summaryrefslogtreecommitdiff
path: root/gcc/predict.cc
blob: 1bc7ab944540478d9b1b1fb58b88eecd8a51bac0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
/* Branch prediction routines for the GNU compiler.
   Copyright (C) 2000-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* References:

   [1] "Branch Prediction for Free"
       Ball and Larus; PLDI '93.
   [2] "Static Branch Frequency and Program Profile Analysis"
       Wu and Larus; MICRO-27.
   [3] "Corpus-based Static Branch Prediction"
       Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "coverage.h"
#include "diagnostic-core.h"
#include "gimple-predict.h"
#include "fold-const.h"
#include "calls.h"
#include "cfganal.h"
#include "profile.h"
#include "sreal.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-scalar-evolution.h"
#include "ipa-utils.h"
#include "gimple-pretty-print.h"
#include "selftest.h"
#include "cfgrtl.h"
#include "stringpool.h"
#include "attribs.h"

/* Enum with reasons why a predictor is ignored.  */

enum predictor_reason
{
  REASON_NONE,
  REASON_IGNORED,
  REASON_SINGLE_EDGE_DUPLICATE,
  REASON_EDGE_PAIR_DUPLICATE
};

/* String messages for the aforementioned enum.  */

static const char *reason_messages[] = {"", " (ignored)",
    " (single edge duplicate)", " (edge pair duplicate)"};


static void combine_predictions_for_insn (rtx_insn *, basic_block);
static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
			     enum predictor_reason, edge);
static void predict_paths_leading_to (basic_block, enum br_predictor,
				      enum prediction,
				      class loop *in_loop = NULL);
static void predict_paths_leading_to_edge (edge, enum br_predictor,
					   enum prediction,
					   class loop *in_loop = NULL);
static bool can_predict_insn_p (const rtx_insn *);
static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
static void determine_unlikely_bbs ();

/* Information we hold about each branch predictor.
   Filled using information from predict.def.  */

struct predictor_info
{
  const char *const name;	/* Name used in the debugging dumps.  */
  const int hitrate;		/* Expected hitrate used by
				   predict_insn_def call.  */
  const int flags;
};

/* Use given predictor without Dempster-Shaffer theory if it matches
   using first_match heuristics.  */
#define PRED_FLAG_FIRST_MATCH 1

/* Recompute hitrate in percent to our representation.  */

#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)

#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
static const struct predictor_info predictor_info[]= {
#include "predict.def"

  /* Upper bound on predictors.  */
  {NULL, 0, 0}
};
#undef DEF_PREDICTOR

static gcov_type min_count = -1;

/* Determine the threshold for hot BB counts.  */

gcov_type
get_hot_bb_threshold ()
{
  if (min_count == -1)
    {
      const int hot_frac = param_hot_bb_count_fraction;
      const gcov_type min_hot_count
	= hot_frac
	  ? profile_info->sum_max / hot_frac
	  : (gcov_type)profile_count::max_count;
      set_hot_bb_threshold (min_hot_count);
      if (dump_file)
	fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
		 min_hot_count);
    }
  return min_count;
}

/* Set the threshold for hot BB counts.  */

void
set_hot_bb_threshold (gcov_type min)
{
  min_count = min;
}

/* Return TRUE if COUNT is considered to be hot in function FUN.  */

bool
maybe_hot_count_p (struct function *fun, profile_count count)
{
  if (!count.initialized_p ())
    return true;
  if (count.ipa () == profile_count::zero ())
    return false;
  if (!count.ipa_p ())
    {
      struct cgraph_node *node = cgraph_node::get (fun->decl);
      if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
	{
	  if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
	    return false;
	  if (node->frequency == NODE_FREQUENCY_HOT)
	    return true;
	}
      if (profile_status_for_fn (fun) == PROFILE_ABSENT)
	return true;
      if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
	  && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
	return false;
      if (count * param_hot_bb_frequency_fraction
	  < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
	return false;
      return true;
    }
  /* Code executed at most once is not hot.  */
  if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
    return false;
  return (count >= get_hot_bb_threshold ());
}

/* Return true if basic block BB of function FUN can be CPU intensive
   and should thus be optimized for maximum performance.  */

bool
maybe_hot_bb_p (struct function *fun, const_basic_block bb)
{
  gcc_checking_assert (fun);
  return maybe_hot_count_p (fun, bb->count);
}

/* Return true if edge E can be CPU intensive and should thus be optimized
   for maximum performance.  */

bool
maybe_hot_edge_p (edge e)
{
  return maybe_hot_count_p (cfun, e->count ());
}

/* Return true if COUNT is considered to be never executed in function FUN
   or if function FUN is considered so in the static profile.  */
   
static bool
probably_never_executed (struct function *fun, profile_count count)
{
  gcc_checking_assert (fun);
  if (count.ipa () == profile_count::zero ())
    return true;
  /* Do not trust adjusted counts.  This will make us to drop int cold section
     code with low execution count as a result of inlining. These low counts
     are not safe even with read profile and may lead us to dropping
     code which actually gets executed into cold section of binary that is not
     desirable.  */
  if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
    {
      const int unlikely_frac = param_unlikely_bb_count_fraction;
      if (count * unlikely_frac >= profile_info->runs)
	return false;
      return true;
    }
  if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
      && (cgraph_node::get (fun->decl)->frequency
	  == NODE_FREQUENCY_UNLIKELY_EXECUTED))
    return true;
  return false;
}

/* Return true if basic block BB of function FUN is probably never executed.  */

bool
probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
{
  return probably_never_executed (fun, bb->count);
}

/* Return true if edge E is unlikely executed for obvious reasons.  */

static bool
unlikely_executed_edge_p (edge e)
{
  return (e->src->count == profile_count::zero ()
	  || e->probability == profile_probability::never ())
	 || (e->flags & (EDGE_EH | EDGE_FAKE));
}

/* Return true if edge E of function FUN is probably never executed.  */

bool
probably_never_executed_edge_p (struct function *fun, edge e)
{
  if (unlikely_executed_edge_p (e))
    return true;
  return probably_never_executed (fun, e->count ());
}

/* Return true if function FUN should always be optimized for size.  */

optimize_size_level
optimize_function_for_size_p (struct function *fun)
{
  if (!fun || !fun->decl)
    return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
  cgraph_node *n = cgraph_node::get (fun->decl);
  if (n)
    return n->optimize_for_size_p ();
  return OPTIMIZE_SIZE_NO;
}

/* Return true if function FUN should always be optimized for speed.  */

bool
optimize_function_for_speed_p (struct function *fun)
{
  return !optimize_function_for_size_p (fun);
}

/* Return the optimization type that should be used for function FUN.  */

optimization_type
function_optimization_type (struct function *fun)
{
  return (optimize_function_for_speed_p (fun)
	  ? OPTIMIZE_FOR_SPEED
	  : OPTIMIZE_FOR_SIZE);
}

/* Return TRUE if basic block BB should be optimized for size.  */

optimize_size_level
optimize_bb_for_size_p (const_basic_block bb)
{
  enum optimize_size_level ret = optimize_function_for_size_p (cfun);

  if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
    ret = OPTIMIZE_SIZE_MAX;
  if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
    ret = OPTIMIZE_SIZE_BALANCED;
  return ret;
}

/* Return TRUE if basic block BB should be optimized for speed.  */

bool
optimize_bb_for_speed_p (const_basic_block bb)
{
  return !optimize_bb_for_size_p (bb);
}

/* Return the optimization type that should be used for basic block BB.  */

optimization_type
bb_optimization_type (const_basic_block bb)
{
  return (optimize_bb_for_speed_p (bb)
	  ? OPTIMIZE_FOR_SPEED
	  : OPTIMIZE_FOR_SIZE);
}

/* Return TRUE if edge E should be optimized for size.  */

optimize_size_level
optimize_edge_for_size_p (edge e)
{
  enum optimize_size_level ret = optimize_function_for_size_p (cfun);

  if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
    ret = OPTIMIZE_SIZE_MAX;
  if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
    ret = OPTIMIZE_SIZE_BALANCED;
  return ret;
}

/* Return TRUE if edge E should be optimized for speed.  */

bool
optimize_edge_for_speed_p (edge e)
{
  return !optimize_edge_for_size_p (e);
}

/* Return TRUE if the current function is optimized for size.  */

optimize_size_level
optimize_insn_for_size_p (void)
{
  enum optimize_size_level ret = optimize_function_for_size_p (cfun);
  if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
    ret = OPTIMIZE_SIZE_BALANCED;
  return ret;
}

/* Return TRUE if the current function is optimized for speed.  */

bool
optimize_insn_for_speed_p (void)
{
  return !optimize_insn_for_size_p ();
}

/* Return the optimization type that should be used for the current
   instruction.  */

optimization_type
insn_optimization_type ()
{
  return (optimize_insn_for_speed_p ()
	  ? OPTIMIZE_FOR_SPEED
	  : OPTIMIZE_FOR_SIZE);
}

/* Return TRUE if LOOP should be optimized for size.  */

optimize_size_level
optimize_loop_for_size_p (class loop *loop)
{
  return optimize_bb_for_size_p (loop->header);
}

/* Return TRUE if LOOP should be optimized for speed.  */

bool
optimize_loop_for_speed_p (class loop *loop)
{
  return optimize_bb_for_speed_p (loop->header);
}

