mlarge-data-threshold} are put into
large data or BSS sections and can be located above 2GB. Programs can
be statically or dynamically linked.
@item -mcmodel=large
@opindex mcmodel=large
Generate code for the large model. This model makes no assumptions
about addresses and sizes of sections.
@item -maddress-mode=long
@opindex maddress-mode=long
Generate code for long address mode. This is only supported for 64-bit
and x32 environments. It is the default address mode for 64-bit
environments.
@item -maddress-mode=short
@opindex maddress-mode=short
Generate code for short address mode. This is only supported for 32-bit
and x32 environments. It is the default address mode for 32-bit and
x32 environments.
@end table
@node i386 and x86-64 Windows Options
@subsection i386 and x86-64 Windows Options
@cindex i386 and x86-64 Windows Options
These additional options are available for Microsoft Windows targets:
@table @gcctabopt
@item -mconsole
@opindex mconsole
This option
specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type
required for console applications.
This option is available for Cygwin and MinGW targets and is
enabled by default on those targets.
@item -mdll
@opindex mdll
This option is available for Cygwin and MinGW targets. It
specifies that a DLL---a dynamic link library---is to be
generated, enabling the selection of the required runtime
startup object and entry point.
@item -mnop-fun-dllimport
@opindex mnop-fun-dllimport
This option is available for Cygwin and MinGW targets. It
specifies that the @code{dllimport} attribute should be ignored.
@item -mthread
@opindex mthread
This option is available for MinGW targets. It specifies
that MinGW-specific thread support is to be used.
@item -municode
@opindex municode
This option is available for MinGW-w64 targets. It causes
the @code{UNICODE} preprocessor macro to be predefined, and
chooses Unicode-capable runtime startup code.
@item -mwin32
@opindex mwin32
This option is available for Cygwin and MinGW targets. It
specifies that the typical Microsoft Windows predefined macros are to
be set in the pre-processor, but does not influence the choice
of runtime library/startup code.
@item -mwindows
@opindex mwindows
This option is available for Cygwin and MinGW targets. It
specifies that a GUI application is to be generated by
instructing the linker to set the PE header subsystem type
appropriately.
@item -fno-set-stack-executable
@opindex fno-set-stack-executable
This option is available for MinGW targets. It specifies that
the executable flag for the stack used by nested functions isn't
set. This is necessary for binaries running in kernel mode of
Microsoft Windows, as there the User32 API, which is used to set executable
privileges, isn't available.
@item -fwritable-relocated-rdata
@opindex fno-writable-relocated-rdata
This option is available for MinGW and Cygwin targets. It specifies
that relocated-data in read-only section is put into .data
section. This is a necessary for older runtimes not supporting
modification of .rdata sections for pseudo-relocation.
@item -mpe-aligned-commons
@opindex mpe-aligned-commons
This option is available for Cygwin and MinGW targets. It
specifies that the GNU extension to the PE file format that
permits the correct alignment of COMMON variables should be
used when generating code. It is enabled by default if
GCC detects that the target assembler found during configuration
supports the feature.
@end table
See also under @ref{i386 and x86-64 Options} for standard options.
@node IA-64 Options
@subsection IA-64 Options
@cindex IA-64 Options
These are the @samp{-m} options defined for the Intel IA-64 architecture.
@table @gcctabopt
@item -mbig-endian
@opindex mbig-endian
Generate code for a big-endian target. This is the default for HP-UX@.
@item -mlittle-endian
@opindex mlittle-endian
Generate code for a little-endian target. This is the default for AIX5
and GNU/Linux.
@item -mgnu-as
@itemx -mno-gnu-as
@opindex mgnu-as
@opindex mno-gnu-as
Generate (or don't) code for the GNU assembler. This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-as}
@c is used.
@item -mgnu-ld
@itemx -mno-gnu-ld
@opindex mgnu-ld
@opindex mno-gnu-ld
Generate (or don't) code for the GNU linker. This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-ld}
@c is used.
@item -mno-pic
@opindex mno-pic
Generate code that does not use a global pointer register. The result
is not position independent code, and violates the IA-64 ABI@.
@item -mvolatile-asm-stop
@itemx -mno-volatile-asm-stop
@opindex mvolatile-asm-stop
@opindex mno-volatile-asm-stop
Generate (or don't) a stop bit immediately before and after volatile asm
statements.
@item -mregister-names
@itemx -mno-register-names
@opindex mregister-names
@opindex mno-register-names
Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
the stacked registers. This may make assembler output more readable.
@item -mno-sdata
@itemx -msdata
@opindex mno-sdata
@opindex msdata
Disable (or enable) optimizations that use the small data section. This may
be useful for working around optimizer bugs.
@item -mconstant-gp
@opindex mconstant-gp
Generate code that uses a single constant global pointer value. This is
useful when compiling kernel code.
@item -mauto-pic
@opindex mauto-pic
Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
This is useful when compiling firmware code.
@item -minline-float-divide-min-latency
@opindex minline-float-divide-min-latency
Generate code for inline divides of floating-point values
using the minimum latency algorithm.
@item -minline-float-divide-max-throughput
@opindex minline-float-divide-max-throughput
Generate code for inline divides of floating-point values
using the maximum throughput algorithm.
@item -mno-inline-float-divide
@opindex mno-inline-float-divide
Do not generate inline code for divides of floating-point values.
@item -minline-int-divide-min-latency
@opindex minline-int-divide-min-latency
Generate code for inline divides of integer values
using the minimum latency algorithm.
@item -minline-int-divide-max-throughput
@opindex minline-int-divide-max-throughput
Generate code for inline divides of integer values
using the maximum throughput algorithm.
@item -mno-inline-int-divide
@opindex mno-inline-int-divide
Do not generate inline code for divides of integer values.
@item -minline-sqrt-min-latency
@opindex minline-sqrt-min-latency
Generate code for inline square roots
using the minimum latency algorithm.
@item -minline-sqrt-max-throughput
@opindex minline-sqrt-max-throughput
Generate code for inline square roots
using the maximum throughput algorithm.
@item -mno-inline-sqrt
@opindex mno-inline-sqrt
Do not generate inline code for @code{sqrt}.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Do (don't) generate code that uses the fused multiply/add or multiply/subtract
instructions. The default is to use these instructions.
@item -mno-dwarf2-asm
@itemx -mdwarf2-asm
@opindex mno-dwarf2-asm
@opindex mdwarf2-asm
Don't (or do) generate assembler code for the DWARF 2 line number debugging
info. This may be useful when not using the GNU assembler.
@item -mearly-stop-bits
@itemx -mno-early-stop-bits
@opindex mearly-stop-bits
@opindex mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit. This can improve instruction
scheduling, but does not always do so.
@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@item -mtls-size=@var{tls-size}
@opindex mtls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
64.
@item -mtune=@var{cpu-type}
@opindex mtune
Tune the instruction scheduling for a particular CPU, Valid values are
@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
and @samp{mckinley}.
@item -milp32
@itemx -mlp64
@opindex milp32
@opindex mlp64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits. These are HP-UX specific flags.
@item -mno-sched-br-data-spec
@itemx -msched-br-data-spec
@opindex mno-sched-br-data-spec
@opindex msched-br-data-spec
(Dis/En)able data speculative scheduling before reload.
This results in generation of @code{ld.a} instructions and
the corresponding check instructions (@code{ld.c} / @code{chk.a}).
The default is 'disable'.
@item -msched-ar-data-spec
@itemx -mno-sched-ar-data-spec
@opindex msched-ar-data-spec
@opindex mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload.
This results in generation of @code{ld.a} instructions and
the corresponding check instructions (@code{ld.c} / @code{chk.a}).
The default is 'enable'.
@item -mno-sched-control-spec
@itemx -msched-control-spec
@opindex mno-sched-control-spec
@opindex msched-control-spec
(Dis/En)able control speculative scheduling. This feature is
available only during region scheduling (i.e.@: before reload).
This results in generation of the @code{ld.s} instructions and
the corresponding check instructions @code{chk.s}.
The default is 'disable'.
@item -msched-br-in-data-spec
@itemx -mno-sched-br-in-data-spec
@opindex msched-br-in-data-spec
@opindex mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload.
This is effective only with @option{-msched-br-data-spec} enabled.
The default is 'enable'.
@item -msched-ar-in-data-spec
@itemx -mno-sched-ar-in-data-spec
@opindex msched-ar-in-data-spec
@opindex mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload.
This is effective only with @option{-msched-ar-data-spec} enabled.
The default is 'enable'.
@item -msched-in-control-spec
@itemx -mno-sched-in-control-spec
@opindex msched-in-control-spec
@opindex mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads.
This is effective only with @option{-msched-control-spec} enabled.
The default is 'enable'.
@item -mno-sched-prefer-non-data-spec-insns
@itemx -msched-prefer-non-data-spec-insns
@opindex mno-sched-prefer-non-data-spec-insns
@opindex msched-prefer-non-data-spec-insns
If enabled, data-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the data speculation much more conservative.
The default is 'disable'.
@item -mno-sched-prefer-non-control-spec-insns
@itemx -msched-prefer-non-control-spec-insns
@opindex mno-sched-prefer-non-control-spec-insns
@opindex msched-prefer-non-control-spec-insns
If enabled, control-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the control speculation much more conservative.
The default is 'disable'.
@item -mno-sched-count-spec-in-critical-path
@itemx -msched-count-spec-in-critical-path
@opindex mno-sched-count-spec-in-critical-path
@opindex msched-count-spec-in-critical-path
If enabled, speculative dependencies are considered during
computation of the instructions priorities. This makes the use of the
speculation a bit more conservative.
The default is 'disable'.
@item -msched-spec-ldc
@opindex msched-spec-ldc
Use a simple data speculation check. This option is on by default.
@item -msched-control-spec-ldc
@opindex msched-spec-ldc
Use a simple check for control speculation. This option is on by default.
@item -msched-stop-bits-after-every-cycle
@opindex msched-stop-bits-after-every-cycle
Place a stop bit after every cycle when scheduling. This option is on
by default.
@item -msched-fp-mem-deps-zero-cost
@opindex msched-fp-mem-deps-zero-cost
Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group. This option is disabled by
default.
@item -msel-sched-dont-check-control-spec
@opindex msel-sched-dont-check-control-spec
Generate checks for control speculation in selective scheduling.
This flag is disabled by default.
@item -msched-max-memory-insns=@var{max-insns}
@opindex msched-max-memory-insns
Limit on the number of memory insns per instruction group, giving lower
priority to subsequent memory insns attempting to schedule in the same
instruction group. Frequently useful to prevent cache bank conflicts.
The default value is 1.
@item -msched-max-memory-insns-hard-limit
@opindex msched-max-memory-insns-hard-limit
Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
disallowing more than that number in an instruction group.
Otherwise, the limit is ``soft'', meaning that non-memory operations
are preferred when the limit is reached, but memory operations may still
be scheduled.
@end table
@node LM32 Options
@subsection LM32 Options
@cindex LM32 options
These @option{-m} options are defined for the LatticeMico32 architecture:
@table @gcctabopt
@item -mbarrel-shift-enabled
@opindex mbarrel-shift-enabled
Enable barrel-shift instructions.
@item -mdivide-enabled
@opindex mdivide-enabled
Enable divide and modulus instructions.
@item -mmultiply-enabled
@opindex multiply-enabled
Enable multiply instructions.
@item -msign-extend-enabled
@opindex msign-extend-enabled
Enable sign extend instructions.
@item -muser-enabled
@opindex muser-enabled
Enable user-defined instructions.
@end table
@node M32C Options
@subsection M32C Options
@cindex M32C options
@table @gcctabopt
@item -mcpu=@var{name}
@opindex mcpu=
Select the CPU for which code is generated. @var{name} may be one of
@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
the M32C/80 series.
@item -msim
@opindex msim
Specifies that the program will be run on the simulator. This causes
an alternate runtime library to be linked in which supports, for
example, file I/O@. You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.
@item -memregs=@var{number}
@opindex memregs=
Specifies the number of memory-based pseudo-registers GCC uses
during code generation. These pseudo-registers are used like real
registers, so there is a tradeoff between GCC's ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers. Note that all modules in a program must
be compiled with the same value for this option. Because of that, you
must not use this option with GCC's default runtime libraries.
@end table
@node M32R/D Options
@subsection M32R/D Options
@cindex M32R/D options
These @option{-m} options are defined for Renesas M32R/D architectures:
@table @gcctabopt
@item -m32r2
@opindex m32r2
Generate code for the M32R/2@.
@item -m32rx
@opindex m32rx
Generate code for the M32R/X@.
@item -m32r
@opindex m32r
Generate code for the M32R@. This is the default.
@item -mmodel=small
@opindex mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the @code{ld24} instruction), and assume all subroutines
are reachable with the @code{bl} instruction.
This is the default.
The addressability of a particular object can be set with the
@code{model} attribute.
@item -mmodel=medium
@opindex mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
generates @code{seth/add3} instructions to load their addresses), and
assume all subroutines are reachable with the @code{bl} instruction.
@item -mmodel=large
@opindex mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler
generates @code{seth/add3} instructions to load their addresses), and
assume subroutines may not be reachable with the @code{bl} instruction
(the compiler generates the much slower @code{seth/add3/jl}
instruction sequence).
@item -msdata=none
@opindex msdata=none
Disable use of the small data area. Variables are put into
one of @samp{.data}, @samp{.bss}, or @samp{.rodata} (unless the
@code{section} attribute has been specified).
This is the default.
The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
Objects may be explicitly put in the small data area with the
@code{section} attribute using one of these sections.
@item -msdata=sdata
@opindex msdata=sdata
Put small global and static data in the small data area, but do not
generate special code to reference them.
@item -msdata=use
@opindex msdata=use
Put small global and static data in the small data area, and generate
special instructions to reference them.
@item -G @var{num}
@opindex G
@cindex smaller data references
Put global and static objects less than or equal to @var{num} bytes
into the small data or BSS sections instead of the normal data or BSS
sections. The default value of @var{num} is 8.
The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
for this option to have any effect.
All modules should be compiled with the same @option{-G @var{num}} value.
Compiling with different values of @var{num} may or may not work; if it
doesn't the linker gives an error message---incorrect code is not
generated.
@item -mdebug
@opindex mdebug
Makes the M32R-specific code in the compiler display some statistics
that might help in debugging programs.
@item -malign-loops
@opindex malign-loops
Align all loops to a 32-byte boundary.
@item -mno-align-loops
@opindex mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.
@item -missue-rate=@var{number}
@opindex missue-rate=@var{number}
Issue @var{number} instructions per cycle. @var{number} can only be 1
or 2.
@item -mbranch-cost=@var{number}
@opindex mbranch-cost=@var{number}
@var{number} can only be 1 or 2. If it is 1 then branches are
preferred over conditional code, if it is 2, then the opposite applies.
@item -mflush-trap=@var{number}
@opindex mflush-trap=@var{number}
Specifies the trap number to use to flush the cache. The default is
12. Valid numbers are between 0 and 15 inclusive.
@item -mno-flush-trap
@opindex mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.
@item -mflush-func=@var{name}
@opindex mflush-func=@var{name}
Specifies the name of the operating system function to call to flush
the cache. The default is @emph{_flush_cache}, but a function call
is only used if a trap is not available.
@item -mno-flush-func
@opindex mno-flush-func
Indicates that there is no OS function for flushing the cache.
@end table
@node M680x0 Options
@subsection M680x0 Options
@cindex M680x0 options
These are the @samp{-m} options defined for M680x0 and ColdFire processors.
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.
@table @gcctabopt
@item -march=@var{arch}
@opindex march
Generate code for a specific M680x0 or ColdFire instruction set
architecture. Permissible values of @var{arch} for M680x0
architectures are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
architectures are selected according to Freescale's ISA classification
and the permissible values are: @samp{isaa}, @samp{isaaplus},
@samp{isab} and @samp{isac}.
GCC defines a macro @samp{__mcf@var{arch}__} whenever it is generating
code for a ColdFire target. The @var{arch} in this macro is one of the
@option{-march} arguments given above.
When used together, @option{-march} and @option{-mtune} select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.
@item -mcpu=@var{cpu}
@opindex mcpu
Generate code for a specific M680x0 or ColdFire processor.
The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
below, which also classifies the CPUs into families:
@multitable @columnfractions 0.20 0.80
@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
@item @samp{5206e} @tab @samp{5206e}
@item @samp{5208} @tab @samp{5207} @samp{5208}
@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
@item @samp{5216} @tab @samp{5214} @samp{5216}
@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
@item @samp{5225} @tab @samp{5224} @samp{5225}
@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
@item @samp{5249} @tab @samp{5249}
@item @samp{5250} @tab @samp{5250}
@item @samp{5271} @tab @samp{5270} @samp{5271}
@item @samp{5272} @tab @samp{5272}
@item @samp{5275} @tab @samp{5274} @samp{5275}
@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
@item @samp{5307} @tab @samp{5307}
@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
@item @samp{5407} @tab @samp{5407}
@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
@end multitable
@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
@var{arch} is compatible with @var{cpu}. Other combinations of
@option{-mcpu} and @option{-march} are rejected.
GCC defines the macro @samp{__mcf_cpu_@var{cpu}} when ColdFire target
@var{cpu} is selected. It also defines @samp{__mcf_family_@var{family}},
where the value of @var{family} is given by the table above.
@item -mtune=@var{tune}
@opindex mtune
Tune the code for a particular microarchitecture within the
constraints set by @option{-march} and @option{-mcpu}.
The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
and @samp{cpu32}. The ColdFire microarchitectures
are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
You can also use @option{-mtune=68020-40} for code that needs
to run relatively well on 68020, 68030 and 68040 targets.
@option{-mtune=68020-60} is similar but includes 68060 targets
as well. These two options select the same tuning decisions as
@option{-m68020-40} and @option{-m68020-60} respectively.
GCC defines the macros @samp{__mc@var{arch}} and @samp{__mc@var{arch}__}
when tuning for 680x0 architecture @var{arch}. It also defines
@samp{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
option is used. If GCC is tuning for a range of architectures,
as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
it defines the macros for every architecture in the range.
GCC also defines the macro @samp{__m@var{uarch}__} when tuning for
ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
of the arguments given above.
@item -m68000
@itemx -mc68000
@opindex m68000
@opindex mc68000
Generate output for a 68000. This is the default
when the compiler is configured for 68000-based systems.
It is equivalent to @option{-march=68000}.
Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
@item -m68010
@opindex m68010
Generate output for a 68010. This is the default
when the compiler is configured for 68010-based systems.
It is equivalent to @option{-march=68010}.
@item -m68020
@itemx -mc68020
@opindex m68020
@opindex mc68020
Generate output for a 68020. This is the default
when the compiler is configured for 68020-based systems.
It is equivalent to @option{-march=68020}.
@item -m68030
@opindex m68030
Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems. It is equivalent to
@option{-march=68030}.
@item -m68040
@opindex m68040
Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems. It is equivalent to
@option{-march=68040}.
This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. Use this option if your 68040 does not
have code to emulate those instructions.
@item -m68060
@opindex m68060
Generate output for a 68060. This is the default when the compiler is
configured for 68060-based systems. It is equivalent to
@option{-march=68060}.
This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060. Use this option if your 68060
does not have code to emulate those instructions.
@item -mcpu32
@opindex mcpu32
Generate output for a CPU32. This is the default
when the compiler is configured for CPU32-based systems.
It is equivalent to @option{-march=cpu32}.
Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.
@item -m5200
@opindex m5200
Generate output for a 520X ColdFire CPU@. This is the default
when the compiler is configured for 520X-based systems.
It is equivalent to @option{-mcpu=5206}, and is now deprecated
in favor of that option.
Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.
@item -m5206e
@opindex m5206e
Generate output for a 5206e ColdFire CPU@. The option is now
deprecated in favor of the equivalent @option{-mcpu=5206e}.
@item -m528x
@opindex m528x
Generate output for a member of the ColdFire 528X family.
The option is now deprecated in favor of the equivalent
@option{-mcpu=528x}.
@item -m5307
@opindex m5307
Generate output for a ColdFire 5307 CPU@. The option is now deprecated
in favor of the equivalent @option{-mcpu=5307}.
@item -m5407
@opindex m5407
Generate output for a ColdFire 5407 CPU@. The option is now deprecated
in favor of the equivalent @option{-mcpu=5407}.
@item -mcfv4e
@opindex mcfv4e
Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
This includes use of hardware floating-point instructions.
The option is equivalent to @option{-mcpu=547x}, and is now
deprecated in favor of that option.
@item -m68020-40
@opindex m68020-40
Generate output for a 68040, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68040.
The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
@item -m68020-60
@opindex m68020-60
Generate output for a 68060, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68060.
The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
@item -mhard-float
@itemx -m68881
@opindex mhard-float
@opindex m68881
Generate floating-point instructions. This is the default for 68020
and above, and for ColdFire devices that have an FPU@. It defines the
macro @samp{__HAVE_68881__} on M680x0 targets and @samp{__mcffpu__}
on ColdFire targets.
@item -msoft-float
@opindex msoft-float
Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets. It is also
the default for ColdFire devices that have no FPU.
@item -mdiv
@itemx -mno-div
@opindex mdiv
@opindex mno-div
Generate (do not generate) ColdFire hardware divide and remainder
instructions. If @option{-march} is used without @option{-mcpu},
the default is ``on'' for ColdFire architectures and ``off'' for M680x0
architectures. Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by @option{-mcpu}). For
example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
@option{-mcpu=5206e}.
GCC defines the macro @samp{__mcfhwdiv__} when this option is enabled.
@item -mshort
@opindex mshort
Consider type @code{int} to be 16 bits wide, like @code{short int}.
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.
@item -mno-short
@opindex mno-short
Do not consider type @code{int} to be 16 bits wide. This is the default.
@item -mnobitfield
@itemx -mno-bitfield
@opindex mnobitfield
@opindex mno-bitfield
Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
and @option{-m5200} options imply @w{@option{-mnobitfield}}.
@item -mbitfield
@opindex mbitfield
Do use the bit-field instructions. The @option{-m68020} option implies
@option{-mbitfield}. This is the default if you use a configuration
designed for a 68020.
@item -mrtd
@opindex mrtd
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the @code{rtd}
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code is generated for calls to those
functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
The @code{rtd} instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
@item -mno-rtd
@opindex mno-rtd
Do not use the calling conventions selected by @option{-mrtd}.
This is the default.
@item -malign-int
@itemx -mno-align-int
@opindex malign-int
@opindex mno-align-int
Control whether GCC aligns @code{int}, @code{long}, @code{long long},
@code{float}, @code{double}, and @code{long double} variables on a 32-bit
boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.
@strong{Warning:} if you use the @option{-malign-int} switch, GCC
aligns structures containing the above types differently than
most published application binary interface specifications for the m68k.
