summaryrefslogtreecommitdiff
path: root/gcc/gengtype-parse.c
blob: 37366ad987d75042512a1474148fc796e8d9a5bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/* Process source files and output type information.
   Copyright (C) 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "bconfig.h"
#include "system.h"
#include "gengtype.h"

/* This is a simple recursive-descent parser which understands a subset of
   the C type grammar.

   Rule functions are suffixed _seq if they scan a sequence of items;
   _opt if they may consume zero tokens; _seqopt if both are true.  The
   "consume_" prefix indicates that a sequence of tokens is parsed for
   syntactic correctness and then thrown away.  */

/* Simple one-token lookahead mechanism.  */

struct token
{
  const char *value;
  int code;
  bool valid;
};
static struct token T;

/* Retrieve the code of the current token; if there is no current token,
   get the next one from the lexer.  */
static inline int
token (void)
{
  if (!T.valid)
    {
      T.code = yylex (&T.value);
      T.valid = true;
    }
  return T.code;
}

/* Retrieve the value of the current token (if any) and mark it consumed.
   The next call to token() will get another token from the lexer.  */
static inline const char *
advance (void)
{
  T.valid = false;
  return T.value;
}

/* Diagnostics.  */

/* This array is indexed by the token code minus CHAR_TOKEN_OFFSET.  */
static const char *const token_names[] = {
  "GTY",
  "typedef",
  "extern",
  "static",
  "union",
  "struct",
  "enum",
  "VEC",
  "DEF_VEC_[OP]",
  "DEF_VEC_I",
  "DEF_VEC_ALLOC_[IOP]",
  "...",
  "ptr_alias",
  "nested_ptr",
  "a param<N>_is option",
  "a number",
  "a scalar type",
  "an identifier",
  "a string constant",
  "a character constant",
  "an array declarator",
};

/* This array is indexed by token code minus FIRST_TOKEN_WITH_VALUE.  */
static const char *const token_value_format[] = {
  "%s",
  "'%s'",
  "'%s'",
  "'%s'",
  "'\"%s\"'",
  "\"'%s'\"",
  "'[%s]'",
};

/* Produce a printable representation for a token defined by CODE and
   VALUE.  This sometimes returns pointers into malloc memory and
   sometimes not, therefore it is unsafe to free the pointer it
   returns, so that memory is leaked.  This does not matter, as this
   function is only used for diagnostics, and in a successful run of
   the program there will be none.  */
static const char *
print_token (int code, const char *value)
{
  if (code < CHAR_TOKEN_OFFSET)
    return xasprintf ("'%c'", code);
  else if (code < FIRST_TOKEN_WITH_VALUE)
    return xasprintf ("'%s'", token_names[code - CHAR_TOKEN_OFFSET]);
  else if (!value)
    return token_names[code - CHAR_TOKEN_OFFSET]; /* don't quote these */
  else
    return xasprintf (token_value_format[code - FIRST_TOKEN_WITH_VALUE],
		      value);
}

/* Convenience wrapper around print_token which produces the printable
   representation of the current token.  */
static inline const char *
print_cur_token (void)
{
  return print_token (T.code, T.value);
}

/* Report a parse error on the current line, with diagnostic MSG.
   Behaves as standard printf with respect to additional arguments and
   format escapes.  */
static void ATTRIBUTE_PRINTF_1
parse_error (const char *msg, ...)
{
  va_list ap;

  fprintf (stderr, "%s:%d: parse error: ", lexer_line.file, lexer_line.line);

  va_start (ap, msg);
  vfprintf (stderr, msg, ap);
  va_end (ap);

  hit_error = true;
}

/* If the next token does not have code T, report a parse error; otherwise
   return the token's value.  */
static const char *
require (int t)
{
  int u = token ();
  const char *v = advance ();
  if (u != t)
    {
      parse_error ("expected %s, have %s",
		   print_token (t, 0), print_token (u, v));
      return 0;
    }
  return v;
}

/* If the next token does not have one of the codes T1 or T2, report a
   parse error; otherwise return the token's value.  */
static const char *
require2 (int t1, int t2)
{
  int u = token ();
  const char *v = advance ();
  if (u != t1 && u != t2)
    {
      parse_error ("expected %s or %s, have %s",
		   print_token (t1, 0), print_token (t2, 0),
		   print_token (u, v));
      return 0;
    }
  return v;
}

