1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
|
/* Loop transformation code generation
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Daniel Berlin <dberlin@dberlin.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "obstack.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "vec.h"
#include "lambda.h"
#include "vecprim.h"
#include "pointer-set.h"
/* This loop nest code generation is based on non-singular matrix
math.
A little terminology and a general sketch of the algorithm. See "A singular
loop transformation framework based on non-singular matrices" by Wei Li and
Keshav Pingali for formal proofs that the various statements below are
correct.
A loop iteration space represents the points traversed by the loop. A point in the
iteration space can be represented by a vector of size <loop depth>. You can
therefore represent the iteration space as an integral combinations of a set
of basis vectors.
A loop iteration space is dense if every integer point between the loop
bounds is a point in the iteration space. Every loop with a step of 1
therefore has a dense iteration space.
for i = 1 to 3, step 1 is a dense iteration space.
A loop iteration space is sparse if it is not dense. That is, the iteration
space skips integer points that are within the loop bounds.
for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
2 is skipped.
Dense source spaces are easy to transform, because they don't skip any
points to begin with. Thus we can compute the exact bounds of the target
space using min/max and floor/ceil.
For a dense source space, we take the transformation matrix, decompose it
into a lower triangular part (H) and a unimodular part (U).
We then compute the auxiliary space from the unimodular part (source loop
nest . U = auxiliary space) , which has two important properties:
1. It traverses the iterations in the same lexicographic order as the source
space.
2. It is a dense space when the source is a dense space (even if the target
space is going to be sparse).
Given the auxiliary space, we use the lower triangular part to compute the
bounds in the target space by simple matrix multiplication.
The gaps in the target space (IE the new loop step sizes) will be the
diagonals of the H matrix.
Sparse source spaces require another step, because you can't directly compute
the exact bounds of the auxiliary and target space from the sparse space.
Rather than try to come up with a separate algorithm to handle sparse source
spaces directly, we just find a legal transformation matrix that gives you
the sparse source space, from a dense space, and then transform the dense
space.
For a regular sparse space, you can represent the source space as an integer
lattice, and the base space of that lattice will always be dense. Thus, we
effectively use the lattice to figure out the transformation from the lattice
base space, to the sparse iteration space (IE what transform was applied to
the dense space to make it sparse). We then compose this transform with the
transformation matrix specified by the user (since our matrix transformations
are closed under composition, this is okay). We can then use the base space
(which is dense) plus the composed transformation matrix, to compute the rest
of the transform using the dense space algorithm above.
In other words, our sparse source space (B) is decomposed into a dense base
space (A), and a matrix (L) that transforms A into B, such that A.L = B.
We then compute the composition of L and the user transformation matrix (T),
so that T is now a transform from A to the result, instead of from B to the
result.
IE A.(LT) = result instead of B.T = result
Since A is now a dense source space, we can use the dense source space
algorithm above to compute the result of applying transform (LT) to A.
Fourier-Motzkin elimination is used to compute the bounds of the base space
of the lattice. */
static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
VEC(tree,heap) *, VEC(int,heap) *,
VEC(tree,heap) *);
/* Lattice stuff that is internal to the code generation algorithm. */
typedef struct lambda_lattice_s
{
/* Lattice base matrix. */
lambda_matrix base;
/* Lattice dimension. */
int dimension;
/* Origin vector for the coefficients. */
lambda_vector origin;
/* Origin matrix for the invariants. */
lambda_matrix origin_invariants;
/* Number of invariants. */
int invariants;
} *lambda_lattice;
#define LATTICE_BASE(T) ((T)->base)
#define LATTICE_DIMENSION(T) ((T)->dimension)
#define LATTICE_ORIGIN(T) ((T)->origin)
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
#define LATTICE_INVARIANTS(T) ((T)->invariants)
static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
int, int);
static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
struct obstack *);
static bool can_convert_to_perfect_nest (struct loop *);
/* Create a new lambda body vector. */
lambda_body_vector
lambda_body_vector_new (int size, struct obstack * lambda_obstack)
{
lambda_body_vector ret;
ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
LBV_SIZE (ret) = size;
LBV_DENOMINATOR (ret) = 1;
return ret;
}
/* Compute the new coefficients for the vector based on the
*inverse* of the transformation matrix. */
lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix transform,
lambda_body_vector vect,
struct obstack * lambda_obstack)
{
lambda_body_vector temp;
int depth;
/* Make sure the matrix is square. */
gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
depth = LTM_ROWSIZE (transform);
temp = lambda_body_vector_new (depth, lambda_obstack);
LBV_DENOMINATOR (temp) =
LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
LTM_MATRIX (transform), depth,
LBV_COEFFICIENTS (temp));
LBV_SIZE (temp) = LBV_SIZE (vect);
return temp;
}
/* Print out a lambda body vector. */
void
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
{
print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
}
/* Return TRUE if two linear expressions are equal. */
static bool
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
int depth, int invariants)
{
int i;
if (lle1 == NULL || lle2 == NULL)
return false;
if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
return false;
if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
return false;
for (i = 0; i < depth; i++)
if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
return false;
for (i = 0; i < invariants; i++)
if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
LLE_INVARIANT_COEFFICIENTS (lle2)[i])
return false;
return true;
}
/* Create a new linear expression with dimension DIM, and total number
of invariants INVARIANTS. */
lambda_linear_expression
lambda_linear_expression_new (int dim, int invariants,
struct obstack * lambda_obstack)
{
lambda_linear_expression ret;
ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
sizeof (*ret));
LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
LLE_CONSTANT (ret) = 0;
LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
LLE_DENOMINATOR (ret) = 1;
LLE_NEXT (ret) = NULL;
return ret;
}
/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
The starting letter used for variable names is START. */
static void
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
char start)
{
int i;
bool first = true;
for (i = 0; i < size; i++)
{
if (expr[i] != 0)
{
if (first)
{
if (expr[i] < 0)
fprintf (outfile, "-");
first = false;
}
else if (expr[i] > 0)
fprintf (outfile, " + ");
else
fprintf (outfile, " - ");
if (abs (expr[i]) == 1)
fprintf (outfile, "%c", start + i);
else
fprintf (outfile, "%d%c", abs (expr[i]), start + i);
}
}
}
/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
depth/number of coefficients is given by DEPTH, the number of invariants is
given by INVARIANTS, and the character to start variable names with is given
by START. */
void
print_lambda_linear_expression (FILE * outfile,
lambda_linear_expression expr,
int depth, int invariants, char start)
{
fprintf (outfile, "\tLinear expression: ");
print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
fprintf (outfile, " invariants: ");
print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
invariants, 'A');
fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
}
/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
coefficients is given by DEPTH, the number of invariants is
given by INVARIANTS, and the character to start variable names with is given
by START. */
void
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
int invariants, char start)
{
int step;
lambda_linear_expression expr;
gcc_assert (loop);
expr = LL_LINEAR_OFFSET (loop);
step = LL_STEP (loop);
fprintf (outfile, " step size = %d \n", step);
if (expr)
{
fprintf (outfile, " linear offset: \n");
print_lambda_linear_expression (outfile, expr, depth, invariants,
start);
}
fprintf (outfile, " lower bound: \n");
for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
fprintf (outfile, " upper bound: \n");
for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
}
/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
number of invariants. */
lambda_loopnest
lambda_loopnest_new (int depth, int invariants,
struct obstack * lambda_obstack)
{
lambda_loopnest ret;
ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
LN_LOOPS (ret) = (lambda_loop *)
obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
LN_DEPTH (ret) = depth;
LN_INVARIANTS (ret) = invariants;
return ret;
}
/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
character to use for loop names is given by START. */
void
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
{
int i;
for (i = 0; i < LN_DEPTH (nest); i++)
{
fprintf (outfile, "Loop %c\n", start + i);
print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
LN_INVARIANTS (nest), 'i');
fprintf (outfile, "\n");
}
}
/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
of invariants. */
static lambda_lattice
lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
{
lambda_lattice ret
= (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
LATTICE_DIMENSION (ret) = depth;
LATTICE_INVARIANTS (ret) = invariants;
return ret;
}
/* Compute the lattice base for NEST. The lattice base is essentially a
non-singular transform from a dense base space to a sparse iteration space.