/* Return TRUE if nest rooted at LOOP should be optimized for speed.  */

bool
optimize_loop_nest_for_speed_p (class loop *loop)
{
  class loop *l = loop;
  if (optimize_loop_for_speed_p (loop))
    return true;
  l = loop->inner;
  while (l && l != loop)
    {
      if (optimize_loop_for_speed_p (l))
        return true;
      if (l->inner)
        l = l->inner;
      else if (l->next)
        l = l->next;
      else
        {
	  while (l != loop && !l->next)
	    l = loop_outer (l);
	  if (l != loop)
	    l = l->next;
	}
    }
  return false;
}

/* Return TRUE if nest rooted at LOOP should be optimized for size.  */

optimize_size_level
optimize_loop_nest_for_size_p (class loop *loop)
{
  enum optimize_size_level ret = optimize_loop_for_size_p (loop);
  class loop *l = loop;

  l = loop->inner;
  while (l && l != loop)
    {
      if (ret == OPTIMIZE_SIZE_NO)
	break;
      ret = MIN (optimize_loop_for_size_p (l), ret);
      if (l->inner)
        l = l->inner;
      else if (l->next)
        l = l->next;
      else
        {
	  while (l != loop && !l->next)
	    l = loop_outer (l);
	  if (l != loop)
	    l = l->next;
	}
    }
  return ret;
}

/* Return true if edge E is likely to be well predictable by branch
   predictor.  */

bool
predictable_edge_p (edge e)
{
  if (!e->probability.initialized_p ())
    return false;
  if ((e->probability.to_reg_br_prob_base ()
       <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
      || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
	  <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
    return true;
  return false;
}


/* Set RTL expansion for BB profile.  */

void
rtl_profile_for_bb (basic_block bb)
{
  crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
}

/* Set RTL expansion for edge profile.  */

void
rtl_profile_for_edge (edge e)
{
  crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
}

/* Set RTL expansion to default mode (i.e. when profile info is not known).  */
void
default_rtl_profile (void)
{
  crtl->maybe_hot_insn_p = true;
}

/* Return true if the one of outgoing edges is already predicted by
   PREDICTOR.  */

bool
rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
{
  rtx note;
  if (!INSN_P (BB_END (bb)))
    return false;
  for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PRED
	&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
      return true;
  return false;
}

/*  Structure representing predictions in tree level. */

struct edge_prediction {
    struct edge_prediction *ep_next;
    edge ep_edge;
    enum br_predictor ep_predictor;
    int ep_probability;
};

/* This map contains for a basic block the list of predictions for the
   outgoing edges.  */

static hash_map<const_basic_block, edge_prediction *> *bb_predictions;

/* Return true if the one of outgoing edges is already predicted by
   PREDICTOR.  */

bool
gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
{
  struct edge_prediction *i;
  edge_prediction **preds = bb_predictions->get (bb);

  if (!preds)
    return false;

  for (i = *preds; i; i = i->ep_next)
    if (i->ep_predictor == predictor)
      return true;
  return false;
}

/* Return true if the one of outgoing edges is already predicted by
   PREDICTOR for edge E predicted as TAKEN.  */

bool
edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
{
  struct edge_prediction *i;
  basic_block bb = e->src;
  edge_prediction **preds = bb_predictions->get (bb);
  if (!preds)
    return false;

  int probability = predictor_info[(int) predictor].hitrate;

  if (taken != TAKEN)
    probability = REG_BR_PROB_BASE - probability;

  for (i = *preds; i; i = i->ep_next)
    if (i->ep_predictor == predictor
	&& i->ep_edge == e
	&& i->ep_probability == probability)
      return true;
  return false;
}

/* Same predicate as above, working on edges.  */
bool
edge_probability_reliable_p (const_edge e)
{
  return e->probability.probably_reliable_p ();
}

/* Same predicate as edge_probability_reliable_p, working on notes.  */
bool
br_prob_note_reliable_p (const_rtx note)
{
  gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
  return profile_probability::from_reg_br_prob_note
		 (XINT (note, 0)).probably_reliable_p ();
}

static void
predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
{
  gcc_assert (any_condjump_p (insn));
  if (!flag_guess_branch_prob)
    return;

  add_reg_note (insn, REG_BR_PRED,
		gen_rtx_CONCAT (VOIDmode,
				GEN_INT ((int) predictor),
				GEN_INT ((int) probability)));
}

/* Predict insn by given predictor.  */

void
predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
		  enum prediction taken)
{
   int probability = predictor_info[(int) predictor].hitrate;
   gcc_assert (probability != PROB_UNINITIALIZED);

   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;

   predict_insn (insn, predictor, probability);
}

/* Predict edge E with given probability if possible.  */

void
rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
{
  rtx_insn *last_insn;
  last_insn = BB_END (e->src);

  /* We can store the branch prediction information only about
     conditional jumps.  */
  if (!any_condjump_p (last_insn))
    return;

  /* We always store probability of branching.  */
  if (e->flags & EDGE_FALLTHRU)
    probability = REG_BR_PROB_BASE - probability;

  predict_insn (last_insn, predictor, probability);
}

/* Predict edge E with the given PROBABILITY.  */
void
gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
{
  if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
      && EDGE_COUNT (e->src->succs) > 1
      && flag_guess_branch_prob
      && optimize)
    {
      struct edge_prediction *i = XNEW (struct edge_prediction);
      edge_prediction *&preds = bb_predictions->get_or_insert (e->src);

      i->ep_next = preds;
      preds = i;
      i->ep_probability = probability;
      i->ep_predictor = predictor;
      i->ep_edge = e;
    }
}

/* Filter edge predictions PREDS by a function FILTER: if FILTER return false
   the prediction is removed.
   DATA are passed to the filter function.  */

static void
filter_predictions (edge_prediction **preds,
		    bool (*filter) (edge_prediction *, void *), void *data)
{
  if (!bb_predictions)
    return;

  if (preds)
    {
      struct edge_prediction **prediction = preds;
      struct edge_prediction *next;

      while (*prediction)
	{
	  if ((*filter) (*prediction, data))
	    prediction = &((*prediction)->ep_next);
	  else
	    {
	      next = (*prediction)->ep_next;
	      free (*prediction);
	      *prediction = next;
	    }
	}
    }
}

/* Filter function predicate that returns true for a edge predicate P
   if its edge is equal to DATA.  */

static bool
not_equal_edge_p (edge_prediction *p, void *data)
{
  return p->ep_edge != (edge)data;
}

/* Remove all predictions on given basic block that are attached
   to edge E.  */
void
remove_predictions_associated_with_edge (edge e)
{
  if (!bb_predictions)
    return;

  edge_prediction **preds = bb_predictions->get (e->src);
  filter_predictions (preds, not_equal_edge_p, e);
}

/* Clears the list of predictions stored for BB.  */

static void
clear_bb_predictions (basic_block bb)
{
  edge_prediction **preds = bb_predictions->get (bb);
  struct edge_prediction *pred, *next;

  if (!preds)
    return;

  for (pred = *preds; pred; pred = next)
    {
      next = pred->ep_next;
      free (pred);
    }
  *preds = NULL;
}

/* Return true when we can store prediction on insn INSN.
   At the moment we represent predictions only on conditional
   jumps, not at computed jump or other complicated cases.  */
static bool
can_predict_insn_p (const rtx_insn *insn)
{
  return (JUMP_P (insn)
	  && any_condjump_p (insn)
	  && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
}

/* Predict edge E by given predictor if possible.  */

void
predict_edge_def (edge e, enum br_predictor predictor,
		  enum prediction taken)
{
   int probability = predictor_info[(int) predictor].hitrate;

   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;

   predict_edge (e, predictor, probability);
}

/* Invert all branch predictions or probability notes in the INSN.  This needs
   to be done each time we invert the condition used by the jump.  */

void
invert_br_probabilities (rtx insn)
{
  rtx note;

  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PROB)
      XINT (note, 0) = profile_probability::from_reg_br_prob_note
			 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
    else if (REG_NOTE_KIND (note) == REG_BR_PRED)
      XEXP (XEXP (note, 0), 1)
	= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
}

/* Dump information about the branch prediction to the output file.  */

static void
dump_prediction (FILE *file, enum br_predictor predictor, int probability,
		 basic_block bb, enum predictor_reason reason = REASON_NONE,
		 edge ep_edge = NULL)
{
  edge e = ep_edge;
  edge_iterator ei;

  if (!file)
    return;

  if (e == NULL)
    FOR_EACH_EDGE (e, ei, bb->succs)
      if (! (e->flags & EDGE_FALLTHRU))
	break;

  char edge_info_str[128];
  if (ep_edge)
    sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
	     ep_edge->dest->index);
  else
    edge_info_str[0] = '\0';

  fprintf (file, "  %s heuristics%s%s: %.2f%%",
	   predictor_info[predictor].name,
	   edge_info_str, reason_messages[reason],
	   probability * 100.0 / REG_BR_PROB_BASE);

  if (bb->count.initialized_p ())
    {
      fprintf (file, "  exec ");
      bb->count.dump (file);
      if (e)
	{
	  fprintf (file, " hit ");
	  e->count ().dump (file);
	  fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
		   / bb->count.to_gcov_type ());
	}
    }

  fprintf (file, "\n");

  /* Print output that be easily read by analyze_brprob.py script. We are
     interested only in counts that are read from GCDA files.  */
  if (dump_file && (dump_flags & TDF_DETAILS)
      && bb->count.precise_p ()
      && reason == REASON_NONE)
    {
      fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
	       predictor_info[predictor].name,
	       bb->count.to_gcov_type (), e->count ().to_gcov_type (),
	       probability * 100.0 / REG_BR_PROB_BASE);
    }
}

