summaryrefslogtreecommitdiff
path: root/gcc/graphite-clast-to-gimple.c
blob: bf540a2d1ca2de19f1e61adc2b3ef5d93b6e44a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
/* Translation of CLAST (CLooG AST) to Gimple.
   Copyright (C) 2009 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "sese.h"

#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-dependences.h"

/* Verifies properties that GRAPHITE should maintain during translation.  */

static inline void
graphite_verify (void)
{
#ifdef ENABLE_CHECKING
  verify_loop_structure ();
  verify_dominators (CDI_DOMINATORS);
  verify_dominators (CDI_POST_DOMINATORS);
  verify_ssa (false);
  verify_loop_closed_ssa ();
#endif
}

/* For a given loop DEPTH in the loop nest of the original black box
   PBB, return the old induction variable associated to that loop.  */

static inline tree
pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth)
{
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  sese region = SCOP_REGION (PBB_SCOP (pbb));
  loop_p loop = gbb_loop_at_index (gbb, region, depth);

  return (tree) loop->aux;
}

/* For a given scattering dimension, return the new induction variable
   associated to it.  */

static inline tree
newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
{
  return VEC_index (tree, newivs, depth);
}



/* Returns the tree variable from the name NAME that was given in
   Cloog representation.  */

static tree
clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs,
		   htab_t newivs_index)
{
  int index;
  VEC (tree, heap) *params = SESE_PARAMS (region);
  htab_t params_index = SESE_PARAMS_INDEX (region);

  if (params && params_index)
    {
      index = clast_name_to_index (name, params_index);

      if (index >= 0)
	return VEC_index (tree, params, index);
    }

  gcc_assert (newivs && newivs_index);
  index = clast_name_to_index (name, newivs_index);
  gcc_assert (index >= 0);

  return newivs_to_depth_to_newiv (newivs, index);
}

/* Returns the maximal precision type for expressions E1 and E2.  */

static inline tree
max_precision_type (tree e1, tree e2)
{
  tree type1 = TREE_TYPE (e1);
  tree type2 = TREE_TYPE (e2);
  return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
}

static tree
clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
			 htab_t);

/* Converts a Cloog reduction expression R with reduction operation OP
   to a GCC expression tree of type TYPE.  */

static tree
clast_to_gcc_expression_red (tree type, enum tree_code op,
			     struct clast_reduction *r,
			     sese region, VEC (tree, heap) *newivs,
			     htab_t newivs_index)
{
  int i;
  tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
				      newivs_index);
  tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;

  for (i = 1; i < r->n; i++)
    {
      tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
					newivs, newivs_index);
      res = fold_build2 (op, type, res, t);
    }

  return res;
}

/* Converts a Cloog AST expression E back to a GCC expression tree of
   type TYPE.  */

static tree
clast_to_gcc_expression (tree type, struct clast_expr *e,
			 sese region, VEC (tree, heap) *newivs,
			 htab_t newivs_index)
{
  switch (e->type)
    {
    case expr_term:
      {
	struct clast_term *t = (struct clast_term *) e;

	if (t->var)
	  {
	    if (value_one_p (t->val))
	      {
		tree name = clast_name_to_gcc (t->var, region, newivs,
					       newivs_index);
		return fold_convert (type, name);
	      }

	    else if (value_mone_p (t->val))
	      {
		tree name = clast_name_to_gcc (t->var, region, newivs,
					       newivs_index);
		name = fold_convert (type, name);
		return fold_build1 (NEGATE_EXPR, type, name);
	      }
	    else
	      {
		tree name = clast_name_to_gcc (t->var, region, newivs,
					       newivs_index);
		tree cst = gmp_cst_to_tree (type, t->val);
		name = fold_convert (type, name);
		return fold_build2 (MULT_EXPR, type, cst, name);
	      }
	  }
	else
	  return gmp_cst_to_tree (type, t->val);
      }

    case expr_red:
      {
        struct clast_reduction *r = (struct clast_reduction *) e;

        switch (r->type)
          {
	  case clast_red_sum:
	    return clast_to_gcc_expression_red
	      (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
	       r, region, newivs, newivs_index);

	  case clast_red_min:
	    return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
						newivs, newivs_index);

	  case clast_red_max:
	    return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
						newivs, newivs_index);

