1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
|
/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
This file is consumed by genmatch which produces gimple-match.c
and generic-match.c from it.
Copyright (C) 2014-2015 Free Software Foundation, Inc.
Contributed by Richard Biener <rguenther@suse.de>
and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Generic tree predicates we inherit. */
(define_predicates
integer_onep integer_zerop integer_all_onesp integer_minus_onep
integer_each_onep integer_truep integer_nonzerop
real_zerop real_onep real_minus_onep
zerop
CONSTANT_CLASS_P
tree_expr_nonnegative_p
integer_valued_real_p
integer_pow2p
HONOR_NANS)
/* Operator lists. */
(define_operator_list tcc_comparison
lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
(define_operator_list inverted_tcc_comparison
ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
(define_operator_list inverted_tcc_comparison_with_nans
unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
(define_operator_list swapped_tcc_comparison
gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
(define_operator_list simple_comparison lt le eq ne ge gt)
(define_operator_list swapped_simple_comparison gt ge eq ne le lt)
#include "cfn-operators.pd"
/* Define operand lists for math rounding functions {,i,l,ll}FN,
where the versions prefixed with "i" return an int, those prefixed with
"l" return a long and those prefixed with "ll" return a long long.
Also define operand lists:
X<FN>F for all float functions, in the order i, l, ll
X<FN> for all double functions, in the same order
X<FN>L for all long double functions, in the same order. */
#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
(define_operator_list X##FN##F BUILT_IN_I##FN##F \
BUILT_IN_L##FN##F \
BUILT_IN_LL##FN##F) \
(define_operator_list X##FN BUILT_IN_I##FN \
BUILT_IN_L##FN \
BUILT_IN_LL##FN) \
(define_operator_list X##FN##L BUILT_IN_I##FN##L \
BUILT_IN_L##FN##L \
BUILT_IN_LL##FN##L)
DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
/* Simplifications of operations with one constant operand and
simplifications to constants or single values. */
(for op (plus pointer_plus minus bit_ior bit_xor)
(simplify
(op @0 integer_zerop)
(non_lvalue @0)))
/* 0 +p index -> (type)index */
(simplify
(pointer_plus integer_zerop @1)
(non_lvalue (convert @1)))
/* See if ARG1 is zero and X + ARG1 reduces to X.
Likewise if the operands are reversed. */
(simplify
(plus:c @0 real_zerop@1)
(if (fold_real_zero_addition_p (type, @1, 0))
(non_lvalue @0)))
/* See if ARG1 is zero and X - ARG1 reduces to X. */
(simplify
(minus @0 real_zerop@1)
(if (fold_real_zero_addition_p (type, @1, 1))
(non_lvalue @0)))
/* Simplify x - x.
This is unsafe for certain floats even in non-IEEE formats.
In IEEE, it is unsafe because it does wrong for NaNs.
Also note that operand_equal_p is always false if an operand
is volatile. */
(simplify
(minus @0 @0)
(if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
{ build_zero_cst (type); }))
(simplify
(mult @0 integer_zerop@1)
@1)
/* Maybe fold x * 0 to 0. The expressions aren't the same
when x is NaN, since x * 0 is also NaN. Nor are they the
same in modes with signed zeros, since multiplying a
negative value by 0 gives -0, not +0. */
(simplify
(mult @0 real_zerop@1)
(if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
@1))
/* In IEEE floating point, x*1 is not equivalent to x for snans.
Likewise for complex arithmetic with signed zeros. */
(simplify
(mult @0 real_onep)
(if (!HONOR_SNANS (type)
&& (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(non_lvalue @0)))
/* Transform x * -1.0 into -x. */
(simplify
(mult @0 real_minus_onep)
(if (!HONOR_SNANS (type)
&& (!HONOR_SIGNED_ZEROS (type)
|| !COMPLEX_FLOAT_TYPE_P (type)))
(negate @0)))
/* Make sure to preserve divisions by zero. This is the reason why
we don't simplify x / x to 1 or 0 / x to 0. */
(for op (mult trunc_div ceil_div floor_div round_div exact_div)
(simplify
(op @0 integer_onep)
(non_lvalue @0)))
/* X / -1 is -X. */
(for div (trunc_div ceil_div floor_div round_div exact_div)
(simplify
(div @0 integer_minus_onep@1)
(if (!TYPE_UNSIGNED (type))
(negate @0))))
/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
(simplify
(floor_div @0 @1)
(if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
&& TYPE_UNSIGNED (type))
(trunc_div @0 @1)))
/* Combine two successive divisions. Note that combining ceil_div
and floor_div is trickier and combining round_div even more so. */
(for div (trunc_div exact_div)
(simplify
(div (div @0 INTEGER_CST@1) INTEGER_CST@2)
(with {
bool overflow_p;
wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
}
(if (!overflow_p)
(div @0 { wide_int_to_tree (type, mul); })
(if (TYPE_UNSIGNED (type)
|| mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
{ build_zero_cst (type); })))))
/* Optimize A / A to 1.0 if we don't care about
NaNs or Infinities. */
(simplify
(rdiv @0 @0)
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
&& ! HONOR_INFINITIES (type))
{ build_one_cst (type); }))
/* Optimize -A / A to -1.0 if we don't care about
NaNs or Infinities. */
(simplify
(rdiv:c @0 (negate @0))
(if (FLOAT_TYPE_P (type)
&& ! HONOR_NANS (type)
&& ! HONOR_INFINITIES (type))
{ build_minus_one_cst (type); }))
/* In IEEE floating point, x/1 is not equivalent to x for snans. */
(simplify
(rdiv @0 real_onep)
(if (!HONOR_SNANS (type))
(non_lvalue @0)))
/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
(simplify
(rdiv @0 real_minus_onep)
(if (!HONOR_SNANS (type))
(negate @0)))
(if (flag_reciprocal_math)
/* Convert (A/B)/C to A/(B*C) */
(simplify
(rdiv (rdiv:s @0 @1) @2)
(rdiv @0 (mult @1 @2)))
/* Convert A/(B/C) to (A/B)*C */
(simplify
(rdiv @0 (rdiv:s @1 @2))
(mult (rdiv @0 @1) @2)))
/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
(for div (trunc_div ceil_div floor_div round_div exact_div)
(simplify
(div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (integer_pow2p (@2)
&& tree_int_cst_sgn (@2) > 0
&& wi::add (@2, @1) == 0
&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
(rshift (convert @0) { build_int_cst (integer_type_node,
wi::exact_log2 (@2)); }))))
/* If ARG1 is a constant, we can convert this to a multiply by the
reciprocal. This does not have the same rounding properties,
so only do this if -freciprocal-math. We can actually
always safely do it if ARG1 is a power of two, but it's hard to
tell if it is or not in a portable manner. */
(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
(simplify
(rdiv @0 cst@1)
(if (optimize)
(if (flag_reciprocal_math
&& !real_zerop (@1))
(with
{ tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
(if (tem)
(mult @0 { tem; } )))
(if (cst != COMPLEX_CST)
(with { tree inverse = exact_inverse (type, @1); }
(if (inverse)
(mult @0 { inverse; } ))))))))
/* Same applies to modulo operations, but fold is inconsistent here
and simplifies 0 % x to 0, only preserving literal 0 % 0. */
(for mod (ceil_mod floor_mod round_mod trunc_mod)
/* 0 % X is always zero. */
(simplify
(mod integer_zerop@0 @1)
/* But not for 0 % 0 so that we can get the proper warnings and errors. */
(if (!integer_zerop (@1))
@0))
/* X % 1 is always zero. */
(simplify
(mod @0 integer_onep)
{ build_zero_cst (type); })
/* X % -1 is zero. */
(simplify
(mod @0 integer_minus_onep@1)
(if (!TYPE_UNSIGNED (type))
{ build_zero_cst (type); }))
/* (X % Y) % Y is just X % Y. */
(simplify
(mod (mod@2 @0 @1) @1)
@2)
/* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
(simplify
(mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
(if (ANY_INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type)
&& wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
{ build_zero_cst (type); })))
/* X % -C is the same as X % C. */
(simplify
(trunc_mod @0 INTEGER_CST@1)
(if (TYPE_SIGN (type) == SIGNED
&& !TREE_OVERFLOW (@1)
&& wi::neg_p (@1)
&& !TYPE_OVERFLOW_TRAPS (type)
/* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
&& !sign_bit_p (@1, @1))
(trunc_mod @0 (negate @1))))
/* X % -Y is the same as X % Y. */
(simplify
(trunc_mod @0 (convert? (negate @1)))
(if (!TYPE_UNSIGNED (type)
&& !TYPE_OVERFLOW_TRAPS (type)
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(trunc_mod @0 (convert @1))))
/* X - (X / Y) * Y is the same as X % Y. */
(simplify
(minus (convert1? @2) (convert2? (mult:c (trunc_div @0 @1) @1)))
/* We cannot use matching captures here, since in the case of
constants we really want the type of @0, not @2. */
(if (operand_equal_p (@0, @2, 0)
&& (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)))
(convert (trunc_mod @0 @1))))
/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
i.e. "X % C" into "X & (C - 1)", if X and C are positive.