/* Near-terminals.  */

/* C-style string constant concatenation: STRING+
   Bare STRING should appear nowhere else in this file.  */
static const char *
string_seq (void)
{
  const char *s1, *s2;
  size_t l1, l2;
  char *buf;

  s1 = require (STRING);
  if (s1 == 0)
    return "";
  while (token () == STRING)
    {
      s2 = advance ();

      l1 = strlen (s1);
      l2 = strlen (s2);
      buf = XRESIZEVEC (char, s1, l1 + l2 + 1);
      memcpy (buf + l1, s2, l2 + 1);
      XDELETE (s2);
      s1 = buf;
    }
  return s1;
}

/* typedef_name: either an ID, or VEC(x,y) which is translated to VEC_x_y.
   Use only where VEC(x,y) is legitimate, i.e. in positions where a
   typedef name may appear.  */
static const char *
typedef_name (void)
{
  if (token () == VEC_TOKEN)
    {
      const char *c1, *c2, *r;
      advance ();
      require ('(');
      c1 = require2 (ID, SCALAR);
      require (',');
      c2 = require (ID);
      require (')');
      r = concat ("VEC_", c1, "_", c2, (char *)0);
      free ((void *)c1);
      free ((void *)c2);
      return r;
    }
  else
    return require (ID);
}

/* Absorb a sequence of tokens delimited by balanced ()[]{}.  */
static void
consume_balanced (int opener, int closer)
{
  require (opener);
  for (;;)
    switch (token ())
      {
      default: advance (); break;
      case '(': consume_balanced ('(',')'); break;
      case '[': consume_balanced ('[',']'); break;
      case '{': consume_balanced ('{','}'); break;

      case '}':
      case ']':
      case ')':
	if (token () != closer)
	  parse_error ("unbalanced delimiters - expected '%c', have '%c'",
		       closer, token ());
	advance ();
	return;

      case EOF_TOKEN:
	parse_error ("unexpected end of file within %c%c-delimited construct",
		     opener, closer);
	return;
      }
}

/* Absorb a sequence of tokens, possibly including ()[]{}-delimited
   expressions, until we encounter a semicolon outside any such
   delimiters; absorb that too.  If IMMEDIATE is true, it is an error
   if the semicolon is not the first token encountered.  */
static void
consume_until_semi (bool immediate)
{
  if (immediate && token () != ';')
    require (';');
  for (;;)
    switch (token ())
      {
      case ';':	advance (); return;
      default:	advance (); break;

      case '(':	consume_balanced ('(',')'); break;
      case '[': consume_balanced ('[',']'); break;
      case '{':	consume_balanced ('{','}'); break;

      case '}':
      case ']':
      case ')':
	parse_error ("unmatched '%c' while scanning for ';'", token ());
	return;

      case EOF_TOKEN:
	parse_error ("unexpected end of file while scanning for ';'");
	return;
      }
}

/* Absorb a sequence of tokens, possibly including ()[]{}-delimited
   expressions, until we encounter a comma or semicolon outside any
   such delimiters; absorb that too.  If IMMEDIATE is true, it is an
   error if the comma or semicolon is not the first token encountered.
   Returns true if the loop ended with a comma.  */
static bool
consume_until_comma_or_semi (bool immediate)
{
  if (immediate && token () != ',' && token () != ';')
    require2 (',', ';');
  for (;;)
    switch (token ())
      {
      case ',':	advance (); return true;
      case ';':	advance (); return false;
      default:	advance (); break;

      case '(':	consume_balanced ('(',')'); break;
      case '[': consume_balanced ('[',']'); break;
      case '{':	consume_balanced ('{','}'); break;

      case '}':
      case ']':
      case ')':
	parse_error ("unmatched '%s' while scanning for ',' or ';'",
		     print_cur_token ());
	return false;

      case EOF_TOKEN:
	parse_error ("unexpected end of file while scanning for ',' or ';'");
	return false;
      }
}


/* GTY(()) option handling.  */
static type_p type (options_p *optsp, bool nested);

/* Optional parenthesized string: ('(' string_seq ')')? */
static options_p
str_optvalue_opt (options_p prev)
{
  const char *name = advance ();
  const char *value = "";
  if (token () == '(')
    {
      advance ();
      value = string_seq ();
      require (')');
    }
  return create_option (prev, name, value);
}

/* absdecl: type '*'*
   -- a vague approximation to what the C standard calls an abstract
   declarator.  The only kinds that are actually used are those that
   are just a bare type and those that have trailing pointer-stars.
   Further kinds should be implemented if and when they become
   necessary.  Used only within GTY(()) option values, therefore
   further GTY(()) tags within the type are invalid.  Note that the
   return value has already been run through adjust_field_type.  */
static type_p
absdecl (void)
{
  type_p ty;
  options_p opts;

  ty = type (&opts, true);
  while (token () == '*')
    {
      ty = create_pointer (ty);
      advance ();
    }

  if (opts)
    parse_error ("nested GTY(()) options are invalid");

  return adjust_field_type (ty, 0);
}

/* Type-option: '(' absdecl ')' */
static options_p
type_optvalue (options_p prev, const char *name)
{
  type_p ty;
  require ('(');
  ty = absdecl ();
  require (')');
  return create_option (prev, name, ty);
}