	  default:
	    gcc_unreachable ();
          }
        break;
      }

    case expr_bin:
      {
	struct clast_binary *b = (struct clast_binary *) e;
	struct clast_expr *lhs = (struct clast_expr *) b->LHS;
	tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
					   newivs_index);
	tree tr = gmp_cst_to_tree (type, b->RHS);

	switch (b->type)
	  {
	  case clast_bin_fdiv:
	    return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);

	  case clast_bin_cdiv:
	    return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);

	  case clast_bin_div:
	    return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);

	  case clast_bin_mod:
	    return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);

	  default:
	    gcc_unreachable ();
	  }
      }

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Returns the type for the expression E.  */

static tree
gcc_type_for_clast_expr (struct clast_expr *e,
			 sese region, VEC (tree, heap) *newivs,
			 htab_t newivs_index)
{
  switch (e->type)
    {
    case expr_term:
      {
	struct clast_term *t = (struct clast_term *) e;

	if (t->var)
	  return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
					       newivs_index));
	else
	  return NULL_TREE;
      }

    case expr_red:
      {
        struct clast_reduction *r = (struct clast_reduction *) e;

	if (r->n == 1)
	  return gcc_type_for_clast_expr (r->elts[0], region, newivs,
					  newivs_index);
	else
	  {
	    int i;
	    for (i = 0; i < r->n; i++)
	      {
		tree type = gcc_type_for_clast_expr (r->elts[i], region,
						     newivs, newivs_index);
		if (type)
		  return type;
	      }
	    return NULL_TREE;
	  }
      }

    case expr_bin:
      {
	struct clast_binary *b = (struct clast_binary *) e;
	struct clast_expr *lhs = (struct clast_expr *) b->LHS;
	return gcc_type_for_clast_expr (lhs, region, newivs,
					newivs_index);
      }

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Returns the type for the equation CLEQ.  */

static tree
gcc_type_for_clast_eq (struct clast_equation *cleq,
		       sese region, VEC (tree, heap) *newivs,
		       htab_t newivs_index)
{
  tree type = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
				       newivs_index);
  if (type)
    return type;

  return gcc_type_for_clast_expr (cleq->RHS, region, newivs, newivs_index);
}

/* Translates a clast equation CLEQ to a tree.  */

static tree
graphite_translate_clast_equation (sese region,
				   struct clast_equation *cleq,
				   VEC (tree, heap) *newivs,
				   htab_t newivs_index)
{
  enum tree_code comp;
  tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index);
  tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
				      newivs_index);
  tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
				      newivs_index);

  if (cleq->sign == 0)
    comp = EQ_EXPR;

  else if (cleq->sign > 0)
    comp = GE_EXPR;

  else
    comp = LE_EXPR;

  return fold_build2 (comp, boolean_type_node, lhs, rhs);
}

/* Creates the test for the condition in STMT.  */

static tree
graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
				 VEC (tree, heap) *newivs,
				 htab_t newivs_index)
{
  tree cond = NULL;
  int i;

  for (i = 0; i < stmt->n; i++)
    {
      tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
						   newivs, newivs_index);

      if (cond)
	cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
      else
	cond = eq;
    }

  return cond;
}

/* Creates a new if region corresponding to Cloog's guard.  */

static edge
graphite_create_new_guard (sese region, edge entry_edge,
			   struct clast_guard *stmt,
			   VEC (tree, heap) *newivs,
			   htab_t newivs_index)
{
  tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
						    newivs_index);
  edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
  return exit_edge;
}

/* Walks a CLAST and returns the first statement in the body of a
   loop.  */

static struct clast_user_stmt *
clast_get_body_of_loop (struct clast_stmt *stmt)
{
  if (!stmt
      || CLAST_STMT_IS_A (stmt, stmt_user))
    return (struct clast_user_stmt *) stmt;

  if (CLAST_STMT_IS_A (stmt, stmt_for))
    return clast_get_body_of_loop (((struct clast_for *) stmt)->body);

  if (CLAST_STMT_IS_A (stmt, stmt_guard))
    return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);

  if (CLAST_STMT_IS_A (stmt, stmt_block))
    return clast_get_body_of_loop (((struct clast_block *) stmt)->body);

  gcc_unreachable ();
}

/* Given a CLOOG_IV, returns the type that it should have in GCC land.
   If the information is not available, i.e. in the case one of the
   transforms created the loop, just return integer_type_node.  */