Also optimize A % (C << N) where C is a power of 2,
to A & ((C << N) - 1). */
(match (power_of_two_cand @1)
INTEGER_CST@1)
(match (power_of_two_cand @1)
(lshift INTEGER_CST@1 @2))
(for mod (trunc_mod floor_mod)
(simplify
(mod @0 (convert?@3 (power_of_two_cand@1 @2)))
(if ((TYPE_UNSIGNED (type)
|| tree_expr_nonnegative_p (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@3))
&& integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
(bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
(simplify
(trunc_div (mult @0 integer_pow2p@1) @1)
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
(bit_and @0 { wide_int_to_tree
(type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
false, TYPE_PRECISION (type))); })))
/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
(simplify
(mult (trunc_div @0 integer_pow2p@1) @1)
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
(bit_and @0 (negate @1))))
/* Simplify (t * 2) / 2) -> t. */
(for div (trunc_div ceil_div floor_div round_div exact_div)
(simplify
(div (mult @0 @1) @1)
(if (ANY_INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type))
@0)))
(for op (negate abs)
/* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
(for coss (COS COSH)
(simplify
(coss (op @0))
(coss @0)))
/* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
(for pows (POW)
(simplify
(pows (op @0) REAL_CST@1)
(with { HOST_WIDE_INT n; }
(if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
(pows @0 @1)))))
/* Strip negate and abs from both operands of hypot. */
(for hypots (HYPOT)
(simplify
(hypots (op @0) @1)
(hypots @0 @1))
(simplify
(hypots @0 (op @1))
(hypots @0 @1)))
/* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
(for copysigns (COPYSIGN)
(simplify
(copysigns (op @0) @1)
(copysigns @0 @1))))
/* abs(x)*abs(x) -> x*x. Should be valid for all types. */
(simplify
(mult (abs@1 @0) @1)
(mult @0 @0))
/* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
(for coss (COS COSH)
copysigns (COPYSIGN)
(simplify
(coss (copysigns @0 @1))
(coss @0)))
/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
(for pows (POW)
copysigns (COPYSIGN)
(simplify
(pows (copysigns @0 @1) REAL_CST@1)
(with { HOST_WIDE_INT n; }
(if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
(pows @0 @1)))))
(for hypots (HYPOT)
copysigns (COPYSIGN)
/* hypot(copysign(x, y), z) -> hypot(x, z). */
(simplify
(hypots (copysigns @0 @1) @2)
(hypots @0 @2))
/* hypot(x, copysign(y, z)) -> hypot(x, y). */
(simplify
(hypots @0 (copysigns @1 @2))
(hypots @0 @1)))
/* copysign(copysign(x, y), z) -> copysign(x, z). */
(for copysigns (COPYSIGN)
(simplify
(copysigns (copysigns @0 @1) @2)
(copysigns @0 @2)))
/* copysign(x,y)*copysign(x,y) -> x*x. */
(for copysigns (COPYSIGN)
(simplify
(mult (copysigns@2 @0 @1) @2)
(mult @0 @0)))
/* ccos(-x) -> ccos(x). Similarly for ccosh. */
(for ccoss (CCOS CCOSH)
(simplify
(ccoss (negate @0))
(ccoss @0)))
/* cabs(-x) and cos(conj(x)) -> cabs(x). */
(for ops (conj negate)
(for cabss (CABS)
(simplify
(cabss (ops @0))
(cabss @0))))
/* Fold (a * (1 << b)) into (a << b) */
(simplify
(mult:c @0 (convert? (lshift integer_onep@1 @2)))
(if (! FLOAT_TYPE_P (type)
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(lshift @0 @2)))
/* Fold (C1/X)*C2 into (C1*C2)/X. */
(simplify
(mult (rdiv:s REAL_CST@0 @1) REAL_CST@2)
(if (flag_associative_math)
(with
{ tree tem = const_binop (MULT_EXPR, type, @0, @2); }
(if (tem)
(rdiv { tem; } @1)))))
/* Convert C1/(X*C2) into (C1/C2)/X */
(simplify
(rdiv REAL_CST@0 (mult @1 REAL_CST@2))
(if (flag_reciprocal_math)
(with
{ tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
(if (tem)
(rdiv { tem; } @1)))))
/* Simplify ~X & X as zero. */
(simplify
(bit_and:c (convert? @0) (convert? (bit_not @0)))
{ build_zero_cst (type); })
/* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
(simplify
(minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
(minus (bit_xor @0 @1) @1))
(simplify
(minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
(if (wi::bit_not (@2) == @1)
(minus (bit_xor @0 @1) @1)))
/* Fold (A & B) - (A & ~B) into B - (A ^ B). */
(simplify
(minus (bit_and:s @0 @1) (bit_and:cs @0 (bit_not @1)))
(minus @1 (bit_xor @0 @1)))
/* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
(simplify
(bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
(bit_xor @0 @1))
(simplify
(bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
(if (wi::bit_not (@2) == @1)
(bit_xor @0 @1)))
/* X % Y is smaller than Y. */
(for cmp (lt ge)
(simplify
(cmp (trunc_mod @0 @1) @1)
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
{ constant_boolean_node (cmp == LT_EXPR, type); })))
(for cmp (gt le)
(simplify
(cmp @1 (trunc_mod @0 @1))
(if (TYPE_UNSIGNED (TREE_TYPE (@0)))
{ constant_boolean_node (cmp == GT_EXPR, type); })))
/* x | ~0 -> ~0 */
(simplify
(bit_ior @0 integer_all_onesp@1)
@1)
/* x & 0 -> 0 */
(simplify
(bit_and @0 integer_zerop@1)
@1)
/* ~x | x -> -1 */
/* ~x ^ x -> -1 */
/* ~x + x -> -1 */
(for op (bit_ior bit_xor plus)
(simplify
(op:c (convert? @0) (convert? (bit_not @0)))
(convert { build_all_ones_cst (TREE_TYPE (@0)); })))
/* x ^ x -> 0 */
(simplify
(bit_xor @0 @0)
{ build_zero_cst (type); })
/* Canonicalize X ^ ~0 to ~X. */
(simplify
(bit_xor @0 integer_all_onesp@1)
(bit_not @0))
/* x & ~0 -> x */
(simplify
(bit_and @0 integer_all_onesp)
(non_lvalue @0))
/* x & x -> x, x | x -> x */
(for bitop (bit_and bit_ior)
(simplify
(bitop @0 @0)
(non_lvalue @0)))
/* x + (x & 1) -> (x + 1) & ~1 */
(simplify
(plus:c @0 (bit_and:s @0 integer_onep@1))
(bit_and (plus @0 @1) (bit_not @1)))
/* x & ~(x & y) -> x & ~y */
/* x | ~(x | y) -> x | ~y */
(for bitop (bit_and bit_ior)
(simplify
(bitop:c @0 (bit_not (bitop:cs @0 @1)))
(bitop @0 (bit_not @1))))
/* (x | y) & ~x -> y & ~x */
/* (x & y) | ~x -> y | ~x */
(for bitop (bit_and bit_ior)
rbitop (bit_ior bit_and)
(simplify
(bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
(bitop @1 @2)))
/* (x & y) ^ (x | y) -> x ^ y */
(simplify
(bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
(bit_xor @0 @1))
/* (x ^ y) ^ (x | y) -> x & y */
(simplify
(bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
(bit_and @0 @1))
/* (x & y) + (x ^ y) -> x | y */
/* (x & y) | (x ^ y) -> x | y */
/* (x & y) ^ (x ^ y) -> x | y */
(for op (plus bit_ior bit_xor)
(simplify
(op:c (bit_and @0 @1) (bit_xor @0 @1))
(bit_ior @0 @1)))
/* (x & y) + (x | y) -> x + y */
(simplify
(plus:c (bit_and @0 @1) (bit_ior @0 @1))
(plus @0 @1))
/* (x + y) - (x | y) -> x & y */
(simplify
(minus (plus @0 @1) (bit_ior @0 @1))
(if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
&& !TYPE_SATURATING (type))
(bit_and @0 @1)))
/* (x + y) - (x & y) -> x | y */
(simplify
(minus (plus @0 @1) (bit_and @0 @1))
(if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
&& !TYPE_SATURATING (type))
(bit_ior @0 @1)))
/* (x | y) - (x ^ y) -> x & y */
(simplify
(minus (bit_ior @0 @1) (bit_xor @0 @1))
(bit_and @0 @1))
/* (x | y) - (x & y) -> x ^ y */
(simplify
(minus (bit_ior @0 @1) (bit_and @0 @1))
(bit_xor @0 @1))
/* (x | y) & ~(x & y) -> x ^ y */
(simplify
(bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
(bit_xor @0 @1))
/* (x | y) & (~x ^ y) -> x & y */
(simplify
(bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
(bit_and @0 @1))
/* ~x & ~y -> ~(x | y)
~x | ~y -> ~(x & y) */
(for op (bit_and bit_ior)
rop (bit_ior bit_and)
(simplify
(op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(bit_not (rop (convert @0) (convert @1))))))
/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
with a constant, and the two constants have no bits in common,
we should treat this as a BIT_IOR_EXPR since this may produce more
simplifications. */
(for op (bit_xor plus)
(simplify
(op (convert1? (bit_and@4 @0 INTEGER_CST@1))
(convert2? (bit_and@5 @2 INTEGER_CST@3)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@2))
&& wi::bit_and (@1, @3) == 0)
(bit_ior (convert @4) (convert @5)))))
/* (X | Y) ^ X -> Y & ~ X*/
(simplify
(bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_and @1 (bit_not @0)))))
/* Convert ~X ^ ~Y to X ^ Y. */
(simplify
(bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(bit_xor (convert @0) (convert @1))))
/* Convert ~X ^ C to X ^ ~C. */
(simplify
(bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(bit_xor (convert @0) (bit_not @1))))
/* Fold (X & Y) ^ Y as ~X & Y. */
(simplify
(bit_xor:c (bit_and:c @0 @1) @1)
(bit_and (bit_not @0) @1))
/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
operands are another bit-wise operation with a common input. If so,
distribute the bit operations to save an operation and possibly two if
constants are involved. For example, convert
(A | B) & (A | C) into A | (B & C)
Further simplification will occur if B and C are constants. */
(for op (bit_and bit_ior)
rop (bit_ior bit_and)
(simplify
(op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(rop (convert @0) (op (convert @1) (convert @2))))))
(simplify
(abs (abs@1 @0))
@1)
(simplify
(abs (negate @0))
(abs @0))
(simplify
(abs tree_expr_nonnegative_p@0)
@0)
/* A few cases of fold-const.c negate_expr_p predicate. */
(match negate_expr_p
INTEGER_CST
(if ((INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_WRAPS (type))
|| (!TYPE_OVERFLOW_SANITIZED (type)
&& may_negate_without_overflow_p (t)))))
(match negate_expr_p
FIXED_CST)
(match negate_expr_p
(negate @0)
(if (!TYPE_OVERFLOW_SANITIZED (type))))
(match negate_expr_p
REAL_CST
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
ways. */
(match negate_expr_p
VECTOR_CST
(if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
/* (-A) * (-B) -> A * B */
(simplify
(mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(mult (convert @0) (convert (negate @1)))))
/* -(A + B) -> (-B) - A. */
(simplify
(negate (plus:c @0 negate_expr_p@1))
(if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
&& !HONOR_SIGNED_ZEROS (element_mode (type)))
(minus (negate @1) @0)))
/* A - B -> A + (-B) if B is easily negatable. */
(simplify
(minus @0 negate_expr_p@1)
(if (!FIXED_POINT_TYPE_P (type))
(plus @0 (negate @1))))
/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
when profitable.
For bitwise binary operations apply operand conversions to the
binary operation result instead of to the operands. This allows
to combine successive conversions and bitwise binary operations.
We combine the above two cases by using a conditional convert. */
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bitop (convert @0) (convert? @1))
(if (((TREE_CODE (@1) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& int_fits_type_p (@1, TREE_TYPE (@0)))
|| types_match (@0, @1))
/* ??? This transform conflicts with fold-const.c doing
Convert (T)(x & c) into (T)x & (T)c, if c is an integer
constants (if x has signed type, the sign bit cannot be set
in c). This folds extension into the BIT_AND_EXPR.