/* Return true if STMT is known to be unlikely executed.  */

static bool
unlikely_executed_stmt_p (gimple *stmt)
{
  if (!is_gimple_call (stmt))
    return false;
  /* NORETURN attribute alone is not strong enough: exit() may be quite
     likely executed once during program run.  */
  if (gimple_call_fntype (stmt)
      && lookup_attribute ("cold",
			   TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
      && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
    return true;
  tree decl = gimple_call_fndecl (stmt);
  if (!decl)
    return false;
  if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
      && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
    return true;

  cgraph_node *n = cgraph_node::get (decl);
  if (!n)
    return false;

  availability avail;
  n = n->ultimate_alias_target (&avail);
  if (avail < AVAIL_AVAILABLE)
    return false;
  if (!n->analyzed
      || n->decl == current_function_decl)
    return false;
  return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
}

/* Return true if BB is unlikely executed.  */

static bool
unlikely_executed_bb_p (basic_block bb)
{
  if (bb->count == profile_count::zero ())
    return true;
  if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return false;
  for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
       !gsi_end_p (gsi); gsi_next (&gsi))
    {
      if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
        return true;
      if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
	return false;
    }
  return false;
}

/* We cannot predict the probabilities of outgoing edges of bb.  Set them
   evenly and hope for the best.  If UNLIKELY_EDGES is not null, distribute
   even probability for all edges not mentioned in the set.  These edges
   are given PROB_VERY_UNLIKELY probability.  Similarly for LIKELY_EDGES,
   if we have exactly one likely edge, make the other edges predicted
   as not probable.  */

static void
set_even_probabilities (basic_block bb,
			hash_set<edge> *unlikely_edges = NULL,
			hash_set<edge_prediction *> *likely_edges = NULL)
{
  unsigned nedges = 0, unlikely_count = 0;
  edge e = NULL;
  edge_iterator ei;
  profile_probability all = profile_probability::always ();

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->probability.initialized_p ())
      all -= e->probability;
    else if (!unlikely_executed_edge_p (e))
      {
	nedges++;
        if (unlikely_edges != NULL && unlikely_edges->contains (e))
	  {
	    all -= profile_probability::very_unlikely ();
	    unlikely_count++;
	  }
      }

  /* Make the distribution even if all edges are unlikely.  */
  unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
  if (unlikely_count == nedges)
    {
      unlikely_edges = NULL;
      unlikely_count = 0;
    }

  /* If we have one likely edge, then use its probability and distribute
     remaining probabilities as even.  */
  if (likely_count == 1)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->probability.initialized_p ())
	  ;
	else if (!unlikely_executed_edge_p (e))
	  {
	    edge_prediction *prediction = *likely_edges->begin ();
	    int p = prediction->ep_probability;
	    profile_probability prob
	      = profile_probability::from_reg_br_prob_base (p);

	    if (prediction->ep_edge == e)
	      e->probability = prob;
	    else if (unlikely_edges != NULL && unlikely_edges->contains (e))
	      e->probability = profile_probability::very_unlikely ();
	    else
	      {
		profile_probability remainder = prob.invert ();
		remainder -= (profile_probability::very_unlikely ()
			      * unlikely_count);
		int count = nedges - unlikely_count - 1;
		gcc_assert (count >= 0);

		e->probability = remainder / count;
	      }
	  }
	else
	  e->probability = profile_probability::never ();
    }
  else
    {
      /* Make all unlikely edges unlikely and the rest will have even
	 probability.  */
      unsigned scale = nedges - unlikely_count;
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->probability.initialized_p ())
	  ;
	else if (!unlikely_executed_edge_p (e))
	  {
	    if (unlikely_edges != NULL && unlikely_edges->contains (e))
	      e->probability = profile_probability::very_unlikely ();
	    else
	      e->probability = all / scale;
	  }
	else
	  e->probability = profile_probability::never ();
    }
}

/* Add REG_BR_PROB note to JUMP with PROB.  */

void
add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
{
  gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
  add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
}

/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
   note if not already present.  Remove now useless REG_BR_PRED notes.  */

static void
combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
{
  rtx prob_note;
  rtx *pnote;
  rtx note;
  int best_probability = PROB_EVEN;
  enum br_predictor best_predictor = END_PREDICTORS;
  int combined_probability = REG_BR_PROB_BASE / 2;
  int d;
  bool first_match = false;
  bool found = false;

  if (!can_predict_insn_p (insn))
    {
      set_even_probabilities (bb);
      return;
    }

  prob_note = find_reg_note (insn, REG_BR_PROB, 0);
  pnote = &REG_NOTES (insn);
  if (dump_file)
    fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
	     bb->index);

  /* We implement "first match" heuristics and use probability guessed
     by predictor with smallest index.  */
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PRED)
      {
	enum br_predictor predictor = ((enum br_predictor)
				       INTVAL (XEXP (XEXP (note, 0), 0)));
	int probability = INTVAL (XEXP (XEXP (note, 0), 1));

	found = true;
	if (best_predictor > predictor
	    && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
	  best_probability = probability, best_predictor = predictor;

	d = (combined_probability * probability
	     + (REG_BR_PROB_BASE - combined_probability)
	     * (REG_BR_PROB_BASE - probability));

	/* Use FP math to avoid overflows of 32bit integers.  */
	if (d == 0)
	  /* If one probability is 0% and one 100%, avoid division by zero.  */
	  combined_probability = REG_BR_PROB_BASE / 2;
	else
	  combined_probability = (((double) combined_probability) * probability
				  * REG_BR_PROB_BASE / d + 0.5);
      }

  /* Decide which heuristic to use.  In case we didn't match anything,
     use no_prediction heuristic, in case we did match, use either
     first match or Dempster-Shaffer theory depending on the flags.  */

  if (best_predictor != END_PREDICTORS)
    first_match = true;

  if (!found)
    dump_prediction (dump_file, PRED_NO_PREDICTION,
		     combined_probability, bb);
  else
    {
      if (!first_match)
	dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
			 bb, !first_match ? REASON_NONE : REASON_IGNORED);
      else
	dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
			 bb, first_match ? REASON_NONE : REASON_IGNORED);
    }

  if (first_match)
    combined_probability = best_probability;
  dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);

  while (*pnote)
    {
      if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
	{
	  enum br_predictor predictor = ((enum br_predictor)
					 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));

	  dump_prediction (dump_file, predictor, probability, bb,
			   (!first_match || best_predictor == predictor)
			   ? REASON_NONE : REASON_IGNORED);
	  *pnote = XEXP (*pnote, 1);
	}
      else
	pnote = &XEXP (*pnote, 1);
    }

  if (!prob_note)
    {
      profile_probability p
	 = profile_probability::from_reg_br_prob_base (combined_probability);
      add_reg_br_prob_note (insn, p);

      /* Save the prediction into CFG in case we are seeing non-degenerated
	 conditional jump.  */
      if (!single_succ_p (bb))
	{
	  BRANCH_EDGE (bb)->probability = p;
	  FALLTHRU_EDGE (bb)->probability
	    = BRANCH_EDGE (bb)->probability.invert ();
	}
    }
  else if (!single_succ_p (bb))
    {
      profile_probability prob = profile_probability::from_reg_br_prob_note
					(XINT (prob_note, 0));

      BRANCH_EDGE (bb)->probability = prob;
      FALLTHRU_EDGE (bb)->probability = prob.invert ();
    }
  else
    single_succ_edge (bb)->probability = profile_probability::always ();
}

/* Edge prediction hash traits.  */

struct predictor_hash: pointer_hash <edge_prediction>
{

  static inline hashval_t hash (const edge_prediction *);
  static inline bool equal (const edge_prediction *, const edge_prediction *);
};

/* Calculate hash value of an edge prediction P based on predictor and
   normalized probability.  */

inline hashval_t
predictor_hash::hash (const edge_prediction *p)
{
  inchash::hash hstate;
  hstate.add_int (p->ep_predictor);

  int prob = p->ep_probability;
  if (prob > REG_BR_PROB_BASE / 2)
    prob = REG_BR_PROB_BASE - prob;

  hstate.add_int (prob);

  return hstate.end ();
}

/* Return true whether edge predictions P1 and P2 use the same predictor and
   have equal (or opposed probability).  */

inline bool
predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
{
  return (p1->ep_predictor == p2->ep_predictor
	  && (p1->ep_probability == p2->ep_probability
	      || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
}

struct predictor_hash_traits: predictor_hash,
  typed_noop_remove <edge_prediction *> {};

/* Return true if edge prediction P is not in DATA hash set.  */

static bool
not_removed_prediction_p (edge_prediction *p, void *data)
{
  hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
  return !remove->contains (p);
}

/* Prune predictions for a basic block BB.  Currently we do following
   clean-up steps:

   1) remove duplicate prediction that is guessed with the same probability
      (different than 1/2) to both edge
   2) remove duplicates for a prediction that belongs with the same probability
      to a single edge

  */

static void
prune_predictions_for_bb (basic_block bb)
{
  edge_prediction **preds = bb_predictions->get (bb);

  if (preds)
    {
      hash_table <predictor_hash_traits> s (13);
      hash_set <edge_prediction *> remove;