@item -mpcrel
@opindex mpcrel
Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table. At present, this option implies @option{-fpic},
allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
not presently supported with @option{-mpcrel}, though this could be supported for
68020 and higher processors.
@item -mno-strict-align
@itemx -mstrict-align
@opindex mno-strict-align
@opindex mstrict-align
Do not (do) assume that unaligned memory references are handled by
the system.
@item -msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute-in-place in
an environment without virtual memory management. This option implies
@option{-fPIC}.
@item -mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.
@item -mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute-in-place and shared libraries in an environment
without virtual memory management. This option implies @option{-fPIC}.
@item -mno-id-shared-library
Generate code that doesn't assume ID-based shared libraries are being used.
This is the default.
@item -mshared-library-id=n
Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library, but is no more space- or time-efficient than omitting this option.
@item -mxgot
@itemx -mno-xgot
@opindex mxgot
@opindex mno-xgot
When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries. This code is
larger and slower than code generated without this option. On M680x0
processors, this option is not needed; @option{-fPIC} suffices.
GCC normally uses a single instruction to load values from the GOT@.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
@cindex relocation truncated to fit (ColdFire)
@smallexample
relocation truncated to fit: R_68K_GOT16O foobar
@end smallexample
If this happens, you should recompile your code with @option{-mxgot}.
It should then work with very large GOTs. However, code generated with
@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.
Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries. If you have such a linker,
you should only need to use @option{-mxgot} when compiling a single
object file that accesses more than 8192 GOT entries. Very few do.
These options have no effect unless GCC is generating
position-independent code.
@end table
@node MCore Options
@subsection MCore Options
@cindex MCore options
These are the @samp{-m} options defined for the Motorola M*Core
processors.
@table @gcctabopt
@item -mhardlit
@itemx -mno-hardlit
@opindex mhardlit
@opindex mno-hardlit
Inline constants into the code stream if it can be done in two
instructions or less.
@item -mdiv
@itemx -mno-div
@opindex mdiv
@opindex mno-div
Use the divide instruction. (Enabled by default).
@item -mrelax-immediate
@itemx -mno-relax-immediate
@opindex mrelax-immediate
@opindex mno-relax-immediate
Allow arbitrary-sized immediates in bit operations.
@item -mwide-bitfields
@itemx -mno-wide-bitfields
@opindex mwide-bitfields
@opindex mno-wide-bitfields
Always treat bit-fields as @code{int}-sized.
@item -m4byte-functions
@itemx -mno-4byte-functions
@opindex m4byte-functions
@opindex mno-4byte-functions
Force all functions to be aligned to a 4-byte boundary.
@item -mcallgraph-data
@itemx -mno-callgraph-data
@opindex mcallgraph-data
@opindex mno-callgraph-data
Emit callgraph information.
@item -mslow-bytes
@itemx -mno-slow-bytes
@opindex mslow-bytes
@opindex mno-slow-bytes
Prefer word access when reading byte quantities.
@item -mlittle-endian
@itemx -mbig-endian
@opindex mlittle-endian
@opindex mbig-endian
Generate code for a little-endian target.
@item -m210
@itemx -m340
@opindex m210
@opindex m340
Generate code for the 210 processor.
@item -mno-lsim
@opindex mno-lsim
Assume that runtime support has been provided and so omit the
simulator library (@file{libsim.a)} from the linker command line.
@item -mstack-increment=@var{size}
@opindex mstack-increment
Set the maximum amount for a single stack increment operation. Large
values can increase the speed of programs that contain functions
that need a large amount of stack space, but they can also trigger a
segmentation fault if the stack is extended too much. The default
value is 0x1000.
@end table
@node MeP Options
@subsection MeP Options
@cindex MeP options
@table @gcctabopt
@item -mabsdiff
@opindex mabsdiff
Enables the @code{abs} instruction, which is the absolute difference
between two registers.
@item -mall-opts
@opindex mall-opts
Enables all the optional instructions---average, multiply, divide, bit
operations, leading zero, absolute difference, min/max, clip, and
saturation.
@item -maverage
@opindex maverage
Enables the @code{ave} instruction, which computes the average of two
registers.
@item -mbased=@var{n}
@opindex mbased=
Variables of size @var{n} bytes or smaller are placed in the
@code{.based} section by default. Based variables use the @code{$tp}
register as a base register, and there is a 128-byte limit to the
@code{.based} section.
@item -mbitops
@opindex mbitops
Enables the bit operation instructions---bit test (@code{btstm}), set
(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
test-and-set (@code{tas}).
@item -mc=@var{name}
@opindex mc=
Selects which section constant data is placed in. @var{name} may
be @code{tiny}, @code{near}, or @code{far}.
@item -mclip
@opindex mclip
Enables the @code{clip} instruction. Note that @code{-mclip} is not
useful unless you also provide @code{-mminmax}.
@item -mconfig=@var{name}
@opindex mconfig=
Selects one of the built-in core configurations. Each MeP chip has
one or more modules in it; each module has a core CPU and a variety of
coprocessors, optional instructions, and peripherals. The
@code{MeP-Integrator} tool, not part of GCC, provides these
configurations through this option; using this option is the same as
using all the corresponding command-line options. The default
configuration is @code{default}.
@item -mcop
@opindex mcop
Enables the coprocessor instructions. By default, this is a 32-bit
coprocessor. Note that the coprocessor is normally enabled via the
@code{-mconfig=} option.
@item -mcop32
@opindex mcop32
Enables the 32-bit coprocessor's instructions.
@item -mcop64
@opindex mcop64
Enables the 64-bit coprocessor's instructions.
@item -mivc2
@opindex mivc2
Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
@item -mdc
@opindex mdc
Causes constant variables to be placed in the @code{.near} section.
@item -mdiv
@opindex mdiv
Enables the @code{div} and @code{divu} instructions.
@item -meb
@opindex meb
Generate big-endian code.
@item -mel
@opindex mel
Generate little-endian code.
@item -mio-volatile
@opindex mio-volatile
Tells the compiler that any variable marked with the @code{io}
attribute is to be considered volatile.
@item -ml
@opindex ml
Causes variables to be assigned to the @code{.far} section by default.
@item -mleadz
@opindex mleadz
Enables the @code{leadz} (leading zero) instruction.
@item -mm
@opindex mm
Causes variables to be assigned to the @code{.near} section by default.
@item -mminmax
@opindex mminmax
Enables the @code{min} and @code{max} instructions.
@item -mmult
@opindex mmult
Enables the multiplication and multiply-accumulate instructions.
@item -mno-opts
@opindex mno-opts
Disables all the optional instructions enabled by @code{-mall-opts}.
@item -mrepeat
@opindex mrepeat
Enables the @code{repeat} and @code{erepeat} instructions, used for
low-overhead looping.
@item -ms
@opindex ms
Causes all variables to default to the @code{.tiny} section. Note
that there is a 65536-byte limit to this section. Accesses to these
variables use the @code{%gp} base register.
@item -msatur
@opindex msatur
Enables the saturation instructions. Note that the compiler does not
currently generate these itself, but this option is included for
compatibility with other tools, like @code{as}.
@item -msdram
@opindex msdram
Link the SDRAM-based runtime instead of the default ROM-based runtime.
@item -msim
@opindex msim
Link the simulator runtime libraries.
@item -msimnovec
@opindex msimnovec
Link the simulator runtime libraries, excluding built-in support
for reset and exception vectors and tables.
@item -mtf
@opindex mtf
Causes all functions to default to the @code{.far} section. Without
this option, functions default to the @code{.near} section.
@item -mtiny=@var{n}
@opindex mtiny=
Variables that are @var{n} bytes or smaller are allocated to the
@code{.tiny} section. These variables use the @code{$gp} base
register. The default for this option is 4, but note that there's a
65536-byte limit to the @code{.tiny} section.
@end table
@node MicroBlaze Options
@subsection MicroBlaze Options
@cindex MicroBlaze Options
@table @gcctabopt
@item -msoft-float
@opindex msoft-float
Use software emulation for floating point (default).
@item -mhard-float
@opindex mhard-float
Use hardware floating-point instructions.
@item -mmemcpy
@opindex mmemcpy
Do not optimize block moves, use @code{memcpy}.
@item -mno-clearbss
@opindex mno-clearbss
This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
@item -mcpu=@var{cpu-type}
@opindex mcpu=
Use features of, and schedule code for, the given CPU.
Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
where @var{X} is a major version, @var{YY} is the minor version, and
@var{Z} is compatibility code. Example values are @samp{v3.00.a},
@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
@item -mxl-soft-mul
@opindex mxl-soft-mul
Use software multiply emulation (default).
@item -mxl-soft-div
@opindex mxl-soft-div
Use software emulation for divides (default).
@item -mxl-barrel-shift
@opindex mxl-barrel-shift
Use the hardware barrel shifter.
@item -mxl-pattern-compare
@opindex mxl-pattern-compare
Use pattern compare instructions.
@item -msmall-divides
@opindex msmall-divides
Use table lookup optimization for small signed integer divisions.
@item -mxl-stack-check
@opindex mxl-stack-check
This option is deprecated. Use @option{-fstack-check} instead.
@item -mxl-gp-opt
@opindex mxl-gp-opt
Use GP-relative @code{.sdata}/@code{.sbss} sections.
@item -mxl-multiply-high
@opindex mxl-multiply-high
Use multiply high instructions for high part of 32x32 multiply.
@item -mxl-float-convert
@opindex mxl-float-convert
Use hardware floating-point conversion instructions.
@item -mxl-float-sqrt
@opindex mxl-float-sqrt
Use hardware floating-point square root instruction.
@item -mbig-endian
@opindex mbig-endian
Generate code for a big-endian target.
@item -mlittle-endian
@opindex mlittle-endian
Generate code for a little-endian target.
@item -mxl-reorder
@opindex mxl-reorder
Use reorder instructions (swap and byte reversed load/store).
@item -mxl-mode-@var{app-model}
Select application model @var{app-model}. Valid models are
@table @samp
@item executable
normal executable (default), uses startup code @file{crt0.o}.
@item xmdstub
for use with Xilinx Microprocessor Debugger (XMD) based
software intrusive debug agent called xmdstub. This uses startup file
@file{crt1.o} and sets the start address of the program to 0x800.
@item bootstrap
for applications that are loaded using a bootloader.
This model uses startup file @file{crt2.o} which does not contain a processor
reset vector handler. This is suitable for transferring control on a
processor reset to the bootloader rather than the application.
@item novectors
for applications that do not require any of the
MicroBlaze vectors. This option may be useful for applications running
within a monitoring application. This model uses @file{crt3.o} as a startup file.
@end table
Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
@option{-mxl-mode-@var{app-model}}.
@end table
@node MIPS Options
@subsection MIPS Options
@cindex MIPS options
@table @gcctabopt
@item -EB
@opindex EB
Generate big-endian code.
@item -EL
@opindex EL
Generate little-endian code. This is the default for @samp{mips*el-*-*}
configurations.
@item -march=@var{arch}
@opindex march
Generate code that runs on @var{arch}, which can be the name of a
generic MIPS ISA, or the name of a particular processor.
The ISA names are:
@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
@samp{mips32}, @samp{mips32r2}, @samp{mips64} and @samp{mips64r2}.
The processor names are:
@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
@samp{5kc}, @samp{5kf},
@samp{20kc},
@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
@samp{m4k},
@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
@samp{octeon}, @samp{octeon+}, @samp{octeon2},
@samp{orion},
@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
@samp{rm7000}, @samp{rm9000},
@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
@samp{sb1},
@samp{sr71000},
@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
@samp{xlr} and @samp{xlp}.
The special value @samp{from-abi} selects the
most compatible architecture for the selected ABI (that is,
@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
The native Linux/GNU toolchain also supports the value @samp{native},
which selects the best architecture option for the host processor.
@option{-march=native} has no effect if GCC does not recognize
the processor.
In processor names, a final @samp{000} can be abbreviated as @samp{k}
(for example, @option{-march=r2k}). Prefixes are optional, and
@samp{vr} may be written @samp{r}.
Names of the form @samp{@var{n}f2_1} refer to processors with
FPUs clocked at half the rate of the core, names of the form
@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
rate as the core, and names of the form @samp{@var{n}f3_2} refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core.
For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
accepted as synonyms for @samp{@var{n}f1_1}.
GCC defines two macros based on the value of this option. The first
is @samp{_MIPS_ARCH}, which gives the name of target architecture, as
a string. The second has the form @samp{_MIPS_ARCH_@var{foo}},
where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@.
For example, @option{-march=r2000} sets @samp{_MIPS_ARCH}
to @samp{"r2000"} and defines the macro @samp{_MIPS_ARCH_R2000}.
Note that the @samp{_MIPS_ARCH} macro uses the processor names given
above. In other words, it has the full prefix and does not
abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
the macro names the resolved architecture (either @samp{"mips1"} or
@samp{"mips3"}). It names the default architecture when no
@option{-march} option is given.
@item -mtune=@var{arch}
@opindex mtune
Optimize for @var{arch}. Among other things, this option controls
the way instructions are scheduled, and the perceived cost of arithmetic
operations. The list of @var{arch} values is the same as for
@option{-march}.
When this option is not used, GCC optimizes for the processor
specified by @option{-march}. By using @option{-march} and
@option{-mtune} together, it is possible to generate code that
runs on a family of processors, but optimize the code for one
particular member of that family.
@option{-mtune} defines the macros @samp{_MIPS_TUNE} and
@samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the
@option{-march} ones described above.
@item -mips1
@opindex mips1
Equivalent to @option{-march=mips1}.
@item -mips2
@opindex mips2
Equivalent to @option{-march=mips2}.
@item -mips3
@opindex mips3
Equivalent to @option{-march=mips3}.
@item -mips4
@opindex mips4
Equivalent to @option{-march=mips4}.
@item -mips32
@opindex mips32
Equivalent to @option{-march=mips32}.
@item -mips32r2
@opindex mips32r2
Equivalent to @option{-march=mips32r2}.
@item -mips64
@opindex mips64
Equivalent to @option{-march=mips64}.
@item -mips64r2
@opindex mips64r2
Equivalent to @option{-march=mips64r2}.
@item -mips16
@itemx -mno-mips16
@opindex mips16
@opindex mno-mips16
Generate (do not generate) MIPS16 code. If GCC is targeting a
MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
MIPS16 code generation can also be controlled on a per-function basis
by means of @code{mips16} and @code{nomips16} attributes.
@xref{Function Attributes}, for more information.
@item -mflip-mips16
@opindex mflip-mips16
Generate MIPS16 code on alternating functions. This option is provided
for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
not intended for ordinary use in compiling user code.
@item -minterlink-compressed
@item -mno-interlink-compressed
@opindex minterlink-compressed
@opindex mno-interlink-compressed
Require (do not require) that code using the standard (uncompressed) MIPS ISA
be link-compatible with MIPS16 and microMIPS code, and vice versa.
For example, code using the standard ISA encoding cannot jump directly
to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
@option{-minterlink-compressed} therefore disables direct jumps unless GCC
knows that the target of the jump is not compressed.
@item -minterlink-mips16
@itemx -mno-interlink-mips16
@opindex minterlink-mips16
@opindex mno-interlink-mips16
Aliases of @option{-minterlink-compressed} and
@option{-mno-interlink-compressed}. These options predate the microMIPS ASE
and are retained for backwards compatibility.
@item -mabi=32
@itemx -mabi=o64
@itemx -mabi=n32
@itemx -mabi=64
@itemx -mabi=eabi
@opindex mabi=32
@opindex mabi=o64
@opindex mabi=n32
@opindex mabi=64
@opindex mabi=eabi
Generate code for the given ABI@.
Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
generates 64-bit code when you select a 64-bit architecture, but you
can use @option{-mgp32} to get 32-bit code instead.
For information about the O64 ABI, see
@uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
GCC supports a variant of the o32 ABI in which floating-point registers
are 64 rather than 32 bits wide. You can select this combination with
@option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
and @code{mfhc1} instructions and is therefore only supported for
MIPS32R2 processors.
The register assignments for arguments and return values remain the
same, but each scalar value is passed in a single 64-bit register
rather than a pair of 32-bit registers. For example, scalar
floating-point values are returned in @samp{$f0} only, not a
@samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
remains the same, but all 64 bits are saved.
@item -mabicalls
@itemx -mno-abicalls
@opindex mabicalls
@opindex mno-abicalls
Generate (do not generate) code that is suitable for SVR4-style
dynamic objects. @option{-mabicalls} is the default for SVR4-based
systems.
@item -mshared
@itemx -mno-shared
Generate (do not generate) code that is fully position-independent,
and that can therefore be linked into shared libraries. This option
only affects @option{-mabicalls}.
All @option{-mabicalls} code has traditionally been position-independent,
regardless of options like @option{-fPIC} and @option{-fpic}. However,
as an extension, the GNU toolchain allows executables to use absolute
accesses for locally-binding symbols. It can also use shorter GP
initialization sequences and generate direct calls to locally-defined
functions. This mode is selected by @option{-mno-shared}.
@option{-mno-shared} depends on binutils 2.16 or higher and generates
objects that can only be linked by the GNU linker. However, the option
does not affect the ABI of the final executable; it only affects the ABI
of relocatable objects. Using @option{-mno-shared} generally makes
executables both smaller and quicker.
@option{-mshared} is the default.
@item -mplt
@itemx -mno-plt
@opindex mplt
@opindex mno-plt
Assume (do not assume) that the static and dynamic linkers
support PLTs and copy relocations. This option only affects
@option{-mno-shared -mabicalls}. For the n64 ABI, this option
has no effect without @option{-msym32}.
You can make @option{-mplt} the default by configuring
GCC with @option{--with-mips-plt}. The default is
@option{-mno-plt} otherwise.
@item -mxgot
@itemx -mno-xgot
@opindex mxgot
@opindex mno-xgot
Lift (do not lift) the usual restrictions on the size of the global
offset table.
GCC normally uses a single instruction to load values from the GOT@.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
@cindex relocation truncated to fit (MIPS)
@smallexample
relocation truncated to fit: R_MIPS_GOT16 foobar
@end smallexample
If this happens, you should recompile your code with @option{-mxgot}.
This works with very large GOTs, although the code is also
less efficient, since it takes three instructions to fetch the
value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a
linker, you should only need to use @option{-mxgot} when a single object
file accesses more than 64k's worth of GOT entries. Very few do.
These options have no effect unless GCC is generating position
independent code.
@item -mgp32
@opindex mgp32
Assume that general-purpose registers are 32 bits wide.
@item -mgp64
@opindex mgp64
Assume that general-purpose registers are 64 bits wide.
@item -mfp32
@opindex mfp32
Assume that floating-point registers are 32 bits wide.
@item -mfp64
@opindex mfp64
Assume that floating-point registers are 64 bits wide.
@item -mhard-float
@opindex mhard-float
Use floating-point coprocessor instructions.
@item -msoft-float
@opindex msoft-float
Do not use floating-point coprocessor instructions. Implement
floating-point calculations using library calls instead.
@item -mno-float
@opindex mno-float
Equivalent to @option{-msoft-float}, but additionally asserts that the
program being compiled does not perform any floating-point operations.
This option is presently supported only by some bare-metal MIPS
configurations, where it may select a special set of libraries
that lack all floating-point support (including, for example, the
floating-point @code{printf} formats).
If code compiled with @code{-mno-float} accidentally contains
floating-point operations, it is likely to suffer a link-time
or run-time failure.
@item -msingle-float
@opindex msingle-float
Assume that the floating-point coprocessor only supports single-precision
operations.
@item -mdouble-float
@opindex mdouble-float
Assume that the floating-point coprocessor supports double-precision
operations. This is the default.
@item -mabs=2008
@itemx -mabs=legacy
@opindex mabs=2008
@opindex mabs=legacy
These options control the treatment of the special not-a-number (NaN)
IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
@code{neg.@i{fmt}} machine instructions.
By default or when the @option{-mabs=legacy} is used the legacy
treatment is selected. In this case these instructions are considered
arithmetic and avoided where correct operation is required and the
input operand might be a NaN. A longer sequence of instructions that
manipulate the sign bit of floating-point datum manually is used
instead unless the @option{-ffinite-math-only} option has also been
specified.
The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
this case these instructions are considered non-arithmetic and therefore
operating correctly in all cases, including in particular where the
input operand is a NaN. These instructions are therefore always used
for the respective operations.
@item -mnan=2008
@itemx -mnan=legacy
@opindex mnan=2008
@opindex mnan=legacy
These options control the encoding of the special not-a-number (NaN)
IEEE 754 floating-point data.
The @option{-mnan=legacy} option selects the legacy encoding. In this
case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
significand field being 0, whereas signalling NaNs (sNaNs) are denoted
by the first bit of their trailing significand field being 1.
The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
this case qNaNs are denoted by the first bit of their trailing
significand field being 1, whereas sNaNs are denoted by the first bit of
their trailing significand field being 0.
The default is @option{-mnan=legacy} unless GCC has been configured with
@option{--with-nan=2008}.
@item -mllsc
@itemx -mno-llsc
@opindex mllsc
@opindex mno-llsc
Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
implement atomic memory built-in functions. When neither option is
specified, GCC uses the instructions if the target architecture
supports them.
@option{-mllsc} is useful if the runtime environment can emulate the
instructions and @option{-mno-llsc} can be useful when compiling for
nonstandard ISAs. You can make either option the default by
configuring GCC with @option{--with-llsc} and @option{--without-llsc}
respectively. @option{--with-llsc} is the default for some
configurations; see the installation documentation for details.
@item -mdsp
@itemx -mno-dsp
@opindex mdsp
@opindex mno-dsp
Use (do not use) revision 1 of the MIPS DSP ASE@.
@xref{MIPS DSP Built-in Functions}. This option defines the
preprocessor macro @samp{__mips_dsp}. It also defines
@samp{__mips_dsp_rev} to 1.
@item -mdspr2
@itemx -mno-dspr2
@opindex mdspr2
@opindex mno-dspr2
Use (do not use) revision 2 of the MIPS DSP ASE@.
@xref{MIPS DSP Built-in Functions}. This option defines the
preprocessor macros @samp{__mips_dsp} and @samp{__mips_dspr2}.
It also defines @samp{__mips_dsp_rev} to 2.
@item -msmartmips
@itemx -mno-smartmips
@opindex msmartmips
@opindex mno-smartmips
Use (do not use) the MIPS SmartMIPS ASE.
@item -mpaired-single
@itemx -mno-paired-single
@opindex mpaired-single
@opindex mno-paired-single
Use (do not use) paired-single floating-point instructions.
@xref{MIPS Paired-Single Support}. This option requires
hardware floating-point support to be enabled.
@item -mdmx
@itemx -mno-mdmx
@opindex mdmx
@opindex mno-mdmx
Use (do not use) MIPS Digital Media Extension instructions.