Restrict it to GIMPLE to avoid endless recursions. */
&& (bitop != BIT_AND_EXPR || GIMPLE)
&& (/* That's a good idea if the conversion widens the operand, thus
after hoisting the conversion the operation will be narrower. */
TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
/* It's also a good idea if the conversion is to a non-integer
mode. */
|| GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
/* Or if the precision of TO is not the same as the precision
of its mode. */
|| TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
(convert (bitop @0 (convert @1))))))
(for bitop (bit_and bit_ior)
rbitop (bit_ior bit_and)
/* (x | y) & x -> x */
/* (x & y) | x -> x */
(simplify
(bitop:c (rbitop:c @0 @1) @0)
@0)
/* (~x | y) & x -> x & y */
/* (~x & y) | x -> x | y */
(simplify
(bitop:c (rbitop:c (bit_not @0) @1) @0)
(bitop @0 @1)))
/* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bitop (bit_and:c @0 @1) (bit_and @2 @1))
(bit_and (bitop @0 @2) @1)))
/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
(simplify
(bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
(bit_ior (bit_and @0 @2) (bit_and @1 @2)))
/* Combine successive equal operations with constants. */
(for bitop (bit_and bit_ior bit_xor)
(simplify
(bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
(bitop @0 (bitop @1 @2))))
/* Try simple folding for X op !X, and X op X with the help
of the truth_valued_p and logical_inverted_value predicates. */
(match truth_valued_p
@0
(if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
(match truth_valued_p
(op @0 @1)))
(match truth_valued_p
(truth_not @0))
(match (logical_inverted_value @0)
(truth_not @0))
(match (logical_inverted_value @0)
(bit_not truth_valued_p@0))
(match (logical_inverted_value @0)
(eq @0 integer_zerop))
(match (logical_inverted_value @0)
(ne truth_valued_p@0 integer_truep))
(match (logical_inverted_value @0)
(bit_xor truth_valued_p@0 integer_truep))
/* X & !X -> 0. */
(simplify
(bit_and:c @0 (logical_inverted_value @0))
{ build_zero_cst (type); })
/* X | !X and X ^ !X -> 1, , if X is truth-valued. */
(for op (bit_ior bit_xor)
(simplify
(op:c truth_valued_p@0 (logical_inverted_value @0))
{ constant_boolean_node (true, type); }))
/* X ==/!= !X is false/true. */
(for op (eq ne)
(simplify
(op:c truth_valued_p@0 (logical_inverted_value @0))
{ constant_boolean_node (op == NE_EXPR ? true : false, type); }))
/* If arg1 and arg2 are booleans (or any single bit type)
then try to simplify:
(~X & Y) -> X < Y
(X & ~Y) -> Y < X
(~X | Y) -> X <= Y
(X | ~Y) -> Y <= X
But only do this if our result feeds into a comparison as
this transformation is not always a win, particularly on
targets with and-not instructions.
-> simplify_bitwise_binary_boolean */
(simplify
(ne (bit_and:c (bit_not @0) @1) integer_zerop)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_PRECISION (TREE_TYPE (@1)) == 1)
(lt @0 @1)))
(simplify
(ne (bit_ior:c (bit_not @0) @1) integer_zerop)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
&& TYPE_PRECISION (TREE_TYPE (@1)) == 1)
(le @0 @1)))
/* ~~x -> x */
(simplify
(bit_not (bit_not @0))
@0)
/* Convert ~ (-A) to A - 1. */
(simplify
(bit_not (convert? (negate @0)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
/* Convert ~ (A - 1) or ~ (A + -1) to -A. */
(simplify
(bit_not (convert? (minus @0 integer_each_onep)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (negate @0))))
(simplify
(bit_not (convert? (plus @0 integer_all_onesp)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (negate @0))))
/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
(simplify
(bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_xor @0 (bit_not @1)))))
(simplify
(bit_not (convert? (bit_xor:c (bit_not @0) @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(convert (bit_xor @0 @1))))
/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
(simplify
(bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
(bit_xor (bit_and (bit_xor @0 @1) @2) @0))
/* Fold A - (A & B) into ~B & A. */
(simplify
(minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1)))
(convert (bit_and (bit_not @1) @0))))
/* ((X inner_op C0) outer_op C1)
With X being a tree where value_range has reasoned certain bits to always be
zero throughout its computed value range,
inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
where zero_mask has 1's for all bits that are sure to be 0 in
and 0's otherwise.
if (inner_op == '^') C0 &= ~C1;
if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
*/
(for inner_op (bit_ior bit_xor)
outer_op (bit_xor bit_ior)
(simplify
(outer_op
(inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
(with
{
bool fail = false;
wide_int zero_mask_not;
wide_int C0;
wide_int cst_emit;
if (TREE_CODE (@2) == SSA_NAME)
zero_mask_not = get_nonzero_bits (@2);
else
fail = true;
if (inner_op == BIT_XOR_EXPR)
{
C0 = wi::bit_and_not (@0, @1);
cst_emit = wi::bit_or (C0, @1);
}
else
{
C0 = @0;
cst_emit = wi::bit_xor (@0, @1);
}
}
(if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
(outer_op @2 { wide_int_to_tree (type, cst_emit); })
(if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
(inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
(simplify
(pointer_plus (pointer_plus:s @0 @1) @3)
(pointer_plus @0 (plus @1 @3)))
/* Pattern match
tem1 = (long) ptr1;
tem2 = (long) ptr2;
tem3 = tem2 - tem1;
tem4 = (unsigned long) tem3;
tem5 = ptr1 + tem4;
and produce
tem5 = ptr2; */
(simplify
(pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
/* Conditionally look through a sign-changing conversion. */
(if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
&& ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
|| (GENERIC && type == TREE_TYPE (@1))))
@1))
/* Pattern match
tem = (sizetype) ptr;
tem = tem & algn;
tem = -tem;
... = ptr p+ tem;
and produce the simpler and easier to analyze with respect to alignment
... = ptr & ~algn; */
(simplify
(pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
(with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
(bit_and @0 { algn; })))
/* Try folding difference of addresses. */
(simplify
(minus (convert ADDR_EXPR@0) (convert @1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { HOST_WIDE_INT diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
(simplify
(minus (convert @0) (convert ADDR_EXPR@1))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { HOST_WIDE_INT diff; }
(if (ptr_difference_const (@0, @1, &diff))
{ build_int_cst_type (type, diff); }))))
/* If arg0 is derived from the address of an object or function, we may
be able to fold this expression using the object or function's
alignment. */
(simplify
(bit_and (convert? @0) INTEGER_CST@1)
(if (POINTER_TYPE_P (TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with
{
unsigned int align;
unsigned HOST_WIDE_INT bitpos;
get_pointer_alignment_1 (@0, &align, &bitpos);
}
(if (wi::ltu_p (@1, align / BITS_PER_UNIT))
{ wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
/* We can't reassociate at all for saturating types. */
(if (!TYPE_SATURATING (type))
/* Contract negates. */
/* A + (-B) -> A - B */
(simplify
(plus:c (convert1? @0) (convert2? (negate @1)))
/* Apply STRIP_NOPS on @0 and the negate. */
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1))
&& !TYPE_OVERFLOW_SANITIZED (type))
(minus (convert @0) (convert @1))))
/* A - (-B) -> A + B */
(simplify
(minus (convert1? @0) (convert2? (negate @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@0))
&& tree_nop_conversion_p (type, TREE_TYPE (@1))
&& !TYPE_OVERFLOW_SANITIZED (type))
(plus (convert @0) (convert @1))))
/* -(-A) -> A */
(simplify
(negate (convert? (negate @1)))
(if (tree_nop_conversion_p (type, TREE_TYPE (@1))
&& !TYPE_OVERFLOW_SANITIZED (type))
(convert @1)))
/* We can't reassociate floating-point unless -fassociative-math
or fixed-point plus or minus because of saturation to +-Inf. */
(if ((!FLOAT_TYPE_P (type) || flag_associative_math)
&& !FIXED_POINT_TYPE_P (type))
/* Match patterns that allow contracting a plus-minus pair
irrespective of overflow issues. */
/* (A +- B) - A -> +- B */
/* (A +- B) -+ B -> A */
/* A - (A +- B) -> -+ B */
/* A +- (B -+ A) -> +- B */
(simplify
(minus (plus:c @0 @1) @0)
@1)
(simplify
(minus (minus @0 @1) @0)
(negate @1))
(simplify
(plus:c (minus @0 @1) @1)
@0)
(simplify
(minus @0 (plus:c @0 @1))
(negate @1))
(simplify
(minus @0 (minus @0 @1))
@1)
/* (A +- CST) +- CST -> A + CST */
(for outer_op (plus minus)
(for inner_op (plus minus)
(simplify
(outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
/* If the constant operation overflows we cannot do the transform
as we would introduce undefined overflow, for example
with (a - 1) + INT_MIN. */
(with { tree cst = fold_binary (outer_op == inner_op
? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
(if (cst && !TREE_OVERFLOW (cst))
(inner_op @0 { cst; } ))))))
/* (CST - A) +- CST -> CST - A */
(for outer_op (plus minus)
(simplify
(outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
(with { tree cst = fold_binary (outer_op, type, @1, @2); }
(if (cst && !TREE_OVERFLOW (cst))
(minus { cst; } @0)))))
/* ~A + A -> -1 */
(simplify
(plus:c (bit_not @0) @0)
(if (!TYPE_OVERFLOW_TRAPS (type))
{ build_all_ones_cst (type); }))
/* ~A + 1 -> -A */
(simplify
(plus (convert? (bit_not @0)) integer_each_onep)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(negate (convert @0))))
/* -A - 1 -> ~A */
(simplify
(minus (convert? (negate @0)) integer_each_onep)
(if (!TYPE_OVERFLOW_TRAPS (type)
&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
(bit_not (convert @0))))
/* -1 - A -> ~A */
(simplify
(minus integer_all_onesp @0)
(bit_not @0))
/* (T)(P + A) - (T)P -> (T) A */
(for add (plus pointer_plus)
(simplify
(minus (convert (add @0 @1))
(convert @0))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0))
(convert @1))))
/* (T)P - (T)(P + A) -> -(T) A */
(for add (plus pointer_plus)
(simplify
(minus (convert @0)
(convert (add @0 @1)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0))
(negate (convert @1)))))
/* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
(for add (plus pointer_plus)
(simplify
(minus (convert (add @0 @1))
(convert (add @0 @2)))
(if (element_precision (type) <= element_precision (TREE_TYPE (@1))
/* For integer types, if A has a smaller type
than T the result depends on the possible
overflow in P + A.
E.g. T=size_t, A=(unsigned)429497295, P>0.
However, if an overflow in P + A would cause
undefined behavior, we can assume that there
is no overflow. */
|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
/* For pointer types, if the conversion of A to the
final type requires a sign- or zero-extension,
then we have to punt - it is not defined which
one is correct. */
|| (POINTER_TYPE_P (TREE_TYPE (@0))
&& TREE_CODE (@1) == INTEGER_CST
&& tree_int_cst_sign_bit (@1) == 0
&& TREE_CODE (@2) == INTEGER_CST
&& tree_int_cst_sign_bit (@2) == 0))
(minus (convert @1) (convert @2)))))))
/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
(for minmax (min max FMIN FMAX)
(simplify
(minmax @0 @0)
@0))
/* min(max(x,y),y) -> y. */
(simplify
(min:c (max:c @0 @1) @1)
@1)
/* max(min(x,y),y) -> y. */
(simplify
(max:c (min:c @0 @1) @1)
@1)
(simplify
(min @0 @1)
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MIN_VALUE (type)
&& operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
@1))
(simplify
(max @0 @1)
(if (INTEGRAL_TYPE_P (type)
&& TYPE_MAX_VALUE (type)
&& operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
@1))
(for minmax (FMIN FMAX)
/* If either argument is NaN, return the other one. Avoid the
transformation if we get (and honor) a signalling NaN. */
(simplify
(minmax:c @0 REAL_CST@1)
(if (real_isnan (TREE_REAL_CST_PTR (@1))
&& (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
@0)))
/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
functions to return the numeric arg if the other one is NaN.