static tree
gcc_type_for_cloog_iv (const char *cloog_iv, gimple_bb_p gbb)
{
  struct ivtype_map_elt_s tmp;
  PTR *slot;

  tmp.cloog_iv = cloog_iv;
  slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, NO_INSERT);

  if (slot && *slot)
    return ((ivtype_map_elt) *slot)->type;

  return integer_type_node;
}

/* Returns the induction variable for the loop that gets translated to
   STMT.  */

static tree
gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for)
{
  struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
  struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
  const char *cloog_iv = stmt_for->iterator;
  CloogStatement *cs = body->statement;
  poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);

  return gcc_type_for_cloog_iv (cloog_iv, PBB_BLACK_BOX (pbb));
}

/* Creates a new LOOP corresponding to Cloog's STMT.  Inserts an
   induction variable for the new LOOP.  New LOOP is attached to CFG
   starting at ENTRY_EDGE.  LOOP is inserted into the loop tree and
   becomes the child loop of the OUTER_LOOP.  NEWIVS_INDEX binds
   CLooG's scattering name to the induction variable created for the
   loop of STMT.  The new induction variable is inserted in the NEWIVS
   vector.  */

static struct loop *
graphite_create_new_loop (sese region, edge entry_edge,
			  struct clast_for *stmt,
			  loop_p outer, VEC (tree, heap) **newivs,
			  htab_t newivs_index)
{
  tree type = gcc_type_for_iv_of_clast_loop (stmt);
  tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
				     newivs_index);
  tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
				     newivs_index);
  tree stride = gmp_cst_to_tree (type, stmt->stride);
  tree ivvar = create_tmp_var (type, "graphite_IV");
  tree iv, iv_after_increment;
  loop_p loop = create_empty_loop_on_edge
    (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
     outer ? outer : entry_edge->src->loop_father);

  add_referenced_var (ivvar);

  save_clast_name_index (newivs_index, stmt->iterator,
			 VEC_length (tree, *newivs));
  VEC_safe_push (tree, heap, *newivs, iv);
  return loop;
}

/* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction
   variables of the loops around GBB in SESE.  */

static void
build_iv_mapping (htab_t map, sese region,
		  VEC (tree, heap) *newivs, htab_t newivs_index,
		  struct clast_user_stmt *user_stmt)
{
  struct clast_stmt *t;
  int index = 0;
  CloogStatement *cs = user_stmt->statement;
  poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);

  for (t = user_stmt->substitutions; t; t = t->next, index++)
    {
      struct clast_expr *expr = (struct clast_expr *)
       ((struct clast_assignment *)t)->RHS;
      tree type = gcc_type_for_clast_expr (expr, region, newivs,
					   newivs_index);
      tree old_name = pbb_to_depth_to_oldiv (pbb, index);
      tree e = clast_to_gcc_expression (type, expr, region, newivs,
					newivs_index);
      set_rename (map, old_name, e);
    }
}

/* Helper function for htab_traverse.  */

static int
copy_renames (void **slot, void *s)
{
  struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot;
  htab_t res = (htab_t) s;
  tree old_name = entry->old_name;
  tree expr = entry->expr;
  struct rename_map_elt_s tmp;
  PTR *x;

  tmp.old_name = old_name;
  x = htab_find_slot (res, &tmp, INSERT);

  if (!*x)
    *x = new_rename_map_elt (old_name, expr);

  return 1;
}

/* Construct bb_pbb_def with BB and PBB. */

static bb_pbb_def *
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
{
  bb_pbb_def *bb_pbb_p;

  bb_pbb_p = XNEW (bb_pbb_def);
  bb_pbb_p->bb = bb;
  bb_pbb_p->pbb = pbb;

  return bb_pbb_p;
}

/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING.  */

static void
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
{
  bb_pbb_def tmp;
  PTR *x;

  tmp.bb = bb;
  x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);

  if (!*x)
    *x = new_bb_pbb_def (bb, pbb);
}

/* Returns the scattering dimension for STMTFOR.