We use it so that we don't have to specially handle the case of a sparse
iteration space in other parts of the algorithm. As a result, this routine
only does something interesting (IE produce a matrix that isn't the
identity matrix) if NEST is a sparse space. */
static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest nest,
struct obstack * lambda_obstack)
{
lambda_lattice ret;
int depth, invariants;
lambda_matrix base;
int i, j, step;
lambda_loop loop;
lambda_linear_expression expression;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
ret = lambda_lattice_new (depth, invariants, lambda_obstack);
base = LATTICE_BASE (ret);
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (nest)[i];
gcc_assert (loop);
step = LL_STEP (loop);
/* If we have a step of 1, then the base is one, and the
origin and invariant coefficients are 0. */
if (step == 1)
{
for (j = 0; j < depth; j++)
base[i][j] = 0;
base[i][i] = 1;
LATTICE_ORIGIN (ret)[i] = 0;
for (j = 0; j < invariants; j++)
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
}
else
{
/* Otherwise, we need the lower bound expression (which must
be an affine function) to determine the base. */
expression = LL_LOWER_BOUND (loop);
gcc_assert (expression && !LLE_NEXT (expression)
&& LLE_DENOMINATOR (expression) == 1);
/* The lower triangular portion of the base is going to be the
coefficient times the step */
for (j = 0; j < i; j++)
base[i][j] = LLE_COEFFICIENTS (expression)[j]
* LL_STEP (LN_LOOPS (nest)[j]);
base[i][i] = step;
for (j = i + 1; j < depth; j++)
base[i][j] = 0;
/* Origin for this loop is the constant of the lower bound
expression. */
LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
/* Coefficient for the invariants are equal to the invariant
coefficients in the expression. */
for (j = 0; j < invariants; j++)
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
LLE_INVARIANT_COEFFICIENTS (expression)[j];
}
}
return ret;
}
/* Compute the least common multiple of two numbers A and B . */
int
least_common_multiple (int a, int b)
{
return (abs (a) * abs (b) / gcd (a, b));
}
/* Perform Fourier-Motzkin elimination to calculate the bounds of the
auxiliary nest.
Fourier-Motzkin is a way of reducing systems of linear inequalities so that
it is easy to calculate the answer and bounds.
A sketch of how it works:
Given a system of linear inequalities, ai * xj >= bk, you can always
rewrite the constraints so they are all of the form
a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
in b1 ... bk, and some a in a1...ai)
You can then eliminate this x from the non-constant inequalities by
rewriting these as a <= b, x >= constant, and delete the x variable.
You can then repeat this for any remaining x variables, and then we have
an easy to use variable <= constant (or no variables at all) form that we
can construct our bounds from.
In our case, each time we eliminate, we construct part of the bound from
the ith variable, then delete the ith variable.
Remember the constant are in our vector a, our coefficient matrix is A,
and our invariant coefficient matrix is B.
SIZE is the size of the matrices being passed.
DEPTH is the loop nest depth.
INVARIANTS is the number of loop invariants.
A, B, and a are the coefficient matrix, invariant coefficient, and a
vector of constants, respectively. */
static lambda_loopnest
compute_nest_using_fourier_motzkin (int size,
int depth,
int invariants,
lambda_matrix A,
lambda_matrix B,
lambda_vector a,
struct obstack * lambda_obstack)
{
int multiple, f1, f2;
int i, j, k;
lambda_linear_expression expression;
lambda_loop loop;
lambda_loopnest auxillary_nest;
lambda_matrix swapmatrix, A1, B1;
lambda_vector swapvector, a1;
int newsize;
A1 = lambda_matrix_new (128, depth);
B1 = lambda_matrix_new (128, invariants);
a1 = lambda_vector_new (128);
auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
for (i = depth - 1; i >= 0; i--)
{
loop = lambda_loop_new ();
LN_LOOPS (auxillary_nest)[i] = loop;
LL_STEP (loop) = 1;
for (j = 0; j < size; j++)
{
if (A[j][i] < 0)
{
/* Any linear expression in the matrix with a coefficient less
than 0 becomes part of the new lower bound. */
expression = lambda_linear_expression_new (depth, invariants,
lambda_obstack);
for (k = 0; k < i; k++)
LLE_COEFFICIENTS (expression)[k] = A[j][k];
for (k = 0; k < invariants; k++)
LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
LLE_DENOMINATOR (expression) = -1 * A[j][i];
LLE_CONSTANT (expression) = -1 * a[j];
/* Ignore if identical to the existing lower bound. */
if (!lle_equal (LL_LOWER_BOUND (loop),
expression, depth, invariants))
{
LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
LL_LOWER_BOUND (loop) = expression;
}
}
else if (A[j][i] > 0)
{
/* Any linear expression with a coefficient greater than 0
becomes part of the new upper bound. */
expression = lambda_linear_expression_new (depth, invariants,
lambda_obstack);
for (k = 0; k < i; k++)
LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
for (k = 0; k < invariants; k++)
LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
LLE_DENOMINATOR (expression) = A[j][i];
LLE_CONSTANT (expression) = a[j];
/* Ignore if identical to the existing upper bound. */
if (!lle_equal (LL_UPPER_BOUND (loop),
expression, depth, invariants))
{
LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
LL_UPPER_BOUND (loop) = expression;
}
}
}
/* This portion creates a new system of linear inequalities by deleting
the i'th variable, reducing the system by one variable. */
newsize = 0;
for (j = 0; j < size; j++)
{
/* If the coefficient for the i'th variable is 0, then we can just
eliminate the variable straightaway. Otherwise, we have to
multiply through by the coefficients we are eliminating. */
if (A[j][i] == 0)
{
lambda_vector_copy (A[j], A1[newsize], depth);
lambda_vector_copy (B[j], B1[newsize], invariants);
a1[newsize] = a[j];
newsize++;
}
else if (A[j][i] > 0)
{
for (k = 0; k < size; k++)
{
if (A[k][i] < 0)
{
multiple = least_common_multiple (A[j][i], A[k][i]);
f1 = multiple / A[j][i];
f2 = -1 * multiple / A[k][i];
lambda_vector_add_mc (A[j], f1, A[k], f2,
A1[newsize], depth);
lambda_vector_add_mc (B[j], f1, B[k], f2,
B1[newsize], invariants);
a1[newsize] = f1 * a[j] + f2 * a[k];
newsize++;
}
}
}
}
swapmatrix = A;
A = A1;
A1 = swapmatrix;
swapmatrix = B;
B = B1;
B1 = swapmatrix;
swapvector = a;
a = a1;
a1 = swapvector;
size = newsize;
}
return auxillary_nest;
}
/* Compute the loop bounds for the auxiliary space NEST.
Input system used is Ax <= b. TRANS is the unimodular transformation.
Given the original nest, this function will
1. Convert the nest into matrix form, which consists of a matrix for the
coefficients, a matrix for the
invariant coefficients, and a vector for the constants.
2. Use the matrix form to calculate the lattice base for the nest (which is
a dense space)
3. Compose the dense space transform with the user specified transform, to
get a transform we can easily calculate transformed bounds for.
4. Multiply the composed transformation matrix times the matrix form of the
loop.
5. Transform the newly created matrix (from step 4) back into a loop nest
using Fourier-Motzkin elimination to figure out the bounds. */
static lambda_loopnest
lambda_compute_auxillary_space (lambda_loopnest nest,
lambda_trans_matrix trans,
struct obstack * lambda_obstack)
{
lambda_matrix A, B, A1, B1;
lambda_vector a, a1;
lambda_matrix invertedtrans;
int depth, invariants, size;
int i, j;
lambda_loop loop;
lambda_linear_expression expression;
lambda_lattice lattice;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
/* Unfortunately, we can't know the number of constraints we'll have
ahead of time, but this should be enough even in ridiculous loop nest
cases. We must not go over this limit. */
A = lambda_matrix_new (128, depth);
B = lambda_matrix_new (128, invariants);
a = lambda_vector_new (128);
A1 = lambda_matrix_new (128, depth);
B1 = lambda_matrix_new (128, invariants);
a1 = lambda_vector_new (128);
/* Store the bounds in the equation matrix A, constant vector a, and
invariant matrix B, so that we have Ax <= a + B.