MIN and MAX don't honor that, so only transform if -ffinite-math-only
is set. C99 doesn't require -0.0 to be handled, so we don't have to
worry about it either. */
(if (flag_finite_math_only)
(simplify
(FMIN @0 @1)
(min @0 @1))
(simplify
(FMAX @0 @1)
(max @0 @1)))
/* Simplifications of shift and rotates. */
(for rotate (lrotate rrotate)
(simplify
(rotate integer_all_onesp@0 @1)
@0))
/* Optimize -1 >> x for arithmetic right shifts. */
(simplify
(rshift integer_all_onesp@0 @1)
(if (!TYPE_UNSIGNED (type)
&& tree_expr_nonnegative_p (@1))
@0))
/* Optimize (x >> c) << c into x & (-1<<c). */
(simplify
(lshift (rshift @0 INTEGER_CST@1) @1)
(if (wi::ltu_p (@1, element_precision (type)))
(bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
types. */
(simplify
(rshift (lshift @0 INTEGER_CST@1) @1)
(if (TYPE_UNSIGNED (type)
&& (wi::ltu_p (@1, element_precision (type))))
(bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
(for shiftrotate (lrotate rrotate lshift rshift)
(simplify
(shiftrotate @0 integer_zerop)
(non_lvalue @0))
(simplify
(shiftrotate integer_zerop@0 @1)
@0)
/* Prefer vector1 << scalar to vector1 << vector2
if vector2 is uniform. */
(for vec (VECTOR_CST CONSTRUCTOR)
(simplify
(shiftrotate @0 vec@1)
(with { tree tem = uniform_vector_p (@1); }
(if (tem)
(shiftrotate @0 { tem; }))))))
/* Rewrite an LROTATE_EXPR by a constant into an
RROTATE_EXPR by a new constant. */
(simplify
(lrotate @0 INTEGER_CST@1)
(rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
build_int_cst (TREE_TYPE (@1),
element_precision (type)), @1); }))
/* Turn (a OP c1) OP c2 into a OP (c1+c2). */
(for op (lrotate rrotate rshift lshift)
(simplify
(op (op @0 INTEGER_CST@1) INTEGER_CST@2)
(with { unsigned int prec = element_precision (type); }
(if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
&& wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
&& wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
&& wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
(with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
/* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
being well defined. */
(if (low >= prec)
(if (op == LROTATE_EXPR || op == RROTATE_EXPR)
(op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
(if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
{ build_zero_cst (type); }
(op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
(op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
/* ((1 << A) & 1) != 0 -> A == 0
((1 << A) & 1) == 0 -> A != 0 */
(for cmp (ne eq)
icmp (eq ne)
(simplify
(cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
(icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
(CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
if CST2 != 0. */
(for cmp (ne eq)
(simplify
(cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
(with { int cand = wi::ctz (@2) - wi::ctz (@0); }
(if (cand < 0
|| (!integer_zerop (@2)
&& wi::ne_p (wi::lshift (@0, cand), @2)))
{ constant_boolean_node (cmp == NE_EXPR, type); }
(if (!integer_zerop (@2)
&& wi::eq_p (wi::lshift (@0, cand), @2))
(cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
(X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
if the new mask might be further optimized. */
(for shift (lshift rshift)
(simplify
(bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
&& tree_fits_uhwi_p (@1)
&& tree_to_uhwi (@1) > 0
&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
(with
{
unsigned int shiftc = tree_to_uhwi (@1);
unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
unsigned HOST_WIDE_INT newmask, zerobits = 0;
tree shift_type = TREE_TYPE (@3);
unsigned int prec;
if (shift == LSHIFT_EXPR)
zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
else if (shift == RSHIFT_EXPR
&& (TYPE_PRECISION (shift_type)
== GET_MODE_PRECISION (TYPE_MODE (shift_type))))
{
prec = TYPE_PRECISION (TREE_TYPE (@3));
tree arg00 = @0;
/* See if more bits can be proven as zero because of
zero extension. */
if (@3 != @0
&& TYPE_UNSIGNED (TREE_TYPE (@0)))
{
tree inner_type = TREE_TYPE (@0);
if ((TYPE_PRECISION (inner_type)
== GET_MODE_PRECISION (TYPE_MODE (inner_type)))
&& TYPE_PRECISION (inner_type) < prec)
{
prec = TYPE_PRECISION (inner_type);
/* See if we can shorten the right shift. */
if (shiftc < prec)
shift_type = inner_type;
/* Otherwise X >> C1 is all zeros, so we'll optimize
it into (X, 0) later on by making sure zerobits
is all ones. */
}
}
zerobits = ~(unsigned HOST_WIDE_INT) 0;
if (shiftc < prec)
{
zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
zerobits <<= prec - shiftc;
}
/* For arithmetic shift if sign bit could be set, zerobits
can contain actually sign bits, so no transformation is
possible, unless MASK masks them all away. In that
case the shift needs to be converted into logical shift. */
if (!TYPE_UNSIGNED (TREE_TYPE (@3))
&& prec == TYPE_PRECISION (TREE_TYPE (@3)))
{
if ((mask & zerobits) == 0)
shift_type = unsigned_type_for (TREE_TYPE (@3));
else
zerobits = 0;
}
}
}
/* ((X << 16) & 0xff00) is (X, 0). */
(if ((mask & zerobits) == mask)
{ build_int_cst (type, 0); }
(with { newmask = mask | zerobits; }
(if (newmask != mask && (newmask & (newmask + 1)) == 0)
(with
{
/* Only do the transformation if NEWMASK is some integer
mode's mask. */
for (prec = BITS_PER_UNIT;
prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
break;
}
(if (prec < HOST_BITS_PER_WIDE_INT
|| newmask == ~(unsigned HOST_WIDE_INT) 0)
(with
{ tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
(if (!tree_int_cst_equal (newmaskt, @2))
(if (shift_type != TREE_TYPE (@3))
(bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
(bit_and @4 { newmaskt; })))))))))))))
/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
(X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
(for shift (lshift rshift)
(for bit_op (bit_and bit_xor bit_ior)
(simplify
(shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
(if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
(with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
(bit_op (shift (convert @0) @1) { mask; }))))))
/* Simplifications of conversions. */
/* Basic strip-useless-type-conversions / strip_nops. */
(for cvt (convert view_convert float fix_trunc)
(simplify
(cvt @0)
(if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
|| (GENERIC && type == TREE_TYPE (@0)))
@0)))
/* Contract view-conversions. */
(simplify
(view_convert (view_convert @0))
(view_convert @0))
/* For integral conversions with the same precision or pointer
conversions use a NOP_EXPR instead. */
(simplify
(view_convert @0)
(if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
&& (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
(convert @0)))
/* Strip inner integral conversions that do not change precision or size. */
(simplify
(view_convert (convert@0 @1))
(if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
&& (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
&& (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
&& (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
(view_convert @1)))
/* Re-association barriers around constants and other re-association
barriers can be removed. */
(simplify
(paren CONSTANT_CLASS_P@0)
@0)
(simplify
(paren (paren@1 @0))
@1)
/* Handle cases of two conversions in a row. */
(for ocvt (convert float fix_trunc)
(for icvt (convert float)
(simplify
(ocvt (icvt@1 @0))
(with
{
tree inside_type = TREE_TYPE (@0);
tree inter_type = TREE_TYPE (@1);
int inside_int = INTEGRAL_TYPE_P (inside_type);
int inside_ptr = POINTER_TYPE_P (inside_type);
int inside_float = FLOAT_TYPE_P (inside_type);
int inside_vec = VECTOR_TYPE_P (inside_type);
unsigned int inside_prec = TYPE_PRECISION (inside_type);
int inside_unsignedp = TYPE_UNSIGNED (inside_type);
int inter_int = INTEGRAL_TYPE_P (inter_type);
int inter_ptr = POINTER_TYPE_P (inter_type);
int inter_float = FLOAT_TYPE_P (inter_type);
int inter_vec = VECTOR_TYPE_P (inter_type);
unsigned int inter_prec = TYPE_PRECISION (inter_type);
int inter_unsignedp = TYPE_UNSIGNED (inter_type);
int final_int = INTEGRAL_TYPE_P (type);
int final_ptr = POINTER_TYPE_P (type);
int final_float = FLOAT_TYPE_P (type);
int final_vec = VECTOR_TYPE_P (type);
unsigned int final_prec = TYPE_PRECISION (type);
int final_unsignedp = TYPE_UNSIGNED (type);
}
(switch
/* In addition to the cases of two conversions in a row
handled below, if we are converting something to its own
type via an object of identical or wider precision, neither
conversion is needed. */
(if (((GIMPLE && useless_type_conversion_p (type, inside_type))
|| (GENERIC
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
&& (((inter_int || inter_ptr) && final_int)
|| (inter_float && final_float))
&& inter_prec >= final_prec)
(ocvt @0))
/* Likewise, if the intermediate and initial types are either both
float or both integer, we don't need the middle conversion if the
former is wider than the latter and doesn't change the signedness
(for integers). Avoid this if the final type is a pointer since
then we sometimes need the middle conversion. Likewise if the
final type has a precision not equal to the size of its mode. */
(if (((inter_int && inside_int) || (inter_float && inside_float))
&& (final_int || final_float)
&& inter_prec >= inside_prec
&& (inter_float || inter_unsignedp == inside_unsignedp)
&& ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
&& TYPE_MODE (type) == TYPE_MODE (inter_type)))
(ocvt @0))
/* If we have a sign-extension of a zero-extended value, we can
replace that by a single zero-extension. Likewise if the
final conversion does not change precision we can drop the
intermediate conversion. */
(if (inside_int && inter_int && final_int
&& ((inside_prec < inter_prec && inter_prec < final_prec
&& inside_unsignedp && !inter_unsignedp)
|| final_prec == inter_prec))
(ocvt @0))
/* Two conversions in a row are not needed unless:
- some conversion is floating-point (overstrict for now), or
- some conversion is a vector (overstrict for now), or
- the intermediate type is narrower than both initial and
final, or
- the intermediate type and innermost type differ in signedness,
and the outermost type is wider than the intermediate, or
- the initial type is a pointer type and the precisions of the
intermediate and final types differ, or
- the final type is a pointer type and the precisions of the
initial and intermediate types differ. */
(if (! inside_float && ! inter_float && ! final_float
&& ! inside_vec && ! inter_vec && ! final_vec
&& (inter_prec >= inside_prec || inter_prec >= final_prec)
&& ! (inside_int && inter_int
&& inter_unsignedp != inside_unsignedp
&& inter_prec < final_prec)
&& ((inter_unsignedp && inter_prec > inside_prec)
== (final_unsignedp && final_prec > inter_prec))
&& ! (inside_ptr && inter_prec != final_prec)
&& ! (final_ptr && inside_prec != inter_prec)
&& ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
&& TYPE_MODE (type) == TYPE_MODE (inter_type)))
(ocvt @0))
/* A truncation to an unsigned type (a zero-extension) should be
canonicalized as bitwise and of a mask. */
(if (final_int && inter_int && inside_int
&& final_prec == inside_prec
&& final_prec > inter_prec
&& inter_unsignedp)
(convert (bit_and @0 { wide_int_to_tree
(inside_type,
wi::mask (inter_prec, false,
TYPE_PRECISION (inside_type))); })))
/* If we are converting an integer to a floating-point that can
represent it exactly and back to an integer, we can skip the
floating-point conversion. */
(if (GIMPLE /* PR66211 */
&& inside_int && inter_float && final_int &&
(unsigned) significand_size (TYPE_MODE (inter_type))
>= inside_prec - !inside_unsignedp)
(convert @0)))))))
/* If we have a narrowing conversion to an integral type that is fed by a
BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
masks off bits outside the final type (and nothing else). */
(simplify
(convert (bit_and @0 INTEGER_CST@1))
(if (INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
&& operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
TYPE_PRECISION (type)), 0))
(convert @0)))
/* (X /[ex] A) * A -> X. */
(simplify
(mult (convert? (exact_div @0 @1)) @1)
/* Look through a sign-changing conversion. */
(convert @0))
/* Canonicalization of binary operations. */
/* Convert X + -C into X - C. */
(simplify
(plus @0 REAL_CST@1)
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
(with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
(if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
(minus @0 { tem; })))))
/* Convert x+x into x*2.0. */
(simplify
(plus @0 @0)
(if (SCALAR_FLOAT_TYPE_P (type))
(mult @0 { build_real (type, dconst2); })))
(simplify
(minus integer_zerop @1)
(negate @1))
/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
ARG0 is zero and X + ARG0 reduces to X, since that would mean
(-ARG1 + ARG0) reduces to -ARG1. */
(simplify
(minus real_zerop@0 @1)
(if (fold_real_zero_addition_p (type, @0, 0))
(negate @1)))
/* Transform x * -1 into -x. */
(simplify
(mult @0 integer_minus_onep)
(negate @0))
/* True if we can easily extract the real and imaginary parts of a complex
number. */
(match compositional_complex
(convert? (complex @0 @1)))
/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
(simplify
(complex (realpart @0) (imagpart @0))
@0)
(simplify
(realpart (complex @0 @1))
@0)
(simplify
(imagpart (complex @0 @1))
@1)
/* Sometimes we only care about half of a complex expression. */
(simplify
(realpart (convert?:s (conj:s @0)))
(convert (realpart @0)))
(simplify
(imagpart (convert?:s (conj:s @0)))
(convert (negate (imagpart @0))))
(for part (realpart imagpart)
(for op (plus minus)
(simplify
(part (convert?:s@2 (op:s @0 @1)))
(convert (op (part @0) (part @1))))))
(simplify
(realpart (convert?:s (CEXPI:s @0)))
(convert (COS @0)))
(simplify
(imagpart (convert?:s (CEXPI:s @0)))
(convert (SIN @0)))
/* conj(conj(x)) -> x */
(simplify
(conj (convert? (conj @0)))
(if (tree_nop_conversion_p (TREE_TYPE (@0), type))
(convert @0)))
/* conj({x,y}) -> {x,-y} */
(simplify
(conj (convert?:s (complex:s @0 @1)))
(with { tree itype = TREE_TYPE (type); }
(complex (convert:itype @0) (negate (convert:itype @1)))))
/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
(simplify
(bswap (bswap @0))
@0)
(simplify
(bswap (bit_not (bswap @0)))
(bit_not @0))
(for bitop (bit_xor bit_ior bit_and)
(simplify
(bswap (bitop:c (bswap @0) @1))
(bitop @0 (bswap @1)))))
/* Combine COND_EXPRs and VEC_COND_EXPRs. */
/* Simplify constant conditions.