This option can only be used when generating 64-bit code and requires
hardware floating-point support to be enabled.
@item -mips3d
@itemx -mno-mips3d
@opindex mips3d
@opindex mno-mips3d
Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
The option @option{-mips3d} implies @option{-mpaired-single}.
@item -mmicromips
@itemx -mno-micromips
@opindex mmicromips
@opindex mno-mmicromips
Generate (do not generate) microMIPS code.
MicroMIPS code generation can also be controlled on a per-function basis
by means of @code{micromips} and @code{nomicromips} attributes.
@xref{Function Attributes}, for more information.
@item -mmt
@itemx -mno-mt
@opindex mmt
@opindex mno-mt
Use (do not use) MT Multithreading instructions.
@item -mmcu
@itemx -mno-mcu
@opindex mmcu
@opindex mno-mcu
Use (do not use) the MIPS MCU ASE instructions.
@item -meva
@itemx -mno-eva
@opindex meva
@opindex mno-eva
Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
@item -mlong64
@opindex mlong64
Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
an explanation of the default and the way that the pointer size is
determined.
@item -mlong32
@opindex mlong32
Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
The default size of @code{int}s, @code{long}s and pointers depends on
the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
32-bit @code{long}s. Pointers are the same size as @code{long}s,
or the same size as integer registers, whichever is smaller.
@item -msym32
@itemx -mno-sym32
@opindex msym32
@opindex mno-sym32
Assume (do not assume) that all symbols have 32-bit values, regardless
of the selected ABI@. This option is useful in combination with
@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
to generate shorter and faster references to symbolic addresses.
@item -G @var{num}
@opindex G
Put definitions of externally-visible data in a small data section
if that data is no bigger than @var{num} bytes. GCC can then generate
more efficient accesses to the data; see @option{-mgpopt} for details.
The default @option{-G} option depends on the configuration.
@item -mlocal-sdata
@itemx -mno-local-sdata
@opindex mlocal-sdata
@opindex mno-local-sdata
Extend (do not extend) the @option{-G} behavior to local data too,
such as to static variables in C@. @option{-mlocal-sdata} is the
default for all configurations.
If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with
@option{-mno-local-sdata}. You might also want to build large
libraries with @option{-mno-local-sdata}, so that the libraries leave
more room for the main program.
@item -mextern-sdata
@itemx -mno-extern-sdata
@opindex mextern-sdata
@opindex mno-extern-sdata
Assume (do not assume) that externally-defined data is in
a small data section if the size of that data is within the @option{-G} limit.
@option{-mextern-sdata} is the default for all configurations.
If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
that is no bigger than @var{num} bytes, you must make sure that @var{Var}
is placed in a small data section. If @var{Var} is defined by another
module, you must either compile that module with a high-enough
@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
definition. If @var{Var} is common, you must link the application
with a high-enough @option{-G} setting.
The easiest way of satisfying these restrictions is to compile
and link every module with the same @option{-G} option. However,
you may wish to build a library that supports several different
small data limits. You can do this by compiling the library with
the highest supported @option{-G} setting and additionally using
@option{-mno-extern-sdata} to stop the library from making assumptions
about externally-defined data.
@item -mgpopt
@itemx -mno-gpopt
@opindex mgpopt
@opindex mno-gpopt
Use (do not use) GP-relative accesses for symbols that are known to be
in a small data section; see @option{-G}, @option{-mlocal-sdata} and
@option{-mextern-sdata}. @option{-mgpopt} is the default for all
configurations.
@option{-mno-gpopt} is useful for cases where the @code{$gp} register
might not hold the value of @code{_gp}. For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines pass an unknown value in @code{$gp}.
(In such situations, the boot monitor itself is usually compiled
with @option{-G0}.)
@option{-mno-gpopt} implies @option{-mno-local-sdata} and
@option{-mno-extern-sdata}.
@item -membedded-data
@itemx -mno-embedded-data
@opindex membedded-data
@opindex mno-embedded-data
Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data. This gives
slightly slower code than the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some embedded systems.
@item -muninit-const-in-rodata
@itemx -mno-uninit-const-in-rodata
@opindex muninit-const-in-rodata
@opindex mno-uninit-const-in-rodata
Put uninitialized @code{const} variables in the read-only data section.
This option is only meaningful in conjunction with @option{-membedded-data}.
@item -mcode-readable=@var{setting}
@opindex mcode-readable
Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:
@table @gcctabopt
@item -mcode-readable=yes
Instructions may freely access executable sections. This is the
default setting.
@item -mcode-readable=pcrel
MIPS16 PC-relative load instructions can access executable sections,
but other instructions must not do so. This option is useful on 4KSc
and 4KSd processors when the code TLBs have the Read Inhibit bit set.
It is also useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.
@item -mcode-readable=no
Instructions must not access executable sections. This option can be
useful on targets that are configured to have a dual instruction/data
SRAM interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM.
@end table
@item -msplit-addresses
@itemx -mno-split-addresses
@opindex msplit-addresses
@opindex mno-split-addresses
Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
relocation operators. This option has been superseded by
@option{-mexplicit-relocs} but is retained for backwards compatibility.
@item -mexplicit-relocs
@itemx -mno-explicit-relocs
@opindex mexplicit-relocs
@opindex mno-explicit-relocs
Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by @option{-mno-explicit-relocs},
is to use assembler macros instead.
@option{-mexplicit-relocs} is the default if GCC was configured
to use an assembler that supports relocation operators.
@item -mcheck-zero-division
@itemx -mno-check-zero-division
@opindex mcheck-zero-division
@opindex mno-check-zero-division
Trap (do not trap) on integer division by zero.
The default is @option{-mcheck-zero-division}.
@item -mdivide-traps
@itemx -mdivide-breaks
@opindex mdivide-traps
@opindex mdivide-breaks
MIPS systems check for division by zero by generating either a
conditional trap or a break instruction. Using traps results in
smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from
generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
allow conditional traps on architectures that support them and
@option{-mdivide-breaks} to force the use of breaks.
The default is usually @option{-mdivide-traps}, but this can be
overridden at configure time using @option{--with-divide=breaks}.
Divide-by-zero checks can be completely disabled using
@option{-mno-check-zero-division}.
@item -mmemcpy
@itemx -mno-memcpy
@opindex mmemcpy
@opindex mno-memcpy
Force (do not force) the use of @code{memcpy()} for non-trivial block
moves. The default is @option{-mno-memcpy}, which allows GCC to inline
most constant-sized copies.
@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Disable (do not disable) use of the @code{jal} instruction. Calling
functions using @code{jal} is more efficient but requires the caller
and callee to be in the same 256 megabyte segment.
This option has no effect on abicalls code. The default is
@option{-mno-long-calls}.
@item -mmad
@itemx -mno-mad
@opindex mmad
@opindex mno-mad
Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
instructions, as provided by the R4650 ISA@.
@item -mimadd
@itemx -mno-imadd
@opindex mimadd
@opindex mno-imadd
Enable (disable) use of the @code{madd} and @code{msub} integer
instructions. The default is @option{-mimadd} on architectures
that support @code{madd} and @code{msub} except for the 74k
architecture where it was found to generate slower code.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Enable (disable) use of the floating-point multiply-accumulate
instructions, when they are available. The default is
@option{-mfused-madd}.
On the R8000 CPU when multiply-accumulate instructions are used,
the intermediate product is calculated to infinite precision
and is not subject to the FCSR Flush to Zero bit. This may be
undesirable in some circumstances. On other processors the result
is numerically identical to the equivalent computation using
separate multiply, add, subtract and negate instructions.
@item -nocpp
@opindex nocpp
Tell the MIPS assembler to not run its preprocessor over user
assembler files (with a @samp{.s} suffix) when assembling them.
@item -mfix-24k
@item -mno-fix-24k
@opindex mfix-24k
@opindex mno-fix-24k
Work around the 24K E48 (lost data on stores during refill) errata.
The workarounds are implemented by the assembler rather than by GCC@.
@item -mfix-r4000
@itemx -mno-fix-r4000
@opindex mfix-r4000
@opindex mno-fix-r4000
Work around certain R4000 CPU errata:
@itemize @minus
@item
A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
@item
A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.
@item
An integer division may give an incorrect result if started in a delay slot
of a taken branch or a jump.
@end itemize
@item -mfix-r4400
@itemx -mno-fix-r4400
@opindex mfix-r4400
@opindex mno-fix-r4400
Work around certain R4400 CPU errata:
@itemize @minus
@item
A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
@end itemize
@item -mfix-r10000
@itemx -mno-fix-r10000
@opindex mfix-r10000
@opindex mno-fix-r10000
Work around certain R10000 errata:
@itemize @minus
@item
@code{ll}/@code{sc} sequences may not behave atomically on revisions
prior to 3.0. They may deadlock on revisions 2.6 and earlier.
@end itemize
This option can only be used if the target architecture supports
branch-likely instructions. @option{-mfix-r10000} is the default when
@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
otherwise.
@item -mfix-vr4120
@itemx -mno-fix-vr4120
@opindex mfix-vr4120
Work around certain VR4120 errata:
@itemize @minus
@item
@code{dmultu} does not always produce the correct result.
@item
@code{div} and @code{ddiv} do not always produce the correct result if one
of the operands is negative.
@end itemize
The workarounds for the division errata rely on special functions in
@file{libgcc.a}. At present, these functions are only provided by
the @code{mips64vr*-elf} configurations.
Other VR4120 errata require a NOP to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.
@item -mfix-vr4130
@opindex mfix-vr4130
Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
workarounds are implemented by the assembler rather than by GCC,
although GCC avoids using @code{mflo} and @code{mfhi} if the
VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
instructions are available instead.
@item -mfix-sb1
@itemx -mno-fix-sb1
@opindex mfix-sb1
Work around certain SB-1 CPU core errata.
(This flag currently works around the SB-1 revision 2
``F1'' and ``F2'' floating-point errata.)
@item -mr10k-cache-barrier=@var{setting}
@opindex mr10k-cache-barrier
Specify whether GCC should insert cache barriers to avoid the
side-effects of speculation on R10K processors.
In common with many processors, the R10K tries to predict the outcome
of a conditional branch and speculatively executes instructions from
the ``taken'' branch. It later aborts these instructions if the
predicted outcome is wrong. However, on the R10K, even aborted
instructions can have side effects.
This problem only affects kernel stores and, depending on the system,
kernel loads. As an example, a speculatively-executed store may load
the target memory into cache and mark the cache line as dirty, even if
the store itself is later aborted. If a DMA operation writes to the
same area of memory before the ``dirty'' line is flushed, the cached
data overwrites the DMA-ed data. See the R10K processor manual
for a full description, including other potential problems.
One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side
effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
controls GCC's implementation of this workaround. It assumes that
aborted accesses to any byte in the following regions does not have
side effects:
@enumerate
@item
the memory occupied by the current function's stack frame;
@item
the memory occupied by an incoming stack argument;
@item
the memory occupied by an object with a link-time-constant address.
@end enumerate
It is the kernel's responsibility to ensure that speculative
accesses to these regions are indeed safe.
If the input program contains a function declaration such as:
@smallexample
void foo (void);
@end smallexample
then the implementation of @code{foo} must allow @code{j foo} and
@code{jal foo} to be executed speculatively. GCC honors this
restriction for functions it compiles itself. It expects non-GCC
functions (such as hand-written assembly code) to do the same.
The option has three forms:
@table @gcctabopt
@item -mr10k-cache-barrier=load-store
Insert a cache barrier before a load or store that might be
speculatively executed and that might have side effects even
if aborted.
@item -mr10k-cache-barrier=store
Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.
@item -mr10k-cache-barrier=none
Disable the insertion of cache barriers. This is the default setting.
@end table
@item -mflush-func=@var{func}
@itemx -mno-flush-func
@opindex mflush-func
Specifies the function to call to flush the I and D caches, or to not
call any such function. If called, the function must take the same
arguments as the common @code{_flush_func()}, that is, the address of the
memory range for which the cache is being flushed, the size of the
memory range, and the number 3 (to flush both caches). The default
depends on the target GCC was configured for, but commonly is either
@samp{_flush_func} or @samp{__cpu_flush}.
@item mbranch-cost=@var{num}
@opindex mbranch-cost
Set the cost of branches to roughly @var{num} ``simple'' instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases. A zero cost redundantly selects
the default, which is based on the @option{-mtune} setting.
@item -mbranch-likely
@itemx -mno-branch-likely
@opindex mbranch-likely
@opindex mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture. By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture. An exception is for the MIPS32 and MIPS64 architectures
and processors that implement those architectures; for those, Branch
Likely instructions are not be generated by default because the MIPS32
and MIPS64 architectures specifically deprecate their use.
@item -mfp-exceptions
@itemx -mno-fp-exceptions
@opindex mfp-exceptions
Specifies whether FP exceptions are enabled. This affects how
FP instructions are scheduled for some processors.
The default is that FP exceptions are
enabled.
For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.
@item -mvr4130-align
@itemx -mno-vr4130-align
@opindex mvr4130-align
The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned. When this
option is enabled, GCC aligns pairs of instructions that it
thinks should execute in parallel.
This option only has an effect when optimizing for the VR4130.
It normally makes code faster, but at the expense of making it bigger.
It is enabled by default at optimization level @option{-O3}.
@item -msynci
@itemx -mno-synci
@opindex msynci
Enable (disable) generation of @code{synci} instructions on
architectures that support it. The @code{synci} instructions (if
enabled) are generated when @code{__builtin___clear_cache()} is
compiled.
This option defaults to @code{-mno-synci}, but the default can be
overridden by configuring with @code{--with-synci}.
When compiling code for single processor systems, it is generally safe
to use @code{synci}. However, on many multi-core (SMP) systems, it
does not invalidate the instruction caches on all cores and may lead
to undefined behavior.
@item -mrelax-pic-calls
@itemx -mno-relax-pic-calls
@opindex mrelax-pic-calls
Try to turn PIC calls that are normally dispatched via register
@code{$25} into direct calls. This is only possible if the linker can
resolve the destination at link-time and if the destination is within
range for a direct call.
@option{-mrelax-pic-calls} is the default if GCC was configured to use
an assembler and a linker that support the @code{.reloc} assembly
directive and @code{-mexplicit-relocs} is in effect. With
@code{-mno-explicit-relocs}, this optimization can be performed by the
assembler and the linker alone without help from the compiler.
@item -mmcount-ra-address
@itemx -mno-mcount-ra-address
@opindex mmcount-ra-address
@opindex mno-mcount-ra-address
Emit (do not emit) code that allows @code{_mcount} to modify the
calling function's return address. When enabled, this option extends
the usual @code{_mcount} interface with a new @var{ra-address}
parameter, which has type @code{intptr_t *} and is passed in register
@code{$12}. @code{_mcount} can then modify the return address by
doing both of the following:
@itemize
@item
Returning the new address in register @code{$31}.
@item
Storing the new address in @code{*@var{ra-address}},
if @var{ra-address} is nonnull.
@end itemize
The default is @option{-mno-mcount-ra-address}.
@end table
@node MMIX Options
@subsection MMIX Options
@cindex MMIX Options
These options are defined for the MMIX:
@table @gcctabopt
@item -mlibfuncs
@itemx -mno-libfuncs
@opindex mlibfuncs
@opindex mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.
@item -mepsilon
@itemx -mno-epsilon
@opindex mepsilon
@opindex mno-epsilon
Generate floating-point comparison instructions that compare with respect
to the @code{rE} epsilon register.
@item -mabi=mmixware
@itemx -mabi=gnu
@opindex mabi=mmixware
@opindex mabi=gnu
Generate code that passes function parameters and return values that (in
the called function) are seen as registers @code{$0} and up, as opposed to
the GNU ABI which uses global registers @code{$231} and up.
@item -mzero-extend
@itemx -mno-zero-extend
@opindex mzero-extend
@opindex mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.
@item -mknuthdiv
@itemx -mno-knuthdiv
@opindex mknuthdiv
@opindex mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as
the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
remainder follows the sign of the dividend. Both methods are
arithmetically valid, the latter being almost exclusively used.
@item -mtoplevel-symbols
@itemx -mno-toplevel-symbols
@opindex mtoplevel-symbols
@opindex mno-toplevel-symbols
Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
code can be used with the @code{PREFIX} assembly directive.
@item -melf
@opindex melf
Generate an executable in the ELF format, rather than the default
@samp{mmo} format used by the @command{mmix} simulator.
@item -mbranch-predict
@itemx -mno-branch-predict
@opindex mbranch-predict
@opindex mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.
@item -mbase-addresses
@itemx -mno-base-addresses
@opindex mbase-addresses
@opindex mno-base-addresses
Generate (do not generate) code that uses @emph{base addresses}. Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register. The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited. This means that a program that uses lots of static
data may require @option{-mno-base-addresses}.
@item -msingle-exit
@itemx -mno-single-exit
@opindex msingle-exit
@opindex mno-single-exit
Force (do not force) generated code to have a single exit point in each
function.
@end table
@node MN10300 Options
@subsection MN10300 Options
@cindex MN10300 options
These @option{-m} options are defined for Matsushita MN10300 architectures:
@table @gcctabopt
@item -mmult-bug
@opindex mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.
@item -mno-mult-bug
@opindex mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.
@item -mam33
@opindex mam33
Generate code using features specific to the AM33 processor.
@item -mno-am33
@opindex mno-am33
Do not generate code using features specific to the AM33 processor. This
is the default.
@item -mam33-2
@opindex mam33-2
Generate code using features specific to the AM33/2.0 processor.
@item -mam34
@opindex mam34
Generate code using features specific to the AM34 processor.
@item -mtune=@var{cpu-type}
@opindex mtune
Use the timing characteristics of the indicated CPU type when
scheduling instructions. This does not change the targeted processor
type. The CPU type must be one of @samp{mn10300}, @samp{am33},
@samp{am33-2} or @samp{am34}.
@item -mreturn-pointer-on-d0
@opindex mreturn-pointer-on-d0
When generating a function that returns a pointer, return the pointer
in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
only in @code{a0}, and attempts to call such functions without a prototype
result in errors. Note that this option is on by default; use
@option{-mno-return-pointer-on-d0} to disable it.
@item -mno-crt0
@opindex mno-crt0
Do not link in the C run-time initialization object file.
@item -mrelax
@opindex mrelax
Indicate to the linker that it should perform a relaxation optimization pass
to shorten branches, calls and absolute memory addresses. This option only
has an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.
@item -mliw
@opindex mliw
Allow the compiler to generate @emph{Long Instruction Word}
instructions if the target is the @samp{AM33} or later. This is the
default. This option defines the preprocessor macro @samp{__LIW__}.
@item -mnoliw
@opindex mnoliw
Do not allow the compiler to generate @emph{Long Instruction Word}
instructions. This option defines the preprocessor macro
@samp{__NO_LIW__}.
@item -msetlb
@opindex msetlb
Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
instructions if the target is the @samp{AM33} or later. This is the
default. This option defines the preprocessor macro @samp{__SETLB__}.
@item -mnosetlb
@opindex mnosetlb
Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
instructions. This option defines the preprocessor macro
@samp{__NO_SETLB__}.
@end table
@node Moxie Options
@subsection Moxie Options
@cindex Moxie Options
@table @gcctabopt
@item -meb
@opindex meb
Generate big-endian code. This is the default for @samp{moxie-*-*}
configurations.
@item -mel
@opindex mel
Generate little-endian code.
@item -mno-crt0
@opindex mno-crt0
Do not link in the C run-time initialization object file.
@end table
@node PDP-11 Options
@subsection PDP-11 Options
@cindex PDP-11 Options
These options are defined for the PDP-11:
@table @gcctabopt
@item -mfpu
@opindex mfpu
Use hardware FPP floating point. This is the default. (FIS floating
point on the PDP-11/40 is not supported.)
@item -msoft-float
@opindex msoft-float
Do not use hardware floating point.
@item -mac0
@opindex mac0
Return floating-point results in ac0 (fr0 in Unix assembler syntax).
@item -mno-ac0
@opindex mno-ac0
Return floating-point results in memory. This is the default.
@item -m40
@opindex m40
Generate code for a PDP-11/40.
@item -m45
@opindex m45
Generate code for a PDP-11/45. This is the default.
@item -m10
@opindex m10
Generate code for a PDP-11/10.
@item -mbcopy-builtin
@opindex mbcopy-builtin
Use inline @code{movmemhi} patterns for copying memory. This is the
default.
@item -mbcopy
@opindex mbcopy
Do not use inline @code{movmemhi} patterns for copying memory.
@item -mint16
@itemx -mno-int32
@opindex mint16
@opindex mno-int32
Use 16-bit @code{int}. This is the default.
@item -mint32
@itemx -mno-int16
@opindex mint32
@opindex mno-int16
Use 32-bit @code{int}.
@item -mfloat64
@itemx -mno-float32
@opindex mfloat64
@opindex mno-float32
Use 64-bit @code{float}. This is the default.
@item -mfloat32
@itemx -mno-float64
@opindex mfloat32
@opindex mno-float64
Use 32-bit @code{float}.
@item -mabshi
@opindex mabshi
Use @code{abshi2} pattern. This is the default.
@item -mno-abshi
@opindex mno-abshi
Do not use @code{abshi2} pattern.
@item -mbranch-expensive
@opindex mbranch-expensive
Pretend that branches are expensive. This is for experimenting with
code generation only.
@item -mbranch-cheap
@opindex mbranch-cheap
Do not pretend that branches are expensive. This is the default.
@item -munix-asm
@opindex munix-asm
Use Unix assembler syntax. This is the default when configured for
@samp{pdp11-*-bsd}.
@item -mdec-asm
@opindex mdec-asm
Use DEC assembler syntax. This is the default when configured for any
PDP-11 target other than @samp{pdp11-*-bsd}.
@end table
@node picoChip Options
@subsection picoChip Options
@cindex picoChip options
These @samp{-m} options are defined for picoChip implementations:
@table @gcctabopt
@item -mae=@var{ae_type}
@opindex mcpu
Set the instruction set, register set, and instruction scheduling
parameters for array element type @var{ae_type}. Supported values
for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
@option{-mae=ANY} selects a completely generic AE type. Code
generated with this option runs on any of the other AE types. The
code is not as efficient as it would be if compiled for a specific
AE type, and some types of operation (e.g., multiplication) do not
work properly on all types of AE.
@option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
for compiled code, and is the default.
@option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
option may suffer from poor performance of byte (char) manipulation,
since the DSP AE does not provide hardware support for byte load/stores.
@item -msymbol-as-address
Enable the compiler to directly use a symbol name as an address in a
load/store instruction, without first loading it into a
register. Typically, the use of this option generates larger
programs, which run faster than when the option isn't used. However, the
results vary from program to program, so it is left as a user option,
rather than being permanently enabled.