      /* Step 1: identify predictors that should be removed.  */
      for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
	{
	  edge_prediction *existing = s.find (pred);
	  if (existing)
	    {
	      if (pred->ep_edge == existing->ep_edge
		  && pred->ep_probability == existing->ep_probability)
		{
		  /* Remove a duplicate predictor.  */
		  dump_prediction (dump_file, pred->ep_predictor,
				   pred->ep_probability, bb,
				   REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);

		  remove.add (pred);
		}
	      else if (pred->ep_edge != existing->ep_edge
		       && pred->ep_probability == existing->ep_probability
		       && pred->ep_probability != REG_BR_PROB_BASE / 2)
		{
		  /* Remove both predictors as they predict the same
		     for both edges.  */
		  dump_prediction (dump_file, existing->ep_predictor,
				   pred->ep_probability, bb,
				   REASON_EDGE_PAIR_DUPLICATE,
				   existing->ep_edge);
		  dump_prediction (dump_file, pred->ep_predictor,
				   pred->ep_probability, bb,
				   REASON_EDGE_PAIR_DUPLICATE,
				   pred->ep_edge);

		  remove.add (existing);
		  remove.add (pred);
		}
	    }

	  edge_prediction **slot2 = s.find_slot (pred, INSERT);
	  *slot2 = pred;
	}

      /* Step 2: Remove predictors.  */
      filter_predictions (preds, not_removed_prediction_p, &remove);
    }
}

/* Combine predictions into single probability and store them into CFG.
   Remove now useless prediction entries.
   If DRY_RUN is set, only produce dumps and do not modify profile.  */

static void
combine_predictions_for_bb (basic_block bb, bool dry_run)
{
  int best_probability = PROB_EVEN;
  enum br_predictor best_predictor = END_PREDICTORS;
  int combined_probability = REG_BR_PROB_BASE / 2;
  int d;
  bool first_match = false;
  bool found = false;
  struct edge_prediction *pred;
  int nedges = 0;
  edge e, first = NULL, second = NULL;
  edge_iterator ei;
  int nzero = 0;
  int nunknown = 0;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if (!unlikely_executed_edge_p (e))
        {
	  nedges ++;
	  if (first && !second)
	    second = e;
	  if (!first)
	    first = e;
        }
      else if (!e->probability.initialized_p ())
        e->probability = profile_probability::never ();
     if (!e->probability.initialized_p ())
        nunknown++;
     else if (e->probability == profile_probability::never ())
	nzero++;
    }

  /* When there is no successor or only one choice, prediction is easy.

     When we have a basic block with more than 2 successors, the situation
     is more complicated as DS theory cannot be used literally.
     More precisely, let's assume we predicted edge e1 with probability p1,
     thus: m1({b1}) = p1.  As we're going to combine more than 2 edges, we
     need to find probability of e.g. m1({b2}), which we don't know.
     The only approximation is to equally distribute 1-p1 to all edges
     different from b1.

     According to numbers we've got from SPEC2006 benchark, there's only
     one interesting reliable predictor (noreturn call), which can be
     handled with a bit easier approach.  */
  if (nedges != 2)
    {
      hash_set<edge> unlikely_edges (4);
      hash_set<edge_prediction *> likely_edges (4);

      /* Identify all edges that have a probability close to very unlikely.
	 Doing the approach for very unlikely doesn't worth for doing as
	 there's no such probability in SPEC2006 benchmark.  */
      edge_prediction **preds = bb_predictions->get (bb);
      if (preds)
	for (pred = *preds; pred; pred = pred->ep_next)
	  {
	    if (pred->ep_probability <= PROB_VERY_UNLIKELY
		|| pred->ep_predictor == PRED_COLD_LABEL)
	      unlikely_edges.add (pred->ep_edge);
	    else if (pred->ep_probability >= PROB_VERY_LIKELY
		     || pred->ep_predictor == PRED_BUILTIN_EXPECT
		     || pred->ep_predictor == PRED_HOT_LABEL)
	      likely_edges.add (pred);
	  }

      /* It can happen that an edge is both in likely_edges and unlikely_edges.
	 Clear both sets in that situation.  */
      for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
	   it != likely_edges.end (); ++it)
	if (unlikely_edges.contains ((*it)->ep_edge))
	  {
	    likely_edges.empty ();
	    unlikely_edges.empty ();
	    break;
	  }

      if (!dry_run)
	set_even_probabilities (bb, &unlikely_edges, &likely_edges);
      clear_bb_predictions (bb);
      if (dump_file)
	{
	  fprintf (dump_file, "Predictions for bb %i\n", bb->index);
	  if (unlikely_edges.is_empty ())
	    fprintf (dump_file,
		     "%i edges in bb %i predicted to even probabilities\n",
		     nedges, bb->index);
	  else
	    {
	      fprintf (dump_file,
		       "%i edges in bb %i predicted with some unlikely edges\n",
		       nedges, bb->index);
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (!unlikely_executed_edge_p (e))
		  dump_prediction (dump_file, PRED_COMBINED,
		   e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
	    }
	}
      return;
    }

  if (dump_file)
    fprintf (dump_file, "Predictions for bb %i\n", bb->index);

  prune_predictions_for_bb (bb);

  edge_prediction **preds = bb_predictions->get (bb);

  if (preds)
    {
      /* We implement "first match" heuristics and use probability guessed
	 by predictor with smallest index.  */
      for (pred = *preds; pred; pred = pred->ep_next)
	{
	  enum br_predictor predictor = pred->ep_predictor;
	  int probability = pred->ep_probability;

	  if (pred->ep_edge != first)
	    probability = REG_BR_PROB_BASE - probability;

	  found = true;
	  /* First match heuristics would be widly confused if we predicted
	     both directions.  */
	  if (best_predictor > predictor
	    && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
	    {
              struct edge_prediction *pred2;
	      int prob = probability;

	      for (pred2 = (struct edge_prediction *) *preds;
		   pred2; pred2 = pred2->ep_next)
	       if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
	         {
		   int probability2 = pred2->ep_probability;

		   if (pred2->ep_edge != first)
		     probability2 = REG_BR_PROB_BASE - probability2;

		   if ((probability < REG_BR_PROB_BASE / 2) !=
		       (probability2 < REG_BR_PROB_BASE / 2))
		     break;

		   /* If the same predictor later gave better result, go for it! */
		   if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
		       || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
		     prob = probability2;
		 }
	      if (!pred2)
	        best_probability = prob, best_predictor = predictor;
	    }

	  d = (combined_probability * probability
	       + (REG_BR_PROB_BASE - combined_probability)
	       * (REG_BR_PROB_BASE - probability));

	  /* Use FP math to avoid overflows of 32bit integers.  */
	  if (d == 0)
	    /* If one probability is 0% and one 100%, avoid division by zero.  */
	    combined_probability = REG_BR_PROB_BASE / 2;
	  else
	    combined_probability = (((double) combined_probability)
				    * probability
		    		    * REG_BR_PROB_BASE / d + 0.5);
	}
    }

  /* Decide which heuristic to use.  In case we didn't match anything,
     use no_prediction heuristic, in case we did match, use either
     first match or Dempster-Shaffer theory depending on the flags.  */

  if (best_predictor != END_PREDICTORS)
    first_match = true;

  if (!found)
    dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
  else
    {
      if (!first_match)
	dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
			 !first_match ? REASON_NONE : REASON_IGNORED);
      else
	dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
			 first_match ? REASON_NONE : REASON_IGNORED);
    }

  if (first_match)
    combined_probability = best_probability;
  dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);

  if (preds)
    {
      for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
	{
	  enum br_predictor predictor = pred->ep_predictor;
	  int probability = pred->ep_probability;

	  dump_prediction (dump_file, predictor, probability, bb,
			   (!first_match || best_predictor == predictor)
			   ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
	}
    }
  clear_bb_predictions (bb);


  /* If we have only one successor which is unknown, we can compute missing
     probability.  */
  if (nunknown == 1)
    {
      profile_probability prob = profile_probability::always ();
      edge missing = NULL;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->probability.initialized_p ())
	  prob -= e->probability;
	else if (missing == NULL)
	  missing = e;
	else
	  gcc_unreachable ();
       missing->probability = prob;
    }
  /* If nothing is unknown, we have nothing to update.  */
  else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
    ;
  else if (!dry_run)
    {
      first->probability
	 = profile_probability::from_reg_br_prob_base (combined_probability);
      second->probability = first->probability.invert ();
    }
}

/* Check if T1 and T2 satisfy the IV_COMPARE condition.
   Return the SSA_NAME if the condition satisfies, NULL otherwise.

   T1 and T2 should be one of the following cases:
     1. T1 is SSA_NAME, T2 is NULL
     2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
     3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4]  */

static tree
strips_small_constant (tree t1, tree t2)
{
  tree ret = NULL;
  int value = 0;

  if (!t1)
    return NULL;
  else if (TREE_CODE (t1) == SSA_NAME)
    ret = t1;
  else if (tree_fits_shwi_p (t1))
    value = tree_to_shwi (t1);
  else
    return NULL;

  if (!t2)
    return ret;
  else if (tree_fits_shwi_p (t2))
    value = tree_to_shwi (t2);
  else if (TREE_CODE (t2) == SSA_NAME)
    {
      if (ret)
        return NULL;
      else
        ret = t2;
    }

  if (value <= 4 && value >= -4)
    return ret;
  else
    return NULL;
}

/* Return the SSA_NAME in T or T's operands.
   Return NULL if SSA_NAME cannot be found.  */

static tree
get_base_value (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    return t;

  if (!BINARY_CLASS_P (t))
    return NULL;

  switch (TREE_OPERAND_LENGTH (t))
    {
    case 1:
      return strips_small_constant (TREE_OPERAND (t, 0), NULL);
    case 2:
      return strips_small_constant (TREE_OPERAND (t, 0),
				    TREE_OPERAND (t, 1));
    default:
      return NULL;
    }
}