Only optimize constant conditions when the selected branch
has the same type as the COND_EXPR. This avoids optimizing
away "c ? x : throw", where the throw has a void type.
Note that we cannot throw away the fold-const.c variant nor
this one as we depend on doing this transform before possibly
A ? B : B -> B triggers and the fold-const.c one can optimize
0 ? A : B to B even if A has side-effects. Something
genmatch cannot handle. */
(simplify
(cond INTEGER_CST@0 @1 @2)
(if (integer_zerop (@0))
(if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
@2)
(if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
@1)))
(simplify
(vec_cond VECTOR_CST@0 @1 @2)
(if (integer_all_onesp (@0))
@1
(if (integer_zerop (@0))
@2)))
(for cnd (cond vec_cond)
/* A ? B : (A ? X : C) -> A ? B : C. */
(simplify
(cnd @0 (cnd @0 @1 @2) @3)
(cnd @0 @1 @3))
(simplify
(cnd @0 @1 (cnd @0 @2 @3))
(cnd @0 @1 @3))
/* A ? B : B -> B. */
(simplify
(cnd @0 @1 @1)
@1)
/* !A ? B : C -> A ? C : B. */
(simplify
(cnd (logical_inverted_value truth_valued_p@0) @1 @2)
(cnd @0 @2 @1)))
/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
return all-1 or all-0 results. */
/* ??? We could instead convert all instances of the vec_cond to negate,
but that isn't necessarily a win on its own. */
(simplify
(plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
(if (VECTOR_TYPE_P (type)
&& TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
&& (TYPE_MODE (TREE_TYPE (type))
== TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
(minus @3 (view_convert @0))))
/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
(simplify
(minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
(if (VECTOR_TYPE_P (type)
&& TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
&& (TYPE_MODE (TREE_TYPE (type))
== TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
(plus @3 (view_convert @0))))
/* Simplifications of comparisons. */
/* See if we can reduce the magnitude of a constant involved in a
comparison by changing the comparison code. This is a canonicalization
formerly done by maybe_canonicalize_comparison_1. */
(for cmp (le gt)
acmp (lt ge)
(simplify
(cmp @0 INTEGER_CST@1)
(if (tree_int_cst_sgn (@1) == -1)
(acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
(for cmp (ge lt)
acmp (gt le)
(simplify
(cmp @0 INTEGER_CST@1)
(if (tree_int_cst_sgn (@1) == 1)
(acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
/* We can simplify a logical negation of a comparison to the
inverted comparison. As we cannot compute an expression
operator using invert_tree_comparison we have to simulate
that with expression code iteration. */
(for cmp (tcc_comparison)
icmp (inverted_tcc_comparison)
ncmp (inverted_tcc_comparison_with_nans)
/* Ideally we'd like to combine the following two patterns
and handle some more cases by using
(logical_inverted_value (cmp @0 @1))
here but for that genmatch would need to "inline" that.
For now implement what forward_propagate_comparison did. */
(simplify
(bit_not (cmp @0 @1))
(if (VECTOR_TYPE_P (type)
|| (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
/* Comparison inversion may be impossible for trapping math,
invert_tree_comparison will tell us. But we can't use
a computed operator in the replacement tree thus we have
to play the trick below. */
(with { enum tree_code ic = invert_tree_comparison
(cmp, HONOR_NANS (@0)); }
(if (ic == icmp)
(icmp @0 @1)
(if (ic == ncmp)
(ncmp @0 @1))))))
(simplify
(bit_xor (cmp @0 @1) integer_truep)
(with { enum tree_code ic = invert_tree_comparison
(cmp, HONOR_NANS (@0)); }
(if (ic == icmp)
(icmp @0 @1)
(if (ic == ncmp)
(ncmp @0 @1))))))
/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
??? The transformation is valid for the other operators if overflow
is undefined for the type, but performing it here badly interacts
with the transformation in fold_cond_expr_with_comparison which
attempts to synthetize ABS_EXPR. */
(for cmp (eq ne)
(simplify
(cmp (minus@2 @0 @1) integer_zerop)
(if (single_use (@2))
(cmp @0 @1))))
/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
signed arithmetic case. That form is created by the compiler
often enough for folding it to be of value. One example is in
computing loop trip counts after Operator Strength Reduction. */
(for cmp (simple_comparison)
scmp (swapped_simple_comparison)
(simplify
(cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
/* Handle unfolded multiplication by zero. */
(if (integer_zerop (@1))
(cmp @1 @2)
(if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
/* If @1 is negative we swap the sense of the comparison. */
(if (tree_int_cst_sgn (@1) < 0)
(scmp @0 @2)
(cmp @0 @2))))))
/* Simplify comparison of something with itself. For IEEE
floating-point, we can only do some of these simplifications. */
(simplify
(eq @0 @0)
(if (! FLOAT_TYPE_P (TREE_TYPE (@0))
|| ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
{ constant_boolean_node (true, type); }))
(for cmp (ge le)
(simplify
(cmp @0 @0)
(eq @0 @0)))
(for cmp (ne gt lt)
(simplify
(cmp @0 @0)
(if (cmp != NE_EXPR
|| ! FLOAT_TYPE_P (TREE_TYPE (@0))
|| ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
{ constant_boolean_node (false, type); })))
(for cmp (unle unge uneq)
(simplify
(cmp @0 @0)
{ constant_boolean_node (true, type); }))
(simplify
(ltgt @0 @0)
(if (!flag_trapping_math)
{ constant_boolean_node (false, type); }))
/* Fold ~X op ~Y as Y op X. */
(for cmp (simple_comparison)
(simplify
(cmp (bit_not @0) (bit_not @1))
(cmp @1 @0)))
/* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
(for cmp (simple_comparison)
scmp (swapped_simple_comparison)
(simplify
(cmp (bit_not @0) CONSTANT_CLASS_P@1)
(if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
(scmp @0 (bit_not @1)))))
(for cmp (simple_comparison)
/* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
(simplify
(cmp (convert@2 @0) (convert? @1))
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
&& (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
== DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
&& (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
== DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
(with
{
tree type1 = TREE_TYPE (@1);
if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
{
REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
&& exact_real_truncate (TYPE_MODE (float_type_node), &orig))
type1 = float_type_node;
if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
&& exact_real_truncate (TYPE_MODE (double_type_node), &orig))
type1 = double_type_node;
}
tree newtype
= (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
? TREE_TYPE (@0) : type1);
}
(if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
(cmp (convert:newtype @0) (convert:newtype @1))))))
(simplify
(cmp @0 REAL_CST@1)
/* IEEE doesn't distinguish +0 and -0 in comparisons. */
(switch
/* a CMP (-0) -> a CMP 0 */
(if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
(cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
/* x != NaN is always true, other ops are always false. */
(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
&& ! HONOR_SNANS (@1))
{ constant_boolean_node (cmp == NE_EXPR, type); })
/* Fold comparisons against infinity. */
(if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
(with
{
REAL_VALUE_TYPE max;
enum tree_code code = cmp;
bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
if (neg)
code = swap_tree_comparison (code);
}
(switch
/* x > +Inf is always false, if with ignore sNANs. */
(if (code == GT_EXPR
&& ! HONOR_SNANS (@0))
{ constant_boolean_node (false, type); })
(if (code == LE_EXPR)
/* x <= +Inf is always true, if we don't case about NaNs. */
(if (! HONOR_NANS (@0))
{ constant_boolean_node (true, type); }
/* x <= +Inf is the same as x == x, i.e. !isnan(x). */
(eq @0 @0)))
/* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
(if (code == EQ_EXPR || code == GE_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (neg)
(lt @0 { build_real (TREE_TYPE (@0), max); })
(gt @0 { build_real (TREE_TYPE (@0), max); }))))
/* x < +Inf is always equal to x <= DBL_MAX. */
(if (code == LT_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (neg)
(ge @0 { build_real (TREE_TYPE (@0), max); })
(le @0 { build_real (TREE_TYPE (@0), max); }))))
/* x != +Inf is always equal to !(x > DBL_MAX). */
(if (code == NE_EXPR)
(with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
(if (! HONOR_NANS (@0))
(if (neg)
(ge @0 { build_real (TREE_TYPE (@0), max); })
(le @0 { build_real (TREE_TYPE (@0), max); }))
(if (neg)
(bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
{ build_one_cst (type); })
(bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
{ build_one_cst (type); }))))))))))
/* If this is a comparison of a real constant with a PLUS_EXPR
or a MINUS_EXPR of a real constant, we can convert it into a
comparison with a revised real constant as long as no overflow
occurs when unsafe_math_optimizations are enabled. */
(if (flag_unsafe_math_optimizations)
(for op (plus minus)
(simplify
(cmp (op @0 REAL_CST@1) REAL_CST@2)
(with
{
tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
TREE_TYPE (@1), @2, @1);
}
(if (tem && !TREE_OVERFLOW (tem))
(cmp @0 { tem; }))))))
/* Likewise, we can simplify a comparison of a real constant with
a MINUS_EXPR whose first operand is also a real constant, i.e.