@item -mno-inefficient-warnings
Disables warnings about the generation of inefficient code. These
warnings can be generated, for example, when compiling code that
performs byte-level memory operations on the MAC AE type. The MAC AE has
no hardware support for byte-level memory operations, so all byte
load/stores must be synthesized from word load/store operations. This is
inefficient and a warning is generated to indicate
that you should rewrite the code to avoid byte operations, or to target
an AE type that has the necessary hardware support. This option disables
these warnings.
@end table
@node PowerPC Options
@subsection PowerPC Options
@cindex PowerPC options
These are listed under @xref{RS/6000 and PowerPC Options}.
@node RL78 Options
@subsection RL78 Options
@cindex RL78 Options
@table @gcctabopt
@item -msim
@opindex msim
Links in additional target libraries to support operation within a
simulator.
@item -mmul=none
@itemx -mmul=g13
@itemx -mmul=rl78
@opindex mmul
Specifies the type of hardware multiplication support to be used. The
default is @code{none}, which uses software multiplication functions.
The @code{g13} option is for the hardware multiply/divide peripheral
only on the RL78/G13 targets. The @code{rl78} option is for the
standard hardware multiplication defined in the RL78 software manual.
@end table
@node RS/6000 and PowerPC Options
@subsection IBM RS/6000 and PowerPC Options
@cindex RS/6000 and PowerPC Options
@cindex IBM RS/6000 and PowerPC Options
These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
@table @gcctabopt
@item -mpowerpc-gpopt
@itemx -mno-powerpc-gpopt
@itemx -mpowerpc-gfxopt
@itemx -mno-powerpc-gfxopt
@need 800
@itemx -mpowerpc64
@itemx -mno-powerpc64
@itemx -mmfcrf
@itemx -mno-mfcrf
@itemx -mpopcntb
@itemx -mno-popcntb
@itemx -mpopcntd
@itemx -mno-popcntd
@itemx -mfprnd
@itemx -mno-fprnd
@need 800
@itemx -mcmpb
@itemx -mno-cmpb
@itemx -mmfpgpr
@itemx -mno-mfpgpr
@itemx -mhard-dfp
@itemx -mno-hard-dfp
@opindex mpowerpc-gpopt
@opindex mno-powerpc-gpopt
@opindex mpowerpc-gfxopt
@opindex mno-powerpc-gfxopt
@opindex mpowerpc64
@opindex mno-powerpc64
@opindex mmfcrf
@opindex mno-mfcrf
@opindex mpopcntb
@opindex mno-popcntb
@opindex mpopcntd
@opindex mno-popcntd
@opindex mfprnd
@opindex mno-fprnd
@opindex mcmpb
@opindex mno-cmpb
@opindex mmfpgpr
@opindex mno-mfpgpr
@opindex mhard-dfp
@opindex mno-hard-dfp
You use these options to specify which instructions are available on the
processor you are using. The default value of these options is
determined when configuring GCC@. Specifying the
@option{-mcpu=@var{cpu_type}} overrides the specification of these
options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
rather than the options listed above.
Specifying @option{-mpowerpc-gpopt} allows
GCC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root. Specifying
@option{-mpowerpc-gfxopt} allows GCC to
use the optional PowerPC architecture instructions in the Graphics
group, including floating-point select.
The @option{-mmfcrf} option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture.
The @option{-mpopcntb} option allows GCC to generate the popcount and
double-precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture.
The @option{-mpopcntd} option allows GCC to generate the popcount
instruction implemented on the POWER7 processor and other processors
that support the PowerPC V2.06 architecture.
The @option{-mfprnd} option allows GCC to generate the FP round to
integer instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture.
The @option{-mcmpb} option allows GCC to generate the compare bytes
instruction implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture.
The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
general-purpose register instructions implemented on the POWER6X
processor and other processors that support the extended PowerPC V2.05
architecture.
The @option{-mhard-dfp} option allows GCC to generate the decimal
floating-point instructions implemented on some POWER processors.
The @option{-mpowerpc64} option allows GCC to generate the additional
64-bit instructions that are found in the full PowerPC64 architecture
and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
@option{-mno-powerpc64}.
@item -mcpu=@var{cpu_type}
@opindex mcpu
Set architecture type, register usage, and
instruction scheduling parameters for machine type @var{cpu_type}.
Supported values for @var{cpu_type} are @samp{401}, @samp{403},
@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
@samp{powerpc64}, and @samp{rs64}.
@option{-mcpu=powerpc}, and @option{-mcpu=powerpc64} specify pure 32-bit
PowerPC and 64-bit PowerPC architecture machine
types, with an appropriate, generic processor model assumed for
scheduling purposes.
The other options specify a specific processor. Code generated under
those options runs best on that processor, and may not run at all on
others.
The @option{-mcpu} options automatically enable or disable the
following options:
@gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
-mpopcntb -mpopcntd -mpowerpc64 @gol
-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
-msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
-mcrypto -mdirect-move -mpower8-fusion -mpower8-vector -mquad-memory}
The particular options set for any particular CPU varies between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn't necessarily reflect the actual hardware's
capabilities. If you wish to set an individual option to a particular
value, you may specify it after the @option{-mcpu} option, like
@option{-mcpu=970 -mno-altivec}.
On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
not enabled or disabled by the @option{-mcpu} option at present because
AIX does not have full support for these options. You may still
enable or disable them individually if you're sure it'll work in your
environment.
@item -mtune=@var{cpu_type}
@opindex mtune
Set the instruction scheduling parameters for machine type
@var{cpu_type}, but do not set the architecture type or register usage,
as @option{-mcpu=@var{cpu_type}} does. The same
values for @var{cpu_type} are used for @option{-mtune} as for
@option{-mcpu}. If both are specified, the code generated uses the
architecture and registers set by @option{-mcpu}, but the
scheduling parameters set by @option{-mtune}.
@item -mcmodel=small
@opindex mcmodel=small
Generate PowerPC64 code for the small model: The TOC is limited to
64k.
@item -mcmodel=medium
@opindex mcmodel=medium
Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size.
@item -mcmodel=large
@opindex mcmodel=large
Generate PowerPC64 code for the large model: The TOC may be up to 4G
in size. Other data and code is only limited by the 64-bit address
space.
@item -maltivec
@itemx -mno-altivec
@opindex maltivec
@opindex mno-altivec
Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to
the AltiVec instruction set. You may also need to set
@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
enhancements.
@item -mvrsave
@itemx -mno-vrsave
@opindex mvrsave
@opindex mno-vrsave
Generate VRSAVE instructions when generating AltiVec code.
@item -mgen-cell-microcode
@opindex mgen-cell-microcode
Generate Cell microcode instructions.
@item -mwarn-cell-microcode
@opindex mwarn-cell-microcode
Warn when a Cell microcode instruction is emitted. An example
of a Cell microcode instruction is a variable shift.
@item -msecure-plt
@opindex msecure-plt
Generate code that allows @command{ld} and @command{ld.so}
to build executables and shared
libraries with non-executable @code{.plt} and @code{.got} sections.
This is a PowerPC
32-bit SYSV ABI option.
@item -mbss-plt
@opindex mbss-plt
Generate code that uses a BSS @code{.plt} section that @command{ld.so}
fills in, and
requires @code{.plt} and @code{.got}
sections that are both writable and executable.
This is a PowerPC 32-bit SYSV ABI option.
@item -misel
@itemx -mno-isel
@opindex misel
@opindex mno-isel
This switch enables or disables the generation of ISEL instructions.
@item -misel=@var{yes/no}
This switch has been deprecated. Use @option{-misel} and
@option{-mno-isel} instead.
@item -mspe
@itemx -mno-spe
@opindex mspe
@opindex mno-spe
This switch enables or disables the generation of SPE simd
instructions.
@item -mpaired
@itemx -mno-paired
@opindex mpaired
@opindex mno-paired
This switch enables or disables the generation of PAIRED simd
instructions.
@item -mspe=@var{yes/no}
This option has been deprecated. Use @option{-mspe} and
@option{-mno-spe} instead.
@item -mvsx
@itemx -mno-vsx
@opindex mvsx
@opindex mno-vsx
Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.
@item -mcrypto
@itemx -mno-crypto
@opindex mcrypto
@opindex mno-crypto
Enable the use (disable) of the built-in functions that allow direct
access to the cryptographic instructions that were added in version
2.07 of the PowerPC ISA.
@item -mdirect-move
@itemx -mno-direct-move
@opindex mdirect-move
@opindex mno-direct-move
Generate code that uses (does not use) the instructions to move data
between the general purpose registers and the vector/scalar (VSX)
registers that were added in version 2.07 of the PowerPC ISA.
@item -mpower8-fusion
@itemx -mno-power8-fusion
@opindex mpower8-fusion
@opindex mno-power8-fusion
Generate code that keeps (does not keeps) some integer operations
adjacent so that the instructions can be fused together on power8 and
later processors.
@item -mpower8-vector
@itemx -mno-power8-vector
@opindex mpower8-vector
@opindex mno-power8-vector
Generate code that uses (does not use) the vector and scalar
instructions that were added in version 2.07 of the PowerPC ISA. Also
enable the use of built-in functions that allow more direct access to
the vector instructions.
@item -mquad-memory
@itemx -mno-quad-memory
@opindex mquad-memory
@opindex mno-quad-memory
Generate code that uses (does not use) the quad word memory
instructions. The @option{-mquad-memory} option requires use of
64-bit mode.
@item -mfloat-gprs=@var{yes/single/double/no}
@itemx -mfloat-gprs
@opindex mfloat-gprs
This switch enables or disables the generation of floating-point
operations on the general-purpose registers for architectures that
support it.
The argument @var{yes} or @var{single} enables the use of
single-precision floating-point operations.
The argument @var{double} enables the use of single and
double-precision floating-point operations.
The argument @var{no} disables floating-point operations on the
general-purpose registers.
This option is currently only available on the MPC854x.
@item -m32
@itemx -m64
@opindex m32
@opindex m64
Generate code for 32-bit or 64-bit environments of Darwin and SVR4
targets (including GNU/Linux). The 32-bit environment sets int, long
and pointer to 32 bits and generates code that runs on any PowerPC
variant. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits, and generates code for PowerPC64, as for
@option{-mpowerpc64}.
@item -mfull-toc
@itemx -mno-fp-in-toc
@itemx -mno-sum-in-toc
@itemx -mminimal-toc
@opindex mfull-toc
@opindex mno-fp-in-toc
@opindex mno-sum-in-toc
@opindex mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The @option{-mfull-toc} option is selected by
default. In that case, GCC allocates at least one TOC entry for
each unique non-automatic variable reference in your program. GCC
also places floating-point constants in the TOC@. However, only
16,384 entries are available in the TOC@.
If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
@option{-mno-fp-in-toc} prevents GCC from putting floating-point
constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
generate code to calculate the sum of an address and a constant at
run time instead of putting that sum into the TOC@. You may specify one
or both of these options. Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.
If you still run out of space in the TOC even when you specify both of
these options, specify @option{-mminimal-toc} instead. This option causes
GCC to make only one TOC entry for every file. When you specify this
option, GCC produces code that is slower and larger but which
uses extremely little TOC space. You may wish to use this option
only on files that contain less frequently-executed code.
@item -maix64
@itemx -maix32
@opindex maix64
@opindex maix32
Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
@code{long} type, and the infrastructure needed to support them.
Specifying @option{-maix64} implies @option{-mpowerpc64},
while @option{-maix32} disables the 64-bit ABI and
implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
@item -mxl-compat
@itemx -mno-xl-compat
@opindex mxl-compat
@opindex mno-xl-compat
Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI@. Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs. Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double. Use XL symbol names for long double
support routines.
The AIX calling convention was extended but not initially documented to
handle an obscure K&R C case of calling a function that takes the
address of its arguments with fewer arguments than declared. IBM XL
compilers access floating-point arguments that do not fit in the
RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
@item -mpe
@opindex mpe
Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
application written to use message passing with special startup code to
enable the application to run. The system must have PE installed in the
standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
must be overridden with the @option{-specs=} option to specify the
appropriate directory location. The Parallel Environment does not
support threads, so the @option{-mpe} option and the @option{-pthread}
option are incompatible.
@item -malign-natural
@itemx -malign-power
@opindex malign-natural
@opindex malign-power
On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
@option{-malign-natural} overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary.
The option @option{-malign-power} instructs GCC to follow the ABI-specified
alignment rules. GCC defaults to the standard alignment defined in the ABI@.
On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
is not supported.
@item -msoft-float
@itemx -mhard-float
@opindex msoft-float
@opindex mhard-float
Generate code that does not use (uses) the floating-point register set.
Software floating-point emulation is provided if you use the
@option{-msoft-float} option, and pass the option to GCC when linking.
@item -msingle-float
@itemx -mdouble-float
@opindex msingle-float
@opindex mdouble-float
Generate code for single- or double-precision floating-point operations.
@option{-mdouble-float} implies @option{-msingle-float}.
@item -msimple-fpu
@opindex msimple-fpu
Do not generate @code{sqrt} and @code{div} instructions for hardware
floating-point unit.
@item -mfpu=@var{name}
@opindex mfpu
Specify type of floating-point unit. Valid values for @var{name} are
@samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
@samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
@samp{sp_full} (equivalent to @option{-msingle-float}),
and @samp{dp_full} (equivalent to @option{-mdouble-float}).
@item -mxilinx-fpu
@opindex mxilinx-fpu
Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
@item -mmultiple
@itemx -mno-multiple
@opindex mmultiple
@opindex mno-multiple
Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
PowerPC systems, since those instructions do not work when the
processor is in little-endian mode. The exceptions are PPC740 and
PPC750 which permit these instructions in little-endian mode.
@item -mstring
@itemx -mno-string
@opindex mstring
@opindex mno-string
Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use
@option{-mstring} on little-endian PowerPC systems, since those
instructions do not work when the processor is in little-endian mode.
The exceptions are PPC740 and PPC750 which permit these instructions
in little-endian mode.
@item -mupdate
@itemx -mno-update
@opindex mupdate
@opindex mno-update
Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location. These instructions are generated by default. If you use
@option{-mno-update}, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.
@item -mavoid-indexed-addresses
@itemx -mno-avoid-indexed-addresses
@opindex mavoid-indexed-addresses
@opindex mno-avoid-indexed-addresses
Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary. This option
is enabled by default when targeting Power6 and disabled otherwise.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
@option{-mfused-madd} option is now mapped to the machine-independent
@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
mapped to @option{-ffp-contract=off}.
@item -mmulhw
@itemx -mno-mulhw
@opindex mmulhw
@opindex mno-mulhw
Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.
@item -mdlmzb
@itemx -mno-dlmzb
@opindex mdlmzb
@opindex mno-dlmzb
Generate code that uses (does not use) the string-search @samp{dlmzb}
instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
generated by default when targeting those processors.
@item -mno-bit-align
@itemx -mbit-align
@opindex mno-bit-align
@opindex mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.
For example, by default a structure containing nothing but 8
@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
the structure is aligned to a 1-byte boundary and is 1 byte in
size.
@item -mno-strict-align
@itemx -mstrict-align
@opindex mno-strict-align
@opindex mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references are handled by the system.
@item -mrelocatable
@itemx -mno-relocatable
@opindex mrelocatable
@opindex mno-relocatable
Generate code that allows (does not allow) a static executable to be
relocated to a different address at run time. A simple embedded
PowerPC system loader should relocate the entire contents of
@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
a table of 32-bit addresses generated by this option. For this to
work, all objects linked together must be compiled with
@option{-mrelocatable} or @option{-mrelocatable-lib}.
@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
@item -mrelocatable-lib
@itemx -mno-relocatable-lib
@opindex mrelocatable-lib
@opindex mno-relocatable-lib
Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
@code{.fixup} section to allow static executables to be relocated at
run time, but @option{-mrelocatable-lib} does not use the smaller stack
alignment of @option{-mrelocatable}. Objects compiled with
@option{-mrelocatable-lib} may be linked with objects compiled with
any combination of the @option{-mrelocatable} options.
@item -mno-toc
@itemx -mtoc
@opindex mno-toc
@opindex mtoc
On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
@item -mlittle
@itemx -mlittle-endian
@opindex mlittle
@opindex mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the
processor in little-endian mode. The @option{-mlittle-endian} option is
the same as @option{-mlittle}.
@item -mbig
@itemx -mbig-endian
@opindex mbig
@opindex mbig-endian
On System V.4 and embedded PowerPC systems compile code for the
processor in big-endian mode. The @option{-mbig-endian} option is
the same as @option{-mbig}.
@item -mdynamic-no-pic
@opindex mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
@item -msingle-pic-base
@opindex msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
@item -mprioritize-restricted-insns=@var{priority}
@opindex mprioritize-restricted-insns
This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
or @samp{2} to assign no, highest, or second-highest (respectively)
priority to dispatch-slot restricted
instructions.
@item -msched-costly-dep=@var{dependence_type}
@opindex msched-costly-dep
This option controls which dependences are considered costly
by the target during instruction scheduling. The argument
@var{dependence_type} takes one of the following values:
@table @asis
@item @samp{no}
No dependence is costly.
@item @samp{all}
All dependences are costly.
@item @samp{true_store_to_load}
A true dependence from store to load is costly.
@item @samp{store_to_load}
Any dependence from store to load is costly.
@item @var{number}
Any dependence for which the latency is greater than or equal to
@var{number} is costly.
@end table
@item -minsert-sched-nops=@var{scheme}
@opindex minsert-sched-nops
This option controls which NOP insertion scheme is used during
the second scheduling pass. The argument @var{scheme} takes one of the
following values:
@table @asis
@item @samp{no}
Don't insert NOPs.
@item @samp{pad}
Pad with NOPs any dispatch group that has vacant issue slots,
according to the scheduler's grouping.
@item @samp{regroup_exact}
Insert NOPs to force costly dependent insns into
separate groups. Insert exactly as many NOPs as needed to force an insn
to a new group, according to the estimated processor grouping.
@item @var{number}
Insert NOPs to force costly dependent insns into
separate groups. Insert @var{number} NOPs to force an insn to a new group.
@end table
@item -mcall-sysv
@opindex mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using @samp{powerpc-*-eabiaix}.
@item -mcall-sysv-eabi
@itemx -mcall-eabi
@opindex mcall-sysv-eabi
@opindex mcall-eabi
Specify both @option{-mcall-sysv} and @option{-meabi} options.
@item -mcall-sysv-noeabi
@opindex mcall-sysv-noeabi
Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
@item -mcall-aixdesc
@opindex m
On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.
@item -mcall-linux
@opindex mcall-linux
On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
@item -mcall-freebsd
@opindex mcall-freebsd
On System V.4 and embedded PowerPC systems compile code for the
FreeBSD operating system.
@item -mcall-netbsd
@opindex mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.
@item -mcall-openbsd
@opindex mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the
OpenBSD operating system.
@item -maix-struct-return
@opindex maix-struct-return
Return all structures in memory (as specified by the AIX ABI)@.
@item -msvr4-struct-return
@opindex msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI)@.
@item -mabi=@var{abi-type}
@opindex mabi
Extend the current ABI with a particular extension, or remove such extension.
Valid values are @var{altivec}, @var{no-altivec}, @var{spe},
@var{no-spe}, @var{ibmlongdouble}, @var{ieeelongdouble}@.
@item -mabi=spe
@opindex mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change
the default ABI, instead it adds the SPE ABI extensions to the current
ABI@.
@item -mabi=no-spe
@opindex mabi=no-spe
Disable Book-E SPE ABI extensions for the current ABI@.
@item -mabi=ibmlongdouble
@opindex mabi=ibmlongdouble
Change the current ABI to use IBM extended-precision long double.
This is a PowerPC 32-bit SYSV ABI option.
@item -mabi=ieeelongdouble
@opindex mabi=ieeelongdouble
Change the current ABI to use IEEE extended-precision long double.
This is a PowerPC 32-bit Linux ABI option.
@item -mprototype
@itemx -mno-prototype
@opindex mprototype
@opindex mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non-prototyped call to
set or clear bit 6 of the condition code register (@var{CR}) to
indicate whether floating-point values are passed in the floating-point
registers in case the function takes variable arguments. With
@option{-mprototype}, only calls to prototyped variable argument functions
set or clear the bit.
@item -msim
@opindex msim
On embedded PowerPC systems, assume that the startup module is called
@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
@file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
configurations.
@item -mmvme
@opindex mmvme
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
@file{libc.a}.
@item -mads
@opindex mads
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libads.a} and
@file{libc.a}.
@item -myellowknife
@opindex myellowknife
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libyk.a} and
@file{libc.a}.
@item -mvxworks
@opindex mvxworks
On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.
@item -memb
@opindex memb
On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
header to indicate that @samp{eabi} extended relocations are used.
@item -meabi
@itemx -mno-eabi
@opindex meabi
@opindex mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of
modifications to the System V.4 specifications. Selecting @option{-meabi}
means that the stack is aligned to an 8-byte boundary, a function
@code{__eabi} is called from @code{main} to set up the EABI
environment, and the @option{-msdata} option can use both @code{r2} and
@code{r13} to point to two separate small data areas. Selecting
@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
no EABI initialization function is called from @code{main}, and the
@option{-msdata} option only uses @code{r13} to point to a single
small data area. The @option{-meabi} option is on by default if you
configured GCC using one of the @samp{powerpc*-*-eabi*} options.
@item -msdata=eabi
@opindex msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized
@code{const} global and static data in the @samp{.sdata2} section, which
is pointed to by register @code{r2}. Put small initialized
non-@code{const} global and static data in the @samp{.sdata} section,
which is pointed to by register @code{r13}. Put small uninitialized
global and static data in the @samp{.sbss} section, which is adjacent to
the @samp{.sdata} section. The @option{-msdata=eabi} option is
incompatible with the @option{-mrelocatable} option. The
@option{-msdata=eabi} option also sets the @option{-memb} option.
@item -msdata=sysv
@opindex msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the @samp{.sdata} section, which is pointed to by register
@code{r13}. Put small uninitialized global and static data in the
@samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
The @option{-msdata=sysv} option is incompatible with the
@option{-mrelocatable} option.
@item -msdata=default
@itemx -msdata
@opindex msdata=default
@opindex msdata
On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
compile code the same as @option{-msdata=eabi}, otherwise compile code the
same as @option{-msdata=sysv}.
@item -msdata=data
@opindex msdata=data
On System V.4 and embedded PowerPC systems, put small global
data in the @samp{.sdata} section. Put small uninitialized global
data in the @samp{.sbss} section. Do not use register @code{r13}
to address small data however. This is the default behavior unless
other @option{-msdata} options are used.
@item -msdata=none
@itemx -mno-sdata
@opindex msdata=none
@opindex mno-sdata
On embedded PowerPC systems, put all initialized global and static data
in the @samp{.data} section, and all uninitialized data in the
@samp{.bss} section.