/* Check the compare STMT in LOOP. If it compares an induction
   variable to a loop invariant, return true, and save
   LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
   Otherwise return false and set LOOP_INVAIANT to NULL.  */

static bool
is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
				     tree *loop_invariant,
				     enum tree_code *compare_code,
				     tree *loop_step,
				     tree *loop_iv_base)
{
  tree op0, op1, bound, base;
  affine_iv iv0, iv1;
  enum tree_code code;
  tree step;

  code = gimple_cond_code (stmt);
  *loop_invariant = NULL;

  switch (code)
    {
    case GT_EXPR:
    case GE_EXPR:
    case NE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
      break;

    default:
      return false;
    }

  op0 = gimple_cond_lhs (stmt);
  op1 = gimple_cond_rhs (stmt);

  if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST) 
       || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
    return false;
  if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
    return false;
  if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
    return false;
  if (TREE_CODE (iv0.step) != INTEGER_CST
      || TREE_CODE (iv1.step) != INTEGER_CST)
    return false;
  if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
      || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
    return false;

  if (integer_zerop (iv0.step))
    {
      if (code != NE_EXPR && code != EQ_EXPR)
	code = invert_tree_comparison (code, false);
      bound = iv0.base;
      base = iv1.base;
      if (tree_fits_shwi_p (iv1.step))
	step = iv1.step;
      else
	return false;
    }
  else
    {
      bound = iv1.base;
      base = iv0.base;
      if (tree_fits_shwi_p (iv0.step))
	step = iv0.step;
      else
	return false;
    }

  if (TREE_CODE (bound) != INTEGER_CST)
    bound = get_base_value (bound);
  if (!bound)
    return false;
  if (TREE_CODE (base) != INTEGER_CST)
    base = get_base_value (base);
  if (!base)
    return false;

  *loop_invariant = bound;
  *compare_code = code;
  *loop_step = step;
  *loop_iv_base = base;
  return true;
}

/* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent.  */

static bool
expr_coherent_p (tree t1, tree t2)
{
  gimple *stmt;
  tree ssa_name_1 = NULL;
  tree ssa_name_2 = NULL;

  gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
  gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);

  if (t1 == t2)
    return true;

  if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
    return true;
  if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
    return false;

  /* Check to see if t1 is expressed/defined with t2.  */
  stmt = SSA_NAME_DEF_STMT (t1);
  gcc_assert (stmt != NULL);
  if (is_gimple_assign (stmt))
    {
      ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
      if (ssa_name_1 && ssa_name_1 == t2)
	return true;
    }

  /* Check to see if t2 is expressed/defined with t1.  */
  stmt = SSA_NAME_DEF_STMT (t2);
  gcc_assert (stmt != NULL);
  if (is_gimple_assign (stmt))
    {
      ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
      if (ssa_name_2 && ssa_name_2 == t1)
	return true;
    }

  /* Compare if t1 and t2's def_stmts are identical.  */
  if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
    return true;
  else
    return false;
}

/* Return true if E is predicted by one of loop heuristics.  */

static bool
predicted_by_loop_heuristics_p (basic_block bb)
{
  struct edge_prediction *i;
  edge_prediction **preds = bb_predictions->get (bb);

  if (!preds)
    return false;

  for (i = *preds; i; i = i->ep_next)
    if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
	|| i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
	|| i->ep_predictor == PRED_LOOP_ITERATIONS
	|| i->ep_predictor == PRED_LOOP_EXIT
	|| i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
	|| i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
      return true;
  return false;
}

/* Predict branch probability of BB when BB contains a branch that compares
   an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
   loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.

   E.g.
     for (int i = 0; i < bound; i++) {
       if (i < bound - 2)
	 computation_1();
       else
	 computation_2();
     }

  In this loop, we will predict the branch inside the loop to be taken.  */

static void
predict_iv_comparison (class loop *loop, basic_block bb,
		       tree loop_bound_var,
		       tree loop_iv_base_var,
		       enum tree_code loop_bound_code,
		       int loop_bound_step)
{
  gimple *stmt;
  tree compare_var, compare_base;
  enum tree_code compare_code;
  tree compare_step_var;
  edge then_edge;
  edge_iterator ei;

  if (predicted_by_loop_heuristics_p (bb))
    return;

  stmt = last_stmt (bb);
  if (!stmt || gimple_code (stmt) != GIMPLE_COND)
    return;
  if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
					    loop, &compare_var,
					    &compare_code,
					    &compare_step_var,
					    &compare_base))
    return;

  /* Find the taken edge.  */
  FOR_EACH_EDGE (then_edge, ei, bb->succs)
    if (then_edge->flags & EDGE_TRUE_VALUE)
      break;

  /* When comparing an IV to a loop invariant, NE is more likely to be
     taken while EQ is more likely to be not-taken.  */
  if (compare_code == NE_EXPR)
    {
      predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      return;
    }
  else if (compare_code == EQ_EXPR)
    {
      predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
      return;
    }

  if (!expr_coherent_p (loop_iv_base_var, compare_base))
    return;

  /* If loop bound, base and compare bound are all constants, we can
     calculate the probability directly.  */
  if (tree_fits_shwi_p (loop_bound_var)
      && tree_fits_shwi_p (compare_var)
      && tree_fits_shwi_p (compare_base))
    {
      int probability;
      wi::overflow_type overflow;
      bool overall_overflow = false;
      widest_int compare_count, tem;

      /* (loop_bound - base) / compare_step */
      tem = wi::sub (wi::to_widest (loop_bound_var),
		     wi::to_widest (compare_base), SIGNED, &overflow);
      overall_overflow |= overflow;
      widest_int loop_count = wi::div_trunc (tem,
					     wi::to_widest (compare_step_var),
					     SIGNED, &overflow);
      overall_overflow |= overflow;

      if (!wi::neg_p (wi::to_widest (compare_step_var))
          ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
	{
	  /* (loop_bound - compare_bound) / compare_step */
	  tem = wi::sub (wi::to_widest (loop_bound_var),
			 wi::to_widest (compare_var), SIGNED, &overflow);
	  overall_overflow |= overflow;
	  compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
					 SIGNED, &overflow);
	  overall_overflow |= overflow;
	}
      else
        {
	  /* (compare_bound - base) / compare_step */
	  tem = wi::sub (wi::to_widest (compare_var),
			 wi::to_widest (compare_base), SIGNED, &overflow);
	  overall_overflow |= overflow;
          compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
					 SIGNED, &overflow);
	  overall_overflow |= overflow;
	}
      if (compare_code == LE_EXPR || compare_code == GE_EXPR)
	++compare_count;
      if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
	++loop_count;
      if (wi::neg_p (compare_count))
        compare_count = 0;
      if (wi::neg_p (loop_count))
        loop_count = 0;
      if (loop_count == 0)
	probability = 0;
      else if (wi::cmps (compare_count, loop_count) == 1)
	probability = REG_BR_PROB_BASE;
      else
        {
	  tem = compare_count * REG_BR_PROB_BASE;
	  tem = wi::udiv_trunc (tem, loop_count);
	  probability = tem.to_uhwi ();
	}

      /* FIXME: The branch prediction seems broken. It has only 20% hitrate.  */
      if (!overall_overflow)
        predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);

      return;
    }

  if (expr_coherent_p (loop_bound_var, compare_var))
    {
      if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
	  && (compare_code == LT_EXPR || compare_code == LE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
	       && (compare_code == GT_EXPR || compare_code == GE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if (loop_bound_code == NE_EXPR)
	{
	  /* If the loop backedge condition is "(i != bound)", we do
	     the comparison based on the step of IV:
	     * step < 0 : backedge condition is like (i > bound)
	     * step > 0 : backedge condition is like (i < bound)  */
	  gcc_assert (loop_bound_step != 0);
	  if (loop_bound_step > 0
	      && (compare_code == LT_EXPR
		  || compare_code == LE_EXPR))
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
	  else if (loop_bound_step < 0
		   && (compare_code == GT_EXPR
		       || compare_code == GE_EXPR))
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
	  else
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
	}
      else
	/* The branch is predicted not-taken if loop_bound_code is
	   opposite with compare_code.  */
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
    }
  else if (expr_coherent_p (loop_iv_base_var, compare_var))
    {
      /* For cases like:
	   for (i = s; i < h; i++)
	     if (i > s + 2) ....
	 The branch should be predicted taken.  */
      if (loop_bound_step > 0
	  && (compare_code == GT_EXPR || compare_code == GE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if (loop_bound_step < 0
	       && (compare_code == LT_EXPR || compare_code == LE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
    }
}

/* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
   exits are resulted from short-circuit conditions that will generate an
   if_tmp. E.g.:

   if (foo() || global > 10)
     break;

   This will be translated into:

   BB3:
     loop header...
   BB4:
     if foo() goto BB6 else goto BB5
   BB5:
     if global > 10 goto BB6 else goto BB7
   BB6:
     goto BB7
   BB7:
     iftmp = (PHI 0(BB5), 1(BB6))
     if iftmp == 1 goto BB8 else goto BB3
   BB8:
     outside of the loop...

