summaryrefslogtreecommitdiff
path: root/gcc/graphite-interchange.c
blob: 0a751d6336e98ffe9d726dee0468037ce2b77c14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/* Interchange heuristics and transform for loop interchange on
   polyhedral representation.

   Copyright (C) 2009 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com> and
   Harsha Jagasia <harsha.jagasia@amd.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "output.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "params.h"

#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "sese.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"

/* Builds a linear expression, of dimension DIM, representing PDR's
   memory access:

   L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.

   For an array A[10][20] with two subscript locations s0 and s1, the
   linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
   corresponds to a memory stride of 20.  */

static ppl_Linear_Expression_t
build_linearized_memory_access (poly_dr_p pdr)
{
  ppl_Linear_Expression_t res;
  ppl_Linear_Expression_t le;
  ppl_dimension_type i;
  ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
  ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
  Value size, sub_size;
  graphite_dim_t dim = pdr_dim (pdr);

  ppl_new_Linear_Expression_with_dimension (&res, dim);

  value_init (size);
  value_set_si (size, 1);
  value_init (sub_size);
  value_set_si (sub_size, 1);

  for (i = last - 1; i >= first; i--)
    {
      ppl_set_coef_gmp (res, i, size);

      ppl_new_Linear_Expression_with_dimension (&le, dim);
      ppl_set_coef (le, i, 1);
      ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
      value_multiply (size, size, sub_size);
      ppl_delete_Linear_Expression (le);
    }

  value_clear (sub_size);
  value_clear (size);
  return res;
}

/* Set STRIDE to the stride of PDR in memory by advancing by one in
   loop DEPTH.  */

static void
memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
{
  ppl_Linear_Expression_t le, lma;
  ppl_Constraint_t new_cstr;
  ppl_Pointset_Powerset_C_Polyhedron_t p1, p2;
  graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr);
  ppl_dimension_type i, *map;
  ppl_dimension_type dim = pdr_dim (pdr);
  ppl_dimension_type dim_i = pdr_iterator_dim (pdr, depth);
  ppl_dimension_type dim_k = dim;
  ppl_dimension_type dim_L1 = dim + nb_subscripts + 1;
  ppl_dimension_type dim_L2 = dim + nb_subscripts + 2;
  ppl_dimension_type new_dim = dim + nb_subscripts + 3;

  /* Add new dimensions to the polyhedron corresponding to
     k, s0', s1',..., L1, and L2.  These new variables are at
     dimensions dim, dim + 1,... of the polyhedron P1 respectively.  */
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
    (&p1, PDR_ACCESSES (pdr));
  ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
    (p1, nb_subscripts + 3);

  lma = build_linearized_memory_access (pdr);
  ppl_set_coef (lma, dim_L1, -1);
  ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
  ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);

  /* Build P2.  */
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
    (&p2, p1);
  map = ppl_new_id_map (new_dim);
  ppl_interchange (map, dim_L1, dim_L2);
  ppl_interchange (map, dim_i, dim_k);
  for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++)
    ppl_interchange (map, pdr_subscript_dim (pdr, i), dim + i + 1);
  ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
  free (map);

  /* Add constraint k = i + 1.  */
  ppl_new_Linear_Expression_with_dimension (&le, new_dim);
  ppl_set_coef (le, dim_i, 1);
  ppl_set_coef (le, dim_k, -1);
  ppl_set_inhomogeneous (le, 1);
  ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
  ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p2, new_cstr);
  ppl_delete_Linear_Expression (le);
  ppl_delete_Constraint (new_cstr);

  /* P1 = P1 inter P2.  */
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
  ppl_delete_Pointset_Powerset_C_Polyhedron (p2);

  /* Maximise the expression L2 - L1.  */
  ppl_new_Linear_Expression_with_dimension (&le, new_dim);
  ppl_set_coef (le, dim_L2, 1);
  ppl_set_coef (le, dim_L1, -1);
  ppl_max_for_le_pointset (p1, le, stride);
  ppl_delete_Linear_Expression (le);
}


/* Returns true when it is profitable to interchange loop at DEPTH1
   and loop at DEPTH2 with DEPTH1 < DEPTH2 for PBB.

   Example:

   | int a[100][100];
   |
   | int
   | foo (int N)
   | {
   |   int j;
   |   int i;
   |
   |   for (i = 0; i < N; i++)
   |     for (j = 0; j < N; j++)
   |       a[j][2 * i] += 1;
   |
   |   return a[N][12];
   | }

   The data access A[j][i] is described like this:

   | i   j   N   a  s0  s1   1
   | 0   0   0   1   0   0  -5    = 0
   | 0  -1   0   0   1   0   0    = 0
   |-2   0   0   0   0   1   0    = 0
   | 0   0   0   0   1   0   0   >= 0
   | 0   0   0   0   0   1   0   >= 0
   | 0   0   0   0  -1   0 100   >= 0
   | 0   0   0   0   0  -1 100   >= 0

   The linearized memory access L to A[100][100] is:

   | i   j   N   a  s0  s1   1
   | 0   0   0   0 100   1   0

   Next, to measure the impact of iterating once in loop "i", we build
   a maximization problem: first, we add to DR accesses the dimensions
   k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: polyhedron P1.