@item -mblock-move-inline-limit=@var{num}
@opindex mblock-move-inline-limit
Inline all block moves (such as calls to @code{memcpy} or structure
copies) less than or equal to @var{num} bytes. The minimum value for
@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
targets. The default value is target-specific.
@item -G @var{num}
@opindex G
@cindex smaller data references (PowerPC)
@cindex .sdata/.sdata2 references (PowerPC)
On embedded PowerPC systems, put global and static items less than or
equal to @var{num} bytes into the small data or BSS sections instead of
the normal data or BSS section. By default, @var{num} is 8. The
@option{-G @var{num}} switch is also passed to the linker.
All modules should be compiled with the same @option{-G @var{num}} value.
@item -mregnames
@itemx -mno-regnames
@opindex mregnames
@opindex mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.
@item -mlongcall
@itemx -mno-longcall
@opindex mlongcall
@opindex mno-longcall
By default assume that all calls are far away so that a longer and more
expensive calling sequence is required. This is required for calls
farther than 32 megabytes (33,554,432 bytes) from the current location.
A short call is generated if the compiler knows
the call cannot be that far away. This setting can be overridden by
the @code{shortcall} function attribute, or by @code{#pragma
longcall(0)}.
Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly. On these systems, long calls are unnecessary and
generate slower code. As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64. It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.
On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
callee, L42}, plus a @dfn{branch island} (glue code). The two target
addresses represent the callee and the branch island. The
Darwin/PPC linker prefers the first address and generates a @code{bl
callee} if the PPC @code{bl} instruction reaches the callee directly;
otherwise, the linker generates @code{bl L42} to call the branch
island. The branch island is appended to the body of the
calling function; it computes the full 32-bit address of the callee
and jumps to it.
On Mach-O (Darwin) systems, this option directs the compiler emit to
the glue for every direct call, and the Darwin linker decides whether
to use or discard it.
In the future, GCC may ignore all longcall specifications
when the linker is known to generate glue.
@item -mtls-markers
@itemx -mno-tls-markers
@opindex mtls-markers
@opindex mno-tls-markers
Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
specifying the function argument. The relocation allows the linker to
reliably associate function call with argument setup instructions for
TLS optimization, which in turn allows GCC to better schedule the
sequence.
@item -pthread
@opindex pthread
Adds support for multithreading with the @dfn{pthreads} library.
This option sets flags for both the preprocessor and linker.
@item -mrecip
@itemx -mno-recip
@opindex mrecip
This option enables use of the reciprocal estimate and
reciprocal square root estimate instructions with additional
Newton-Raphson steps to increase precision instead of doing a divide or
square root and divide for floating-point arguments. You should use
the @option{-ffast-math} option when using @option{-mrecip} (or at
least @option{-funsafe-math-optimizations},
@option{-finite-math-only}, @option{-freciprocal-math} and
@option{-fno-trapping-math}). Note that while the throughput of the
sequence is generally higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2
ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.
@item -mrecip=@var{opt}
@opindex mrecip=opt
This option controls which reciprocal estimate instructions
may be used. @var{opt} is a comma-separated list of options, which may
be preceded by a @code{!} to invert the option:
@code{all}: enable all estimate instructions,
@code{default}: enable the default instructions, equivalent to @option{-mrecip},
@code{none}: disable all estimate instructions, equivalent to @option{-mno-recip};
@code{div}: enable the reciprocal approximation instructions for both single and double precision;
@code{divf}: enable the single-precision reciprocal approximation instructions;
@code{divd}: enable the double-precision reciprocal approximation instructions;
@code{rsqrt}: enable the reciprocal square root approximation instructions for both single and double precision;
@code{rsqrtf}: enable the single-precision reciprocal square root approximation instructions;
@code{rsqrtd}: enable the double-precision reciprocal square root approximation instructions;
So, for example, @option{-mrecip=all,!rsqrtd} enables
all of the reciprocal estimate instructions, except for the
@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
which handle the double-precision reciprocal square root calculations.
@item -mrecip-precision
@itemx -mno-recip-precision
@opindex mrecip-precision
Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
The double-precision square root estimate instructions are not generated by
default on low-precision machines, since they do not provide an
estimate that converges after three steps.
@item -mveclibabi=@var{type}
@opindex mveclibabi
Specifies the ABI type to use for vectorizing intrinsics using an
external library. The only type supported at present is @code{mass},
which specifies to use IBM's Mathematical Acceleration Subsystem
(MASS) libraries for vectorizing intrinsics using external libraries.
GCC currently emits calls to @code{acosd2}, @code{acosf4},
@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
for power7. Both @option{-ftree-vectorize} and
@option{-funsafe-math-optimizations} must also be enabled. The MASS
libraries must be specified at link time.
@item -mfriz
@itemx -mno-friz
@opindex mfriz
Generate (do not generate) the @code{friz} instruction when the
@option{-funsafe-math-optimizations} option is used to optimize
rounding of floating-point values to 64-bit integer and back to floating
point. The @code{friz} instruction does not return the same value if
the floating-point number is too large to fit in an integer.
@item -mpointers-to-nested-functions
@itemx -mno-pointers-to-nested-functions
@opindex mpointers-to-nested-functions
Generate (do not generate) code to load up the static chain register
(@var{r11}) when calling through a pointer on AIX and 64-bit Linux
systems where a function pointer points to a 3-word descriptor giving
the function address, TOC value to be loaded in register @var{r2}, and
static chain value to be loaded in register @var{r11}. The
@option{-mpointers-to-nested-functions} is on by default. You cannot
call through pointers to nested functions or pointers
to functions compiled in other languages that use the static chain if
you use the @option{-mno-pointers-to-nested-functions}.
@item -msave-toc-indirect
@itemx -mno-save-toc-indirect
@opindex msave-toc-indirect
Generate (do not generate) code to save the TOC value in the reserved
stack location in the function prologue if the function calls through
a pointer on AIX and 64-bit Linux systems. If the TOC value is not
saved in the prologue, it is saved just before the call through the
pointer. The @option{-mno-save-toc-indirect} option is the default.
@item -mcompat-align-parm
@itemx -mno-compat-align-parm
@opindex mcompat-align-parm
Generate (do not generate) code to pass structure parameters with a
maximum alignment of 64 bits, for compatibility with older versions
of GCC.
Older versions of GCC (prior to 4.9.0) incorrectly did not align a
structure parameter on a 128-bit boundary when that structure contained
a member requiring 128-bit alignment. This is corrected in more
recent versions of GCC. This option may be used to generate code
that is compatible with functions compiled with older versions of
GCC.
The @option{-mno-compat-align-parm} option is the default.
@end table
@node RX Options
@subsection RX Options
@cindex RX Options
These command-line options are defined for RX targets:
@table @gcctabopt
@item -m64bit-doubles
@itemx -m32bit-doubles
@opindex m64bit-doubles
@opindex m32bit-doubles
Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
or 32 bits (@option{-m32bit-doubles}) in size. The default is
@option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
works on 32-bit values, which is why the default is
@option{-m32bit-doubles}.
@item -fpu
@itemx -nofpu
@opindex fpu
@opindex nofpu
Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
floating-point hardware. The default is enabled for the @var{RX600}
series and disabled for the @var{RX200} series.
Floating-point instructions are only generated for 32-bit floating-point
values, however, so the FPU hardware is not used for doubles if the
@option{-m64bit-doubles} option is used.
@emph{Note} If the @option{-fpu} option is enabled then
@option{-funsafe-math-optimizations} is also enabled automatically.
This is because the RX FPU instructions are themselves unsafe.
@item -mcpu=@var{name}
@opindex -mcpu
Selects the type of RX CPU to be targeted. Currently three types are
supported, the generic @var{RX600} and @var{RX200} series hardware and
the specific @var{RX610} CPU. The default is @var{RX600}.
The only difference between @var{RX600} and @var{RX610} is that the
@var{RX610} does not support the @code{MVTIPL} instruction.
The @var{RX200} series does not have a hardware floating-point unit
and so @option{-nofpu} is enabled by default when this type is
selected.
@item -mbig-endian-data
@itemx -mlittle-endian-data
@opindex mbig-endian-data
@opindex mlittle-endian-data
Store data (but not code) in the big-endian format. The default is
@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
format.
@item -msmall-data-limit=@var{N}
@opindex msmall-data-limit
Specifies the maximum size in bytes of global and static variables
which can be placed into the small data area. Using the small data
area can lead to smaller and faster code, but the size of area is
limited and it is up to the programmer to ensure that the area does
not overflow. Also when the small data area is used one of the RX's
registers (usually @code{r13}) is reserved for use pointing to this
area, so it is no longer available for use by the compiler. This
could result in slower and/or larger code if variables are pushed onto
the stack instead of being held in this register.
Note, common variables (variables that have not been initialized) and
constants are not placed into the small data area as they are assigned
to other sections in the output executable.
The default value is zero, which disables this feature. Note, this
feature is not enabled by default with higher optimization levels
(@option{-O2} etc) because of the potentially detrimental effects of
reserving a register. It is up to the programmer to experiment and
discover whether this feature is of benefit to their program. See the
description of the @option{-mpid} option for a description of how the
actual register to hold the small data area pointer is chosen.
@item -msim
@itemx -mno-sim
@opindex msim
@opindex mno-sim
Use the simulator runtime. The default is to use the libgloss
board-specific runtime.
@item -mas100-syntax
@itemx -mno-as100-syntax
@opindex mas100-syntax
@opindex mno-as100-syntax
When generating assembler output use a syntax that is compatible with
Renesas's AS100 assembler. This syntax can also be handled by the GAS
assembler, but it has some restrictions so it is not generated by default.
@item -mmax-constant-size=@var{N}
@opindex mmax-constant-size
Specifies the maximum size, in bytes, of a constant that can be used as
an operand in a RX instruction. Although the RX instruction set does
allow constants of up to 4 bytes in length to be used in instructions,
a longer value equates to a longer instruction. Thus in some
circumstances it can be beneficial to restrict the size of constants
that are used in instructions. Constants that are too big are instead
placed into a constant pool and referenced via register indirection.
The value @var{N} can be between 0 and 4. A value of 0 (the default)
or 4 means that constants of any size are allowed.
@item -mrelax
@opindex mrelax
Enable linker relaxation. Linker relaxation is a process whereby the
linker attempts to reduce the size of a program by finding shorter
versions of various instructions. Disabled by default.
@item -mint-register=@var{N}
@opindex mint-register
Specify the number of registers to reserve for fast interrupt handler
functions. The value @var{N} can be between 0 and 4. A value of 1
means that register @code{r13} is reserved for the exclusive use
of fast interrupt handlers. A value of 2 reserves @code{r13} and
@code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
A value of 0, the default, does not reserve any registers.
@item -msave-acc-in-interrupts
@opindex msave-acc-in-interrupts
Specifies that interrupt handler functions should preserve the
accumulator register. This is only necessary if normal code might use
the accumulator register, for example because it performs 64-bit
multiplications. The default is to ignore the accumulator as this
makes the interrupt handlers faster.
@item -mpid
@itemx -mno-pid
@opindex mpid
@opindex mno-pid
Enables the generation of position independent data. When enabled any
access to constant data is done via an offset from a base address
held in a register. This allows the location of constant data to be
determined at run time without requiring the executable to be
relocated, which is a benefit to embedded applications with tight
memory constraints. Data that can be modified is not affected by this
option.
Note, using this feature reserves a register, usually @code{r13}, for
the constant data base address. This can result in slower and/or
larger code, especially in complicated functions.
The actual register chosen to hold the constant data base address
depends upon whether the @option{-msmall-data-limit} and/or the
@option{-mint-register} command-line options are enabled. Starting
with register @code{r13} and proceeding downwards, registers are
allocated first to satisfy the requirements of @option{-mint-register},
then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
is possible for the small data area register to be @code{r8} if both
@option{-mint-register=4} and @option{-mpid} are specified on the
command line.
By default this feature is not enabled. The default can be restored
via the @option{-mno-pid} command-line option.
@item -mno-warn-multiple-fast-interrupts
@itemx -mwarn-multiple-fast-interrupts
@opindex mno-warn-multiple-fast-interrupts
@opindex mwarn-multiple-fast-interrupts
Prevents GCC from issuing a warning message if it finds more than one
fast interrupt handler when it is compiling a file. The default is to
issue a warning for each extra fast interrupt handler found, as the RX
only supports one such interrupt.
@end table
@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
has special significance to the RX port when used with the
@code{interrupt} function attribute. This attribute indicates a
function intended to process fast interrupts. GCC ensures
that it only uses the registers @code{r10}, @code{r11}, @code{r12}
and/or @code{r13} and only provided that the normal use of the
corresponding registers have been restricted via the
@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
options.
@node S/390 and zSeries Options
@subsection S/390 and zSeries Options
@cindex S/390 and zSeries Options
These are the @samp{-m} options defined for the S/390 and zSeries architecture.
@table @gcctabopt
@item -mhard-float
@itemx -msoft-float
@opindex mhard-float
@opindex msoft-float
Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When @option{-msoft-float} is specified,
functions in @file{libgcc.a} are used to perform floating-point
operations. When @option{-mhard-float} is specified, the compiler
generates IEEE floating-point instructions. This is the default.
@item -mhard-dfp
@itemx -mno-hard-dfp
@opindex mhard-dfp
@opindex mno-hard-dfp
Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When @option{-mno-hard-dfp} is
specified, functions in @file{libgcc.a} are used to perform
decimal-floating-point operations. When @option{-mhard-dfp} is
specified, the compiler generates decimal-floating-point hardware
instructions. This is the default for @option{-march=z9-ec} or higher.
@item -mlong-double-64
@itemx -mlong-double-128
@opindex mlong-double-64
@opindex mlong-double-128
These switches control the size of @code{long double} type. A size
of 64 bits makes the @code{long double} type equivalent to the @code{double}
type. This is the default.
@item -mbackchain
@itemx -mno-backchain
@opindex mbackchain
@opindex mno-backchain
Store (do not store) the address of the caller's frame as backchain pointer
into the callee's stack frame.
A backchain may be needed to allow debugging using tools that do not understand
DWARF 2 call frame information.
When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
the backchain is placed into the topmost word of the 96/160 byte register
save area.
In general, code compiled with @option{-mbackchain} is call-compatible with
code compiled with @option{-mmo-backchain}; however, use of the backchain
for debugging purposes usually requires that the whole binary is built with
@option{-mbackchain}. Note that the combination of @option{-mbackchain},
@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
to build a linux kernel use @option{-msoft-float}.
The default is to not maintain the backchain.
@item -mpacked-stack
@itemx -mno-packed-stack
@opindex mpacked-stack
@opindex mno-packed-stack
Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
specified, the compiler uses the all fields of the 96/160 byte register save
area only for their default purpose; unused fields still take up stack space.
When @option{-mpacked-stack} is specified, register save slots are densely
packed at the top of the register save area; unused space is reused for other
purposes, allowing for more efficient use of the available stack space.
However, when @option{-mbackchain} is also in effect, the topmost word of
the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.
As long as the stack frame backchain is not used, code generated with
@option{-mpacked-stack} is call-compatible with code generated with
@option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible
with code compiled with @option{-mpacked-stack}. Also, note that the
combination of @option{-mbackchain},
@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
to build a linux kernel use @option{-msoft-float}.
The default is to not use the packed stack layout.
@item -msmall-exec
@itemx -mno-small-exec
@opindex msmall-exec
@opindex mno-small-exec
Generate (or do not generate) code using the @code{bras} instruction
to do subroutine calls.
This only works reliably if the total executable size does not
exceed 64k. The default is to use the @code{basr} instruction instead,
which does not have this limitation.
@item -m64
@itemx -m31
@opindex m64
@opindex m31
When @option{-m31} is specified, generate code compliant to the
GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
particular to generate 64-bit instructions. For the @samp{s390}
targets, the default is @option{-m31}, while the @samp{s390x}
targets default to @option{-m64}.
@item -mzarch
@itemx -mesa
@opindex mzarch
@opindex mesa
When @option{-mzarch} is specified, generate code using the
instructions available on z/Architecture.
When @option{-mesa} is specified, generate code using the
instructions available on ESA/390. Note that @option{-mesa} is
not possible with @option{-m64}.
When generating code compliant to the GNU/Linux for S/390 ABI,
the default is @option{-mesa}. When generating code compliant
to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
@item -mmvcle
@itemx -mno-mvcle
@opindex mmvcle
@opindex mno-mvcle
Generate (or do not generate) code using the @code{mvcle} instruction
to perform block moves. When @option{-mno-mvcle} is specified,
use a @code{mvc} loop instead. This is the default unless optimizing for
size.
@item -mdebug
@itemx -mno-debug
@opindex mdebug
@opindex mno-debug
Print (or do not print) additional debug information when compiling.
The default is to not print debug information.
@item -march=@var{cpu-type}
@opindex march
Generate code that runs on @var{cpu-type}, which is the name of a system
representing a certain processor type. Possible values for
@var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
@samp{z9-109}, @samp{z9-ec} and @samp{z10}.
When generating code using the instructions available on z/Architecture,
the default is @option{-march=z900}. Otherwise, the default is
@option{-march=g5}.
@item -mtune=@var{cpu-type}
@opindex mtune
Tune to @var{cpu-type} everything applicable about the generated code,
except for the ABI and the set of available instructions.
The list of @var{cpu-type} values is the same as for @option{-march}.
The default is the value used for @option{-march}.
@item -mtpf-trace
@itemx -mno-tpf-trace
@opindex mtpf-trace
@opindex mno-tpf-trace
Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even
when compiling for the TPF OS@.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used.
@item -mwarn-framesize=@var{framesize}
@opindex mwarn-framesize
Emit a warning if the current function exceeds the given frame size. Because
this is a compile-time check it doesn't need to be a real problem when the program
runs. It is intended to identify functions that most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g.@: the linux kernel.
@item -mwarn-dynamicstack
@opindex mwarn-dynamicstack
Emit a warning if the function calls @code{alloca} or uses dynamically-sized
arrays. This is generally a bad idea with a limited stack size.
@item -mstack-guard=@var{stack-guard}
@itemx -mstack-size=@var{stack-size}
@opindex mstack-guard
@opindex mstack-size
If these options are provided the S/390 back end emits additional instructions in
the function prologue that trigger a trap if the stack size is @var{stack-guard}
bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
If the @var{stack-guard} option is omitted the smallest power of 2 larger than
the frame size of the compiled function is chosen.
These options are intended to be used to help debugging stack overflow problems.
The additionally emitted code causes only little overhead and hence can also be
used in production-like systems without greater performance degradation. The given
values have to be exact powers of 2 and @var{stack-size} has to be greater than
@var{stack-guard} without exceeding 64k.
In order to be efficient the extra code makes the assumption that the stack starts
at an address aligned to the value given by @var{stack-size}.
The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
@end table
@node Score Options
@subsection Score Options
@cindex Score Options
These options are defined for Score implementations:
@table @gcctabopt
@item -meb
@opindex meb
Compile code for big-endian mode. This is the default.
@item -mel
@opindex mel
Compile code for little-endian mode.
@item -mnhwloop
@opindex mnhwloop
Disable generation of @code{bcnz} instructions.
@item -muls
@opindex muls
Enable generation of unaligned load and store instructions.
@item -mmac
@opindex mmac
Enable the use of multiply-accumulate instructions. Disabled by default.
@item -mscore5
@opindex mscore5
Specify the SCORE5 as the target architecture.
@item -mscore5u
@opindex mscore5u
Specify the SCORE5U of the target architecture.
@item -mscore7
@opindex mscore7
Specify the SCORE7 as the target architecture. This is the default.
@item -mscore7d
@opindex mscore7d
Specify the SCORE7D as the target architecture.
@end table
@node SH Options
@subsection SH Options
These @samp{-m} options are defined for the SH implementations:
@table @gcctabopt
@item -m1
@opindex m1
Generate code for the SH1.
@item -m2
@opindex m2
Generate code for the SH2.
@item -m2e
Generate code for the SH2e.
@item -m2a-nofpu
@opindex m2a-nofpu
Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.
@item -m2a-single-only
@opindex m2a-single-only
Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.
@item -m2a-single
@opindex m2a-single
Generate code for the SH2a-FPU assuming the floating-point unit is in
single-precision mode by default.
@item -m2a
@opindex m2a
Generate code for the SH2a-FPU assuming the floating-point unit is in
double-precision mode by default.
@item -m3
@opindex m3
Generate code for the SH3.
@item -m3e
@opindex m3e
Generate code for the SH3e.
@item -m4-nofpu
@opindex m4-nofpu
Generate code for the SH4 without a floating-point unit.
@item -m4-single-only
@opindex m4-single-only
Generate code for the SH4 with a floating-point unit that only
supports single-precision arithmetic.
@item -m4-single
@opindex m4-single
Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.
@item -m4
@opindex m4
Generate code for the SH4.
@item -m4a-nofpu
@opindex m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.
@item -m4a-single-only
@opindex m4a-single-only
Generate code for the SH4a, in such a way that no double-precision
floating-point operations are used.
@item -m4a-single
@opindex m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.
@item -m4a
@opindex m4a
Generate code for the SH4a.
@item -m4al
@opindex m4al
Same as @option{-m4a-nofpu}, except that it implicitly passes
@option{-dsp} to the assembler. GCC doesn't generate any DSP
instructions at the moment.
@item -mb
@opindex mb
Compile code for the processor in big-endian mode.
@item -ml
@opindex ml
Compile code for the processor in little-endian mode.
@item -mdalign
@opindex mdalign
Align doubles at 64-bit boundaries. Note that this changes the calling
conventions, and thus some functions from the standard C library do
not work unless you recompile it first with @option{-mdalign}.
@item -mrelax
@opindex mrelax
Shorten some address references at link time, when possible; uses the
linker option @option{-relax}.
@item -mbigtable
@opindex mbigtable
Use 32-bit offsets in @code{switch} tables. The default is to use
16-bit offsets.
@item -mbitops
@opindex mbitops
Enable the use of bit manipulation instructions on SH2A.
@item -mfmovd
@opindex mfmovd
Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
alignment constraints.
@item -mhitachi
@opindex mhitachi
Comply with the calling conventions defined by Renesas.
@item -mrenesas
@opindex mhitachi
Comply with the calling conventions defined by Renesas.
@item -mno-renesas
@opindex mhitachi
Comply with the calling conventions defined for GCC before the Renesas
conventions were available. This option is the default for all
targets of the SH toolchain.
@item -mnomacsave
@opindex mnomacsave
Mark the @code{MAC} register as call-clobbered, even if
@option{-mhitachi} is given.