This requires a little equation rearranging so that everything is on the
correct side of the inequality. */
size = 0;
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (nest)[i];
/* First we do the lower bound. */
if (LL_STEP (loop) > 0)
expression = LL_LOWER_BOUND (loop);
else
expression = LL_UPPER_BOUND (loop);
for (; expression != NULL; expression = LLE_NEXT (expression))
{
/* Fill in the coefficient. */
for (j = 0; j < i; j++)
A[size][j] = LLE_COEFFICIENTS (expression)[j];
/* And the invariant coefficient. */
for (j = 0; j < invariants; j++)
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
/* And the constant. */
a[size] = LLE_CONSTANT (expression);
/* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
constants and single variables on */
A[size][i] = -1 * LLE_DENOMINATOR (expression);
a[size] *= -1;
for (j = 0; j < invariants; j++)
B[size][j] *= -1;
size++;
/* Need to increase matrix sizes above. */
gcc_assert (size <= 127);
}
/* Then do the exact same thing for the upper bounds. */
if (LL_STEP (loop) > 0)
expression = LL_UPPER_BOUND (loop);
else
expression = LL_LOWER_BOUND (loop);
for (; expression != NULL; expression = LLE_NEXT (expression))
{
/* Fill in the coefficient. */
for (j = 0; j < i; j++)
A[size][j] = LLE_COEFFICIENTS (expression)[j];
/* And the invariant coefficient. */
for (j = 0; j < invariants; j++)
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
/* And the constant. */
a[size] = LLE_CONSTANT (expression);
/* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
for (j = 0; j < i; j++)
A[size][j] *= -1;
A[size][i] = LLE_DENOMINATOR (expression);
size++;
/* Need to increase matrix sizes above. */
gcc_assert (size <= 127);
}
}
/* Compute the lattice base x = base * y + origin, where y is the
base space. */
lattice = lambda_lattice_compute_base (nest, lambda_obstack);
/* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
/* A1 = A * L */
lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
/* a1 = a - A * origin constant. */
lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
lambda_vector_add_mc (a, 1, a1, -1, a1, size);
/* B1 = B - A * origin invariant. */
lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
invariants);
lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
/* Now compute the auxiliary space bounds by first inverting U, multiplying
it by A1, then performing Fourier-Motzkin. */
invertedtrans = lambda_matrix_new (depth, depth);
/* Compute the inverse of U. */
lambda_matrix_inverse (LTM_MATRIX (trans),
invertedtrans, depth);
/* A = A1 inv(U). */
lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
return compute_nest_using_fourier_motzkin (size, depth, invariants,
A, B1, a1, lambda_obstack);
}
/* Compute the loop bounds for the target space, using the bounds of
the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
The target space loop bounds are computed by multiplying the triangular
matrix H by the auxiliary nest, to get the new loop bounds. The sign of
the loop steps (positive or negative) is then used to swap the bounds if
the loop counts downwards.
Return the target loopnest. */
static lambda_loopnest
lambda_compute_target_space (lambda_loopnest auxillary_nest,
lambda_trans_matrix H, lambda_vector stepsigns,
struct obstack * lambda_obstack)
{
lambda_matrix inverse, H1;
int determinant, i, j;
int gcd1, gcd2;
int factor;
lambda_loopnest target_nest;
int depth, invariants;
lambda_matrix target;
lambda_loop auxillary_loop, target_loop;
lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
depth = LN_DEPTH (auxillary_nest);
invariants = LN_INVARIANTS (auxillary_nest);
inverse = lambda_matrix_new (depth, depth);
determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
/* H1 is H excluding its diagonal. */
H1 = lambda_matrix_new (depth, depth);
lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
for (i = 0; i < depth; i++)
H1[i][i] = 0;
/* Computes the linear offsets of the loop bounds. */
target = lambda_matrix_new (depth, depth);
lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
for (i = 0; i < depth; i++)
{
/* Get a new loop structure. */
target_loop = lambda_loop_new ();
LN_LOOPS (target_nest)[i] = target_loop;
/* Computes the gcd of the coefficients of the linear part. */
gcd1 = lambda_vector_gcd (target[i], i);
/* Include the denominator in the GCD. */
gcd1 = gcd (gcd1, determinant);
/* Now divide through by the gcd. */
for (j = 0; j < i; j++)
target[i][j] = target[i][j] / gcd1;
expression = lambda_linear_expression_new (depth, invariants,
lambda_obstack);
lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
LLE_DENOMINATOR (expression) = determinant / gcd1;
LLE_CONSTANT (expression) = 0;
lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
invariants);
LL_LINEAR_OFFSET (target_loop) = expression;
}
/* For each loop, compute the new bounds from H. */
for (i = 0; i < depth; i++)
{
auxillary_loop = LN_LOOPS (auxillary_nest)[i];
target_loop = LN_LOOPS (target_nest)[i];
LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
factor = LTM_MATRIX (H)[i][i];
/* First we do the lower bound. */
auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
for (; auxillary_expr != NULL;
auxillary_expr = LLE_NEXT (auxillary_expr))
{
target_expr = lambda_linear_expression_new (depth, invariants,
lambda_obstack);
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
depth, inverse, depth,
LLE_COEFFICIENTS (target_expr));
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
LLE_COEFFICIENTS (target_expr), depth,
factor);
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants, factor);
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
{
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
* determinant;
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
(target_expr),
LLE_INVARIANT_COEFFICIENTS
(target_expr), invariants,
determinant);
LLE_DENOMINATOR (target_expr) =
LLE_DENOMINATOR (target_expr) * determinant;
}
/* Find the gcd and divide by it here, rather than doing it
at the tree level. */
gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
gcd1 = gcd (gcd1, gcd2);
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
for (j = 0; j < depth; j++)
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
LLE_CONSTANT (target_expr) /= gcd1;
LLE_DENOMINATOR (target_expr) /= gcd1;
/* Ignore if identical to existing bound. */
if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
invariants))
{
LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
LL_LOWER_BOUND (target_loop) = target_expr;
}
}
/* Now do the upper bound. */
auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
for (; auxillary_expr != NULL;
auxillary_expr = LLE_NEXT (auxillary_expr))
{
target_expr = lambda_linear_expression_new (depth, invariants,
lambda_obstack);
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
depth, inverse, depth,
LLE_COEFFICIENTS (target_expr));
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
LLE_COEFFICIENTS (target_expr), depth,
factor);
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants, factor);
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
{
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
* determinant;
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
(target_expr),
LLE_INVARIANT_COEFFICIENTS
(target_expr), invariants,
determinant);
LLE_DENOMINATOR (target_expr) =
LLE_DENOMINATOR (target_expr) * determinant;
}
/* Find the gcd and divide by it here, instead of at the
tree level. */
gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
invariants);
gcd1 = gcd (gcd1, gcd2);
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
for (j = 0; j < depth; j++)
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
LLE_CONSTANT (target_expr) /= gcd1;
LLE_DENOMINATOR (target_expr) /= gcd1;
/* Ignore if equal to existing bound. */
if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
invariants))
{
LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
LL_UPPER_BOUND (target_loop) = target_expr;
}
}
}
for (i = 0; i < depth; i++)
{
target_loop = LN_LOOPS (target_nest)[i];
/* If necessary, exchange the upper and lower bounds and negate
the step size. */
if (stepsigns[i] < 0)
{
LL_STEP (target_loop) *= -1;
tmp_expr = LL_LOWER_BOUND (target_loop);
LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
LL_UPPER_BOUND (target_loop) = tmp_expr;
}
}
return target_nest;
}
/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
result. */
static lambda_vector
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
{
lambda_matrix matrix, H;
int size;
lambda_vector newsteps;
int i, j, factor, minimum_column;
int temp;
matrix = LTM_MATRIX (trans);
size = LTM_ROWSIZE (trans);
H = lambda_matrix_new (size, size);
newsteps = lambda_vector_new (size);
lambda_vector_copy (stepsigns, newsteps, size);
lambda_matrix_copy (matrix, H, size, size);
for (j = 0; j < size; j++)
{
lambda_vector row;
row = H[j];
for (i = j; i < size; i++)
if (row[i] < 0)
lambda_matrix_col_negate (H, size, i);
while (lambda_vector_first_nz (row, size, j + 1) < size)
{
minimum_column = lambda_vector_min_nz (row, size, j);
lambda_matrix_col_exchange (H, size, j, minimum_column);
temp = newsteps[j];
newsteps[j] = newsteps[minimum_column];
newsteps[minimum_column] = temp;
for (i = j + 1; i < size; i++)
{
factor = row[i] / row[j];
lambda_matrix_col_add (H, size, j, i, -1 * factor);
}
}
}
return newsteps;
}
/* Transform NEST according to TRANS, and return the new loopnest.
This involves
1. Computing a lattice base for the transformation
2. Composing the dense base with the specified transformation (TRANS)
3. Decomposing the combined transformation into a lower triangular portion,
and a unimodular portion.