   The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
   From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
   exits. This function takes BB7->BB8 as input, and finds out the extra loop
   exits to predict them using PRED_LOOP_EXTRA_EXIT.  */

static void
predict_extra_loop_exits (class loop *loop, edge exit_edge)
{
  unsigned i;
  bool check_value_one;
  gimple *lhs_def_stmt;
  gphi *phi_stmt;
  tree cmp_rhs, cmp_lhs;
  gimple *last;
  gcond *cmp_stmt;

  last = last_stmt (exit_edge->src);
  if (!last)
    return;
  cmp_stmt = dyn_cast <gcond *> (last);
  if (!cmp_stmt)
    return;

  cmp_rhs = gimple_cond_rhs (cmp_stmt);
  cmp_lhs = gimple_cond_lhs (cmp_stmt);
  if (!TREE_CONSTANT (cmp_rhs)
      || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
    return;
  if (TREE_CODE (cmp_lhs) != SSA_NAME)
    return;

  /* If check_value_one is true, only the phi_args with value '1' will lead
     to loop exit. Otherwise, only the phi_args with value '0' will lead to
     loop exit.  */
  check_value_one = (((integer_onep (cmp_rhs))
		    ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
		    ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));

  lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
  if (!lhs_def_stmt)
    return;

  phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
  if (!phi_stmt)
    return;

  for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
    {
      edge e1;
      edge_iterator ei;
      tree val = gimple_phi_arg_def (phi_stmt, i);
      edge e = gimple_phi_arg_edge (phi_stmt, i);

      if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
	continue;
      if ((check_value_one ^ integer_onep (val)) == 1)
	continue;
      if (EDGE_COUNT (e->src->succs) != 1)
	{
	  predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
					 loop);
	  continue;
	}

      FOR_EACH_EDGE (e1, ei, e->src->preds)
	predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
				       loop);
    }
}


/* Predict edge probabilities by exploiting loop structure.  */

static void
predict_loops (void)
{
  basic_block bb;
  hash_set <class loop *> with_recursion(10);

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;
      tree decl;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	if (is_gimple_call (gsi_stmt (gsi))
	    && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
	    && recursive_call_p (current_function_decl, decl))
	  {
	    class loop *loop = bb->loop_father;
	    while (loop && !with_recursion.add (loop))
	      loop = loop_outer (loop);
	  }
    }

  /* Try to predict out blocks in a loop that are not part of a
     natural loop.  */
  for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
    {
      basic_block bb, *bbs;
      unsigned j, n_exits = 0;
      class tree_niter_desc niter_desc;
      edge ex;
      class nb_iter_bound *nb_iter;
      enum tree_code loop_bound_code = ERROR_MARK;
      tree loop_bound_step = NULL;
      tree loop_bound_var = NULL;
      tree loop_iv_base = NULL;
      gcond *stmt = NULL;
      bool recursion = with_recursion.contains (loop);

      auto_vec<edge> exits = get_loop_exit_edges (loop);
      FOR_EACH_VEC_ELT (exits, j, ex)
	if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
	  n_exits ++;
      if (!n_exits)
	continue;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
		 loop->num, recursion ? " (with recursion)":"", n_exits);
      if (dump_file && (dump_flags & TDF_DETAILS)
	  && max_loop_iterations_int (loop) >= 0)
	{
	  fprintf (dump_file,
		   "Loop %d iterates at most %i times.\n", loop->num,
		   (int)max_loop_iterations_int (loop));
	}
      if (dump_file && (dump_flags & TDF_DETAILS)
	  && likely_max_loop_iterations_int (loop) >= 0)
	{
	  fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
		   loop->num, (int)likely_max_loop_iterations_int (loop));
	}

      FOR_EACH_VEC_ELT (exits, j, ex)
	{
	  tree niter = NULL;
	  HOST_WIDE_INT nitercst;
	  int max = param_max_predicted_iterations;
	  int probability;
	  enum br_predictor predictor;
	  widest_int nit;

	  if (unlikely_executed_edge_p (ex)
	      || (ex->flags & EDGE_ABNORMAL_CALL))
	    continue;
	  /* Loop heuristics do not expect exit conditional to be inside
	     inner loop.  We predict from innermost to outermost loop.  */
	  if (predicted_by_loop_heuristics_p (ex->src))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "Skipping exit %i->%i because "
			 "it is already predicted.\n",
			 ex->src->index, ex->dest->index);
	      continue;
	    }
	  predict_extra_loop_exits (loop, ex);

	  if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
	    niter = niter_desc.niter;
	  if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
	    niter = loop_niter_by_eval (loop, ex);
	  if (dump_file && (dump_flags & TDF_DETAILS)
	      && TREE_CODE (niter) == INTEGER_CST)
	    {
	      fprintf (dump_file, "Exit %i->%i %d iterates ",
		       ex->src->index, ex->dest->index,
		       loop->num);
	      print_generic_expr (dump_file, niter, TDF_SLIM);
	      fprintf (dump_file, " times.\n");
	    }

	  if (TREE_CODE (niter) == INTEGER_CST)
	    {
	      if (tree_fits_uhwi_p (niter)
		  && max
		  && compare_tree_int (niter, max - 1) == -1)
		nitercst = tree_to_uhwi (niter) + 1;
	      else
		nitercst = max;
	      predictor = PRED_LOOP_ITERATIONS;
	    }
	  /* If we have just one exit and we can derive some information about
	     the number of iterations of the loop from the statements inside
	     the loop, use it to predict this exit.  */
	  else if (n_exits == 1
		   && estimated_stmt_executions (loop, &nit))
	    {
	      if (wi::gtu_p (nit, max))
		nitercst = max;
	      else
		nitercst = nit.to_shwi ();
	      predictor = PRED_LOOP_ITERATIONS_GUESSED;
	    }
	  /* If we have likely upper bound, trust it for very small iteration
	     counts.  Such loops would otherwise get mispredicted by standard
	     LOOP_EXIT heuristics.  */
	  else if (n_exits == 1
		   && likely_max_stmt_executions (loop, &nit)
		   && wi::ltu_p (nit,
				 RDIV (REG_BR_PROB_BASE,
				       REG_BR_PROB_BASE
					 - predictor_info
						 [recursion
						  ? PRED_LOOP_EXIT_WITH_RECURSION
						  : PRED_LOOP_EXIT].hitrate)))
	    {
	      nitercst = nit.to_shwi ();
	      predictor = PRED_LOOP_ITERATIONS_MAX;
	    }
	  else
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "Nothing known about exit %i->%i.\n",
			 ex->src->index, ex->dest->index);
	      continue;
	    }

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
		     (int)nitercst, predictor_info[predictor].name);
	  /* If the prediction for number of iterations is zero, do not
	     predict the exit edges.  */
	  if (nitercst == 0)
	    continue;

	  probability = RDIV (REG_BR_PROB_BASE, nitercst);
	  predict_edge (ex, predictor, probability);
	}

      /* Find information about loop bound variables.  */
      for (nb_iter = loop->bounds; nb_iter;
	   nb_iter = nb_iter->next)
	if (nb_iter->stmt
	    && gimple_code (nb_iter->stmt) == GIMPLE_COND)
	  {
	    stmt = as_a <gcond *> (nb_iter->stmt);
	    break;
	  }
      if (!stmt && last_stmt (loop->header)
	  && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
	stmt = as_a <gcond *> (last_stmt (loop->header));
      if (stmt)
	is_comparison_with_loop_invariant_p (stmt, loop,
					     &loop_bound_var,
					     &loop_bound_code,
					     &loop_bound_step,
					     &loop_iv_base);

      bbs = get_loop_body (loop);

      for (j = 0; j < loop->num_nodes; j++)
	{
	  edge e;
	  edge_iterator ei;

	  bb = bbs[j];

	  /* Bypass loop heuristics on continue statement.  These
	     statements construct loops via "non-loop" constructs
	     in the source language and are better to be handled
	     separately.  */
	  if (predicted_by_p (bb, PRED_CONTINUE))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "BB %i predicted by continue.\n",
			 bb->index);
	      continue;
	    }

	  /* If we already used more reliable loop exit predictors, do not
	     bother with PRED_LOOP_EXIT.  */
	  if (!predicted_by_loop_heuristics_p (bb))
	    {
	      /* For loop with many exits we don't want to predict all exits
	         with the pretty large probability, because if all exits are
		 considered in row, the loop would be predicted to iterate
		 almost never.  The code to divide probability by number of
		 exits is very rough.  It should compute the number of exits
		 taken in each patch through function (not the overall number
		 of exits that might be a lot higher for loops with wide switch
		 statements in them) and compute n-th square root.

		 We limit the minimal probability by 2% to avoid
		 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
		 as this was causing regression in perl benchmark containing such
		 a wide loop.  */

	      int probability = ((REG_BR_PROB_BASE
		                  - predictor_info
				     [recursion
				      ? PRED_LOOP_EXIT_WITH_RECURSION
				      : PRED_LOOP_EXIT].hitrate)
				 / n_exits);
	      if (probability < HITRATE (2))
		probability = HITRATE (2);
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (e->dest->index < NUM_FIXED_BLOCKS
		    || !flow_bb_inside_loop_p (loop, e->dest))
		  {
		    if (dump_file && (dump_flags & TDF_DETAILS))
		      fprintf (dump_file,
			       "Predicting exit %i->%i with prob %i.\n",
			       e->src->index, e->dest->index, probability);
		    predict_edge (e,
				  recursion ? PRED_LOOP_EXIT_WITH_RECURSION
			          : PRED_LOOP_EXIT, probability);
		  }
	    }
	  if (loop_bound_var)
	    predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
				   loop_bound_code,
				   tree_to_shwi (loop_bound_step));
	}

      /* In the following code
	 for (loop1)
	   if (cond)
	     for (loop2)
	       body;
	 guess that cond is unlikely.  */
      if (loop_outer (loop)->num)
	{
	  basic_block bb = NULL;
	  edge preheader_edge = loop_preheader_edge (loop);

	  if (single_pred_p (preheader_edge->src)
	      && single_succ_p (preheader_edge->src))
	    preheader_edge = single_pred_edge (preheader_edge->src);

	  gimple *stmt = last_stmt (preheader_edge->src);
	  /* Pattern match fortran loop preheader:
	     _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
	     _17 = (logical(kind=4)) _16;
	     if (_17 != 0)
	       goto <bb 11>;
	     else
	       goto <bb 13>;