(c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
floating-point types only if -fassociative-math is set. */
(if (flag_associative_math)
(simplify
(cmp (minus REAL_CST@0 @1) REAL_CST@2)
(with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
(if (tem && !TREE_OVERFLOW (tem))
(cmp { tem; } @1)))))
/* Fold comparisons against built-in math functions. */
(if (flag_unsafe_math_optimizations
&& ! flag_errno_math)
(for sq (SQRT)
(simplify
(cmp (sq @0) REAL_CST@1)
(switch
(if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
(switch
/* sqrt(x) < y is always false, if y is negative. */
(if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
{ constant_boolean_node (false, type); })
/* sqrt(x) > y is always true, if y is negative and we
don't care about NaNs, i.e. negative values of x. */
(if (cmp == NE_EXPR || !HONOR_NANS (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) > y is the same as x >= 0, if y is negative. */
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
(if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
(switch
/* sqrt(x) < 0 is always false. */
(if (cmp == LT_EXPR)
{ constant_boolean_node (false, type); })
/* sqrt(x) >= 0 is always true if we don't care about NaNs. */
(if (cmp == GE_EXPR && !HONOR_NANS (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) <= 0 -> x == 0. */
(if (cmp == LE_EXPR)
(eq @0 @1))
/* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
== or !=. In the last case:
(sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
if x is negative or NaN. Due to -funsafe-math-optimizations,
the results for other x follow from natural arithmetic. */
(cmp @0 @1)))
(if (cmp == GT_EXPR || cmp == GE_EXPR)
(with
{
REAL_VALUE_TYPE c2;
real_arithmetic (&c2, MULT_EXPR,
&TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
}
(if (REAL_VALUE_ISINF (c2))
/* sqrt(x) > y is x == +Inf, when y is very large. */
(if (HONOR_INFINITIES (@0))
(eq @0 { build_real (TREE_TYPE (@0), c2); })
{ constant_boolean_node (false, type); })
/* sqrt(x) > c is the same as x > c*c. */
(cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
(if (cmp == LT_EXPR || cmp == LE_EXPR)
(with
{
REAL_VALUE_TYPE c2;
real_arithmetic (&c2, MULT_EXPR,
&TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
}
(if (REAL_VALUE_ISINF (c2))
(switch
/* sqrt(x) < y is always true, when y is a very large
value and we don't care about NaNs or Infinities. */
(if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
{ constant_boolean_node (true, type); })
/* sqrt(x) < y is x != +Inf when y is very large and we
don't care about NaNs. */
(if (! HONOR_NANS (@0))
(ne @0 { build_real (TREE_TYPE (@0), c2); }))
/* sqrt(x) < y is x >= 0 when y is very large and we
don't care about Infinities. */
(if (! HONOR_INFINITIES (@0))
(ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
/* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
(if (GENERIC)
(truth_andif
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })
(ne @0 { build_real (TREE_TYPE (@0), c2); }))))
/* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
(if (! HONOR_NANS (@0))
(cmp @0 { build_real (TREE_TYPE (@0), c2); })
/* sqrt(x) < c is the same as x >= 0 && x < c*c. */
(if (GENERIC)
(truth_andif
(ge @0 { build_real (TREE_TYPE (@0), dconst0); })
(cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
/* Unordered tests if either argument is a NaN. */
(simplify
(bit_ior (unordered @0 @0) (unordered @1 @1))
(if (types_match (@0, @1))
(unordered @0 @1)))
(simplify
(bit_and (ordered @0 @0) (ordered @1 @1))
(if (types_match (@0, @1))
(ordered @0 @1)))
(simplify
(bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
@2)
(simplify
(bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
@2)
/* -A CMP -B -> B CMP A. */
(for cmp (tcc_comparison)
scmp (swapped_tcc_comparison)
(simplify
(cmp (negate @0) (negate @1))
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
|| (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
(scmp @0 @1)))
(simplify
(cmp (negate @0) CONSTANT_CLASS_P@1)
(if (FLOAT_TYPE_P (TREE_TYPE (@0))
|| (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
(with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
(if (tem && !TREE_OVERFLOW (tem))
(scmp @0 { tem; }))))))
/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
(for op (eq ne)
(simplify
(op (abs @0) zerop@1)
(op @0 @1)))
/* From fold_sign_changed_comparison and fold_widened_comparison. */
(for cmp (simple_comparison)
(simplify
(cmp (convert@0 @00) (convert?@1 @10))
(if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
/* Disable this optimization if we're casting a function pointer
type on targets that require function pointer canonicalization. */
&& !(targetm.have_canonicalize_funcptr_for_compare ()
&& TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
&& single_use (@0))
(if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
&& (TREE_CODE (@10) == INTEGER_CST
|| (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
|| cmp == NE_EXPR
|| cmp == EQ_EXPR)
&& (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
/* ??? The special-casing of INTEGER_CST conversion was in the original
code and here to avoid a spurious overflow flag on the resulting
constant which fold_convert produces. */
(if (TREE_CODE (@1) == INTEGER_CST)
(cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
TREE_OVERFLOW (@1)); })
(cmp @00 (convert @1)))
(if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
/* If possible, express the comparison in the shorter mode. */
(if ((cmp == EQ_EXPR || cmp == NE_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
&& (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
|| ((TYPE_PRECISION (TREE_TYPE (@00))
>= TYPE_PRECISION (TREE_TYPE (@10)))
&& (TYPE_UNSIGNED (TREE_TYPE (@00))
== TYPE_UNSIGNED (TREE_TYPE (@10))))
|| (TREE_CODE (@10) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@00))
&& int_fits_type_p (@10, TREE_TYPE (@00)))))
(cmp @00 (convert @10))
(if (TREE_CODE (@10) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (@00))
&& !int_fits_type_p (@10, TREE_TYPE (@00)))
(with
{
tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
}
(if (above || below)
(if (cmp == EQ_EXPR || cmp == NE_EXPR)
{ constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
(if (cmp == LT_EXPR || cmp == LE_EXPR)
{ constant_boolean_node (above ? true : false, type); }
(if (cmp == GT_EXPR || cmp == GE_EXPR)
{ constant_boolean_node (above ? false : true, type); }))))))))))))
(for cmp (eq ne)
/* A local variable can never be pointed to by
the default SSA name of an incoming parameter.
SSA names are canonicalized to 2nd place. */
(simplify
(cmp addr@0 SSA_NAME@1)
(if (SSA_NAME_IS_DEFAULT_DEF (@1)
&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
(with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
(if (TREE_CODE (base) == VAR_DECL
&& auto_var_in_fn_p (base, current_function_decl))
(if (cmp == NE_EXPR)
{ constant_boolean_node (true, type); }
{ constant_boolean_node (false, type); }))))))
/* Equality compare simplifications from fold_binary */
(for cmp (eq ne)
/* If we have (A | C) == D where C & ~D != 0, convert this into 0.
Similarly for NE_EXPR. */
(simplify
(cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
&& wi::bit_and_not (@1, @2) != 0)
{ constant_boolean_node (cmp == NE_EXPR, type); }))
/* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
(simplify
(cmp (bit_xor @0 @1) integer_zerop)
(cmp @0 @1))
/* (X ^ Y) == Y becomes X == 0.
Likewise (X ^ Y) == X becomes Y == 0. */
(simplify
(cmp:c (bit_xor:c @0 @1) @0)
(cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
/* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
(simplify
(cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
(if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
(cmp @0 (bit_xor @1 (convert @2)))))
(simplify
(cmp (convert? addr@0) integer_zerop)
(if (tree_single_nonzero_warnv_p (@0, NULL))
{ constant_boolean_node (cmp == NE_EXPR, type); })))
/* If we have (A & C) == C where C is a power of 2, convert this into
(A & C) != 0. Similarly for NE_EXPR. */
(for cmp (eq ne)
icmp (ne eq)
(simplify
(cmp (bit_and@2 @0 integer_pow2p@1) @1)
(icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
/* If we have (A & C) != 0 where C is the sign bit of A, convert
this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
(for cmp (eq ne)
ncmp (ge lt)
(simplify
(cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& (TYPE_PRECISION (TREE_TYPE (@0))
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
&& element_precision (@2) >= element_precision (@0)
&& wi::only_sign_bit_p (@1, element_precision (@0)))
(with { tree stype = signed_type_for (TREE_TYPE (@0)); }
(ncmp (convert:stype @0) { build_zero_cst (stype); })))))
/* When the addresses are not directly of decls compare base and offset.