4. Computing the auxiliary nest using the unimodular portion.
5. Computing the target nest using the auxiliary nest and the lower
triangular portion. */
lambda_loopnest
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
struct obstack * lambda_obstack)
{
lambda_loopnest auxillary_nest, target_nest;
int depth, invariants;
int i, j;
lambda_lattice lattice;
lambda_trans_matrix trans1, H, U;
lambda_loop loop;
lambda_linear_expression expression;
lambda_vector origin;
lambda_matrix origin_invariants;
lambda_vector stepsigns;
int f;
depth = LN_DEPTH (nest);
invariants = LN_INVARIANTS (nest);
/* Keep track of the signs of the loop steps. */
stepsigns = lambda_vector_new (depth);
for (i = 0; i < depth; i++)
{
if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
stepsigns[i] = 1;
else
stepsigns[i] = -1;
}
/* Compute the lattice base. */
lattice = lambda_lattice_compute_base (nest, lambda_obstack);
trans1 = lambda_trans_matrix_new (depth, depth);
/* Multiply the transformation matrix by the lattice base. */
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
LTM_MATRIX (trans1), depth, depth, depth);
/* Compute the Hermite normal form for the new transformation matrix. */
H = lambda_trans_matrix_new (depth, depth);
U = lambda_trans_matrix_new (depth, depth);
lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
LTM_MATRIX (U));
/* Compute the auxiliary loop nest's space from the unimodular
portion. */
auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
/* Compute the loop step signs from the old step signs and the
transformation matrix. */
stepsigns = lambda_compute_step_signs (trans1, stepsigns);
/* Compute the target loop nest space from the auxiliary nest and
the lower triangular matrix H. */
target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
lambda_obstack);
origin = lambda_vector_new (depth);
origin_invariants = lambda_matrix_new (depth, invariants);
lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
LATTICE_ORIGIN (lattice), origin);
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
origin_invariants, depth, depth, invariants);
for (i = 0; i < depth; i++)
{
loop = LN_LOOPS (target_nest)[i];
expression = LL_LINEAR_OFFSET (loop);
if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
f = 1;
else
f = LLE_DENOMINATOR (expression);
LLE_CONSTANT (expression) += f * origin[i];
for (j = 0; j < invariants; j++)
LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
f * origin_invariants[i][j];
}
return target_nest;
}
/* Convert a gcc tree expression EXPR to a lambda linear expression, and
return the new expression. DEPTH is the depth of the loopnest.
OUTERINDUCTIONVARS is an array of the induction variables for outer loops
in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
is the amount we have to add/subtract from the expression because of the
type of comparison it is used in. */
static lambda_linear_expression
gcc_tree_to_linear_expression (int depth, tree expr,
VEC(tree,heap) *outerinductionvars,
VEC(tree,heap) *invariants, int extra,
struct obstack * lambda_obstack)
{
lambda_linear_expression lle = NULL;
switch (TREE_CODE (expr))
{
case INTEGER_CST:
{
lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
if (extra != 0)
LLE_CONSTANT (lle) += extra;
LLE_DENOMINATOR (lle) = 1;
}
break;
case SSA_NAME:
{
tree iv, invar;
size_t i;
for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
if (iv != NULL)
{
if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
{
lle = lambda_linear_expression_new (depth, 2 * depth,
lambda_obstack);
LLE_COEFFICIENTS (lle)[i] = 1;
if (extra != 0)
LLE_CONSTANT (lle) = extra;
LLE_DENOMINATOR (lle) = 1;
}
}
for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
if (invar != NULL)
{
if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
{
lle = lambda_linear_expression_new (depth, 2 * depth,
lambda_obstack);
LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
if (extra != 0)
LLE_CONSTANT (lle) = extra;
LLE_DENOMINATOR (lle) = 1;
}
}
}
break;
default:
return NULL;
}
return lle;
}
/* Return the depth of the loopnest NEST */
static int
depth_of_nest (struct loop *nest)
{
size_t depth = 0;
while (nest)
{
depth++;
nest = nest->inner;
}
return depth;
}
/* Return true if OP is invariant in LOOP and all outer loops. */
static bool
invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
{
if (is_gimple_min_invariant (op))
return true;
if (loop_depth (loop) == 0)
return true;
if (!expr_invariant_in_loop_p (loop, op))
return false;
if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
return false;
return true;
}
/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
or NULL if it could not be converted.
DEPTH is the depth of the loop.
INVARIANTS is a pointer to the array of loop invariants.
The induction variable for this loop should be stored in the parameter
OURINDUCTIONVAR.
OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
static lambda_loop
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
VEC(tree,heap) ** invariants,
tree * ourinductionvar,
VEC(tree,heap) * outerinductionvars,
VEC(tree,heap) ** lboundvars,
VEC(tree,heap) ** uboundvars,
VEC(int,heap) ** steps,
struct obstack * lambda_obstack)
{
gimple phi;
gimple exit_cond;
tree access_fn, inductionvar;
tree step;
lambda_loop lloop = NULL;
lambda_linear_expression lbound, ubound;
tree test_lhs, test_rhs;
int stepint;
int extra = 0;
tree lboundvar, uboundvar, uboundresult;
/* Find out induction var and exit condition. */
inductionvar = find_induction_var_from_exit_cond (loop);
exit_cond = get_loop_exit_condition (loop);
if (inductionvar == NULL || exit_cond == NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
return NULL;
}
if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
phi = SSA_NAME_DEF_STMT (inductionvar);
if (gimple_code (phi) != GIMPLE_PHI)
{
tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
if (!op)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
phi = SSA_NAME_DEF_STMT (op);
if (gimple_code (phi) != GIMPLE_PHI)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot find PHI node for induction variable\n");
return NULL;
}
}
/* The induction variable name/version we want to put in the array is the
result of the induction variable phi node. */
*ourinductionvar = PHI_RESULT (phi);
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
if (access_fn == chrec_dont_know)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Access function for induction variable phi is unknown\n");
return NULL;
}
step = evolution_part_in_loop_num (access_fn, loop->num);
if (!step || step == chrec_dont_know)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot determine step of loop.\n");
return NULL;
}
if (TREE_CODE (step) != INTEGER_CST)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Step of loop is not integer.\n");
return NULL;
}
stepint = TREE_INT_CST_LOW (step);
/* Only want phis for induction vars, which will have two
arguments. */
if (gimple_phi_num_args (phi) != 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: PHI node for induction variable has >2 arguments\n");
return NULL;
}
/* Another induction variable check. One argument's source should be
in the loop, one outside the loop. */
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
&& flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
return NULL;
}
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
{
lboundvar = PHI_ARG_DEF (phi, 1);
lbound = gcc_tree_to_linear_expression (depth, lboundvar,
outerinductionvars, *invariants,
0, lambda_obstack);
}
else
{
lboundvar = PHI_ARG_DEF (phi, 0);
lbound = gcc_tree_to_linear_expression (depth, lboundvar,
outerinductionvars, *invariants,
0, lambda_obstack);
}
if (!lbound)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot convert lower bound to linear expression\n");
return NULL;
}
/* One part of the test may be a loop invariant tree. */
VEC_reserve (tree, heap, *invariants, 1);
test_lhs = gimple_cond_lhs (exit_cond);
test_rhs = gimple_cond_rhs (exit_cond);
if (TREE_CODE (test_rhs) == SSA_NAME
&& invariant_in_loop_and_outer_loops (loop, test_rhs))
VEC_quick_push (tree, *invariants, test_rhs);
else if (TREE_CODE (test_lhs) == SSA_NAME
&& invariant_in_loop_and_outer_loops (loop, test_lhs))
VEC_quick_push (tree, *invariants, test_lhs);
/* The non-induction variable part of the test is the upper bound variable.
*/
if (test_lhs == inductionvar)
uboundvar = test_rhs;
else
uboundvar = test_lhs;
/* We only size the vectors assuming we have, at max, 2 times as many
invariants as we do loops (one for each bound).