	     Loop guard branch prediction says nothing about duplicated loop
	     headers produced by fortran frontend and in this case we want
	     to predict paths leading to this preheader.  */

	  if (stmt
	      && gimple_code (stmt) == GIMPLE_COND
	      && gimple_cond_code (stmt) == NE_EXPR
	      && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
	      && integer_zerop (gimple_cond_rhs (stmt)))
	     {
	       gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
	       if (gimple_code (call_stmt) == GIMPLE_ASSIGN
		   && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
		   && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
		 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
	       if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
		   && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
		   && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
		   && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
			== PRED_FORTRAN_LOOP_PREHEADER)
		 bb = preheader_edge->src;
	     }
	  if (!bb)
	    {
	      if (!dominated_by_p (CDI_DOMINATORS,
				   loop_outer (loop)->latch, loop->header))
		predict_paths_leading_to_edge (loop_preheader_edge (loop),
					       recursion
					       ? PRED_LOOP_GUARD_WITH_RECURSION
					       : PRED_LOOP_GUARD,
					       NOT_TAKEN,
					       loop_outer (loop));
	    }
	  else
	    {
	      if (!dominated_by_p (CDI_DOMINATORS,
				   loop_outer (loop)->latch, bb))
		predict_paths_leading_to (bb,
					  recursion
					  ? PRED_LOOP_GUARD_WITH_RECURSION
					  : PRED_LOOP_GUARD,
					  NOT_TAKEN,
					  loop_outer (loop));
	    }
	}

      /* Free basic blocks from get_loop_body.  */
      free (bbs);
    }
}

/* Attempt to predict probabilities of BB outgoing edges using local
   properties.  */
static void
bb_estimate_probability_locally (basic_block bb)
{
  rtx_insn *last_insn = BB_END (bb);
  rtx cond;

  if (! can_predict_insn_p (last_insn))
    return;
  cond = get_condition (last_insn, NULL, false, false);
  if (! cond)
    return;

  /* Try "pointer heuristic."
     A comparison ptr == 0 is predicted as false.
     Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
  if (COMPARISON_P (cond)
      && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
	  || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
    {
      if (GET_CODE (cond) == EQ)
	predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
      else if (GET_CODE (cond) == NE)
	predict_insn_def (last_insn, PRED_POINTER, TAKEN);
    }
  else

  /* Try "opcode heuristic."
     EQ tests are usually false and NE tests are usually true. Also,
     most quantities are positive, so we can make the appropriate guesses
     about signed comparisons against zero.  */
    switch (GET_CODE (cond))
      {
      case CONST_INT:
	/* Unconditional branch.  */
	predict_insn_def (last_insn, PRED_UNCONDITIONAL,
			  cond == const0_rtx ? NOT_TAKEN : TAKEN);
	break;

      case EQ:
      case UNEQ:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (XEXP (cond, 1) == const0_rtx
		 || XEXP (cond, 0) == const0_rtx)
	  ;
	else
	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
	break;

      case NE:
      case LTGT:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (XEXP (cond, 1) == const0_rtx
		 || XEXP (cond, 0) == const0_rtx)
	  ;
	else
	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
	break;

      case ORDERED:
	predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
	break;

      case UNORDERED:
	predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
	break;

      case LE:
      case LT:
	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
	    || XEXP (cond, 1) == constm1_rtx)
	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
	break;

      case GE:
      case GT:
	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
	    || XEXP (cond, 1) == constm1_rtx)
	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
	break;

      default:
	break;
      }
}

/* Set edge->probability for each successor edge of BB.  */
void
guess_outgoing_edge_probabilities (basic_block bb)
{
  bb_estimate_probability_locally (bb);
  combine_predictions_for_insn (BB_END (bb), bb);
}

static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
				 HOST_WIDE_INT *probability);

/* Helper function for expr_expected_value.  */

static tree
expr_expected_value_1 (tree type, tree op0, enum tree_code code,
		       tree op1, bitmap visited, enum br_predictor *predictor,
		       HOST_WIDE_INT *probability)
{
  gimple *def;

  /* Reset returned probability value.  */
  *probability = -1;
  *predictor = PRED_UNCONDITIONAL;

  if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
    {
      if (TREE_CONSTANT (op0))
	return op0;

      if (code == IMAGPART_EXPR)
	{
	  if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
	    {
	      def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
	      if (is_gimple_call (def)
		  && gimple_call_internal_p (def)
		  && (gimple_call_internal_fn (def)
		      == IFN_ATOMIC_COMPARE_EXCHANGE))
		{
		  /* Assume that any given atomic operation has low contention,
		     and thus the compare-and-swap operation succeeds.  */
		  *predictor = PRED_COMPARE_AND_SWAP;
		  return build_one_cst (TREE_TYPE (op0));
		}
	    }
	}

      if (code != SSA_NAME)
	return NULL_TREE;

      def = SSA_NAME_DEF_STMT (op0);

      /* If we were already here, break the infinite cycle.  */
      if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
	return NULL;

      if (gimple_code (def) == GIMPLE_PHI)
	{
	  /* All the arguments of the PHI node must have the same constant
	     length.  */
	  int i, n = gimple_phi_num_args (def);
	  tree val = NULL, new_val;

	  for (i = 0; i < n; i++)
	    {
	      tree arg = PHI_ARG_DEF (def, i);
	      enum br_predictor predictor2;

	      /* If this PHI has itself as an argument, we cannot
		 determine the string length of this argument.  However,
		 if we can find an expected constant value for the other
		 PHI args then we can still be sure that this is
		 likely a constant.  So be optimistic and just
		 continue with the next argument.  */
	      if (arg == PHI_RESULT (def))
		continue;

	      HOST_WIDE_INT probability2;
	      new_val = expr_expected_value (arg, visited, &predictor2,
					     &probability2);

	      /* It is difficult to combine value predictors.  Simply assume
		 that later predictor is weaker and take its prediction.  */
	      if (*predictor < predictor2)
		{
		  *predictor = predictor2;
		  *probability = probability2;
		}
	      if (!new_val)
		return NULL;
	      if (!val)
		val = new_val;
	      else if (!operand_equal_p (val, new_val, false))
		return NULL;
	    }
	  return val;
	}
      if (is_gimple_assign (def))
	{
	  if (gimple_assign_lhs (def) != op0)
	    return NULL;

	  return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
					gimple_assign_rhs1 (def),
					gimple_assign_rhs_code (def),
					gimple_assign_rhs2 (def),
					visited, predictor, probability);
	}

      if (is_gimple_call (def))
	{
	  tree decl = gimple_call_fndecl (def);
	  if (!decl)
	    {
	      if (gimple_call_internal_p (def)
		  && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
		{
		  gcc_assert (gimple_call_num_args (def) == 3);
		  tree val = gimple_call_arg (def, 0);
		  if (TREE_CONSTANT (val))
		    return val;
		  tree val2 = gimple_call_arg (def, 2);
		  gcc_assert (TREE_CODE (val2) == INTEGER_CST
			      && tree_fits_uhwi_p (val2)
			      && tree_to_uhwi (val2) < END_PREDICTORS);
		  *predictor = (enum br_predictor) tree_to_uhwi (val2);
		  if (*predictor == PRED_BUILTIN_EXPECT)
		    *probability
		      = HITRATE (param_builtin_expect_probability);
		  return gimple_call_arg (def, 1);
		}
	      return NULL;
	    }

	  if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
	    {
	      if (predictor)
		*predictor = PRED_MALLOC_NONNULL;
	      return boolean_true_node;
	    }

	  if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
	    switch (DECL_FUNCTION_CODE (decl))
	      {
	      case BUILT_IN_EXPECT:
		{
		  tree val;
		  if (gimple_call_num_args (def) != 2)
		    return NULL;
		  val = gimple_call_arg (def, 0);
		  if (TREE_CONSTANT (val))
		    return val;
		  *predictor = PRED_BUILTIN_EXPECT;
		  *probability
		    = HITRATE (param_builtin_expect_probability);
		  return gimple_call_arg (def, 1);
		}
	      case BUILT_IN_EXPECT_WITH_PROBABILITY:
		{
		  tree val;
		  if (gimple_call_num_args (def) != 3)
		    return NULL;
		  val = gimple_call_arg (def, 0);
		  if (TREE_CONSTANT (val))
		    return val;
		  /* Compute final probability as:
		     probability * REG_BR_PROB_BASE.  */
		  tree prob = gimple_call_arg (def, 2);
		  tree t = TREE_TYPE (prob);
		  tree base = build_int_cst (integer_type_node,
					     REG_BR_PROB_BASE);
		  base = build_real_from_int_cst (t, base);
		  tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
							MULT_EXPR, t, prob, base);
		  if (TREE_CODE (r) != REAL_CST)
		    {
		      error_at (gimple_location (def),
				"probability %qE must be "
				"constant floating-point expression", prob);
		      return NULL;
		    }
		  HOST_WIDE_INT probi
		    = real_to_integer (TREE_REAL_CST_PTR (r));
		  if (probi >= 0 && probi <= REG_BR_PROB_BASE)
		    {
		      *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
		      *probability = probi;
		    }
		  else
		    error_at (gimple_location (def),
			      "probability %qE is outside "
			      "the range [0.0, 1.0]", prob);