@item -mieee
@itemx -mno-ieee
@opindex mieee
@opindex mnoieee
Control the IEEE compliance of floating-point comparisons, which affects the
handling of cases where the result of a comparison is unordered. By default
@option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
enabled @option{-mno-ieee} is implicitly set, which results in faster
floating-point greater-equal and less-equal comparisons. The implcit settings
can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
@item -minline-ic_invalidate
@opindex minline-ic_invalidate
Inline code to invalidate instruction cache entries after setting up
nested function trampolines.
This option has no effect if @option{-musermode} is in effect and the selected
code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
instruction.
If the selected code generation option does not allow the use of the @code{icbi}
instruction, and @option{-musermode} is not in effect, the inlined code
manipulates the instruction cache address array directly with an associative
write. This not only requires privileged mode at run time, but it also
fails if the cache line had been mapped via the TLB and has become unmapped.
@item -misize
@opindex misize
Dump instruction size and location in the assembly code.
@item -mpadstruct
@opindex mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI@.
@item -matomic-model=@var{model}
@opindex matomic-model=@var{model}
Sets the model of atomic operations and additional parameters as a comma
separated list. For details on the atomic built-in functions see
@ref{__atomic Builtins}. The following models and parameters are supported:
@table @samp
@item none
Disable compiler generated atomic sequences and emit library calls for atomic
operations. This is the default if the target is not @code{sh-*-linux*}.
@item soft-gusa
Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
built-in functions. The generated atomic sequences require additional support
from the interrupt/exception handling code of the system and are only suitable
for SH3* and SH4* single-core systems. This option is enabled by default when
the target is @code{sh-*-linux*} and SH3* or SH4*. When the target is SH4A,
this option will also partially utilize the hardware atomic instructions
@code{movli.l} and @code{movco.l} to create more efficient code, unless
@samp{strict} is specified.
@item soft-tcb
Generate software atomic sequences that use a variable in the thread control
block. This is a variation of the gUSA sequences which can also be used on
SH1* and SH2* targets. The generated atomic sequences require additional
support from the interrupt/exception handling code of the system and are only
suitable for single-core systems. When using this model, the @samp{gbr-offset=}
parameter has to be specified as well.
@item soft-imask
Generate software atomic sequences that temporarily disable interrupts by
setting @code{SR.IMASK = 1111}. This model works only when the program runs
in privileged mode and is only suitable for single-core systems. Additional
support from the interrupt/exception handling code of the system is not
required. This model is enabled by default when the target is
@code{sh-*-linux*} and SH1* or SH2*.
@item hard-llcs
Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
instructions only. This is only available on SH4A and is suitable for
multi-core systems. Since the hardware instructions support only 32 bit atomic
variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
Code compiled with this option will also be compatible with other software
atomic model interrupt/exception handling systems if executed on an SH4A
system. Additional support from the interrupt/exception handling code of the
system is not required for this model.
@item gbr-offset=
This parameter specifies the offset in bytes of the variable in the thread
control block structure that should be used by the generated atomic sequences
when the @samp{soft-tcb} model has been selected. For other models this
parameter is ignored. The specified value must be an integer multiple of four
and in the range 0-1020.
@item strict
This parameter prevents mixed usage of multiple atomic models, even though they
would be compatible, and will make the compiler generate atomic sequences of the
specified model only.
@end table
@item -mtas
@opindex mtas
Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
Notice that depending on the particular hardware and software configuration
this can degrade overall performance due to the operand cache line flushes
that are implied by the @code{tas.b} instruction. On multi-core SH4A
processors the @code{tas.b} instruction must be used with caution since it
can result in data corruption for certain cache configurations.
@item -mspace
@opindex mspace
Optimize for space instead of speed. Implied by @option{-Os}.
@item -mprefergot
@opindex mprefergot
When generating position-independent code, emit function calls using
the Global Offset Table instead of the Procedure Linkage Table.
@item -musermode
@opindex musermode
Don't generate privileged mode only code. This option
implies @option{-mno-inline-ic_invalidate}
if the inlined code would not work in user mode.
This is the default when the target is @code{sh-*-linux*}.
@item -multcost=@var{number}
@opindex multcost=@var{number}
Set the cost to assume for a multiply insn.
@item -mdiv=@var{strategy}
@opindex mdiv=@var{strategy}
Set the division strategy to be used for integer division operations.
For SHmedia @var{strategy} can be one of:
@table @samp
@item fp
Performs the operation in floating point. This has a very high latency,
but needs only a few instructions, so it might be a good choice if
your code has enough easily-exploitable ILP to allow the compiler to
schedule the floating-point instructions together with other instructions.
Division by zero causes a floating-point exception.
@item inv
Uses integer operations to calculate the inverse of the divisor,
and then multiplies the dividend with the inverse. This strategy allows
CSE and hoisting of the inverse calculation. Division by zero calculates
an unspecified result, but does not trap.
@item inv:minlat
A variant of @samp{inv} where, if no CSE or hoisting opportunities
have been found, or if the entire operation has been hoisted to the same
place, the last stages of the inverse calculation are intertwined with the
final multiply to reduce the overall latency, at the expense of using a few
more instructions, and thus offering fewer scheduling opportunities with
other code.
@item call
Calls a library function that usually implements the @samp{inv:minlat}
strategy.
This gives high code density for @code{m5-*media-nofpu} compilations.
@item call2
Uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which
exposes the pointer load to CSE and code hoisting optimizations.
@item inv:call
@itemx inv:call2
@itemx inv:fp
Use the @samp{inv} algorithm for initial
code generation, but if the code stays unoptimized, revert to the @samp{call},
@samp{call2}, or @samp{fp} strategies, respectively. Note that the
potentially-trapping side effect of division by zero is carried by a
separate instruction, so it is possible that all the integer instructions
are hoisted out, but the marker for the side effect stays where it is.
A recombination to floating-point operations or a call is not possible
in that case.
@item inv20u
@itemx inv20l
Variants of the @samp{inv:minlat} strategy. In the case
that the inverse calculation is not separated from the multiply, they speed
up division where the dividend fits into 20 bits (plus sign where applicable)
by inserting a test to skip a number of operations in this case; this test
slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
@end table
For targets other than SHmedia @var{strategy} can be one of:
@table @samp
@item call-div1
Calls a library function that uses the single-step division instruction
@code{div1} to perform the operation. Division by zero calculates an
unspecified result and does not trap. This is the default except for SH4,
SH2A and SHcompact.
@item call-fp
Calls a library function that performs the operation in double precision
floating point. Division by zero causes a floating-point exception. This is
the default for SHcompact with FPU. Specifying this for targets that do not
have a double precision FPU will default to @code{call-div1}.
@item call-table
Calls a library function that uses a lookup table for small divisors and
the @code{div1} instruction with case distinction for larger divisors. Division
by zero calculates an unspecified result and does not trap. This is the default
for SH4. Specifying this for targets that do not have dynamic shift
instructions will default to @code{call-div1}.
@end table
When a division strategy has not been specified the default strategy will be
selected based on the current target. For SH2A the default strategy is to
use the @code{divs} and @code{divu} instructions instead of library function
calls.
@item -maccumulate-outgoing-args
@opindex maccumulate-outgoing-args
Reserve space once for outgoing arguments in the function prologue rather
than around each call. Generally beneficial for performance and size. Also
needed for unwinding to avoid changing the stack frame around conditional code.
@item -mdivsi3_libfunc=@var{name}
@opindex mdivsi3_libfunc=@var{name}
Set the name of the library function used for 32-bit signed division to
@var{name}.
This only affects the name used in the @samp{call} and @samp{inv:call}
division strategies, and the compiler still expects the same
sets of input/output/clobbered registers as if this option were not present.
@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@item -mindexed-addressing
@opindex mindexed-addressing
Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32-bit wrap-around
semantics for the indexed addressing mode. The architecture allows the
implementation of processors with 64-bit MMU, which the OS could use to
get 32-bit addressing, but since no current hardware implementation supports
this or any other way to make the indexed addressing mode safe to use in
the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
@item -mgettrcost=@var{number}
@opindex mgettrcost=@var{number}
Set the cost assumed for the @code{gettr} instruction to @var{number}.
The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
@item -mpt-fixed
@opindex mpt-fixed
Assume @code{pt*} instructions won't trap. This generally generates
better-scheduled code, but is unsafe on current hardware.
The current architecture
definition says that @code{ptabs} and @code{ptrel} trap when the target
anded with 3 is 3.
This has the unintentional effect of making it unsafe to schedule these
instructions before a branch, or hoist them out of a loop. For example,
@code{__do_global_ctors}, a part of @file{libgcc}
that runs constructors at program
startup, calls functions in a list which is delimited by @minus{}1. With the
@option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
That means that all the constructors run a bit more quickly, but when
the loop comes to the end of the list, the program crashes because @code{ptabs}
loads @minus{}1 into a target register.
Since this option is unsafe for any
hardware implementing the current architecture specification, the default
is @option{-mno-pt-fixed}. Unless specified explicitly with
@option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
this deters register allocation from using target registers for storing
ordinary integers.
@item -minvalid-symbols
@opindex minvalid-symbols
Assume symbols might be invalid. Ordinary function symbols generated by
the compiler are always valid to load with
@code{movi}/@code{shori}/@code{ptabs} or
@code{movi}/@code{shori}/@code{ptrel},
but with assembler and/or linker tricks it is possible
to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
This option is only meaningful when @option{-mno-pt-fixed} is in effect.
It prevents cross-basic-block CSE, hoisting and most scheduling
of symbol loads. The default is @option{-mno-invalid-symbols}.
@item -mbranch-cost=@var{num}
@opindex mbranch-cost=@var{num}
Assume @var{num} to be the cost for a branch instruction. Higher numbers
make the compiler try to generate more branch-free code if possible.
If not specified the value is selected depending on the processor type that
is being compiled for.
@item -mzdcbranch
@itemx -mno-zdcbranch
@opindex mzdcbranch
@opindex mno-zdcbranch
Assume (do not assume) that zero displacement conditional branch instructions
@code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
compiler will try to prefer zero displacement branch code sequences. This is
enabled by default when generating code for SH4 and SH4A. It can be explicitly
disabled by specifying @option{-mno-zdcbranch}.
@item -mcbranchdi
@opindex mcbranchdi
Enable the @code{cbranchdi4} instruction pattern.
@item -mcmpeqdi
@opindex mcmpeqdi
Emit the @code{cmpeqdi_t} instruction pattern even when @option{-mcbranchdi}
is in effect.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
@option{-mfused-madd} option is now mapped to the machine-independent
@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
mapped to @option{-ffp-contract=off}.
@item -mfsca
@itemx -mno-fsca
@opindex mfsca
@opindex mno-fsca
Allow or disallow the compiler to emit the @code{fsca} instruction for sine
and cosine approximations. The option @code{-mfsca} must be used in
combination with @code{-funsafe-math-optimizations}. It is enabled by default
when generating code for SH4A. Using @code{-mno-fsca} disables sine and cosine
approximations even if @code{-funsafe-math-optimizations} is in effect.
@item -mfsrra
@itemx -mno-fsrra
@opindex mfsrra
@opindex mno-fsrra
Allow or disallow the compiler to emit the @code{fsrra} instruction for
reciprocal square root approximations. The option @code{-mfsrra} must be used
in combination with @code{-funsafe-math-optimizations} and
@code{-ffinite-math-only}. It is enabled by default when generating code for
SH4A. Using @code{-mno-fsrra} disables reciprocal square root approximations
even if @code{-funsafe-math-optimizations} and @code{-ffinite-math-only} are
in effect.
@item -mpretend-cmove
@opindex mpretend-cmove
Prefer zero-displacement conditional branches for conditional move instruction
patterns. This can result in faster code on the SH4 processor.
@end table
@node Solaris 2 Options
@subsection Solaris 2 Options
@cindex Solaris 2 options
These @samp{-m} options are supported on Solaris 2:
@table @gcctabopt
@item -mimpure-text
@opindex mimpure-text
@option{-mimpure-text}, used in addition to @option{-shared}, tells
the compiler to not pass @option{-z text} to the linker when linking a
shared object. Using this option, you can link position-dependent
code into a shared object.
@option{-mimpure-text} suppresses the ``relocations remain against
allocatable but non-writable sections'' linker error message.
However, the necessary relocations trigger copy-on-write, and the
shared object is not actually shared across processes. Instead of
using @option{-mimpure-text}, you should compile all source code with
@option{-fpic} or @option{-fPIC}.
@end table
These switches are supported in addition to the above on Solaris 2:
@table @gcctabopt
@item -pthreads
@opindex pthreads
Add support for multithreading using the POSIX threads library. This
option sets flags for both the preprocessor and linker. This option does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.
@item -pthread
@opindex pthread
This is a synonym for @option{-pthreads}.
@end table
@node SPARC Options
@subsection SPARC Options
@cindex SPARC options
These @samp{-m} options are supported on the SPARC:
@table @gcctabopt
@item -mno-app-regs
@itemx -mapp-regs
@opindex mno-app-regs
@opindex mapp-regs
Specify @option{-mapp-regs} to generate output using the global registers
2 through 4, which the SPARC SVR4 ABI reserves for applications. This
is the default.
To be fully SVR4 ABI-compliant at the cost of some performance loss,
specify @option{-mno-app-regs}. You should compile libraries and system
software with this option.
@item -mflat
@itemx -mno-flat
@opindex mflat
@opindex mno-flat
With @option{-mflat}, the compiler does not generate save/restore instructions
and uses a ``flat'' or single register window model. This model is compatible
with the regular register window model. The local registers and the input
registers (0--5) are still treated as ``call-saved'' registers and are
saved on the stack as needed.
With @option{-mno-flat} (the default), the compiler generates save/restore
instructions (except for leaf functions). This is the normal operating mode.
@item -mfpu
@itemx -mhard-float
@opindex mfpu
@opindex mhard-float
Generate output containing floating-point instructions. This is the
default.
@item -mno-fpu
@itemx -msoft-float
@opindex mno-fpu
@opindex msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not available for all SPARC
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation. The embedded targets @samp{sparc-*-aout} and
@samp{sparclite-*-*} do provide software floating-point support.
@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option. In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.
@item -mhard-quad-float
@opindex mhard-quad-float
Generate output containing quad-word (long double) floating-point
instructions.
@item -msoft-quad-float
@opindex msoft-quad-float
Generate output containing library calls for quad-word (long double)
floating-point instructions. The functions called are those specified
in the SPARC ABI@. This is the default.
As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating-point instructions. They all invoke
a trap handler for one of these instructions, and then the trap handler
emulates the effect of the instruction. Because of the trap handler overhead,
this is much slower than calling the ABI library routines. Thus the
@option{-msoft-quad-float} option is the default.
@item -mno-unaligned-doubles
@itemx -munaligned-doubles
@opindex mno-unaligned-doubles
@opindex munaligned-doubles
Assume that doubles have 8-byte alignment. This is the default.
With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
alignment only if they are contained in another type, or if they have an
absolute address. Otherwise, it assumes they have 4-byte alignment.
Specifying this option avoids some rare compatibility problems with code
generated by other compilers. It is not the default because it results
in a performance loss, especially for floating-point code.
@item -mno-faster-structs
@itemx -mfaster-structs
@opindex mno-faster-structs
@opindex mfaster-structs
With @option{-mfaster-structs}, the compiler assumes that structures
should have 8-byte alignment. This enables the use of pairs of
@code{ldd} and @code{std} instructions for copies in structure
assignment, in place of twice as many @code{ld} and @code{st} pairs.
However, the use of this changed alignment directly violates the SPARC
ABI@. Thus, it's intended only for use on targets where the developer
acknowledges that their resulting code is not directly in line with
the rules of the ABI@.
@item -mcpu=@var{cpu_type}
@opindex mcpu
Set the instruction set, register set, and instruction scheduling parameters
for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
@samp{leon}, @samp{leon3}, @samp{sparclite}, @samp{f930}, @samp{f934},
@samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
@samp{niagara3} and @samp{niagara4}.
Native Solaris and GNU/Linux toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mcpu=native} has no effect if GCC does not recognize
the processor.
Default instruction scheduling parameters are used for values that select
an architecture and not an implementation. These are @samp{v7}, @samp{v8},
@samp{sparclite}, @samp{sparclet}, @samp{v9}.
Here is a list of each supported architecture and their supported
implementations.
@table @asis
@item v7
cypress
@item v8
supersparc, hypersparc, leon, leon3
@item sparclite
f930, f934, sparclite86x
@item sparclet
tsc701
@item v9
ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
@end table
By default (unless configured otherwise), GCC generates code for the V7
variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
additionally optimizes it for the Cypress CY7C602 chip, as used in the
SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
SPARCStation 1, 2, IPX etc.
With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
architecture. The only difference from V7 code is that the compiler emits
the integer multiply and integer divide instructions which exist in SPARC-V8
but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
2000 series.
With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
the SPARC architecture. This adds the integer multiply, integer divide step
and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
With @option{-mcpu=f930}, the compiler additionally optimizes it for the
Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
MB86934 chip, which is the more recent SPARClite with FPU@.
With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
the SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
optimizes it for the TEMIC SPARClet chip.
With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
architecture. This adds 64-bit integer and floating-point move instructions,
3 additional floating-point condition code registers and conditional move
instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
optimizes it for the Sun UltraSPARC I/II/IIi chips. With
@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
@option{-mcpu=niagara}, the compiler additionally optimizes it for
Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
additionally optimizes it for Sun UltraSPARC T2 chips. With
@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
additionally optimizes it for Sun UltraSPARC T4 chips.
@item -mtune=@var{cpu_type}
@opindex mtune
Set the instruction scheduling parameters for machine type
@var{cpu_type}, but do not set the instruction set or register set that the
option @option{-mcpu=@var{cpu_type}} does.
The same values for @option{-mcpu=@var{cpu_type}} can be used for
@option{-mtune=@var{cpu_type}}, but the only useful values are those
that select a particular CPU implementation. Those are @samp{cypress},
@samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3}, @samp{f930},
@samp{f934}, @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
@samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3} and
@samp{niagara4}. With native Solaris and GNU/Linux toolchains, @samp{native}
can also be used.
@item -mv8plus
@itemx -mno-v8plus
@opindex mv8plus
@opindex mno-v8plus
With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
difference from the V8 ABI is that the global and out registers are
considered 64 bits wide. This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.
@item -mvis
@itemx -mno-vis
@opindex mvis
@opindex mno-vis
With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is @option{-mno-vis}.
@item -mvis2
@itemx -mno-vis2
@opindex mvis2
@opindex mno-vis2
With @option{-mvis2}, GCC generates code that takes advantage of
version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
default is @option{-mvis2} when targeting a cpu that supports such
instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
also sets @option{-mvis}.
@item -mvis3
@itemx -mno-vis3
@opindex mvis3
@opindex mno-vis3
With @option{-mvis3}, GCC generates code that takes advantage of
version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
default is @option{-mvis3} when targeting a cpu that supports such
instructions, such as niagara-3 and later. Setting @option{-mvis3}
also sets @option{-mvis2} and @option{-mvis}.
@item -mcbcond
@itemx -mno-cbcond
@opindex mcbcond
@opindex mno-cbcond
With @option{-mcbcond}, GCC generates code that takes advantage of
compare-and-branch instructions, as defined in the Sparc Architecture 2011.
The default is @option{-mcbcond} when targeting a cpu that supports such
instructions, such as niagara-4 and later.
@item -mpopc
@itemx -mno-popc
@opindex mpopc
@opindex mno-popc
With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
population count instruction. The default is @option{-mpopc}
when targeting a cpu that supports such instructions, such as Niagara-2 and
later.
@item -mfmaf
@itemx -mno-fmaf
@opindex mfmaf
@opindex mno-fmaf
With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
when targeting a cpu that supports such instructions, such as Niagara-3 and
later.
@item -mfix-at697f
@opindex mfix-at697f
Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor).
@item -mfix-ut699
@opindex mfix-ut699
Enable the documented workarounds for the floating-point errata and the data
cache nullify errata of the UT699 processor.
@end table
These @samp{-m} options are supported in addition to the above
on SPARC-V9 processors in 64-bit environments:
@table @gcctabopt
@item -m32
@itemx -m64
@opindex m32
@opindex m64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.
@item -mcmodel=@var{which}
@opindex mcmodel
Set the code model to one of
@table @samp
@item medlow
The Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically
or dynamically linked.
@item medmid
The Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.
@item medany
The Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the
text segment.
@item embmedany
The Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time). The
global register %g4 points to the base of the data segment. Programs
are statically linked and PIC is not supported.
@end table
@item -mmemory-model=@var{mem-model}
@opindex mmemory-model
Set the memory model in force on the processor to one of
@table @samp
@item default
The default memory model for the processor and operating system.
@item rmo
Relaxed Memory Order
@item pso
Partial Store Order
@item tso
Total Store Order
@item sc
Sequential Consistency
@end table
These memory models are formally defined in Appendix D of the Sparc V9
architecture manual, as set in the processor's @code{PSTATE.MM} field.
@item -mstack-bias
@itemx -mno-stack-bias
@opindex mstack-bias
@opindex mno-stack-bias
With @option{-mstack-bias}, GCC assumes that the stack pointer, and
frame pointer if present, are offset by @minus{}2047 which must be added back
when making stack frame references. This is the default in 64-bit mode.
Otherwise, assume no such offset is present.
@end table
@node SPU Options
@subsection SPU Options
@cindex SPU options
These @samp{-m} options are supported on the SPU:
@table @gcctabopt
@item -mwarn-reloc
@itemx -merror-reloc
@opindex mwarn-reloc
@opindex merror-reloc
The loader for SPU does not handle dynamic relocations. By default, GCC
gives an error when it generates code that requires a dynamic
relocation. @option{-mno-error-reloc} disables the error,
@option{-mwarn-reloc} generates a warning instead.
@item -msafe-dma
@itemx -munsafe-dma
@opindex msafe-dma
@opindex munsafe-dma
Instructions that initiate or test completion of DMA must not be
reordered with respect to loads and stores of the memory that is being
accessed.
With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
memory accesses, but that can lead to inefficient code in places where the
memory is known to not change. Rather than mark the memory as volatile,
you can use @option{-msafe-dma} to tell the compiler to treat
the DMA instructions as potentially affecting all memory.
@item -mbranch-hints
@opindex mbranch-hints
By default, GCC generates a branch hint instruction to avoid
pipeline stalls for always-taken or probably-taken branches. A hint
is not generated closer than 8 instructions away from its branch.
There is little reason to disable them, except for debugging purposes,
or to make an object a little bit smaller.
@item -msmall-mem
@itemx -mlarge-mem
@opindex msmall-mem
@opindex mlarge-mem
By default, GCC generates code assuming that addresses are never larger
than 18 bits. With @option{-mlarge-mem} code is generated that assumes
a full 32-bit address.
@item -mstdmain
@opindex mstdmain
By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list).
With @option{-mstdmain}, GCC links your program against startup
code that assumes a C99-style interface to @code{main}, including a
local copy of @code{argv} strings.