This implements some remaining parts of fold_comparison address
comparisons but still no complete part of it. Still it is good
enough to make fold_stmt not regress when not dispatching to fold_binary. */
(for cmp (simple_comparison)
(simplify
(cmp (convert1?@2 addr@0) (convert2? addr@1))
(with
{
HOST_WIDE_INT off0, off1;
tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
if (base0 && TREE_CODE (base0) == MEM_REF)
{
off0 += mem_ref_offset (base0).to_short_addr ();
base0 = TREE_OPERAND (base0, 0);
}
if (base1 && TREE_CODE (base1) == MEM_REF)
{
off1 += mem_ref_offset (base1).to_short_addr ();
base1 = TREE_OPERAND (base1, 0);
}
}
(if (base0 && base1)
(with
{
int equal = 2;
if (decl_in_symtab_p (base0)
&& decl_in_symtab_p (base1))
equal = symtab_node::get_create (base0)
->equal_address_to (symtab_node::get_create (base1));
else if ((DECL_P (base0)
|| TREE_CODE (base0) == SSA_NAME
|| TREE_CODE (base0) == STRING_CST)
&& (DECL_P (base1)
|| TREE_CODE (base1) == SSA_NAME
|| TREE_CODE (base1) == STRING_CST))
equal = (base0 == base1);
}
(if (equal == 1
&& (cmp == EQ_EXPR || cmp == NE_EXPR
/* If the offsets are equal we can ignore overflow. */
|| off0 == off1
|| POINTER_TYPE_OVERFLOW_UNDEFINED
/* Or if we compare using pointers to decls or strings. */
|| (POINTER_TYPE_P (TREE_TYPE (@2))
&& (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
(switch
(if (cmp == EQ_EXPR)
{ constant_boolean_node (off0 == off1, type); })
(if (cmp == NE_EXPR)
{ constant_boolean_node (off0 != off1, type); })
(if (cmp == LT_EXPR)
{ constant_boolean_node (off0 < off1, type); })
(if (cmp == LE_EXPR)
{ constant_boolean_node (off0 <= off1, type); })
(if (cmp == GE_EXPR)
{ constant_boolean_node (off0 >= off1, type); })
(if (cmp == GT_EXPR)
{ constant_boolean_node (off0 > off1, type); }))
(if (equal == 0
&& DECL_P (base0) && DECL_P (base1)
/* If we compare this as integers require equal offset. */
&& (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
|| off0 == off1))
(switch
(if (cmp == EQ_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == NE_EXPR)
{ constant_boolean_node (true, type); })))))))))
/* Non-equality compare simplifications from fold_binary */
(for cmp (lt gt le ge)
/* Comparisons with the highest or lowest possible integer of
the specified precision will have known values. */
(simplify
(cmp (convert?@2 @0) INTEGER_CST@1)
(if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
&& tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
(with
{
tree arg1_type = TREE_TYPE (@1);
unsigned int prec = TYPE_PRECISION (arg1_type);
wide_int max = wi::max_value (arg1_type);
wide_int signed_max = wi::max_value (prec, SIGNED);
wide_int min = wi::min_value (arg1_type);
}
(switch
(if (wi::eq_p (@1, max))
(switch
(if (cmp == GT_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == GE_EXPR)
(eq @2 @1))
(if (cmp == LE_EXPR)
{ constant_boolean_node (true, type); })
(if (cmp == LT_EXPR)
(ne @2 @1))))
(if (wi::eq_p (@1, min))
(switch
(if (cmp == LT_EXPR)
{ constant_boolean_node (false, type); })
(if (cmp == LE_EXPR)
(eq @2 @1))
(if (cmp == GE_EXPR)
{ constant_boolean_node (true, type); })
(if (cmp == GT_EXPR)
(ne @2 @1))))
(if (wi::eq_p (@1, max - 1))
(switch
(if (cmp == GT_EXPR)
(eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
(if (cmp == LE_EXPR)
(ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
(if (wi::eq_p (@1, min + 1))
(switch
(if (cmp == GE_EXPR)
(ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
(if (cmp == LT_EXPR)
(eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
(if (wi::eq_p (@1, signed_max)
&& TYPE_UNSIGNED (arg1_type)
/* We will flip the signedness of the comparison operator
associated with the mode of @1, so the sign bit is
specified by this mode. Check that @1 is the signed
max associated with this sign bit. */
&& prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
/* signed_type does not work on pointer types. */
&& INTEGRAL_TYPE_P (arg1_type))
/* The following case also applies to X < signed_max+1
and X >= signed_max+1 because previous transformations. */
(if (cmp == LE_EXPR || cmp == GT_EXPR)
(with { tree st = signed_type_for (arg1_type); }
(if (cmp == LE_EXPR)
(ge (convert:st @0) { build_zero_cst (st); })
(lt (convert:st @0) { build_zero_cst (st); }))))))))))
(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
/* If the second operand is NaN, the result is constant. */
(simplify
(cmp @0 REAL_CST@1)
(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
&& (cmp != LTGT_EXPR || ! flag_trapping_math))
{ constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
? false : true, type); })))
/* bool_var != 0 becomes bool_var. */
(simplify
(ne @0 integer_zerop)
(if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
&& types_match (type, TREE_TYPE (@0)))
(non_lvalue @0)))
/* bool_var == 1 becomes bool_var. */
(simplify
(eq @0 integer_onep)
(if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
&& types_match (type, TREE_TYPE (@0)))
(non_lvalue @0)))
/* Do not handle
bool_var == 0 becomes !bool_var or
bool_var != 1 becomes !bool_var
here because that only is good in assignment context as long
as we require a tcc_comparison in GIMPLE_CONDs where we'd
replace if (x == 0) with tem = ~x; if (tem != 0) which is
clearly less optimal and which we'll transform again in forwprop. */
/* Simplification of math builtins. These rules must all be optimizations
as well as IL simplifications. If there is a possibility that the new
form could be a pessimization, the rule should go in the canonicalization
section that follows this one.
Rules can generally go in this section if they satisfy one of
the following:
- the rule describes an identity
- the rule replaces calls with something as simple as addition or
multiplication
- the rule contains unary calls only and simplifies the surrounding
arithmetic. (The idea here is to exclude non-unary calls in which
one operand is constant and in which the call is known to be cheap
when the operand has that value.) */
(if (flag_unsafe_math_optimizations)
/* Simplify sqrt(x) * sqrt(x) -> x. */
(simplify
(mult (SQRT@1 @0) @1)
(if (!HONOR_SNANS (type))
@0))
/* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
(for root (SQRT CBRT)
(simplify
(mult (root:s @0) (root:s @1))
(root (mult @0 @1))))
/* Simplify expN(x) * expN(y) -> expN(x+y). */
(for exps (EXP EXP2 EXP10 POW10)
(simplify
(mult (exps:s @0) (exps:s @1))
(exps (plus @0 @1))))
/* Simplify a/root(b/c) into a*root(c/b). */
(for root (SQRT CBRT)
(simplify
(rdiv @0 (root:s (rdiv:s @1 @2)))
(mult @0 (root (rdiv @2 @1)))))
/* Simplify x/expN(y) into x*expN(-y). */
(for exps (EXP EXP2 EXP10 POW10)
(simplify
(rdiv @0 (exps:s @1))
(mult @0 (exps (negate @1)))))
(for logs (LOG LOG2 LOG10 LOG10)
exps (EXP EXP2 EXP10 POW10)
/* logN(expN(x)) -> x. */
(simplify
(logs (exps @0))
@0)
/* expN(logN(x)) -> x. */
(simplify
(exps (logs @0))
@0))
/* Optimize logN(func()) for various exponential functions. We
want to determine the value "x" and the power "exponent" in
order to transform logN(x**exponent) into exponent*logN(x). */
(for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
(simplify
(logs (exps @0))
(if (SCALAR_FLOAT_TYPE_P (type))
(with {
tree x;
switch (exps)
{
CASE_CFN_EXP:
/* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
x = build_real_truncate (type, dconst_e ());
break;
CASE_CFN_EXP2:
/* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
x = build_real (type, dconst2);
break;
CASE_CFN_EXP10:
CASE_CFN_POW10:
/* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
{
REAL_VALUE_TYPE dconst10;
real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
x = build_real (type, dconst10);
}
break;
default:
gcc_unreachable ();
}
}
(mult (logs { x; }) @0)))))
(for logs (LOG LOG
LOG2 LOG2
LOG10 LOG10)
exps (SQRT CBRT)
(simplify
(logs (exps @0))
(if (SCALAR_FLOAT_TYPE_P (type))
(with {
tree x;
switch (exps)
{
CASE_CFN_SQRT:
/* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
x = build_real (type, dconsthalf);
break;
CASE_CFN_CBRT:
/* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
x = build_real_truncate (type, dconst_third ());
break;
default:
gcc_unreachable ();
}
}
(mult { x; } (logs @0))))))
/* logN(pow(x,exponent)) -> exponent*logN(x). */
(for logs (LOG LOG2 LOG10)
pows (POW)
(simplify
(logs (pows @0 @1))
(mult @1 (logs @0))))
(for sqrts (SQRT)
cbrts (CBRT)
pows (POW)
exps (EXP EXP2 EXP10 POW10)
/* sqrt(expN(x)) -> expN(x*0.5). */
(simplify
(sqrts (exps @0))
(exps (mult @0 { build_real (type, dconsthalf); })))
/* cbrt(expN(x)) -> expN(x/3). */
(simplify
(cbrts (exps @0))
(exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
/* pow(expN(x), y) -> expN(x*y). */
(simplify
(pows (exps @0) @1)
(exps (mult @0 @1))))
/* tan(atan(x)) -> x. */
(for tans (TAN)
atans (ATAN)
(simplify
(tans (atans @0))
@0)))
/* cabs(x+0i) or cabs(0+xi) -> abs(x). */
(simplify
(CABS (complex:c @0 real_zerop@1))
(abs @0))
/* trunc(trunc(x)) -> trunc(x), etc. */
(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
(simplify
(fns (fns @0))
(fns @0)))
/* f(x) -> x if x is integer valued and f does nothing for such values. */
(for fns (TRUNC FLOOR CEIL ROUND NEARBYINT)
(simplify
(fns integer_valued_real_p@0)
@0))
/* Same for rint. We have to check flag_errno_math because
integer_valued_real_p accepts +Inf, -Inf and NaNs as integers. */
(if (!flag_errno_math)
(simplify
(RINT integer_valued_real_p@0)
@0))
/* hypot(x,0) and hypot(0,x) -> abs(x). */
(simplify
(HYPOT:c @0 real_zerop@1)
(abs @0))
/* pow(1,x) -> 1. */
(simplify
(POW real_onep@0 @1)
@0)
(simplify
/* copysign(x,x) -> x. */
(COPYSIGN @0 @0)
@0)
(simplify
/* copysign(x,y) -> fabs(x) if y is nonnegative. */
(COPYSIGN @0 tree_expr_nonnegative_p@1)
(abs @0))
(for scale (LDEXP SCALBN SCALBLN)
/* ldexp(0, x) -> 0. */
(simplify
(scale real_zerop@0 @1)
@0)
/* ldexp(x, 0) -> x. */
(simplify
(scale @0 integer_zerop@1)
@0)
/* ldexp(x, y) -> x if x is +-Inf or NaN. */
(simplify
(scale REAL_CST@0 @1)
(if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
@0)))
/* Canonicalization of sequences of math builtins. These rules represent
IL simplifications but are not necessarily optimizations.
The sincos pass is responsible for picking "optimal" implementations
of math builtins, which may be more complicated and can sometimes go
the other way, e.g. converting pow into a sequence of sqrts.