This is just an arbitrary number, but it has to be matched against the
code below. */
gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
/* We might have some leftover. */
if (gimple_cond_code (exit_cond) == LT_EXPR)
extra = -1 * stepint;
else if (gimple_cond_code (exit_cond) == NE_EXPR)
extra = -1 * stepint;
else if (gimple_cond_code (exit_cond) == GT_EXPR)
extra = -1 * stepint;
else if (gimple_cond_code (exit_cond) == EQ_EXPR)
extra = 1 * stepint;
ubound = gcc_tree_to_linear_expression (depth, uboundvar,
outerinductionvars,
*invariants, extra, lambda_obstack);
uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
build_int_cst (TREE_TYPE (uboundvar), extra));
VEC_safe_push (tree, heap, *uboundvars, uboundresult);
VEC_safe_push (tree, heap, *lboundvars, lboundvar);
VEC_safe_push (int, heap, *steps, stepint);
if (!ubound)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Unable to convert loop: Cannot convert upper bound to linear expression\n");
return NULL;
}
lloop = lambda_loop_new ();
LL_STEP (lloop) = stepint;
LL_LOWER_BOUND (lloop) = lbound;
LL_UPPER_BOUND (lloop) = ubound;
return lloop;
}
/* Given a LOOP, find the induction variable it is testing against in the exit
condition. Return the induction variable if found, NULL otherwise. */
tree
find_induction_var_from_exit_cond (struct loop *loop)
{
gimple expr = get_loop_exit_condition (loop);
tree ivarop;
tree test_lhs, test_rhs;
if (expr == NULL)
return NULL_TREE;
if (gimple_code (expr) != GIMPLE_COND)
return NULL_TREE;
test_lhs = gimple_cond_lhs (expr);
test_rhs = gimple_cond_rhs (expr);
/* Find the side that is invariant in this loop. The ivar must be the other
side. */
if (expr_invariant_in_loop_p (loop, test_lhs))
ivarop = test_rhs;
else if (expr_invariant_in_loop_p (loop, test_rhs))
ivarop = test_lhs;
else
return NULL_TREE;
if (TREE_CODE (ivarop) != SSA_NAME)
return NULL_TREE;
return ivarop;
}
DEF_VEC_P(lambda_loop);
DEF_VEC_ALLOC_P(lambda_loop,heap);
/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
Return the new loop nest.
INDUCTIONVARS is a pointer to an array of induction variables for the
loopnest that will be filled in during this process.
INVARIANTS is a pointer to an array of invariants that will be filled in
during this process. */
lambda_loopnest
gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
VEC(tree,heap) **inductionvars,
VEC(tree,heap) **invariants,
struct obstack * lambda_obstack)
{
lambda_loopnest ret = NULL;
struct loop *temp = loop_nest;
int depth = depth_of_nest (loop_nest);
size_t i;
VEC(lambda_loop,heap) *loops = NULL;
VEC(tree,heap) *uboundvars = NULL;
VEC(tree,heap) *lboundvars = NULL;
VEC(int,heap) *steps = NULL;
lambda_loop newloop;
tree inductionvar = NULL;
bool perfect_nest = perfect_nest_p (loop_nest);
if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
goto fail;
while (temp)
{
newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
&inductionvar, *inductionvars,
&lboundvars, &uboundvars,
&steps, lambda_obstack);
if (!newloop)
goto fail;
VEC_safe_push (tree, heap, *inductionvars, inductionvar);
VEC_safe_push (lambda_loop, heap, loops, newloop);
temp = temp->inner;
}
if (!perfect_nest)
{
if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
*inductionvars))
{
if (dump_file)
fprintf (dump_file,
"Not a perfect loop nest and couldn't convert to one.\n");
goto fail;
}
else if (dump_file)
fprintf (dump_file,
"Successfully converted loop nest to perfect loop nest.\n");
}
ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
LN_LOOPS (ret)[i] = newloop;
fail:
VEC_free (lambda_loop, heap, loops);
VEC_free (tree, heap, uboundvars);
VEC_free (tree, heap, lboundvars);
VEC_free (int, heap, steps);
return ret;
}
/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
inserted for us are stored. INDUCTION_VARS is the array of induction
variables for the loop this LBV is from. TYPE is the tree type to use for
the variables and trees involved. */
static tree
lbv_to_gcc_expression (lambda_body_vector lbv,
tree type, VEC(tree,heap) *induction_vars,
gimple_seq *stmts_to_insert)
{
int k;
tree resvar;
tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
k = LBV_DENOMINATOR (lbv);
gcc_assert (k != 0);
if (k != 1)
expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
resvar = create_tmp_var (type, "lbvtmp");
add_referenced_var (resvar);
return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
}
/* Convert a linear expression from coefficient and constant form to a
gcc tree.
Return the tree that represents the final value of the expression.
LLE is the linear expression to convert.
OFFSET is the linear offset to apply to the expression.
TYPE is the tree type to use for the variables and math.
INDUCTION_VARS is a vector of induction variables for the loops.
INVARIANTS is a vector of the loop nest invariants.
WRAP specifies what tree code to wrap the results in, if there is more than
one (it is either MAX_EXPR, or MIN_EXPR).
STMTS_TO_INSERT Is a pointer to the statement list we fill in with
statements that need to be inserted for the linear expression. */
static tree
lle_to_gcc_expression (lambda_linear_expression lle,
lambda_linear_expression offset,
tree type,
VEC(tree,heap) *induction_vars,
VEC(tree,heap) *invariants,
enum tree_code wrap, gimple_seq *stmts_to_insert)
{
int k;
tree resvar;
tree expr = NULL_TREE;
VEC(tree,heap) *results = NULL;
gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
/* Build up the linear expressions. */
for (; lle != NULL; lle = LLE_NEXT (lle))
{
expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
expr = fold_build2 (PLUS_EXPR, type, expr,
build_linear_expr (type,
LLE_INVARIANT_COEFFICIENTS (lle),
invariants));
k = LLE_CONSTANT (lle);
if (k)
expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
k = LLE_CONSTANT (offset);
if (k)
expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
k = LLE_DENOMINATOR (lle);
if (k != 1)
expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
type, expr, build_int_cst (type, k));
expr = fold (expr);
VEC_safe_push (tree, heap, results, expr);
}
gcc_assert (expr);
/* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
if (VEC_length (tree, results) > 1)
{
size_t i;
tree op;
expr = VEC_index (tree, results, 0);
for (i = 1; VEC_iterate (tree, results, i, op); i++)
expr = fold_build2 (wrap, type, expr, op);
}
VEC_free (tree, heap, results);
resvar = create_tmp_var (type, "lletmp");
add_referenced_var (resvar);
return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
}
/* Remove the induction variable defined at IV_STMT. */
void
remove_iv (gimple iv_stmt)
{
gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
if (gimple_code (iv_stmt) == GIMPLE_PHI)
{
unsigned i;
for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
{
gimple stmt;
imm_use_iterator imm_iter;
tree arg = gimple_phi_arg_def (iv_stmt, i);
bool used = false;
if (TREE_CODE (arg) != SSA_NAME)
continue;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
if (stmt != iv_stmt)
used = true;
if (!used)
remove_iv (SSA_NAME_DEF_STMT (arg));
}
remove_phi_node (&si, true);
}
else
{
gsi_remove (&si, true);
release_defs (iv_stmt);
}
}
/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
it, back into gcc code. This changes the
loops, their induction variables, and their bodies, so that they
match the transformed loopnest.
OLD_LOOPNEST is the loopnest before we've replaced it with the new
loopnest.
OLD_IVS is a vector of induction variables from the old loopnest.
INVARIANTS is a vector of loop invariants from the old loopnest.
NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
NEW_LOOPNEST. */
void
lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
VEC(tree,heap) *old_ivs,
VEC(tree,heap) *invariants,
VEC(gimple,heap) **remove_ivs,
lambda_loopnest new_loopnest,
lambda_trans_matrix transform,
struct obstack * lambda_obstack)
{
struct loop *temp;
size_t i = 0;
unsigned j;
size_t depth = 0;
VEC(tree,heap) *new_ivs = NULL;
tree oldiv;
gimple_stmt_iterator bsi;
transform = lambda_trans_matrix_inverse (transform);
if (dump_file)
{
fprintf (dump_file, "Inverse of transformation matrix:\n");
print_lambda_trans_matrix (dump_file, transform);
}
depth = depth_of_nest (old_loopnest);
temp = old_loopnest;
while (temp)
{
lambda_loop newloop;
basic_block bb;
edge exit;
tree ivvar, ivvarinced;
gimple exitcond;
gimple_seq stmts;
enum tree_code testtype;
tree newupperbound, newlowerbound;
lambda_linear_expression offset;
tree type;
bool insert_after;
gimple inc_stmt;
oldiv = VEC_index (tree, old_ivs, i);
type = TREE_TYPE (oldiv);
/* First, build the new induction variable temporary */
ivvar = create_tmp_var (type, "lnivtmp");
add_referenced_var (ivvar);
VEC_safe_push (tree, heap, new_ivs, ivvar);
newloop = LN_LOOPS (new_loopnest)[i];
/* Linear offset is a bit tricky to handle. Punt on the unhandled
cases for now. */
offset = LL_LINEAR_OFFSET (newloop);
gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
/* Now build the new lower bounds, and insert the statements
necessary to generate it on the loop preheader. */
stmts = NULL;
newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
LL_LINEAR_OFFSET (newloop),
type,
new_ivs,
invariants, MAX_EXPR, &stmts);
if (stmts)
{
gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
gsi_commit_edge_inserts ();
}
/* Build the new upper bound and insert its statements in the
basic block of the exit condition */
stmts = NULL;
newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
LL_LINEAR_OFFSET (newloop),
type,
new_ivs,
invariants, MIN_EXPR, &stmts);
exit = single_exit (temp);
exitcond = get_loop_exit_condition (temp);
bb = gimple_bb (exitcond);
bsi = gsi_after_labels (bb);
if (stmts)
gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
/* Create the new iv. */
standard_iv_increment_position (temp, &bsi, &insert_after);
create_iv (newlowerbound,
build_int_cst (type, LL_STEP (newloop)),
ivvar, temp, &bsi, insert_after, &ivvar,
NULL);
/* Unfortunately, the incremented ivvar that create_iv inserted may not
dominate the block containing the exit condition.