/* Nested pointer data: '(' type '*'* ',' string_seq ',' string_seq ')' */
static options_p
nestedptr_optvalue (options_p prev)
{
  type_p ty;
  const char *from, *to;

  require ('(');
  ty = absdecl ();
  require (',');
  to = string_seq ();
  require (',');
  from = string_seq ();
  require (')');

  return create_nested_ptr_option (prev, ty, to, from);
}

/* One GTY(()) option:
         ID str_optvalue_opt
       | PTR_ALIAS type_optvalue
       | PARAM_IS type_optvalue
       | NESTED_PTR nestedptr_optvalue
 */
static options_p
option (options_p prev)
{
  switch (token ())
    {
    case ID:
      return str_optvalue_opt (prev);

    case PTR_ALIAS:
      advance ();
      return type_optvalue (prev, "ptr_alias");

    case PARAM_IS:
      return type_optvalue (prev, advance ());

    case NESTED_PTR:
      advance ();
      return nestedptr_optvalue (prev);

    default:
      parse_error ("expected an option keyword, have %s",
		   print_cur_token ());
      advance ();
      return create_option (prev, "", "");
    }
}

/* One comma-separated list of options.  */
static options_p
option_seq (void)
{
  options_p o;

  o = option (0);
  while (token () == ',')
    {
      advance ();
      o = option (o);
    }
  return o;
}

/* GTY marker: 'GTY' '(' '(' option_seq? ')' ')' */
static options_p
gtymarker (void)
{
  options_p result = 0;
  require (GTY_TOKEN);
  require ('(');
  require ('(');
  if (token () != ')')
    result = option_seq ();
  require (')');
  require (')');
  return result;
}

/* Optional GTY marker.  */
static options_p
gtymarker_opt (void)
{
  if (token () != GTY_TOKEN)
    return 0;
  return gtymarker ();
}

/* Declarators. The logic here is largely lifted from c-parser.c.
   Note that we do not have to process abstract declarators, which can
   appear only in parameter type lists or casts (but see absdecl,
   above).  Also, type qualifiers are thrown out in gengtype-lex.l so
   we don't have to do it.  */

/* array_and_function_declarators_opt:
      \epsilon
      array_and_function_declarators_opt ARRAY
      array_and_function_declarators_opt '(' ... ')'

   where '...' indicates stuff we ignore except insofar as grouping
   symbols ()[]{} must balance.

   Subroutine of direct_declarator - do not use elsewhere. */

static type_p
array_and_function_declarators_opt (type_p ty)
{
  if (token () == ARRAY)
    {
      const char *array = advance ();
      return create_array (array_and_function_declarators_opt (ty), array);
    }
  else if (token () == '(')
    {
      /* We don't need exact types for functions.  */
      consume_balanced ('(', ')');
      array_and_function_declarators_opt (ty);
      return create_scalar_type ("function type");
    }
  else
    return ty;
}

static type_p inner_declarator (type_p, const char **, options_p *);

/* direct_declarator:
      '(' inner_declarator ')'
      gtymarker_opt ID array_and_function_declarators_opt

   Subroutine of declarator, mutually recursive with inner_declarator;
   do not use elsewhere.  */
static type_p
direct_declarator (type_p ty, const char **namep, options_p *optsp)
{
  /* The first token in a direct-declarator must be an ID, a
     GTY marker, or an open parenthesis.  */
  switch (token ())
    {
    case GTY_TOKEN:
      *optsp = gtymarker ();
      /* fall through */
    case ID:
      *namep = require (ID);
      break;

    case '(':
      advance ();
      ty = inner_declarator (ty, namep, optsp);
      require (')');
      break;

    default:
      parse_error ("expected '(', 'GTY', or an identifier, have %s",
		   print_cur_token ());
      /* Do _not_ advance if what we have is a close squiggle brace, as
	 we will get much better error recovery that way.  */
      if (token () != '}')
	advance ();
      return 0;
    }
  return array_and_function_declarators_opt (ty);
}

/* The difference between inner_declarator and declarator is in the
   handling of stars.  Consider this declaration:

      char * (*pfc) (void)