@item -mfixed-range=@var{register-range}
@opindex mfixed-range
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@item -mea32
@itemx -mea64
@opindex mea32
@opindex mea64
Compile code assuming that pointers to the PPU address space accessed
via the @code{__ea} named address space qualifier are either 32 or 64
bits wide. The default is 32 bits. As this is an ABI-changing option,
all object code in an executable must be compiled with the same setting.
@item -maddress-space-conversion
@itemx -mno-address-space-conversion
@opindex maddress-space-conversion
@opindex mno-address-space-conversion
Allow/disallow treating the @code{__ea} address space as superset
of the generic address space. This enables explicit type casts
between @code{__ea} and generic pointer as well as implicit
conversions of generic pointers to @code{__ea} pointers. The
default is to allow address space pointer conversions.
@item -mcache-size=@var{cache-size}
@opindex mcache-size
This option controls the version of libgcc that the compiler links to an
executable and selects a software-managed cache for accessing variables
in the @code{__ea} address space with a particular cache size. Possible
options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
and @samp{128}. The default cache size is 64KB.
@item -matomic-updates
@itemx -mno-atomic-updates
@opindex matomic-updates
@opindex mno-atomic-updates
This option controls the version of libgcc that the compiler links to an
executable and selects whether atomic updates to the software-managed
cache of PPU-side variables are used. If you use atomic updates, changes
to a PPU variable from SPU code using the @code{__ea} named address space
qualifier do not interfere with changes to other PPU variables residing
in the same cache line from PPU code. If you do not use atomic updates,
such interference may occur; however, writing back cache lines is
more efficient. The default behavior is to use atomic updates.
@item -mdual-nops
@itemx -mdual-nops=@var{n}
@opindex mdual-nops
By default, GCC inserts nops to increase dual issue when it expects
it to increase performance. @var{n} can be a value from 0 to 10. A
smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
@item -mhint-max-nops=@var{n}
@opindex mhint-max-nops
Maximum number of nops to insert for a branch hint. A branch hint must
be at least 8 instructions away from the branch it is affecting. GCC
inserts up to @var{n} nops to enforce this, otherwise it does not
generate the branch hint.
@item -mhint-max-distance=@var{n}
@opindex mhint-max-distance
The encoding of the branch hint instruction limits the hint to be within
256 instructions of the branch it is affecting. By default, GCC makes
sure it is within 125.
@item -msafe-hints
@opindex msafe-hints
Work around a hardware bug that causes the SPU to stall indefinitely.
By default, GCC inserts the @code{hbrp} instruction to make sure
this stall won't happen.
@end table
@node System V Options
@subsection Options for System V
These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:
@table @gcctabopt
@item -G
@opindex G
Create a shared object.
It is recommended that @option{-symbolic} or @option{-shared} be used instead.
@item -Qy
@opindex Qy
Identify the versions of each tool used by the compiler, in a
@code{.ident} assembler directive in the output.
@item -Qn
@opindex Qn
Refrain from adding @code{.ident} directives to the output file (this is
the default).
@item -YP,@var{dirs}
@opindex YP
Search the directories @var{dirs}, and no others, for libraries
specified with @option{-l}.
@item -Ym,@var{dir}
@opindex Ym
Look in the directory @var{dir} to find the M4 preprocessor.
The assembler uses this option.
@c This is supposed to go with a -Yd for predefined M4 macro files, but
@c the generic assembler that comes with Solaris takes just -Ym.
@end table
@node TILE-Gx Options
@subsection TILE-Gx Options
@cindex TILE-Gx options
These @samp{-m} options are supported on the TILE-Gx:
@table @gcctabopt
@item -mcmodel=small
@opindex mcmodel=small
Generate code for the small model. The distance for direct calls is
limited to 500M in either direction. PC-relative addresses are 32
bits. Absolute addresses support the full address range.
@item -mcmodel=large
@opindex mcmodel=large
Generate code for the large model. There is no limitation on call
distance, pc-relative addresses, or absolute addresses.
@item -mcpu=@var{name}
@opindex mcpu
Selects the type of CPU to be targeted. Currently the only supported
type is @samp{tilegx}.
@item -m32
@itemx -m64
@opindex m32
@opindex m64
Generate code for a 32-bit or 64-bit environment. The 32-bit
environment sets int, long, and pointer to 32 bits. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits.
@end table
@node TILEPro Options
@subsection TILEPro Options
@cindex TILEPro options
These @samp{-m} options are supported on the TILEPro:
@table @gcctabopt
@item -mcpu=@var{name}
@opindex mcpu
Selects the type of CPU to be targeted. Currently the only supported
type is @samp{tilepro}.
@item -m32
@opindex m32
Generate code for a 32-bit environment, which sets int, long, and
pointer to 32 bits. This is the only supported behavior so the flag
is essentially ignored.
@end table
@node V850 Options
@subsection V850 Options
@cindex V850 Options
These @samp{-m} options are defined for V850 implementations:
@table @gcctabopt
@item -mlong-calls
@itemx -mno-long-calls
@opindex mlong-calls
@opindex mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be
far away, the compiler always loads the function's address into a
register, and calls indirect through the pointer.
@item -mno-ep
@itemx -mep
@opindex mno-ep
@opindex mep
Do not optimize (do optimize) basic blocks that use the same index
pointer 4 or more times to copy pointer into the @code{ep} register, and
use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
option is on by default if you optimize.
@item -mno-prolog-function
@itemx -mprolog-function
@opindex mno-prolog-function
@opindex mprolog-function
Do not use (do use) external functions to save and restore registers
at the prologue and epilogue of a function. The external functions
are slower, but use less code space if more than one function saves
the same number of registers. The @option{-mprolog-function} option
is on by default if you optimize.
@item -mspace
@opindex mspace
Try to make the code as small as possible. At present, this just turns
on the @option{-mep} and @option{-mprolog-function} options.
@item -mtda=@var{n}
@opindex mtda
Put static or global variables whose size is @var{n} bytes or less into
the tiny data area that register @code{ep} points to. The tiny data
area can hold up to 256 bytes in total (128 bytes for byte references).
@item -msda=@var{n}
@opindex msda
Put static or global variables whose size is @var{n} bytes or less into
the small data area that register @code{gp} points to. The small data
area can hold up to 64 kilobytes.
@item -mzda=@var{n}
@opindex mzda
Put static or global variables whose size is @var{n} bytes or less into
the first 32 kilobytes of memory.
@item -mv850
@opindex mv850
Specify that the target processor is the V850.
@item -mv850e3v5
@opindex mv850e3v5
Specify that the target processor is the V850E3V5. The preprocessor
constant @samp{__v850e3v5__} is defined if this option is used.
@item -mv850e2v4
@opindex mv850e2v4
Specify that the target processor is the V850E3V5. This is an alias for
the @option{-mv850e3v5} option.
@item -mv850e2v3
@opindex mv850e2v3
Specify that the target processor is the V850E2V3. The preprocessor
constant @samp{__v850e2v3__} is defined if this option is used.
@item -mv850e2
@opindex mv850e2
Specify that the target processor is the V850E2. The preprocessor
constant @samp{__v850e2__} is defined if this option is used.
@item -mv850e1
@opindex mv850e1
Specify that the target processor is the V850E1. The preprocessor
constants @samp{__v850e1__} and @samp{__v850e__} are defined if
this option is used.
@item -mv850es
@opindex mv850es
Specify that the target processor is the V850ES. This is an alias for
the @option{-mv850e1} option.
@item -mv850e
@opindex mv850e
Specify that the target processor is the V850E@. The preprocessor
constant @samp{__v850e__} is defined if this option is used.
If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
are defined then a default target processor is chosen and the
relevant @samp{__v850*__} preprocessor constant is defined.
The preprocessor constants @samp{__v850} and @samp{__v851__} are always
defined, regardless of which processor variant is the target.
@item -mdisable-callt
@itemx -mno-disable-callt
@opindex mdisable-callt
@opindex mno-disable-callt
This option suppresses generation of the @code{CALLT} instruction for the
v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
architecture.
This option is enabled by default when the RH850 ABI is
in use (see @option{-mrh850-abi}), and disabled by default when the
GCC ABI is in use. If @code{CALLT} instructions are being generated
then the C preprocessor symbol @code{__V850_CALLT__} will be defined.
@item -mrelax
@itemx -mno-relax
@opindex mrelax
@opindex mno-relax
Pass on (or do not pass on) the @option{-mrelax} command line option
to the assembler.
@item -mlong-jumps
@itemx -mno-long-jumps
@opindex mlong-jumps
@opindex mno-long-jumps
Disable (or re-enable) the generation of PC-relative jump instructions.
@item -msoft-float
@itemx -mhard-float
@opindex msoft-float
@opindex mhard-float
Disable (or re-enable) the generation of hardware floating point
instructions. This option is only significant when the target
architecture is @samp{V850E2V3} or higher. If hardware floating point
instructions are being generated then the C preprocessor symbol
@code{__FPU_OK__} will be defined, otherwise the symbol
@code{__NO_FPU__} will be defined.
@item -mloop
@opindex mloop
Enables the use of the e3v5 LOOP instruction. The use of this
instruction is not enabled by default when the e3v5 architecture is
selected because its use is still experimental.
@item -mrh850-abi
@itemx -mghs
@opindex mrh850-abi
@opindex mghs
Enables support for the RH850 version of the V850 ABI. This is the
default. With this version of the ABI the following rules apply:
@itemize
@item
Integer sized structures and unions are returned via a memory pointer
rather than a register.
@item
Large structures and unions (more than 8 bytes in size) are passed by
value.
@item
Functions are aligned to 16-bit boundaries.
@item
The @option{-m8byte-align} command line option is supported.
@item
The @option{-mdisable-callt} command line option is enabled by
default. The @option{-mno-disable-callt} command line option is not
supported.
@end itemize
When this version of the ABI is enabled the C preprocessor symbol
@code{__V850_RH850_ABI__} is defined.
@item -mgcc-abi
@opindex mgcc-abi
Enables support for the old GCC version of the V850 ABI. With this
version of the ABI the following rules apply:
@itemize
@item
Integer sized structures and unions are returned in register @code{r10}.
@item
Large structures and unions (more than 8 bytes in size) are passed by
reference.
@item
Functions are aligned to 32-bit boundaries, unless optimizing for
size.
@item
The @option{-m8byte-align} command line option is not supported.
@item
The @option{-mdisable-callt} command line option is supported but not
enabled by default.
@end itemize
When this version of the ABI is enabled the C preprocessor symbol
@code{__V850_GCC_ABI__} is defined.
@item -m8byte-align
@itemx -mno-8byte-align
@opindex m8byte-align
@opindex mno-8byte-align
Enables support for @code{doubles} and @code{long long} types to be
aligned on 8-byte boundaries. The default is to restrict the
alignment of all objects to at most 4-bytes. When
@option{-m8byte-align} is in effect the C preprocessor symbol
@code{__V850_8BYTE_ALIGN__} will be defined.
@item -mbig-switch
@opindex mbig-switch
Generate code suitable for big switch tables. Use this option only if
the assembler/linker complain about out of range branches within a switch
table.
@item -mapp-regs
@opindex mapp-regs
This option causes r2 and r5 to be used in the code generated by
the compiler. This setting is the default.
@item -mno-app-regs
@opindex mno-app-regs
This option causes r2 and r5 to be treated as fixed registers.
@end table
@node VAX Options
@subsection VAX Options
@cindex VAX options
These @samp{-m} options are defined for the VAX:
@table @gcctabopt
@item -munix
@opindex munix
Do not output certain jump instructions (@code{aobleq} and so on)
that the Unix assembler for the VAX cannot handle across long
ranges.
@item -mgnu
@opindex mgnu
Do output those jump instructions, on the assumption that the
GNU assembler is being used.
@item -mg
@opindex mg
Output code for G-format floating-point numbers instead of D-format.
@end table
@node VMS Options
@subsection VMS Options
These @samp{-m} options are defined for the VMS implementations:
@table @gcctabopt
@item -mvms-return-codes
@opindex mvms-return-codes
Return VMS condition codes from @code{main}. The default is to return POSIX-style
condition (e.g.@ error) codes.
@item -mdebug-main=@var{prefix}
@opindex mdebug-main=@var{prefix}
Flag the first routine whose name starts with @var{prefix} as the main
routine for the debugger.
@item -mmalloc64
@opindex mmalloc64
Default to 64-bit memory allocation routines.
@item -mpointer-size=@var{size}
@opindex -mpointer-size=@var{size}
Set the default size of pointers. Possible options for @var{size} are
@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
The later option disables @code{pragma pointer_size}.
@end table
@node VxWorks Options
@subsection VxWorks Options
@cindex VxWorks Options
The options in this section are defined for all VxWorks targets.
Options specific to the target hardware are listed with the other
options for that target.
@table @gcctabopt
@item -mrtp
@opindex mrtp
GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also
defines the preprocessor macro @code{__RTP__}.
@item -non-static
@opindex non-static
Link an RTP executable against shared libraries rather than static
libraries. The options @option{-static} and @option{-shared} can
also be used for RTPs (@pxref{Link Options}); @option{-static}
is the default.
@item -Bstatic
@itemx -Bdynamic
@opindex Bstatic
@opindex Bdynamic
These options are passed down to the linker. They are defined for
compatibility with Diab.
@item -Xbind-lazy
@opindex Xbind-lazy
Enable lazy binding of function calls. This option is equivalent to
@option{-Wl,-z,now} and is defined for compatibility with Diab.
@item -Xbind-now
@opindex Xbind-now
Disable lazy binding of function calls. This option is the default and
is defined for compatibility with Diab.
@end table
@node x86-64 Options
@subsection x86-64 Options
@cindex x86-64 options
These are listed under @xref{i386 and x86-64 Options}.
@node Xstormy16 Options
@subsection Xstormy16 Options
@cindex Xstormy16 Options
These options are defined for Xstormy16:
@table @gcctabopt
@item -msim
@opindex msim
Choose startup files and linker script suitable for the simulator.
@end table
@node Xtensa Options
@subsection Xtensa Options
@cindex Xtensa Options
These options are supported for Xtensa targets:
@table @gcctabopt
@item -mconst16
@itemx -mno-const16
@opindex mconst16
@opindex mno-const16
Enable or disable use of @code{CONST16} instructions for loading
constant values. The @code{CONST16} instruction is currently not a
standard option from Tensilica. When enabled, @code{CONST16}
instructions are always used in place of the standard @code{L32R}
instructions. The use of @code{CONST16} is enabled by default only if
the @code{L32R} instruction is not available.
@item -mfused-madd
@itemx -mno-fused-madd
@opindex mfused-madd
@opindex mno-fused-madd
Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option. This has no effect if the
floating-point option is not also enabled. Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations. This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with @emph{more} bits of
precision than specified by the IEEE standard. Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler's ability to combine multiply and add/subtract
operations.
@item -mserialize-volatile
@itemx -mno-serialize-volatile
@opindex mserialize-volatile
@opindex mno-serialize-volatile
When this option is enabled, GCC inserts @code{MEMW} instructions before
@code{volatile} memory references to guarantee sequential consistency.
The default is @option{-mserialize-volatile}. Use
@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
@item -mforce-no-pic
@opindex mforce-no-pic
For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling
kernel code.
@item -mtext-section-literals
@itemx -mno-text-section-literals
@opindex mtext-section-literals
@opindex mno-text-section-literals
Control the treatment of literal pools. The default is
@option{-mno-text-section-literals}, which places literals in a separate
section in the output file. This allows the literal pool to be placed
in a data RAM/ROM, and it also allows the linker to combine literal
pools from separate object files to remove redundant literals and
improve code size. With @option{-mtext-section-literals}, the literals
are interspersed in the text section in order to keep them as close as
possible to their references. This may be necessary for large assembly
files.
@item -mtarget-align
@itemx -mno-target-align
@opindex mtarget-align
@opindex mno-target-align
When this option is enabled, GCC instructs the assembler to
automatically align instructions to reduce branch penalties at the
expense of some code density. The assembler attempts to widen density
instructions to align branch targets and the instructions following call
instructions. If there are not enough preceding safe density
instructions to align a target, no widening is performed. The
default is @option{-mtarget-align}. These options do not affect the
treatment of auto-aligned instructions like @code{LOOP}, which the
assembler always aligns, either by widening density instructions or
by inserting NOP instructions.
@item -mlongcalls
@itemx -mno-longcalls
@opindex mlongcalls
@opindex mno-longcalls
When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target
of a direct call is in the range allowed by the call instruction. This
translation typically occurs for calls to functions in other source
files. Specifically, the assembler translates a direct @code{CALL}
instruction into an @code{L32R} followed by a @code{CALLX} instruction.
The default is @option{-mno-longcalls}. This option should be used in
programs where the call target can potentially be out of range. This
option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC still shows direct call
instructions---look at the disassembled object code to see the actual
instructions. Note that the assembler uses an indirect call for
every cross-file call, not just those that really are out of range.
@end table
@node zSeries Options
@subsection zSeries Options
@cindex zSeries options
These are listed under @xref{S/390 and zSeries Options}.
@node Code Gen Options
@section Options for Code Generation Conventions
@cindex code generation conventions
@cindex options, code generation
@cindex run-time options
These machine-independent options control the interface conventions
used in code generation.
Most of them have both positive and negative forms; the negative form
of @option{-ffoo} is @option{-fno-foo}. In the table below, only
one of the forms is listed---the one that is not the default. You
can figure out the other form by either removing @samp{no-} or adding
it.
@table @gcctabopt
@item -fbounds-check
@opindex fbounds-check
For front ends that support it, generate additional code to check that
indices used to access arrays are within the declared range. This is
currently only supported by the Java and Fortran front ends, where
this option defaults to true and false respectively.
@item -fstack-reuse=@var{reuse-level}
@opindex fstack_reuse
This option controls stack space reuse for user declared local/auto variables
and compiler generated temporaries. @var{reuse_level} can be @samp{all},
@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
local variables and temporaries, @samp{named_vars} enables the reuse only for
user defined local variables with names, and @samp{none} disables stack reuse
completely. The default value is @samp{all}. The option is needed when the
program extends the lifetime of a scoped local variable or a compiler generated
temporary beyond the end point defined by the language. When a lifetime of
a variable ends, and if the variable lives in memory, the optimizing compiler
has the freedom to reuse its stack space with other temporaries or scoped
local variables whose live range does not overlap with it. Legacy code extending
local lifetime will likely to break with the stack reuse optimization.
For example,
@smallexample
int *p;
@{
int local1;
p = &local1;
local1 = 10;
....
@}
@{
int local2;
local2 = 20;
...
@}
if (*p == 10) // out of scope use of local1
@{
@}
@end smallexample
Another example:
@smallexample
struct A
@{
A(int k) : i(k), j(k) @{ @}
int i;
int j;
@};
A *ap;
void foo(const A& ar)
@{
ap = &ar;
@}
void bar()
@{
foo(A(10)); // temp object's lifetime ends when foo returns
@{
A a(20);
....
@}
ap->i+= 10; // ap references out of scope temp whose space
// is reused with a. What is the value of ap->i?
@}
@end smallexample
The lifetime of a compiler generated temporary is well defined by the C++
standard. When a lifetime of a temporary ends, and if the temporary lives
in memory, the optimizing compiler has the freedom to reuse its stack
space with other temporaries or scoped local variables whose live range
does not overlap with it. However some of the legacy code relies on
the behavior of older compilers in which temporaries' stack space is
not reused, the aggressive stack reuse can lead to runtime errors. This
option is used to control the temporary stack reuse optimization.
@item -ftrapv
@opindex ftrapv
This option generates traps for signed overflow on addition, subtraction,
multiplication operations.
@item -fwrapv
@opindex fwrapv
This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around
using twos-complement representation. This flag enables some optimizations
and disables others. This option is enabled by default for the Java
front end, as required by the Java language specification.
@item -fexceptions
@opindex fexceptions
Enable exception handling. Generates extra code needed to propagate
exceptions. For some targets, this implies GCC generates frame
unwind information for all functions, which can produce significant data
size overhead, although it does not affect execution. If you do not
specify this option, GCC enables it by default for languages like
C++ that normally require exception handling, and disables it for
languages like C that do not normally require it. However, you may need
to enable this option when compiling C code that needs to interoperate
properly with exception handlers written in C++. You may also wish to
disable this option if you are compiling older C++ programs that don't
use exception handling.
@item -fnon-call-exceptions
@opindex fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions.
Note that this requires platform-specific runtime support that does
not exist everywhere. Moreover, it only allows @emph{trapping}
instructions to throw exceptions, i.e.@: memory references or floating-point
instructions. It does not allow exceptions to be thrown from
arbitrary signal handlers such as @code{SIGALRM}.
@item -fdelete-dead-exceptions
@opindex fdelete-dead-exceptions
Consider that instructions that may throw exceptions but don't otherwise
contribute to the execution of the program can be optimized away.
This option is enabled by default for the Ada front end, as permitted by
the Ada language specification.
Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
@item -funwind-tables
@opindex funwind-tables
Similar to @option{-fexceptions}, except that it just generates any needed
static data, but does not affect the generated code in any other way.
You normally do not need to enable this option; instead, a language processor
that needs this handling enables it on your behalf.
@item -fasynchronous-unwind-tables
@opindex fasynchronous-unwind-tables
Generate unwind table in DWARF 2 format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).
@item -fpcc-struct-return
@opindex fpcc-struct-return
Return ``short'' @code{struct} and @code{union} values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallability between
GCC-compiled files and files compiled with other compilers, particularly
the Portable C Compiler (pcc).
The precise convention for returning structures in memory depends
on the target configuration macros.
Short structures and unions are those whose size and alignment match
that of some integer type.
@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
switch is not binary compatible with code compiled with the
@option{-freg-struct-return} switch.
Use it to conform to a non-default application binary interface.
@item -freg-struct-return
@opindex freg-struct-return
Return @code{struct} and @code{union} values in registers when possible.
This is more efficient for small structures than
@option{-fpcc-struct-return}.
If you specify neither @option{-fpcc-struct-return} nor
@option{-freg-struct-return}, GCC defaults to whichever convention is
standard for the target. If there is no standard convention, GCC
defaults to @option{-fpcc-struct-return}, except on targets where GCC is
the principal compiler. In those cases, we can choose the standard, and
we chose the more efficient register return alternative.
@strong{Warning:} code compiled with the @option{-freg-struct-return}
switch is not binary compatible with code compiled with the
@option{-fpcc-struct-return} switch.
Use it to conform to a non-default application binary interface.
@item -fshort-enums
@opindex fshort-enums
Allocate to an @code{enum} type only as many bytes as it needs for the
declared range of possible values. Specifically, the @code{enum} type
is equivalent to the smallest integer type that has enough room.