We only want to do these canonicalizations before the pass has run. */
(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
/* Simplify tan(x) * cos(x) -> sin(x). */
(simplify
(mult:c (TAN:s @0) (COS:s @0))
(SIN @0))
/* Simplify x * pow(x,c) -> pow(x,c+1). */
(simplify
(mult @0 (POW:s @0 REAL_CST@1))
(if (!TREE_OVERFLOW (@1))
(POW @0 (plus @1 { build_one_cst (type); }))))
/* Simplify sin(x) / cos(x) -> tan(x). */
(simplify
(rdiv (SIN:s @0) (COS:s @0))
(TAN @0))
/* Simplify cos(x) / sin(x) -> 1 / tan(x). */
(simplify
(rdiv (COS:s @0) (SIN:s @0))
(rdiv { build_one_cst (type); } (TAN @0)))
/* Simplify sin(x) / tan(x) -> cos(x). */
(simplify
(rdiv (SIN:s @0) (TAN:s @0))
(if (! HONOR_NANS (@0)
&& ! HONOR_INFINITIES (@0))
(COS @0)))
/* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
(simplify
(rdiv (TAN:s @0) (SIN:s @0))
(if (! HONOR_NANS (@0)
&& ! HONOR_INFINITIES (@0))
(rdiv { build_one_cst (type); } (COS @0))))
/* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
(simplify
(mult (POW:s @0 @1) (POW:s @0 @2))
(POW @0 (plus @1 @2)))
/* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
(simplify
(mult (POW:s @0 @1) (POW:s @2 @1))
(POW (mult @0 @2) @1))
/* Simplify pow(x,c) / x -> pow(x,c-1). */
(simplify
(rdiv (POW:s @0 REAL_CST@1) @0)
(if (!TREE_OVERFLOW (@1))
(POW @0 (minus @1 { build_one_cst (type); }))))
/* Simplify x / pow (y,z) -> x * pow(y,-z). */
(simplify
(rdiv @0 (POW:s @1 @2))
(mult @0 (POW @1 (negate @2))))
(for sqrts (SQRT)
cbrts (CBRT)
pows (POW)
/* sqrt(sqrt(x)) -> pow(x,1/4). */
(simplify
(sqrts (sqrts @0))
(pows @0 { build_real (type, dconst_quarter ()); }))
/* sqrt(cbrt(x)) -> pow(x,1/6). */
(simplify
(sqrts (cbrts @0))
(pows @0 { build_real_truncate (type, dconst_sixth ()); }))
/* cbrt(sqrt(x)) -> pow(x,1/6). */
(simplify
(cbrts (sqrts @0))
(pows @0 { build_real_truncate (type, dconst_sixth ()); }))
/* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
(simplify
(cbrts (cbrts tree_expr_nonnegative_p@0))
(pows @0 { build_real_truncate (type, dconst_ninth ()); }))
/* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
(simplify
(sqrts (pows @0 @1))
(pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
/* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
(simplify
(cbrts (pows tree_expr_nonnegative_p@0 @1))
(pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
/* pow(sqrt(x),y) -> pow(x,y*0.5). */
(simplify
(pows (sqrts @0) @1)
(pows @0 (mult @1 { build_real (type, dconsthalf); })))
/* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
(simplify
(pows (cbrts tree_expr_nonnegative_p@0) @1)
(pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
/* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
(simplify
(pows (pows tree_expr_nonnegative_p@0 @1) @2)
(pows @0 (mult @1 @2))))
/* cabs(x+xi) -> fabs(x)*sqrt(2). */
(simplify
(CABS (complex @0 @0))
(mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
/* hypot(x,x) -> fabs(x)*sqrt(2). */
(simplify
(HYPOT @0 @0)
(mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
/* cexp(x+yi) -> exp(x)*cexpi(y). */
(for cexps (CEXP)
exps (EXP)
cexpis (CEXPI)
(simplify
(cexps compositional_complex@0)
(if (targetm.libc_has_function (function_c99_math_complex))
(complex
(mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
(mult @1 (imagpart @2)))))))
(if (canonicalize_math_p ())
/* floor(x) -> trunc(x) if x is nonnegative. */
(for floors (FLOOR)
truncs (TRUNC)
(simplify
(floors tree_expr_nonnegative_p@0)
(truncs @0))))
(match double_value_p
@0
(if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
(for froms (BUILT_IN_TRUNCL
BUILT_IN_FLOORL
BUILT_IN_CEILL
BUILT_IN_ROUNDL
BUILT_IN_NEARBYINTL
BUILT_IN_RINTL)
tos (BUILT_IN_TRUNC
BUILT_IN_FLOOR
BUILT_IN_CEIL
BUILT_IN_ROUND
BUILT_IN_NEARBYINT
BUILT_IN_RINT)
/* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert double_value_p@0))
(convert (tos @0)))))
(match float_value_p
@0
(if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
BUILT_IN_FLOORL BUILT_IN_FLOOR
BUILT_IN_CEILL BUILT_IN_CEIL
BUILT_IN_ROUNDL BUILT_IN_ROUND
BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
BUILT_IN_RINTL BUILT_IN_RINT)
tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
BUILT_IN_FLOORF BUILT_IN_FLOORF
BUILT_IN_CEILF BUILT_IN_CEILF
BUILT_IN_ROUNDF BUILT_IN_ROUNDF
BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
BUILT_IN_RINTF BUILT_IN_RINTF)
/* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
if x is a float. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert float_value_p@0))
(convert (tos @0)))))
(for froms (XFLOORL XCEILL XROUNDL XRINTL)
tos (XFLOOR XCEIL XROUND XRINT)
/* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert double_value_p@0))
(tos @0))))
(for froms (XFLOORL XCEILL XROUNDL XRINTL
XFLOOR XCEIL XROUND XRINT)
tos (XFLOORF XCEILF XROUNDF XRINTF)
/* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
if x is a float. */
(if (optimize && canonicalize_math_p ())
(simplify
(froms (convert float_value_p@0))
(tos @0))))
(if (canonicalize_math_p ())
/* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
(for floors (IFLOOR LFLOOR LLFLOOR)
(simplify
(floors tree_expr_nonnegative_p@0)
(fix_trunc @0))))
(if (canonicalize_math_p ())
/* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
(for fns (IFLOOR LFLOOR LLFLOOR
ICEIL LCEIL LLCEIL
IROUND LROUND LLROUND)
(simplify
(fns integer_valued_real_p@0)
(fix_trunc @0)))
(if (!flag_errno_math)
/* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
(for rints (IRINT LRINT LLRINT)
(simplify
(rints integer_valued_real_p@0)
(fix_trunc @0)))))
(if (canonicalize_math_p ())
(for ifn (IFLOOR ICEIL IROUND IRINT)
lfn (LFLOOR LCEIL LROUND LRINT)
llfn (LLFLOOR LLCEIL LLROUND LLRINT)
/* Canonicalize iround (x) to lround (x) on ILP32 targets where
sizeof (int) == sizeof (long). */
(if (TYPE_PRECISION (integer_type_node)
== TYPE_PRECISION (long_integer_type_node))
(simplify
(ifn @0)
(lfn:long_integer_type_node @0)))
/* Canonicalize llround (x) to lround (x) on LP64 targets where
sizeof (long long) == sizeof (long). */
(if (TYPE_PRECISION (long_long_integer_type_node)
== TYPE_PRECISION (long_integer_type_node))
(simplify
(llfn @0)
(lfn:long_integer_type_node @0)))))
/* cproj(x) -> x if we're ignoring infinities. */
(simplify
(CPROJ @0)
(if (!HONOR_INFINITIES (type))
@0))
/* If the real part is inf and the imag part is known to be
nonnegative, return (inf + 0i). */
(simplify
(CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
(if (real_isinf (TREE_REAL_CST_PTR (@0)))
{ build_complex_inf (type, false); }))
/* If the imag part is inf, return (inf+I*copysign(0,imag)). */
(simplify
(CPROJ (complex @0 REAL_CST@1))
(if (real_isinf (TREE_REAL_CST_PTR (@1)))
{ build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
(for pows (POW)
sqrts (SQRT)
cbrts (CBRT)
(simplify
(pows @0 REAL_CST@1)
(with {
const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
REAL_VALUE_TYPE tmp;
}
(switch
/* pow(x,0) -> 1. */
(if (real_equal (value, &dconst0))
{ build_real (type, dconst1); })
/* pow(x,1) -> x. */
(if (real_equal (value, &dconst1))
@0)
/* pow(x,-1) -> 1/x. */
(if (real_equal (value, &dconstm1))
(rdiv { build_real (type, dconst1); } @0))
/* pow(x,0.5) -> sqrt(x). */
(if (flag_unsafe_math_optimizations
&& canonicalize_math_p ()
&& real_equal (value, &dconsthalf))
(sqrts @0))
/* pow(x,1/3) -> cbrt(x). */
(if (flag_unsafe_math_optimizations
&& canonicalize_math_p ()
&& (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
real_equal (value, &tmp)))
(cbrts @0))))))
/* powi(1,x) -> 1. */
(simplify
(POWI real_onep@0 @1)
@0)
(simplify
(POWI @0 INTEGER_CST@1)
(switch
/* powi(x,0) -> 1. */
(if (wi::eq_p (@1, 0))
{ build_real (type, dconst1); })
/* powi(x,1) -> x. */
(if (wi::eq_p (@1, 1))
@0)
/* powi(x,-1) -> 1/x. */
(if (wi::eq_p (@1, -1))
(rdiv { build_real (type, dconst1); } @0))))
/* Narrowing of arithmetic and logical operations.
These are conceptually similar to the transformations performed for
the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
term we want to move all that code out of the front-ends into here. */
/* If we have a narrowing conversion of an arithmetic operation where
both operands are widening conversions from the same type as the outer
narrowing conversion. Then convert the innermost operands to a suitable
unsigned type (to avoid introducing undefined behaviour), perform the
operation and convert the result to the desired type. */
(for op (plus minus)
(simplify
(convert (op:s (convert@2 @0) (convert@3 @1)))
(if (INTEGRAL_TYPE_P (type)
/* We check for type compatibility between @0 and @1 below,
so there's no need to check that @1/@3 are integral types. */
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (TREE_TYPE (@2))
/* The precision of the type of each operand must match the
precision of the mode of each operand, similarly for the
result. */
&& (TYPE_PRECISION (TREE_TYPE (@0))
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
&& (TYPE_PRECISION (TREE_TYPE (@1))
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
&& TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
/* The inner conversion must be a widening conversion. */
&& TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
&& types_match (@0, @1)
&& types_match (@0, type))
(if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(convert (op @0 @1))
(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
(convert (op (convert:utype @0) (convert:utype @1))))))))
/* This is another case of narrowing, specifically when there's an outer
BIT_AND_EXPR which masks off bits outside the type of the innermost
operands. Like the previous case we have to convert the operands
to unsigned types to avoid introducing undefined behaviour for the
arithmetic operation. */
(for op (minus plus)
(simplify
(bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
(if (INTEGRAL_TYPE_P (type)
/* We check for type compatibility between @0 and @1 below,
so there's no need to check that @1/@3 are integral types. */
&& INTEGRAL_TYPE_P (TREE_TYPE (@0))
&& INTEGRAL_TYPE_P (TREE_TYPE (@2))
/* The precision of the type of each operand must match the
precision of the mode of each operand, similarly for the
result. */
&& (TYPE_PRECISION (TREE_TYPE (@0))
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
&& (TYPE_PRECISION (TREE_TYPE (@1))
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
&& TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
/* The inner conversion must be a widening conversion. */
&& TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
&& types_match (@0, @1)
&& (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
<= TYPE_PRECISION (TREE_TYPE (@0)))
&& (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
true, TYPE_PRECISION (type))) == 0))
(if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
(with { tree ntype = TREE_TYPE (@0); }
(convert (bit_and (op @0 @1) (convert:ntype @4))))
(with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
(convert (bit_and (op (convert:utype @0) (convert:utype @1))
(convert:utype @4))))))))
/* Transform (@0 < @1 and @0 < @2) to use min,
(@0 > @1 and @0 > @2) to use max */
(for op (lt le gt ge)
ext (min min max max)
(simplify
(bit_and (op:s @0 @1) (op:s @0 @2))
(if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
(op @0 (ext @1 @2)))))
(simplify
/* signbit(x) -> 0 if x is nonnegative. */
(SIGNBIT tree_expr_nonnegative_p@0)
{ integer_zero_node; })
(simplify
/* signbit(x) -> x<0 if x doesn't have signed zeros. */
(SIGNBIT @0)
(if (!HONOR_SIGNED_ZEROS (@0))
(convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
|