   It declares a pointer to a function that takes no arguments and
   returns a char*.  To construct the correct type for this
   declaration, the star outside the parentheses must be processed
   _before_ the function type, the star inside the parentheses must
   be processed _after_ the function type.  To accomplish this,
   declarator() creates pointers before recursing (it is actually
   coded as a while loop), whereas inner_declarator() recurses before
   creating pointers.  */

/* inner_declarator:
     '*' inner_declarator
     direct_declarator

   Mutually recursive subroutine of direct_declarator; do not use
   elsewhere.  */

static type_p
inner_declarator (type_p ty, const char **namep, options_p *optsp)
{
  if (token () == '*')
    {
      type_p inner;
      advance ();
      inner = inner_declarator (ty, namep, optsp);
      if (inner == 0)
	return 0;
      else
	return create_pointer (ty);
    }
  else
    return direct_declarator (ty, namep, optsp);
}

/* declarator: '*'+ direct_declarator

   This is the sole public interface to this part of the grammar.
   Arguments are the type known so far, a pointer to where the name
   may be stored, and a pointer to where GTY options may be stored.
   Returns the final type. */

static type_p
declarator (type_p ty, const char **namep, options_p *optsp)
{
  *namep = 0;
  *optsp = 0;
  while (token () == '*')
    {
      advance ();
      ty = create_pointer (ty);
    }
  return direct_declarator (ty, namep, optsp);
}

/* Types and declarations.  */

/* Structure field(s) declaration:
   (
       type bitfield ';'
     | type declarator bitfield? ( ',' declarator bitfield? )+ ';'
   )+

   Knows that such declarations must end with a close brace (or,
   erroneously, at EOF).
 */
static pair_p
struct_field_seq (void)
{
  pair_p f = 0;
  type_p ty, dty;
  options_p opts, dopts;
  const char *name;
  bool another;

  do
    {
      ty = type (&opts, true);
      /* Another piece of the IFCVT_EXTRA_FIELDS special case, see type().  */
      if (!ty && token () == '}')
	break;

      if (!ty || token () == ':')
	{
	  consume_until_semi (false);
	  continue;
	}

      do
	{
	  dty = declarator (ty, &name, &dopts);
	  /* There could be any number of weird things after the declarator,
	     notably bitfield declarations and __attribute__s.  If this
	     function returns true, the last thing was a comma, so we have
	     more than one declarator paired with the current type.  */
	  another = consume_until_comma_or_semi (false);

	  if (!dty)
	    continue;

	  if (opts && dopts)
	    parse_error ("two GTY(()) options for field %s", name);
	  if (opts && !dopts)
	    dopts = opts;

	  f = create_field_at (f, dty, name, dopts, &lexer_line);
	}
      while (another);
    }
  while (token () != '}' && token () != EOF_TOKEN);
  return nreverse_pairs (f);
}

/* This is called type(), but what it parses (sort of) is what C calls
   declaration-specifiers and specifier-qualifier-list:

     SCALAR
   | ID     // typedef
   | (STRUCT|UNION) ID? gtymarker? ( '{' gtymarker? struct_field_seq '}' )?
   | ENUM ID ( '{' ... '}' )?

   Returns a partial type; under some conditions (notably
   "struct foo GTY((...)) thing;") it may write an options
   structure to *OPTSP.
 */
static type_p
type (options_p *optsp, bool nested)
{
  const char *s;
  bool is_union;
  *optsp = 0;
  switch (token ())
    {
    case SCALAR:
      s = advance ();
      return create_scalar_type (s);

    case ID:
    case VEC_TOKEN:
      s = typedef_name ();
      return resolve_typedef (s, &lexer_line);

    case STRUCT:
    case UNION:
      {
	options_p opts = 0;

	is_union = (token() == UNION);
	advance ();

	if (token () == ID)
	  s = advance ();
	else
	  s = xasprintf ("anonymous:%s:%d", lexer_line.file, lexer_line.line);

	/* Top-level structures that are not explicitly tagged GTY(())
	   are treated as mere forward declarations.  This is because
	   there are a lot of structures that we don't need to know
	   about, and some of those have weird macro stuff in them
	   that we can't handle.  */
	if (nested || token () == GTY_TOKEN)
	  {
	    opts = gtymarker_opt ();
	    if (token () == '{')
	      {
		pair_p fields;
		advance ();
		fields = struct_field_seq ();
		require ('}');
		return new_structure (s, is_union, &lexer_line, fields, opts);
	      }
	  }
	else if (token () == '{')
	  consume_balanced ('{', '}');
	if (opts)
	  *optsp = opts;
	return find_structure (s, is_union);
      }

    case ENUM:
      advance ();
	if (token () == ID)
	  s = advance ();
	else
	  s = xasprintf ("anonymous:%s:%d", lexer_line.file, lexer_line.line);

      if (token () == '{')
	consume_balanced ('{','}');
      return create_scalar_type (s);

    default:
      parse_error ("expected a type specifier, have %s", print_cur_token ());
      advance ();
      return create_scalar_type ("erroneous type");
    }
}