   FIXME: This is a hackish solution to locate the scattering
   dimension in newly created loops. Here the hackish solush
   assume that the stmt_for->iterator is always something like:
   scat_1 , scat_3 etc., where after "scat_" is loop level in
   scattering dimension.
*/

static int get_stmtfor_depth (struct clast_for *stmtfor)
{
  const char * iterator = stmtfor->iterator;
  const char * depth;

  depth = strchr (iterator, '_');
  if (!strncmp (iterator, "scat_", 5))
    return atoi (depth+1);

  gcc_unreachable();
}

/* Translates a CLAST statement STMT to GCC representation in the
   context of a SESE.

   - NEXT_E is the edge where new generated code should be attached.
   - CONTEXT_LOOP is the loop in which the generated code will be placed
   - RENAME_MAP contains a set of tuples of new names associated to
     the original variables names.
   - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
*/

static edge
translate_clast (sese region, struct loop *context_loop,
		 struct clast_stmt *stmt, edge next_e,
		 htab_t rename_map, VEC (tree, heap) **newivs,
		 htab_t newivs_index, htab_t bb_pbb_mapping)
{
  if (!stmt)
    return next_e;

  if (CLAST_STMT_IS_A (stmt, stmt_root))
    return translate_clast (region, context_loop, stmt->next, next_e,
			    rename_map, newivs, newivs_index, bb_pbb_mapping);

  if (CLAST_STMT_IS_A (stmt, stmt_user))
    {
      gimple_bb_p gbb;
      basic_block new_bb;
      CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement;
      poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
      gbb = PBB_BLACK_BOX (pbb);

      if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
	return next_e;

      build_iv_mapping (rename_map, region, *newivs, newivs_index,
			(struct clast_user_stmt *) stmt);
      next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
					       next_e, rename_map);
      new_bb = next_e->src;
      mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
      recompute_all_dominators ();
      update_ssa (TODO_update_ssa);
      graphite_verify ();
      return translate_clast (region, context_loop, stmt->next, next_e,
			      rename_map, newivs, newivs_index,
			      bb_pbb_mapping);
    }

  if (CLAST_STMT_IS_A (stmt, stmt_for))
    {
      struct clast_for *stmtfor = (struct clast_for *)stmt;
      struct loop *loop
	= graphite_create_new_loop (region, next_e, stmtfor,
				    context_loop, newivs, newivs_index);
      edge last_e = single_exit (loop);
      edge to_body = single_succ_edge (loop->header);
      basic_block after = to_body->dest;

      loop->aux = XNEW (int);
      /* Pass scattering level information of the new loop by LOOP->AUX.  */
      *((int *)(loop->aux)) = get_stmtfor_depth (stmtfor);

      /* Create a basic block for loop close phi nodes.  */
      last_e = single_succ_edge (split_edge (last_e));

      /* Translate the body of the loop.  */
      next_e = translate_clast
	(region, loop, ((struct clast_for *) stmt)->body,
	 single_succ_edge (loop->header), rename_map, newivs,
	 newivs_index, bb_pbb_mapping);
      redirect_edge_succ_nodup (next_e, after);
      set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);

      /* Remove from rename_map all the tuples containing variables
	 defined in loop's body.  */
      insert_loop_close_phis (rename_map, loop);

      recompute_all_dominators ();
      graphite_verify ();
      return translate_clast (region, context_loop, stmt->next, last_e,
			      rename_map, newivs, newivs_index,
			      bb_pbb_mapping);
    }

  if (CLAST_STMT_IS_A (stmt, stmt_guard))
    {
      edge last_e = graphite_create_new_guard (region, next_e,
					       ((struct clast_guard *) stmt),
					       *newivs, newivs_index);
      edge true_e = get_true_edge_from_guard_bb (next_e->dest);
      edge false_e = get_false_edge_from_guard_bb (next_e->dest);
      edge exit_true_e = single_succ_edge (true_e->dest);
      edge exit_false_e = single_succ_edge (false_e->dest);
      htab_t before_guard = htab_create (10, rename_map_elt_info,
					 eq_rename_map_elts, free);

      htab_traverse (rename_map, copy_renames, before_guard);
      next_e = translate_clast (region, context_loop,
				((struct clast_guard *) stmt)->then,
				true_e, rename_map, newivs, newivs_index,
				bb_pbb_mapping);
      insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
			 before_guard, rename_map);

      htab_delete (before_guard);
      recompute_all_dominators ();
      graphite_verify ();