So we simply create our own incremented iv to use in the new exit
test, and let redundancy elimination sort it out. */
inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
ivvar,
build_int_cst (type, LL_STEP (newloop)));
ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
gimple_assign_set_lhs (inc_stmt, ivvarinced);
bsi = gsi_for_stmt (exitcond);
gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
/* Replace the exit condition with the new upper bound
comparison. */
testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
/* We want to build a conditional where true means exit the loop, and
false means continue the loop.
So swap the testtype if this isn't the way things are.*/
if (exit->flags & EDGE_FALSE_VALUE)
testtype = swap_tree_comparison (testtype);
gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
update_stmt (exitcond);
VEC_replace (tree, new_ivs, i, ivvar);
i++;
temp = temp->inner;
}
/* Rewrite uses of the old ivs so that they are now specified in terms of
the new ivs. */
for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
tree oldiv_def;
gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
gimple stmt;
if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
oldiv_def = PHI_RESULT (oldiv_stmt);
else
oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
gcc_assert (oldiv_def != NULL_TREE);
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
{
tree newiv;
gimple_seq stmts;
lambda_body_vector lbv, newlbv;
/* Compute the new expression for the induction
variable. */
depth = VEC_length (tree, new_ivs);
lbv = lambda_body_vector_new (depth, lambda_obstack);
LBV_COEFFICIENTS (lbv)[i] = 1;
newlbv = lambda_body_vector_compute_new (transform, lbv,
lambda_obstack);
stmts = NULL;
newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
new_ivs, &stmts);
if (stmts && gimple_code (stmt) != GIMPLE_PHI)
{
bsi = gsi_for_stmt (stmt);
gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
}
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
propagate_value (use_p, newiv);
if (stmts && gimple_code (stmt) == GIMPLE_PHI)
for (j = 0; j < gimple_phi_num_args (stmt); j++)
if (gimple_phi_arg_def (stmt, j) == newiv)
gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
update_stmt (stmt);
}
/* Remove the now unused induction variable. */
VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
}
VEC_free (tree, heap, new_ivs);
}
/* Return TRUE if this is not interesting statement from the perspective of
determining if we have a perfect loop nest. */
static bool
not_interesting_stmt (gimple stmt)
{
/* Note that COND_EXPR's aren't interesting because if they were exiting the
loop, we would have already failed the number of exits tests. */
if (gimple_code (stmt) == GIMPLE_LABEL
|| gimple_code (stmt) == GIMPLE_GOTO
|| gimple_code (stmt) == GIMPLE_COND)
return true;
return false;
}
/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
static bool
phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
{
unsigned i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
if (PHI_ARG_DEF (phi, i) == def)
return true;
return false;
}
/* Return TRUE if STMT is a use of PHI_RESULT. */
static bool
stmt_uses_phi_result (gimple stmt, tree phi_result)
{
tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
/* This is conservatively true, because we only want SIMPLE bumpers
of the form x +- constant for our pass. */
return (use == phi_result);
}
/* STMT is a bumper stmt for LOOP if the version it defines is used in the
in-loop-edge in a phi node, and the operand it uses is the result of that
phi node.
I.E. i_29 = i_3 + 1
i_3 = PHI (0, i_29); */
static bool
stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
{
gimple use;
tree def;
imm_use_iterator iter;
use_operand_p use_p;
def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
if (!def)
return false;
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
{
use = USE_STMT (use_p);
if (gimple_code (use) == GIMPLE_PHI)
{
if (phi_loop_edge_uses_def (loop, use, def))
if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
return true;
}
}
return false;
}
/* Return true if LOOP is a perfect loop nest.
Perfect loop nests are those loop nests where all code occurs in the
innermost loop body.
If S is a program statement, then
i.e.
DO I = 1, 20
S1
DO J = 1, 20
...
END DO
END DO
is not a perfect loop nest because of S1.
DO I = 1, 20
DO J = 1, 20
S1
...
END DO
END DO
is a perfect loop nest.
Since we don't have high level loops anymore, we basically have to walk our
statements and ignore those that are there because the loop needs them (IE
the induction variable increment, and jump back to the top of the loop). */
bool
perfect_nest_p (struct loop *loop)
{
basic_block *bbs;
size_t i;
gimple exit_cond;
/* Loops at depth 0 are perfect nests. */
if (!loop->inner)
return true;
bbs = get_loop_body (loop);
exit_cond = get_loop_exit_condition (loop);
for (i = 0; i < loop->num_nodes; i++)
{
if (bbs[i]->loop_father == loop)
{
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (gimple_code (stmt) == GIMPLE_COND
&& exit_cond != stmt)
goto non_perfectly_nested;
if (stmt == exit_cond
|| not_interesting_stmt (stmt)
|| stmt_is_bumper_for_loop (loop, stmt))
continue;
non_perfectly_nested:
free (bbs);
return false;
}
}
}
free (bbs);
return perfect_nest_p (loop->inner);
}
/* Replace the USES of X in STMT, or uses with the same step as X with Y.