   | i   j   N   a  s0  s1   k  s2  s3  L1  L2  D1   1
   | 0   0   0   1   0   0   0   0   0   0   0   0  -5    = 0  alias = 5
   | 0  -1   0   0   1   0   0   0   0   0   0   0   0    = 0  s0 = j
   |-2   0   0   0   0   1   0   0   0   0   0   0   0    = 0  s1 = 2 * i
   | 0   0   0   0   1   0   0   0   0   0   0   0   0   >= 0
   | 0   0   0   0   0   1   0   0   0   0   0   0   0   >= 0
   | 0   0   0   0  -1   0   0   0   0   0   0   0 100   >= 0
   | 0   0   0   0   0  -1   0   0   0   0   0   0 100   >= 0
   | 0   0   0   0 100   1   0   0   0  -1   0   0   0    = 0  L1 = 100 * s0 + s1

   Then, we generate the polyhedron P2 by interchanging the dimensions
   (s0, s2), (s1, s3), (L1, L2), (i0, i)

   | i   j   N   a  s0  s1   k  s2  s3  L1  L2  D1   1
   | 0   0   0   1   0   0   0   0   0   0   0   0  -5    = 0  alias = 5
   | 0  -1   0   0   0   0   0   1   0   0   0   0   0    = 0  s2 = j
   | 0   0   0   0   0   0  -2   0   1   0   0   0   0    = 0  s3 = 2 * k
   | 0   0   0   0   0   0   0   1   0   0   0   0   0   >= 0
   | 0   0   0   0   0   0   0   0   1   0   0   0   0   >= 0
   | 0   0   0   0   0   0   0  -1   0   0   0   0 100   >= 0
   | 0   0   0   0   0   0   0   0  -1   0   0   0 100   >= 0
   | 0   0   0   0   0   0   0 100   1   0  -1   0   0    = 0  L2 = 100 * s2 + s3

   then we add to P2 the equality k = i + 1:

   |-1   0   0   0   0   0   1   0   0   0   0   0  -1    = 0  k = i + 1

   and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".

   For determining the impact of one iteration on loop "j", we
   interchange (k, j), we add "k = j + 1", and we compute D2 the
   maximal value of the difference.

   Finally, the profitability test is D1 < D2: if in the outer loop
   the strides are smaller than in the inner loop, then it is
   profitable to interchange the loops at DEPTH1 and DEPTH2.  */

static bool
pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
			      poly_bb_p pbb)
{
  int i;
  poly_dr_p pdr;
  Value d1, d2, s, n;
  bool res;

  gcc_assert (depth1 < depth2);

  value_init (d1);
  value_set_si (d1, 0);
  value_init (d2);
  value_set_si (d2, 0);
  value_init (s);
  value_init (n);

  for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
    {
      value_set_si (n, PDR_NB_REFS (pdr));

      memory_stride_in_loop (s, depth1, pdr);
      value_multiply (s, s, n);
      value_addto (d1, d1, s);

      memory_stride_in_loop (s, depth2, pdr);
      value_multiply (s, s, n);
      value_addto (d2, d2, s);
    }

  res = value_lt (d1, d2);

  value_clear (d1);
  value_clear (d2);
  value_clear (s);
  value_clear (n);

  return res;
}

/* Interchanges the loops at DEPTH1 and DEPTH2 of the original
   scattering and assigns the resulting polyhedron to the transformed
   scattering.  */

static void
pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2, poly_bb_p pbb)
{
  ppl_dimension_type i, dim;
  ppl_dimension_type *map;
  ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
  ppl_dimension_type dim1 = psct_iterator_dim (pbb, depth1);
  ppl_dimension_type dim2 = psct_iterator_dim (pbb, depth2);

  ppl_Polyhedron_space_dimension (poly, &dim);
  map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);

  for (i = 0; i < dim; i++)
    map[i] = i;

  map[dim1] = dim2;
  map[dim2] = dim1;

  ppl_Polyhedron_map_space_dimensions (poly, map, dim);
  free (map);
}

/* Interchanges all the loop depths that are considered profitable for PBB.  */

static bool
pbb_do_interchange (poly_bb_p pbb, scop_p scop)
{
  graphite_dim_t i, j;
  bool transform_done = false;

  for (i = 0; i < pbb_dim_iter_domain (pbb); i++)
    for (j = i + 1; j < pbb_dim_iter_domain (pbb); j++)
      if (pbb_interchange_profitable_p (i, j, pbb))
	{
	  pbb_interchange_loop_depths (i, j, pbb);

	  if (graphite_legal_transform (scop))
	    {
	      transform_done = true;

	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "PBB %d: loops at depths %d and %d will be interchanged.\n",
			 GBB_BB (PBB_BLACK_BOX (pbb))->index, (int) i, (int) j);
	    }
	  else
	    /* Undo the transform.  */
	    pbb_interchange_loop_depths (j, i, pbb);
	}

  return transform_done;
}

/* Interchanges all the loop depths that are considered profitable for SCOP.  */

bool
scop_do_interchange (scop_p scop)
{
  int i;
  poly_bb_p pbb;
  bool transform_done = false;

  store_scattering (scop);

  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    transform_done |= pbb_do_interchange (pbb, scop);

  if (!transform_done)
    return false;

  if (!graphite_legal_transform (scop))
    {
      restore_scattering (scop);
      return false;
    }

  return transform_done;
}

#endif