      return translate_clast (region, context_loop, stmt->next, last_e,
			      rename_map, newivs, newivs_index,
			      bb_pbb_mapping);
    }

  if (CLAST_STMT_IS_A (stmt, stmt_block))
    {
      next_e = translate_clast (region, context_loop,
				((struct clast_block *) stmt)->body,
				next_e, rename_map, newivs, newivs_index,
				bb_pbb_mapping);
      recompute_all_dominators ();
      graphite_verify ();
      return translate_clast (region, context_loop, stmt->next, next_e,
			      rename_map, newivs, newivs_index,
			      bb_pbb_mapping);
    }

  gcc_unreachable ();
}

/* Returns the first cloog name used in EXPR.  */

static const char *
find_cloog_iv_in_expr (struct clast_expr *expr)
{
  struct clast_term *term = (struct clast_term *) expr;

  if (expr->type == expr_term
      && !term->var)
    return NULL;

  if (expr->type == expr_term)
    return term->var;

  if (expr->type == expr_red)
    {
      int i;
      struct clast_reduction *red = (struct clast_reduction *) expr;

      for (i = 0; i < red->n; i++)
	{
	  const char *res = find_cloog_iv_in_expr ((red)->elts[i]);

	  if (res)
	    return res;
	}
    }

  return NULL;
}

/* Build for a clast_user_stmt USER_STMT a map between the CLAST
   induction variables and the corresponding GCC old induction
   variables.  This information is stored on each GRAPHITE_BB.  */

static void
compute_cloog_iv_types_1 (poly_bb_p pbb, struct clast_user_stmt *user_stmt)
{
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  struct clast_stmt *t;
  int index = 0;

  for (t = user_stmt->substitutions; t; t = t->next, index++)
    {
      PTR *slot;
      struct ivtype_map_elt_s tmp;
      struct clast_expr *expr = (struct clast_expr *) 
	((struct clast_assignment *)t)->RHS;

      /* Create an entry (clast_var, type).  */
      tmp.cloog_iv = find_cloog_iv_in_expr (expr);
      if (!tmp.cloog_iv)
	continue;

      slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, INSERT);

      if (!*slot)
	{
	  tree oldiv = pbb_to_depth_to_oldiv (pbb, index);
	  tree type = oldiv ? TREE_TYPE (oldiv) : integer_type_node;
	  *slot = new_ivtype_map_elt (tmp.cloog_iv, type);
	}
    }
}

/* Walk the CLAST tree starting from STMT and build for each
   clast_user_stmt a map between the CLAST induction variables and the
   corresponding GCC old induction variables.  This information is
   stored on each GRAPHITE_BB.  */

static void
compute_cloog_iv_types (struct clast_stmt *stmt)
{
  if (!stmt)
    return;

  if (CLAST_STMT_IS_A (stmt, stmt_root))
    goto next;

  if (CLAST_STMT_IS_A (stmt, stmt_user))
    {
      CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement;
      poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
      gimple_bb_p gbb = PBB_BLACK_BOX (pbb);

      if (!GBB_CLOOG_IV_TYPES (gbb))
	GBB_CLOOG_IV_TYPES (gbb) = htab_create (10, ivtype_map_elt_info,
						eq_ivtype_map_elts, free);

      compute_cloog_iv_types_1 (pbb, (struct clast_user_stmt *) stmt);
      goto next;
    }

  if (CLAST_STMT_IS_A (stmt, stmt_for))
    {
      struct clast_stmt *s = ((struct clast_for *) stmt)->body;
      compute_cloog_iv_types (s);
      goto next;
    }

  if (CLAST_STMT_IS_A (stmt, stmt_guard))
    {
      struct clast_stmt *s = ((struct clast_guard *) stmt)->then;
      compute_cloog_iv_types (s);
      goto next;
    }

  if (CLAST_STMT_IS_A (stmt, stmt_block))
    {
      struct clast_stmt *s = ((struct clast_block *) stmt)->body;
      compute_cloog_iv_types (s);
      goto next;
    }

  gcc_unreachable ();

 next:
  compute_cloog_iv_types (stmt->next);
}

/* Free the SCATTERING domain list.  */

static void
free_scattering (CloogDomainList *scattering)
{
  while (scattering)
    {
      CloogDomain *dom = cloog_domain (scattering);
      CloogDomainList *next = cloog_next_domain (scattering);

      cloog_domain_free (dom);
      free (scattering);
      scattering = next;
    }
}