YINIT is the initial value of Y, REPLACEMENTS is a hash table to
avoid creating duplicate temporaries and FIRSTBSI is statement
iterator where new temporaries should be inserted at the beginning
of body basic block. */
static void
replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
int xstep, tree y, tree yinit,
htab_t replacements,
gimple_stmt_iterator *firstbsi)
{
ssa_op_iter iter;
use_operand_p use_p;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
{
tree use = USE_FROM_PTR (use_p);
tree step = NULL_TREE;
tree scev, init, val, var;
gimple setstmt;
struct tree_map *h, in;
void **loc;
/* Replace uses of X with Y right away. */
if (use == x)
{
SET_USE (use_p, y);
continue;
}
scev = instantiate_parameters (loop,
analyze_scalar_evolution (loop, use));
if (scev == NULL || scev == chrec_dont_know)
continue;
step = evolution_part_in_loop_num (scev, loop->num);
if (step == NULL
|| step == chrec_dont_know
|| TREE_CODE (step) != INTEGER_CST
|| int_cst_value (step) != xstep)
continue;
/* Use REPLACEMENTS hash table to cache already created
temporaries. */
in.hash = htab_hash_pointer (use);
in.base.from = use;
h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
if (h != NULL)
{
SET_USE (use_p, h->to);
continue;
}
/* USE which has the same step as X should be replaced
with a temporary set to Y + YINIT - INIT. */
init = initial_condition_in_loop_num (scev, loop->num);
gcc_assert (init != NULL && init != chrec_dont_know);
if (TREE_TYPE (use) == TREE_TYPE (y))
{
val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
if (val == y)
{
/* If X has the same type as USE, the same step
and same initial value, it can be replaced by Y. */
SET_USE (use_p, y);
continue;
}
}
else
{
val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
val = fold_convert (TREE_TYPE (use), val);
val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
}
/* Create a temporary variable and insert it at the beginning
of the loop body basic block, right after the PHI node
which sets Y. */
var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
add_referenced_var (var);
val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
true, GSI_SAME_STMT);
setstmt = gimple_build_assign (var, val);
var = make_ssa_name (var, setstmt);
gimple_assign_set_lhs (setstmt, var);
gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
update_stmt (setstmt);
SET_USE (use_p, var);
h = GGC_NEW (struct tree_map);
h->hash = in.hash;
h->base.from = use;
h->to = var;
loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
gcc_assert ((*(struct tree_map **)loc) == NULL);
*(struct tree_map **) loc = h;
}
}
/* Return true if STMT is an exit PHI for LOOP */
static bool
exit_phi_for_loop_p (struct loop *loop, gimple stmt)
{
if (gimple_code (stmt) != GIMPLE_PHI
|| gimple_phi_num_args (stmt) != 1
|| gimple_bb (stmt) != single_exit (loop)->dest)
return false;
return true;
}
/* Return true if STMT can be put back into the loop INNER, by
copying it to the beginning of that loop and changing the uses. */
static bool
can_put_in_inner_loop (struct loop *inner, gimple stmt)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
gcc_assert (is_gimple_assign (stmt));
if (gimple_vuse (stmt)
|| !stmt_invariant_in_loop_p (inner, stmt))
return false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
{
if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
{
basic_block immbb = gimple_bb (USE_STMT (use_p));
if (!flow_bb_inside_loop_p (inner, immbb))
return false;
}
}
return true;
}
/* Return true if STMT can be put *after* the inner loop of LOOP. */
static bool
can_put_after_inner_loop (struct loop *loop, gimple stmt)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
if (gimple_vuse (stmt))
return false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
{
if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
{
basic_block immbb = gimple_bb (USE_STMT (use_p));
if (!dominated_by_p (CDI_DOMINATORS,
immbb,
loop->inner->header)
&& !can_put_in_inner_loop (loop->inner, stmt))
return false;
}
}
return true;
}
/* Return true when the induction variable IV is simple enough to be
re-synthesized. */
static bool
can_duplicate_iv (tree iv, struct loop *loop)
{
tree scev = instantiate_parameters
(loop, analyze_scalar_evolution (loop, iv));
if (!automatically_generated_chrec_p (scev))
{
tree step = evolution_part_in_loop_num (scev, loop->num);
if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
return true;
}
return false;
}
/* If this is a scalar operation that can be put back into the inner
loop, or after the inner loop, through copying, then do so. This
works on the theory that any amount of scalar code we have to
reduplicate into or after the loops is less expensive that the win
we get from rearranging the memory walk the loop is doing so that
it has better cache behavior. */
static bool
cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
{
use_operand_p use_a, use_b;
imm_use_iterator imm_iter;
ssa_op_iter op_iter, op_iter1;
tree op0 = gimple_assign_lhs (stmt);
/* The statement should not define a variable used in the inner
loop. */
if (TREE_CODE (op0) == SSA_NAME
&& !can_duplicate_iv (op0, loop))
FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
return true;
FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
{
gimple node;
tree op = USE_FROM_PTR (use_a);
/* The variables should not be used in both loops. */
if (!can_duplicate_iv (op, loop))
FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
return true;
/* The statement should not use the value of a scalar that was
modified in the loop. */
node = SSA_NAME_DEF_STMT (op);
if (gimple_code (node) == GIMPLE_PHI)
FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
{
tree arg = USE_FROM_PTR (use_b);
if (TREE_CODE (arg) == SSA_NAME)
{
gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
if (gimple_bb (arg_stmt)
&& (gimple_bb (arg_stmt)->loop_father == loop->inner))
return true;
}
}
}
return false;
}
/* Return true when BB contains statements that can harm the transform
to a perfect loop nest. */
static bool
cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
{
gimple_stmt_iterator bsi;
gimple exit_condition = get_loop_exit_condition (loop);
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (stmt == exit_condition
|| not_interesting_stmt (stmt)
|| stmt_is_bumper_for_loop (loop, stmt))
continue;
if (is_gimple_assign (stmt))
{
if (cannot_convert_modify_to_perfect_nest (stmt, loop))
return true;
if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
continue;
if (can_put_in_inner_loop (loop->inner, stmt)
|| can_put_after_inner_loop (loop, stmt))
continue;
}
/* If the bb of a statement we care about isn't dominated by the
header of the inner loop, then we can't handle this case
right now. This test ensures that the statement comes
completely *after* the inner loop. */
if (!dominated_by_p (CDI_DOMINATORS,
gimple_bb (stmt),
loop->inner->header))
return true;
}
return false;
}
/* Return TRUE if LOOP is an imperfect nest that we can convert to a
perfect one. At the moment, we only handle imperfect nests of
depth 2, where all of the statements occur after the inner loop. */
static bool
can_convert_to_perfect_nest (struct loop *loop)
{
basic_block *bbs;
size_t i;
gimple_stmt_iterator si;
/* Can't handle triply nested+ loops yet. */
if (!loop->inner || loop->inner->inner)
return false;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
if (bbs[i]->loop_father == loop
&& cannot_convert_bb_to_perfect_nest (bbs[i], loop))
goto fail;
/* We also need to make sure the loop exit only has simple copy phis in it,
otherwise we don't know how to transform it into a perfect nest. */
for (si = gsi_start_phis (single_exit (loop)->dest);
!gsi_end_p (si);
gsi_next (&si))
if (gimple_phi_num_args (gsi_stmt (si)) != 1)
goto fail;
free (bbs);
return true;
fail:
free (bbs);
return false;
}
DEF_VEC_I(source_location);
DEF_VEC_ALLOC_I(source_location,heap);
/* Transform the loop nest into a perfect nest, if possible.
LOOP is the loop nest to transform into a perfect nest
LBOUNDS are the lower bounds for the loops to transform
UBOUNDS are the upper bounds for the loops to transform
STEPS is the STEPS for the loops to transform.
LOOPIVS is the induction variables for the loops to transform.
Basically, for the case of
FOR (i = 0; i < 50; i++)
{
FOR (j =0; j < 50; j++)
{
<whatever>
}
<some code>
}
This function will transform it into a perfect loop nest by splitting the
outer loop into two loops, like so:
FOR (i = 0; i < 50; i++)
{
FOR (j = 0; j < 50; j++)
{
<whatever>
}
}
FOR (i = 0; i < 50; i ++)
{
<some code>
}
Return FALSE if we can't make this loop into a perfect nest. */
static bool
perfect_nestify (struct loop *loop,
VEC(tree,heap) *lbounds,
VEC(tree,heap) *ubounds,
VEC(int,heap) *steps,
VEC(tree,heap) *loopivs)
{
basic_block *bbs;
gimple exit_condition;
gimple cond_stmt;
basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
int i;
gimple_stmt_iterator bsi, firstbsi;
bool insert_after;
edge e;
struct loop *newloop;
gimple phi;
tree uboundvar;
gimple stmt;
tree oldivvar, ivvar, ivvarinced;
VEC(tree,heap) *phis = NULL;
VEC(source_location,heap) *locations = NULL;
htab_t replacements = NULL;
/* Create the new loop. */
olddest = single_exit (loop)->dest;
preheaderbb = split_edge (single_exit (loop));
headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
/* Push the exit phi nodes that we are moving. */
for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
{
phi = gsi_stmt (bsi);
VEC_reserve (tree, heap, phis, 2);
VEC_reserve (source_location, heap, locations, 1);
VEC_quick_push (tree, phis, PHI_RESULT (phi));
VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
VEC_quick_push (source_location, locations,
gimple_phi_arg_location (phi, 0));
}
e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
/* Remove the exit phis from the old basic block. */
for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
remove_phi_node (&bsi, false);
/* and add them back to the new basic block. */
while (VEC_length (tree, phis) != 0)
{
tree def;
tree phiname;
source_location locus;
def = VEC_pop (tree, phis);
phiname = VEC_pop (tree, phis);
locus = VEC_pop (source_location, locations);
phi = create_phi_node (phiname, preheaderbb);
add_phi_arg (phi, def, single_pred_edge (preheaderbb), locus);
}
flush_pending_stmts (e);
VEC_free (tree, heap, phis);
bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
make_edge (headerbb, bodybb, EDGE_FALLTHRU);
cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
NULL_TREE, NULL_TREE);
bsi = gsi_start_bb (bodybb);
gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
make_edge (latchbb, headerbb, EDGE_FALLTHRU);
/* Update the loop structures. */
newloop = duplicate_loop (loop, olddest->loop_father);
newloop->header = headerbb;
newloop->latch = latchbb;
add_bb_to_loop (latchbb, newloop);
add_bb_to_loop (bodybb, newloop);
add_bb_to_loop (headerbb, newloop);
set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
single_exit (loop)->src);
set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
set_immediate_dominator (CDI_DOMINATORS, olddest,
recompute_dominator (CDI_DOMINATORS, olddest));
/* Create the new iv. */
oldivvar = VEC_index (tree, loopivs, 0);
ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
add_referenced_var (ivvar);
standard_iv_increment_position (newloop, &bsi, &insert_after);
create_iv (VEC_index (tree, lbounds, 0),
build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
/* Create the new upper bound. This may be not just a variable, so we copy
it to one just in case. */
exit_condition = get_loop_exit_condition (newloop);
uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
"uboundvar");
add_referenced_var (uboundvar);
stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
uboundvar = make_ssa_name (uboundvar, stmt);
gimple_assign_set_lhs (stmt, uboundvar);
if (insert_after)
gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
else
gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
update_stmt (exit_condition);
replacements = htab_create_ggc (20, tree_map_hash,
tree_map_eq, NULL);
bbs = get_loop_body_in_dom_order (loop);
/* Now move the statements, and replace the induction variable in the moved
statements with the correct loop induction variable. */
oldivvar = VEC_index (tree, loopivs, 0);
firstbsi = gsi_start_bb (bodybb);
for (i = loop->num_nodes - 1; i >= 0 ; i--)
{
gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
if (bbs[i]->loop_father == loop)
{
/* If this is true, we are *before* the inner loop.