@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
@item -fshort-double
@opindex fshort-double
Use the same size for @code{double} as for @code{float}.
@strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
@item -fshort-wchar
@opindex fshort-wchar
Override the underlying type for @samp{wchar_t} to be @samp{short
unsigned int} instead of the default for the target. This option is
useful for building programs to run under WINE@.
@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
@item -fno-common
@opindex fno-common
In C code, controls the placement of uninitialized global variables.
Unix C compilers have traditionally permitted multiple definitions of
such variables in different compilation units by placing the variables
in a common block.
This is the behavior specified by @option{-fcommon}, and is the default
for GCC on most targets.
On the other hand, this behavior is not required by ISO C, and on some
targets may carry a speed or code size penalty on variable references.
The @option{-fno-common} option specifies that the compiler should place
uninitialized global variables in the data section of the object file,
rather than generating them as common blocks.
This has the effect that if the same variable is declared
(without @code{extern}) in two different compilations,
you get a multiple-definition error when you link them.
In this case, you must compile with @option{-fcommon} instead.
Compiling with @option{-fno-common} is useful on targets for which
it provides better performance, or if you wish to verify that the
program will work on other systems that always treat uninitialized
variable declarations this way.
@item -fno-ident
@opindex fno-ident
Ignore the @samp{#ident} directive.
@item -finhibit-size-directive
@opindex finhibit-size-directive
Don't output a @code{.size} assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This option is
used when compiling @file{crtstuff.c}; you should not need to use it
for anything else.
@item -fverbose-asm
@opindex fverbose-asm
Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to those
who actually need to read the generated assembly code (perhaps while
debugging the compiler itself).
@option{-fno-verbose-asm}, the default, causes the
extra information to be omitted and is useful when comparing two assembler
files.
@item -frecord-gcc-switches
@opindex frecord-gcc-switches
This switch causes the command line used to invoke the
compiler to be recorded into the object file that is being created.
This switch is only implemented on some targets and the exact format
of the recording is target and binary file format dependent, but it
usually takes the form of a section containing ASCII text. This
switch is related to the @option{-fverbose-asm} switch, but that
switch only records information in the assembler output file as
comments, so it never reaches the object file.
See also @option{-grecord-gcc-switches} for another
way of storing compiler options into the object file.
@item -fpic
@opindex fpic
@cindex global offset table
@cindex PIC
Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all
constant addresses through a global offset table (GOT)@. The dynamic
loader resolves the GOT entries when the program starts (the dynamic
loader is not part of GCC; it is part of the operating system). If
the GOT size for the linked executable exceeds a machine-specific
maximum size, you get an error message from the linker indicating that
@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
instead. (These maximums are 8k on the SPARC and 32k
on the m68k and RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and therefore works
only on certain machines. For the 386, GCC supports PIC for System V
but not for the Sun 386i. Code generated for the IBM RS/6000 is always
position-independent.
When this flag is set, the macros @code{__pic__} and @code{__PIC__}
are defined to 1.
@item -fPIC
@opindex fPIC
If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table. This option makes a difference on the m68k,
PowerPC and SPARC@.
Position-independent code requires special support, and therefore works
only on certain machines.
When this flag is set, the macros @code{__pic__} and @code{__PIC__}
are defined to 2.
@item -fpie
@itemx -fPIE
@opindex fpie
@opindex fPIE
These options are similar to @option{-fpic} and @option{-fPIC}, but
generated position independent code can be only linked into executables.
Usually these options are used when @option{-pie} GCC option is
used during linking.
@option{-fpie} and @option{-fPIE} both define the macros
@code{__pie__} and @code{__PIE__}. The macros have the value 1
for @option{-fpie} and 2 for @option{-fPIE}.
@item -fno-jump-tables
@opindex fno-jump-tables
Do not use jump tables for switch statements even where it would be
more efficient than other code generation strategies. This option is
of use in conjunction with @option{-fpic} or @option{-fPIC} for
building code that forms part of a dynamic linker and cannot
reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.
@item -ffixed-@var{reg}
@opindex ffixed
Treat the register named @var{reg} as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
@var{reg} must be the name of a register. The register names accepted
are machine-specific and are defined in the @code{REGISTER_NAMES}
macro in the machine description macro file.
This flag does not have a negative form, because it specifies a
three-way choice.
@item -fcall-used-@var{reg}
@opindex fcall-used
Treat the register named @var{reg} as an allocable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register @var{reg}.
It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model produces disastrous results.
This flag does not have a negative form, because it specifies a
three-way choice.
@item -fcall-saved-@var{reg}
@opindex fcall-saved
Treat the register named @var{reg} as an allocable register saved by
functions. It may be allocated even for temporaries or variables that
live across a call. Functions compiled this way save and restore
the register @var{reg} if they use it.
It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model produces disastrous results.
A different sort of disaster results from the use of this flag for
a register in which function values may be returned.
This flag does not have a negative form, because it specifies a
three-way choice.
@item -fpack-struct[=@var{n}]
@opindex fpack-struct
Without a value specified, pack all structure members together without
holes. When a value is specified (which must be a small power of two), pack
structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger than
this are output potentially unaligned at the next fitting location.
@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Additionally, it makes the code suboptimal.
Use it to conform to a non-default application binary interface.
@item -finstrument-functions
@opindex finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site. (On some platforms,
@code{__builtin_return_address} does not work beyond the current
function, so the call site information may not be available to the
profiling functions otherwise.)
@smallexample
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
@end smallexample
The first argument is the address of the start of the current function,
which may be looked up exactly in the symbol table.
This instrumentation is also done for functions expanded inline in other
functions. The profiling calls indicate where, conceptually, the
inline function is entered and exited. This means that addressable
versions of such functions must be available. If all your uses of a
function are expanded inline, this may mean an additional expansion of
code size. If you use @samp{extern inline} in your C code, an
addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)
A function may be given the attribute @code{no_instrument_function}, in
which case this instrumentation is not done. This can be used, for
example, for the profiling functions listed above, high-priority
interrupt routines, and any functions from which the profiling functions
cannot safely be called (perhaps signal handlers, if the profiling
routines generate output or allocate memory).
@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
@opindex finstrument-functions-exclude-file-list
Set the list of functions that are excluded from instrumentation (see
the description of @code{-finstrument-functions}). If the file that
contains a function definition matches with one of @var{file}, then
that function is not instrumented. The match is done on substrings:
if the @var{file} parameter is a substring of the file name, it is
considered to be a match.
For example:
@smallexample
-finstrument-functions-exclude-file-list=/bits/stl,include/sys
@end smallexample
@noindent
excludes any inline function defined in files whose pathnames
contain @code{/bits/stl} or @code{include/sys}.
If, for some reason, you want to include letter @code{','} in one of
@var{sym}, write @code{'\,'}. For example,
@code{-finstrument-functions-exclude-file-list='\,\,tmp'}
(note the single quote surrounding the option).
@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
@opindex finstrument-functions-exclude-function-list
This is similar to @code{-finstrument-functions-exclude-file-list},
but this option sets the list of function names to be excluded from
instrumentation. The function name to be matched is its user-visible
name, such as @code{vector<int> blah(const vector<int> &)}, not the
internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
match is done on substrings: if the @var{sym} parameter is a substring
of the function name, it is considered to be a match. For C99 and C++
extended identifiers, the function name must be given in UTF-8, not
using universal character names.
@item -fstack-check
@opindex fstack-check
Generate code to verify that you do not go beyond the boundary of the
stack. You should specify this flag if you are running in an
environment with multiple threads, but you only rarely need to specify it in
a single-threaded environment since stack overflow is automatically
detected on nearly all systems if there is only one stack.
Note that this switch does not actually cause checking to be done; the
operating system or the language runtime must do that. The switch causes
generation of code to ensure that they see the stack being extended.
You can additionally specify a string parameter: @code{no} means no
checking, @code{generic} means force the use of old-style checking,
@code{specific} means use the best checking method and is equivalent
to bare @option{-fstack-check}.
Old-style checking is a generic mechanism that requires no specific
target support in the compiler but comes with the following drawbacks:
@enumerate
@item
Modified allocation strategy for large objects: they are always
allocated dynamically if their size exceeds a fixed threshold.
@item
Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and
a warning is issued by the compiler.
@item
Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.
@end enumerate
Note that old-style stack checking is also the fallback method for
@code{specific} if no target support has been added in the compiler.
@item -fstack-limit-register=@var{reg}
@itemx -fstack-limit-symbol=@var{sym}
@itemx -fno-stack-limit
@opindex fstack-limit-register
@opindex fstack-limit-symbol
@opindex fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger
stack is required, a signal is raised at run time. For most targets,
the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.
For instance, if the stack starts at absolute address @samp{0x80000000}
and grows downwards, you can use the flags
@option{-fstack-limit-symbol=__stack_limit} and
@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
of 128KB@. Note that this may only work with the GNU linker.
@item -fsplit-stack
@opindex fsplit-stack
Generate code to automatically split the stack before it overflows.
The resulting program has a discontiguous stack which can only
overflow if the program is unable to allocate any more memory. This
is most useful when running threaded programs, as it is no longer
necessary to calculate a good stack size to use for each thread. This
is currently only implemented for the i386 and x86_64 back ends running
GNU/Linux.
When code compiled with @option{-fsplit-stack} calls code compiled
without @option{-fsplit-stack}, there may not be much stack space
available for the latter code to run. If compiling all code,
including library code, with @option{-fsplit-stack} is not an option,
then the linker can fix up these calls so that the code compiled
without @option{-fsplit-stack} always has a large stack. Support for
this is implemented in the gold linker in GNU binutils release 2.21
and later.
@item -fleading-underscore
@opindex fleading-underscore
This option and its counterpart, @option{-fno-leading-underscore}, forcibly
change the way C symbols are represented in the object file. One use
is to help link with legacy assembly code.
@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
generate code that is not binary compatible with code generated without that
switch. Use it to conform to a non-default application binary interface.
Not all targets provide complete support for this switch.
@item -ftls-model=@var{model}
@opindex ftls-model
Alter the thread-local storage model to be used (@pxref{Thread-Local}).
The @var{model} argument should be one of @code{global-dynamic},
@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
Note that the choice is subject to optimization: the compiler may use
a more efficient model for symbols not visible outside of the translation
unit, or if @option{-fpic} is not given on the command line.
The default without @option{-fpic} is @code{initial-exec}; with
@option{-fpic} the default is @code{global-dynamic}.
@item -fvisibility=@var{default|internal|hidden|protected}
@opindex fvisibility
Set the default ELF image symbol visibility to the specified option---all
symbols are marked with this unless overridden within the code.
Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized
code, provide near-perfect API export and prevent symbol clashes.
It is @strong{strongly} recommended that you use this in any shared objects
you distribute.
Despite the nomenclature, @code{default} always means public; i.e.,
available to be linked against from outside the shared object.
@code{protected} and @code{internal} are pretty useless in real-world
usage so the only other commonly used option is @code{hidden}.
The default if @option{-fvisibility} isn't specified is
@code{default}, i.e., make every
symbol public---this causes the same behavior as previous versions of
GCC@.
A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by ``How To Write
Shared Libraries'' by Ulrich Drepper (which can be found at
@w{@uref{http://people.redhat.com/~drepper/}})---however a superior
solution made possible by this option to marking things hidden when
the default is public is to make the default hidden and mark things
public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
and @code{__attribute__ ((visibility("default")))} instead of
@code{__declspec(dllexport)} you get almost identical semantics with
identical syntax. This is a great boon to those working with
cross-platform projects.
For those adding visibility support to existing code, you may find
@samp{#pragma GCC visibility} of use. This works by you enclosing
the declarations you wish to set visibility for with (for example)
@samp{#pragma GCC visibility push(hidden)} and
@samp{#pragma GCC visibility pop}.
Bear in mind that symbol visibility should be viewed @strong{as
part of the API interface contract} and thus all new code should
always specify visibility when it is not the default; i.e., declarations
only for use within the local DSO should @strong{always} be marked explicitly
as hidden as so to avoid PLT indirection overheads---making this
abundantly clear also aids readability and self-documentation of the code.
Note that due to ISO C++ specification requirements, @code{operator new} and
@code{operator delete} must always be of default visibility.
Be aware that headers from outside your project, in particular system
headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default. You
may need to explicitly say @samp{#pragma GCC visibility push(default)}
before including any such headers.
@samp{extern} declarations are not affected by @option{-fvisibility}, so
a lot of code can be recompiled with @option{-fvisibility=hidden} with
no modifications. However, this means that calls to @code{extern}
functions with no explicit visibility use the PLT, so it is more
effective to use @code{__attribute ((visibility))} and/or
@code{#pragma GCC visibility} to tell the compiler which @code{extern}
declarations should be treated as hidden.
Note that @option{-fvisibility} does affect C++ vague linkage
entities. This means that, for instance, an exception class that is
be thrown between DSOs must be explicitly marked with default
visibility so that the @samp{type_info} nodes are unified between
the DSOs.
An overview of these techniques, their benefits and how to use them
is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
@item -fstrict-volatile-bitfields
@opindex fstrict-volatile-bitfields
This option should be used if accesses to volatile bit-fields (or other
structure fields, although the compiler usually honors those types
anyway) should use a single access of the width of the
field's type, aligned to a natural alignment if possible. For
example, targets with memory-mapped peripheral registers might require
all such accesses to be 16 bits wide; with this flag you can
declare all peripheral bit-fields as @code{unsigned short} (assuming short
is 16 bits on these targets) to force GCC to use 16-bit accesses
instead of, perhaps, a more efficient 32-bit access.
If this option is disabled, the compiler uses the most efficient
instruction. In the previous example, that might be a 32-bit load
instruction, even though that accesses bytes that do not contain
any portion of the bit-field, or memory-mapped registers unrelated to
the one being updated.
If the target requires strict alignment, and honoring the field
type would require violating this alignment, a warning is issued.
If the field has @code{packed} attribute, the access is done without
honoring the field type. If the field doesn't have @code{packed}
attribute, the access is done honoring the field type. In both cases,
GCC assumes that the user knows something about the target hardware
that it is unaware of.
The default value of this option is determined by the application binary
interface for the target processor.
@item -fsync-libcalls
@opindex fsync-libcalls
This option controls whether any out-of-line instance of the @code{__sync}
family of functions may be used to implement the C++11 @code{__atomic}
family of functions.
The default value of this option is enabled, thus the only useful form
of the option is @option{-fno-sync-libcalls}. This option is used in
the implementation of the @file{libatomic} runtime library.
@end table
@c man end
@node Environment Variables
@section Environment Variables Affecting GCC
@cindex environment variables
@c man begin ENVIRONMENT
This section describes several environment variables that affect how GCC
operates. Some of them work by specifying directories or prefixes to use
when searching for various kinds of files. Some are used to specify other
aspects of the compilation environment.
Note that you can also specify places to search using options such as
@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
take precedence over places specified using environment variables, which
in turn take precedence over those specified by the configuration of GCC@.
@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
GNU Compiler Collection (GCC) Internals}.
@table @env
@item LANG
@itemx LC_CTYPE
@c @itemx LC_COLLATE
@itemx LC_MESSAGES
@c @itemx LC_MONETARY
@c @itemx LC_NUMERIC
@c @itemx LC_TIME
@itemx LC_ALL
@findex LANG
@findex LC_CTYPE
@c @findex LC_COLLATE
@findex LC_MESSAGES
@c @findex LC_MONETARY
@c @findex LC_NUMERIC
@c @findex LC_TIME
@findex LC_ALL
@cindex locale
These environment variables control the way that GCC uses
localization information which allows GCC to work with different
national conventions. GCC inspects the locale categories
@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
so. These locale categories can be set to any value supported by your
installation. A typical value is @samp{en_GB.UTF-8} for English in the United
Kingdom encoded in UTF-8.
The @env{LC_CTYPE} environment variable specifies character
classification. GCC uses it to determine the character boundaries in
a string; this is needed for some multibyte encodings that contain quote
and escape characters that are otherwise interpreted as a string
end or escape.
The @env{LC_MESSAGES} environment variable specifies the language to
use in diagnostic messages.
If the @env{LC_ALL} environment variable is set, it overrides the value
of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
and @env{LC_MESSAGES} default to the value of the @env{LANG}
environment variable. If none of these variables are set, GCC
defaults to traditional C English behavior.
@item TMPDIR
@findex TMPDIR
If @env{TMPDIR} is set, it specifies the directory to use for temporary
files. GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
@item GCC_COMPARE_DEBUG
@findex GCC_COMPARE_DEBUG
Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
@option{-fcompare-debug} to the compiler driver. See the documentation
of this option for more details.
@item GCC_EXEC_PREFIX
@findex GCC_EXEC_PREFIX
If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is added
when this prefix is combined with the name of a subprogram, but you can
specify a prefix that ends with a slash if you wish.
If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
an appropriate prefix to use based on the pathname it is invoked with.
If GCC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.
The default value of @env{GCC_EXEC_PREFIX} is
@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
the installed compiler. In many cases @var{prefix} is the value
of @code{prefix} when you ran the @file{configure} script.
Other prefixes specified with @option{-B} take precedence over this prefix.
This prefix is also used for finding files such as @file{crt0.o} that are
used for linking.
In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with @samp{/usr/local/lib/gcc}
(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
@file{foo/bar} just before it searches the standard directory
@file{/usr/local/lib/bar}.
If a standard directory begins with the configured
@var{prefix} then the value of @var{prefix} is replaced by
@env{GCC_EXEC_PREFIX} when looking for header files.
@item COMPILER_PATH
@findex COMPILER_PATH
The value of @env{COMPILER_PATH} is a colon-separated list of
directories, much like @env{PATH}. GCC tries the directories thus
specified when searching for subprograms, if it can't find the
subprograms using @env{GCC_EXEC_PREFIX}.
@item LIBRARY_PATH
@findex LIBRARY_PATH
The value of @env{LIBRARY_PATH} is a colon-separated list of
directories, much like @env{PATH}. When configured as a native compiler,
GCC tries the directories thus specified when searching for special
linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
using GCC also uses these directories when searching for ordinary
libraries for the @option{-l} option (but directories specified with
@option{-L} come first).
@item LANG
@findex LANG
@cindex locale definition
This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used
when character literals, string literals and comments are parsed in C and C++.
When the compiler is configured to allow multibyte characters,
the following values for @env{LANG} are recognized:
@table @samp
@item C-JIS
Recognize JIS characters.
@item C-SJIS
Recognize SJIS characters.
@item C-EUCJP
Recognize EUCJP characters.
@end table
If @env{LANG} is not defined, or if it has some other value, then the
compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
recognize and translate multibyte characters.
@end table
@noindent
Some additional environment variables affect the behavior of the
preprocessor.
@include cppenv.texi
@c man end
@node Precompiled Headers
@section Using Precompiled Headers
@cindex precompiled headers
@cindex speed of compilation
Often large projects have many header files that are included in every
source file. The time the compiler takes to process these header files
over and over again can account for nearly all of the time required to
build the project. To make builds faster, GCC allows you to
@dfn{precompile} a header file.
To create a precompiled header file, simply compile it as you would any
other file, if necessary using the @option{-x} option to make the driver
treat it as a C or C++ header file. You may want to use a
tool like @command{make} to keep the precompiled header up-to-date when
the headers it contains change.
A precompiled header file is searched for when @code{#include} is
seen in the compilation. As it searches for the included file
(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
compiler looks for a precompiled header in each directory just before it
looks for the include file in that directory. The name searched for is
the name specified in the @code{#include} with @samp{.gch} appended. If
the precompiled header file can't be used, it is ignored.
For instance, if you have @code{#include "all.h"}, and you have
@file{all.h.gch} in the same directory as @file{all.h}, then the
precompiled header file is used if possible, and the original
header is used otherwise.
Alternatively, you might decide to put the precompiled header file in a
directory and use @option{-I} to ensure that directory is searched
before (or instead of) the directory containing the original header.
Then, if you want to check that the precompiled header file is always
used, you can put a file of the same name as the original header in this
directory containing an @code{#error} command.
This also works with @option{-include}. So yet another way to use
precompiled headers, good for projects not designed with precompiled
header files in mind, is to simply take most of the header files used by
a project, include them from another header file, precompile that header
file, and @option{-include} the precompiled header. If the header files
have guards against multiple inclusion, they are skipped because
they've already been included (in the precompiled header).
If you need to precompile the same header file for different
languages, targets, or compiler options, you can instead make a
@emph{directory} named like @file{all.h.gch}, and put each precompiled
header in the directory, perhaps using @option{-o}. It doesn't matter
what you call the files in the directory; every precompiled header in
the directory is considered. The first precompiled header
encountered in the directory that is valid for this compilation is
used; they're searched in no particular order.
There are many other possibilities, limited only by your imagination,
good sense, and the constraints of your build system.
A precompiled header file can be used only when these conditions apply:
@itemize
@item
Only one precompiled header can be used in a particular compilation.
@item
A precompiled header can't be used once the first C token is seen. You
can have preprocessor directives before a precompiled header; you cannot
include a precompiled header from inside another header.
@item
The precompiled header file must be produced for the same language as
the current compilation. You can't use a C precompiled header for a C++
compilation.
@item
The precompiled header file must have been produced by the same compiler
binary as the current compilation is using.
@item
Any macros defined before the precompiled header is included must
either be defined in the same way as when the precompiled header was
generated, or must not affect the precompiled header, which usually
means that they don't appear in the precompiled header at all.
The @option{-D} option is one way to define a macro before a
precompiled header is included; using a @code{#define} can also do it.
There are also some options that define macros implicitly, like
@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
defined this way.
@item If debugging information is output when using the precompiled
header, using @option{-g} or similar, the same kind of debugging information
must have been output when building the precompiled header. However,
a precompiled header built using @option{-g} can be used in a compilation
when no debugging information is being output.
@item The same @option{-m} options must generally be used when building
and using the precompiled header. @xref{Submodel Options},
for any cases where this rule is relaxed.
@item Each of the following options must be the same when building and using
the precompiled header:
@gccoptlist{-fexceptions}
@item
Some other command-line options starting with @option{-f},
@option{-p}, or @option{-O} must be defined in the same way as when
the precompiled header was generated. At present, it's not clear
which options are safe to change and which are not; the safest choice
is to use exactly the same options when generating and using the
precompiled header. The following are known to be safe:
@gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
-fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
-pedantic-errors}
@end itemize
For all of these except the last, the compiler automatically
ignores the precompiled header if the conditions aren't met. If you
find an option combination that doesn't work and doesn't cause the
precompiled header to be ignored, please consider filing a bug report,
see @ref{Bugs}.
If you do use differing options when generating and using the
precompiled header, the actual behavior is a mixture of the
behavior for the options. For instance, if you use @option{-g} to
generate the precompiled header but not when using it, you may or may
not get debugging information for routines in the precompiled header.
|