/* Initialize Cloog's parameter names from the names used in GIMPLE.
   Initialize Cloog's iterator names, using 'graphite_iterator_%d'
   from 0 to scop_nb_loops (scop).  */

static void
initialize_cloog_names (scop_p scop, CloogProgram *prog)
{
  sese region = SCOP_REGION (scop);
  int i;
  int nb_iterators = scop_max_loop_depth (scop);
  int nb_scattering = cloog_program_nb_scattdims (prog);
  char **iterators = XNEWVEC (char *, nb_iterators * 2);
  char **scattering = XNEWVEC (char *, nb_scattering);

  cloog_program_set_names (prog, cloog_names_malloc ());
  cloog_names_set_nb_parameters (cloog_program_names (prog),
				 VEC_length (tree, SESE_PARAMS (region)));
  cloog_names_set_parameters (cloog_program_names (prog),
			      SESE_PARAMS_NAMES (region));

  for (i = 0; i < nb_iterators; i++)
    {
      int len = 4 + 16;
      iterators[i] = XNEWVEC (char, len);
      snprintf (iterators[i], len, "git_%d", i);
    }

  cloog_names_set_nb_iterators (cloog_program_names (prog),
				nb_iterators);
  cloog_names_set_iterators (cloog_program_names (prog),
			     iterators);

  for (i = 0; i < nb_scattering; i++)
    {
      int len = 5 + 16;
      scattering[i] = XNEWVEC (char, len);
      snprintf (scattering[i], len, "scat_%d", i);
    }

  cloog_names_set_nb_scattering (cloog_program_names (prog),
				 nb_scattering);
  cloog_names_set_scattering (cloog_program_names (prog),
			      scattering);
}

/* Build cloog program for SCoP.  */

static void
build_cloog_prog (scop_p scop, CloogProgram *prog)
{
  int i;
  int max_nb_loops = scop_max_loop_depth (scop);
  poly_bb_p pbb;
  CloogLoop *loop_list = NULL;
  CloogBlockList *block_list = NULL;
  CloogDomainList *scattering = NULL;
  int nbs = 2 * max_nb_loops + 1;
  int *scaldims;

  cloog_program_set_context
    (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop)));
  nbs = unify_scattering_dimensions (scop);
  scaldims = (int *) xmalloc (nbs * (sizeof (int)));
  cloog_program_set_nb_scattdims (prog, nbs);
  initialize_cloog_names (scop, prog);

  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    {
      CloogStatement *stmt;
      CloogBlock *block;

      /* Dead code elimination: when the domain of a PBB is empty,
	 don't generate code for the PBB.  */
      if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
	continue;

      /* Build the new statement and its block.  */
      stmt = cloog_statement_alloc (GBB_BB (PBB_BLACK_BOX (pbb))->index);
      block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
      cloog_statement_set_usr (stmt, pbb);

      /* Build loop list.  */
      {
        CloogLoop *new_loop_list = cloog_loop_malloc ();
        cloog_loop_set_next (new_loop_list, loop_list);
        cloog_loop_set_domain
	  (new_loop_list,
	   new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb)));
        cloog_loop_set_block (new_loop_list, block);
        loop_list = new_loop_list;
      }

      /* Build block list.  */
      {
        CloogBlockList *new_block_list = cloog_block_list_malloc ();

        cloog_block_list_set_next (new_block_list, block_list);
        cloog_block_list_set_block (new_block_list, block);
        block_list = new_block_list;
      }

      /* Build scattering list.  */
      {
        /* XXX: Replace with cloog_domain_list_alloc(), when available.  */
        CloogDomainList *new_scattering
	  = (CloogDomainList *) xmalloc (sizeof (CloogDomainList));
        ppl_Polyhedron_t scat;
	CloogDomain *dom;

	scat = PBB_TRANSFORMED_SCATTERING (pbb);
	dom = new_Cloog_Domain_from_ppl_Polyhedron (scat);

        cloog_set_next_domain (new_scattering, scattering);
        cloog_set_domain (new_scattering, dom);
        scattering = new_scattering;
      }
    }

  cloog_program_set_loop (prog, loop_list);
  cloog_program_set_blocklist (prog, block_list);

  for (i = 0; i < nbs; i++)
    scaldims[i] = 0 ;

  cloog_program_set_scaldims (prog, scaldims);