If this isn't true, we are *after* it.
The only time can_convert_to_perfect_nest returns true when we
have statements before the inner loop is if they can be moved
into the inner loop.
The only time can_convert_to_perfect_nest returns true when we
have statements after the inner loop is if they can be moved into
the new split loop. */
if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
{
gimple_stmt_iterator header_bsi
= gsi_after_labels (loop->inner->header);
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
{
gimple stmt = gsi_stmt (bsi);
if (stmt == exit_condition
|| not_interesting_stmt (stmt)
|| stmt_is_bumper_for_loop (loop, stmt))
{
gsi_next (&bsi);
continue;
}
gsi_move_before (&bsi, &header_bsi);
}
}
else
{
/* Note that the bsi only needs to be explicitly incremented
when we don't move something, since it is automatically
incremented when we do. */
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
{
gimple stmt = gsi_stmt (bsi);
if (stmt == exit_condition
|| not_interesting_stmt (stmt)
|| stmt_is_bumper_for_loop (loop, stmt))
{
gsi_next (&bsi);
continue;
}
replace_uses_equiv_to_x_with_y
(loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
VEC_index (tree, lbounds, 0), replacements, &firstbsi);
gsi_move_before (&bsi, &tobsi);
/* If the statement has any virtual operands, they may
need to be rewired because the original loop may
still reference them. */
if (gimple_vuse (stmt))
mark_sym_for_renaming (gimple_vop (cfun));
}
}
}
}
free (bbs);
htab_delete (replacements);
return perfect_nest_p (loop);
}
/* Return true if TRANS is a legal transformation matrix that respects
the dependence vectors in DISTS and DIRS. The conservative answer
is false.
"Wolfe proves that a unimodular transformation represented by the
matrix T is legal when applied to a loop nest with a set of
lexicographically non-negative distance vectors RDG if and only if
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
i.e.: if and only if it transforms the lexicographically positive
distance vectors to lexicographically positive vectors. Note that
a unimodular matrix must transform the zero vector (and only it) to
the zero vector." S.Muchnick. */
bool
lambda_transform_legal_p (lambda_trans_matrix trans,
int nb_loops,
VEC (ddr_p, heap) *dependence_relations)
{
unsigned int i, j;
lambda_vector distres;
struct data_dependence_relation *ddr;
gcc_assert (LTM_COLSIZE (trans) == nb_loops
&& LTM_ROWSIZE (trans) == nb_loops);
/* When there are no dependences, the transformation is correct. */
if (VEC_length (ddr_p, dependence_relations) == 0)
return true;
ddr = VEC_index (ddr_p, dependence_relations, 0);
if (ddr == NULL)
return true;
/* When there is an unknown relation in the dependence_relations, we
know that it is no worth looking at this loop nest: give up. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
distres = lambda_vector_new (nb_loops);
/* For each distance vector in the dependence graph. */
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
{
/* Don't care about relations for which we know that there is no
dependence, nor about read-read (aka. output-dependences):
these data accesses can happen in any order. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
continue;
/* Conservatively answer: "this transformation is not valid". */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
/* If the dependence could not be captured by a distance vector,
conservatively answer that the transform is not valid. */
if (DDR_NUM_DIST_VECTS (ddr) == 0)
return false;
/* Compute trans.dist_vect */
for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
{
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
DDR_DIST_VECT (ddr, j), distres);
if (!lambda_vector_lexico_pos (distres, nb_loops))
return false;
}
}
return true;
}
/* Collects parameters from affine function ACCESS_FUNCTION, and push
them in PARAMETERS. */
static void
lambda_collect_parameters_from_af (tree access_function,
struct pointer_set_t *param_set,
VEC (tree, heap) **parameters)
{
if (access_function == NULL)
return;
if (TREE_CODE (access_function) == SSA_NAME
&& pointer_set_contains (param_set, access_function) == 0)
{
pointer_set_insert (param_set, access_function);
VEC_safe_push (tree, heap, *parameters, access_function);
}
else
{
int i, num_operands = tree_operand_length (access_function);
for (i = 0; i < num_operands; i++)
lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
param_set, parameters);
}
}
/* Collects parameters from DATAREFS, and push them in PARAMETERS. */
void
lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
VEC (tree, heap) **parameters)
{
unsigned i, j;
struct pointer_set_t *parameter_set = pointer_set_create ();
data_reference_p data_reference;
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++)
for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
parameter_set, parameters);
pointer_set_destroy (parameter_set);
}
/* Translates BASE_EXPR to vector CY. AM is needed for inferring
indexing positions in the data access vector. CST is the analyzed
integer constant. */
static bool
av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
int cst)
{
bool result = true;
switch (TREE_CODE (base_expr))
{
case INTEGER_CST:
/* Constant part. */
cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
return true;
case SSA_NAME:
{
int param_index =
access_matrix_get_index_for_parameter (base_expr, am);
if (param_index >= 0)
{
cy[param_index] = cst + cy[param_index];
return true;
}
return false;
}
case PLUS_EXPR:
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
case MINUS_EXPR:
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
case MULT_EXPR:
if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
result = av_for_af_base (TREE_OPERAND (base_expr, 1),
cy, am, cst *
int_cst_value (TREE_OPERAND (base_expr, 0)));
else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
result = av_for_af_base (TREE_OPERAND (base_expr, 0),
cy, am, cst *
int_cst_value (TREE_OPERAND (base_expr, 1)));
else
result = false;
return result;
case NEGATE_EXPR:
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
default:
return false;
}
return result;
}
/* Translates ACCESS_FUN to vector CY. AM is needed for inferring
indexing positions in the data access vector. */
static bool
av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
{
switch (TREE_CODE (access_fun))
{
case POLYNOMIAL_CHREC:
{
tree left = CHREC_LEFT (access_fun);
tree right = CHREC_RIGHT (access_fun);
unsigned var;
if (TREE_CODE (right) != INTEGER_CST)
return false;
var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
cy[var] = int_cst_value (right);
if (TREE_CODE (left) == POLYNOMIAL_CHREC)
return av_for_af (left, cy, am);
else
return av_for_af_base (left, cy, am, 1);
}
case INTEGER_CST:
/* Constant part. */
return av_for_af_base (access_fun, cy, am, 1);
default:
return false;
}
}
/* Initializes the access matrix for DATA_REFERENCE. */
static bool
build_access_matrix (data_reference_p data_reference,
VEC (tree, heap) *parameters, VEC (loop_p, heap) *nest)
{
struct access_matrix *am = GGC_NEW (struct access_matrix);
unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
unsigned nivs = VEC_length (loop_p, nest);
unsigned lambda_nb_columns;
AM_LOOP_NEST (am) = nest;
AM_NB_INDUCTION_VARS (am) = nivs;
AM_PARAMETERS (am) = parameters;
lambda_nb_columns = AM_NB_COLUMNS (am);
AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
for (i = 0; i < ndim; i++)
{
lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
tree access_function = DR_ACCESS_FN (data_reference, i);
if (!av_for_af (access_function, access_vector, am))
return false;
VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
}
DR_ACCESS_MATRIX (data_reference) = am;
return true;
}
/* Returns false when one of the access matrices cannot be built. */
bool
lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
VEC (tree, heap) *parameters,
VEC (loop_p, heap) *nest)
{
data_reference_p dataref;
unsigned ix;
for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++)
if (!build_access_matrix (dataref, parameters, nest))
return false;
return true;
}
|