/* Top level constructs.  */

/* Dispatch declarations beginning with 'typedef'.  */

static void
typedef_decl (void)
{
  type_p ty, dty;
  const char *name;
  options_p opts;
  bool another;

  gcc_assert (token () == TYPEDEF);
  advance ();

  ty = type (&opts, false);
  if (!ty)
    return;
  if (opts)
    parse_error ("GTY((...)) cannot be applied to a typedef");
  do
    {
      dty = declarator (ty, &name, &opts);
      if (opts)
	parse_error ("GTY((...)) cannot be applied to a typedef");

      /* Yet another place where we could have junk (notably attributes)
	 after the declarator.  */
      another = consume_until_comma_or_semi (false);
      if (dty)
	do_typedef (name, dty, &lexer_line);
    }
  while (another);
}

/* Structure definition: type() does all the work.  */

static void
struct_or_union (void)
{
  options_p dummy;
  type (&dummy, false);
  /* There may be junk after the type: notably, we cannot currently
     distinguish 'struct foo *function(prototype);' from 'struct foo;'
     ...  we could call declarator(), but it's a waste of time at
     present.  Instead, just eat whatever token is currently lookahead
     and go back to lexical skipping mode. */
  advance ();
}

/* GC root declaration:
     (extern|static) gtymarker? type ID array_declarators_opt (';'|'=')
   If the gtymarker is not present, we ignore the rest of the declaration.  */
static void
extern_or_static (void)
{
  options_p opts, opts2, dopts;
  type_p ty, dty;
  const char *name;
  require2 (EXTERN, STATIC);

  if (token () != GTY_TOKEN)
    {
      advance ();
      return;
    }

  opts = gtymarker ();
  ty   = type (&opts2, true);  /* if we get here, it's got a GTY(()) */
  dty  = declarator (ty, &name, &dopts);

  if ((opts && dopts) || (opts && opts2) || (opts2 && dopts))
    parse_error ("GTY((...)) specified more than once for %s", name);
  else if (opts2)
    opts = opts2;
  else if (dopts)
    opts = dopts;

  if (dty)
    {
      note_variable (name, adjust_field_type (dty, opts), opts, &lexer_line);
      require2 (';', '=');
    }
}

/* Definition of a generic VEC structure:

   'DEF_VEC_[IPO]' '(' id ')' ';'

   Scalar VECs require slightly different treatment than otherwise -
   that's handled in note_def_vec, we just pass it along.*/
static void
def_vec (void)
{
  bool is_scalar = (token() == DEFVEC_I);
  const char *type;

  require2 (DEFVEC_OP, DEFVEC_I);
  require ('(');
  type = require2 (ID, SCALAR);
  require (')');
  require (';');

  if (!type)
    return;

  note_def_vec (type, is_scalar, &lexer_line);
  note_def_vec_alloc (type, "none", &lexer_line);
}

/* Definition of an allocation strategy for a VEC structure:

   'DEF_VEC_ALLOC_[IPO]' '(' id ',' id ')' ';'

   For purposes of gengtype, this just declares a wrapper structure.  */
static void
def_vec_alloc (void)
{
  const char *type, *astrat;

  require (DEFVEC_ALLOC);
  require ('(');
  type = require2 (ID, SCALAR);
  require (',');
  astrat = require (ID);
  require (')');
  require (';');

  if (!type || !astrat)
    return;

  note_def_vec_alloc (type, astrat, &lexer_line);
}

/* Parse the file FNAME for GC-relevant declarations and definitions.
   This is the only entry point to this file.  */
void
parse_file (const char *fname)
{
  yybegin (fname);
  for (;;)
    {
      switch (token ())
	{
	case EXTERN:
	case STATIC:
	  extern_or_static ();
	  break;

	case STRUCT:
	case UNION:
	  struct_or_union ();
	  break;

	case TYPEDEF:
	  typedef_decl ();
	  break;

	case DEFVEC_OP:
	case DEFVEC_I:
	  def_vec ();
	  break;

	case DEFVEC_ALLOC:
	  def_vec_alloc ();
	  break;

	case EOF_TOKEN:
	  goto eof;

	default:
	  parse_error ("unexpected top level token, %s", print_cur_token ());
	  goto eof;
	}
      lexer_toplevel_done = 1;
    }

 eof:
  advance ();
  yyend ();
}