  /* Extract scalar dimensions to simplify the code generation problem.  */
  cloog_program_extract_scalars (prog, scattering);

  /* Apply scattering.  */
  cloog_program_scatter (prog, scattering);
  free_scattering (scattering);

  /* Iterators corresponding to scalar dimensions have to be extracted.  */
  cloog_names_scalarize (cloog_program_names (prog), nbs,
			 cloog_program_scaldims (prog));

  /* Free blocklist.  */
  {
    CloogBlockList *next = cloog_program_blocklist (prog);

    while (next)
      {
        CloogBlockList *toDelete = next;
        next = cloog_block_list_next (next);
        cloog_block_list_set_next (toDelete, NULL);
        cloog_block_list_set_block (toDelete, NULL);
        cloog_block_list_free (toDelete);
      }
    cloog_program_set_blocklist (prog, NULL);
  }
}

/* Return the options that will be used in GLOOG.  */

static CloogOptions *
set_cloog_options (void)
{
  CloogOptions *options = cloog_options_malloc ();

  /* Change cloog output language to C.  If we do use FORTRAN instead, cloog
     will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
     we pass an incomplete program to cloog.  */
  options->language = LANGUAGE_C;

  /* Enable complex equality spreading: removes dummy statements
     (assignments) in the generated code which repeats the
     substitution equations for statements.  This is useless for
     GLooG.  */
  options->esp = 1;

  /* Enable C pretty-printing mode: normalizes the substitution
     equations for statements.  */
  options->cpp = 1;

  /* Allow cloog to build strides with a stride width different to one.
     This example has stride = 4:

     for (i = 0; i < 20; i += 4)
       A  */
  options->strides = 1;

  /* Disable optimizations and make cloog generate source code closer to the
     input.  This is useful for debugging,  but later we want the optimized
     code.

     XXX: We can not disable optimizations, as loop blocking is not working
     without them.  */
  if (0)
    {
      options->f = -1;
      options->l = INT_MAX;
    }

  return options;
}

/* Prints STMT to STDERR.  */

void
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
{
  CloogOptions *options = set_cloog_options ();

  pprint (file, stmt, 0, options);
  cloog_options_free (options);
}

/* Prints STMT to STDERR.  */

void
debug_clast_stmt (struct clast_stmt *stmt)
{
  print_clast_stmt (stderr, stmt);
}

/* Translate SCOP to a CLooG program and clast.  These two
   representations should be freed together: a clast cannot be used
   without a program.  */

cloog_prog_clast
scop_to_clast (scop_p scop)
{
  CloogOptions *options = set_cloog_options ();
  cloog_prog_clast pc;

  /* Connect new cloog prog generation to graphite.  */
  pc.prog = cloog_program_malloc ();
  build_cloog_prog (scop, pc.prog);
  pc.prog = cloog_program_generate (pc.prog, options);
  pc.stmt = cloog_clast_create (pc.prog, options);

  cloog_options_free (options);
  return pc;
}

/* Prints to FILE the code generated by CLooG for SCOP.  */

void
print_generated_program (FILE *file, scop_p scop)
{
  CloogOptions *options = set_cloog_options ();
  cloog_prog_clast pc = scop_to_clast (scop);

  fprintf (file, "       (prog: \n");
  cloog_program_print (file, pc.prog);
  fprintf (file, "       )\n");

  fprintf (file, "       (clast: \n");
  pprint (file, pc.stmt, 0, options);
  fprintf (file, "       )\n");

  cloog_options_free (options);
  cloog_clast_free (pc.stmt);
  cloog_program_free (pc.prog);
}

/* Prints to STDERR the code generated by CLooG for SCOP.  */

void
debug_generated_program (scop_p scop)
{
  print_generated_program (stderr, scop);
}

/* A LOOP is in normal form for Graphite when it contains only one
   scalar phi node that defines the main induction variable of the
   loop, only one increment of the IV, and only one exit condition.  */

static void
graphite_loop_normal_form (loop_p loop)
{
  struct tree_niter_desc niter;
  tree nit;
  gimple_seq stmts;
  edge exit = single_dom_exit (loop);

  bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);

  /* At this point we should know the number of iterations,  */
  gcc_assert (known_niter);

  nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
			      NULL_TREE);
  if (stmts)
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);

  loop->aux = canonicalize_loop_ivs (loop, &nit);
}

/* Converts REGION to loop normal form: one induction variable per loop.  */

static void
build_graphite_loop_normal_form (sese region)
{
  int i;
  loop_p loop;

  for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
    graphite_loop_normal_form (loop);
}

/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
   the given SCOP.  Return true if code generation succeeded.
   BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/

bool
gloog (scop_p scop, htab_t bb_pbb_mapping)
{
  edge new_scop_exit_edge = NULL;
  VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
  loop_p context_loop;
  sese region = SCOP_REGION (scop);
  ifsese if_region = NULL;
  htab_t rename_map, newivs_index;
  cloog_prog_clast pc = scop_to_clast (scop);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nCLAST generated by CLooG: \n");
      print_clast_stmt (dump_file, pc.stmt);
      fprintf (dump_file, "\n");
    }

  build_graphite_loop_normal_form (region);
  recompute_all_dominators ();
  graphite_verify ();

  if_region = move_sese_in_condition (region);
  sese_insert_phis_for_liveouts (region,
				 if_region->region->exit->src,
				 if_region->false_region->exit,
				 if_region->true_region->exit);

  recompute_all_dominators ();
  graphite_verify ();
  context_loop = SESE_ENTRY (region)->src->loop_father;
  compute_cloog_iv_types (pc.stmt);

  rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free);
  newivs_index = htab_create (10, clast_name_index_elt_info,
			      eq_clast_name_indexes, free);

  new_scop_exit_edge = translate_clast (region, context_loop, pc.stmt,
					if_region->true_region->entry,
					rename_map, &newivs, newivs_index,
					bb_pbb_mapping);
  sese_reset_aux_in_loops (region);
  graphite_verify ();
  sese_adjust_liveout_phis (region, rename_map,
			    if_region->region->exit->src,
			    if_region->false_region->exit,
			    if_region->true_region->exit);
  recompute_all_dominators ();
  graphite_verify ();

  htab_delete (rename_map);
  htab_delete (newivs_index);
  VEC_free (tree, heap, newivs);
  cloog_clast_free (pc.stmt);
  cloog_program_free (pc.prog);
  return true;
}



/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING.  */

static poly_bb_p
find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
{
  bb_pbb_def tmp;
  PTR *slot;

  tmp.bb = bb;
  slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);

  if (slot && *slot)
    return ((bb_pbb_def *) *slot)->pbb;

  return NULL;
}

/* Free loop->aux in newly created loops by translate_clast.  */

void
free_aux_in_new_loops (void)
{
  loop_p loop;
  loop_iterator li;

  FOR_EACH_LOOP (li, loop, 0)
    {
      if (!loop->aux)
	continue;
      free(loop->aux);
      loop->aux = NULL;
    }
}

/* Check data dependency in LOOP. BB_PBB_MAPPING is a basic_block and
   it's related poly_bb_p mapping.
*/

static bool
dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping)
{
  unsigned i,j;
  int level = 0;
  basic_block *bbs = get_loop_body_in_dom_order (loop);

  level = *((int *)(loop->aux));

  for (i = 0; i < loop->num_nodes; i++)
    {
      poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);

      if (pbb1 == NULL)
       continue;

      for (j = 0; j < loop->num_nodes; j++)
       {
	 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);

	 if (pbb2 == NULL)
	   continue;

	 if (dependency_between_pbbs_p (pbb1, pbb2, level))
	   {
	     free (bbs);
	     return true;
	   }
       }
    }

  free (bbs);

  return false;
}

/* Mark loop as parallel if data dependency does not exist.
   BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/

void mark_loops_parallel (htab_t bb_pbb_mapping)
{
  loop_p loop;
  loop_iterator li;
  int num_no_dependency = 0;

  FOR_EACH_LOOP (li, loop, 0)
    {
      if (!loop->aux)
	continue;

      if (!dependency_in_loop_p (loop, bb_pbb_mapping))
	{
	  loop->can_be_parallel = true;
	  num_no_dependency++;
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\n%d loops carried no dependency.\n",
	       num_no_dependency);
    }
}

#endif