		  return gimple_call_arg (def, 1);
		}

	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
		/* Assume that any given atomic operation has low contention,
		   and thus the compare-and-swap operation succeeds.  */
		*predictor = PRED_COMPARE_AND_SWAP;
		return boolean_true_node;
	      case BUILT_IN_REALLOC:
		if (predictor)
		  *predictor = PRED_MALLOC_NONNULL;
		return boolean_true_node;
	      default:
		break;
	    }
	}

      return NULL;
    }

  if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
    {
      tree res;
      enum br_predictor predictor2;
      HOST_WIDE_INT probability2;
      op0 = expr_expected_value (op0, visited, predictor, probability);
      if (!op0)
	return NULL;
      op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
      if (!op1)
	return NULL;
      res = fold_build2 (code, type, op0, op1);
      if (TREE_CODE (res) == INTEGER_CST
	  && TREE_CODE (op0) == INTEGER_CST
	  && TREE_CODE (op1) == INTEGER_CST)
	{
	  /* Combine binary predictions.  */
	  if (*probability != -1 || probability2 != -1)
	    {
	      HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
	      HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
	      *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
	    }

	  if (*predictor < predictor2)
	    *predictor = predictor2;

	  return res;
	}
      return NULL;
    }
  if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
    {
      tree res;
      op0 = expr_expected_value (op0, visited, predictor, probability);
      if (!op0)
	return NULL;
      res = fold_build1 (code, type, op0);
      if (TREE_CONSTANT (res))
	return res;
      return NULL;
    }
  return NULL;
}

/* Return constant EXPR will likely have at execution time, NULL if unknown.
   The function is used by builtin_expect branch predictor so the evidence
   must come from this construct and additional possible constant folding.

   We may want to implement more involved value guess (such as value range
   propagation based prediction), but such tricks shall go to new
   implementation.  */

static tree
expr_expected_value (tree expr, bitmap visited,
		     enum br_predictor *predictor,
		     HOST_WIDE_INT *probability)
{
  enum tree_code code;
  tree op0, op1;

  if (TREE_CONSTANT (expr))
    {
      *predictor = PRED_UNCONDITIONAL;
      *probability = -1;
      return expr;
    }

  extract_ops_from_tree (expr, &code, &op0, &op1);
  return expr_expected_value_1 (TREE_TYPE (expr),
				op0, code, op1, visited, predictor,
				probability);
}


/* Return probability of a PREDICTOR.  If the predictor has variable
   probability return passed PROBABILITY.  */

static HOST_WIDE_INT
get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
{
  switch (predictor)
    {
    case PRED_BUILTIN_EXPECT:
    case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
      gcc_assert (probability != -1);
      return probability;
    default:
      gcc_assert (probability == -1);
      return predictor_info[(int) predictor].hitrate;
    }
}

/* Predict using opcode of the last statement in basic block.  */
static void
tree_predict_by_opcode (basic_block bb)
{
  gimple *stmt = last_stmt (bb);
  edge then_edge;
  tree op0, op1;
  tree type;
  tree val;
  enum tree_code cmp;
  edge_iterator ei;
  enum br_predictor predictor;
  HOST_WIDE_INT probability;

  if (!stmt)
    return;

  if (gswitch *sw = dyn_cast <gswitch *> (stmt))
    {
      tree index = gimple_switch_index (sw);
      tree val = expr_expected_value (index, auto_bitmap (),
				      &predictor, &probability);
      if (val && TREE_CODE (val) == INTEGER_CST)
	{
	  edge e = find_taken_edge_switch_expr (sw, val);
	  if (predictor == PRED_BUILTIN_EXPECT)
	    {
	      int percent = param_builtin_expect_probability;
	      gcc_assert (percent >= 0 && percent <= 100);
	      predict_edge (e, PRED_BUILTIN_EXPECT,
			    HITRATE (percent));
	    }
	  else
	    predict_edge_def (e, predictor, TAKEN);
	}
    }

  if (gimple_code (stmt) != GIMPLE_COND)
    return;
  FOR_EACH_EDGE (then_edge, ei, bb->succs)
    if (then_edge->flags & EDGE_TRUE_VALUE)
      break;
  op0 = gimple_cond_lhs (stmt);
  op1 = gimple_cond_rhs (stmt);
  cmp = gimple_cond_code (stmt);
  type = TREE_TYPE (op0);
  val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
			       &predictor, &probability);
  if (val && TREE_CODE (val) == INTEGER_CST)
    {
      HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
      if (integer_zerop (val))
	prob = REG_BR_PROB_BASE - prob;
      predict_edge (then_edge, predictor, prob);
    }
  /* Try "pointer heuristic."
     A comparison ptr == 0 is predicted as false.
     Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
  if (POINTER_TYPE_P (type))
    {
      if (cmp == EQ_EXPR)
	predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
      else if (cmp == NE_EXPR)
	predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
    }
  else

  /* Try "opcode heuristic."
     EQ tests are usually false and NE tests are usually true. Also,
     most quantities are positive, so we can make the appropriate guesses
     about signed comparisons against zero.  */
    switch (cmp)
      {
      case EQ_EXPR:
      case UNEQ_EXPR:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_TYPE_P (type))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (integer_zerop (op0) || integer_zerop (op1))
	  ;
	else
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
	break;

      case NE_EXPR:
      case LTGT_EXPR:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_TYPE_P (type))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (integer_zerop (op0)
		 || integer_zerop (op1))
	  ;
	else
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
	break;

      case ORDERED_EXPR:
	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
	break;

      case UNORDERED_EXPR:
	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
	break;

      case LE_EXPR:
      case LT_EXPR:
	if (integer_zerop (op1)
	    || integer_onep (op1)
	    || integer_all_onesp (op1)
	    || real_zerop (op1)
	    || real_onep (op1)
	    || real_minus_onep (op1))
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
	break;

      case GE_EXPR:
      case GT_EXPR:
	if (integer_zerop (op1)
	    || integer_onep (op1)
	    || integer_all_onesp (op1)
	    || real_zerop (op1)
	    || real_onep (op1)
	    || real_minus_onep (op1))
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
	break;

      default:
	break;
      }
}

/* Returns TRUE if the STMT is exit(0) like statement. */

static bool
is_exit_with_zero_arg (const gimple *stmt)
{
  /* This is not exit, _exit or _Exit. */
  if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
      && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
      && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
    return false;

  /* Argument is an interger zero. */
  return integer_zerop (gimple_call_arg (stmt, 0));
}

/* Try to guess whether the value of return means error code.  */

static enum br_predictor
return_prediction (tree val, enum prediction *prediction)
{
  /* VOID.  */
  if (!val)
    return PRED_NO_PREDICTION;
  /* Different heuristics for pointers and scalars.  */
  if (POINTER_TYPE_P (TREE_TYPE (val)))
    {
      /* NULL is usually not returned.  */
      if (integer_zerop (val))
	{
	  *prediction = NOT_TAKEN;
	  return PRED_NULL_RETURN;
	}
    }
  else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
    {
      /* Negative return values are often used to indicate
         errors.  */
      if (TREE_CODE (val) == INTEGER_CST
	  && tree_int_cst_sgn (val) < 0)
	{
	  *prediction = NOT_TAKEN;
	  return PRED_NEGATIVE_RETURN;
	}
      /* Constant return values seems to be commonly taken.
         Zero/one often represent booleans so exclude them from the
	 heuristics.  */
      if (TREE_CONSTANT (val)
	  && (!integer_zerop (val) && !integer_onep (val)))
	{
	  *prediction = NOT_TAKEN;
	  return PRED_CONST_RETURN;
	}
    }
  return PRED_NO_PREDICTION;
}

/* Return zero if phi result could have values other than -1, 0 or 1,
   otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
   values are used or likely.  */

static int
zero_one_minusone (gphi *phi, int limit)
{
  int phi_num_args = gimple_phi_num_args (phi);
  int ret = 0;
  for (int i = 0; i < phi_num_args; i++)
    {
      tree t = PHI_ARG_DEF (phi, i);
      if (TREE_CODE (t) != INTEGER_CST)
	continue;
      wide_int w = wi::to_wide (t);
      if (w == -1)
	ret |= 1;
      else if (w == 0)
	ret |= 2;
      else if (w == 1)
	ret |= 4;
      else
	return 0;
    }
  for (int i = 0; i < phi_num_args; i++)
    {
      tree t = PHI_ARG_DEF (phi, i);
      if (TREE_CODE (t) == INTEGER_CST)
	continue;
      if (TREE_CODE (t) != SSA_NAME)
	return 0;
      gimple *g = SSA_NAME_DEF_STMT (t);
      if (gimple_code (g) == GIMPLE_PHI && limit > 0)
	if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
	  {
	    ret |= r;
	    continue;
	  }
      if (!is_gimple_assign (g))
	return 0;
      if (gimple_assign_cast_p (g))
	{
	  tree rhs1 = gimple_assign_rhs1 (g);
	  if (TREE_CODE (rhs1) != SSA_NAME
	      || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
	      || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
	      || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
	    return 0;
	  ret |= (2 | 4);
	  continue;
	}
      if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
	return 0;
      ret |= (2 | 4);
    }
  return ret;
}

/* Find the basic block with return expression and look up for possible
   return value trying to apply RETURN_PREDICTION heuristics.  */
static void
apply_return_prediction (void)
{
  greturn *return_stmt = NULL;
  tree return_val;
  edge e;
  gphi *phi;
  int phi_num_args, i;
  enum br_predictor pred;
  enum prediction direction;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    {
      gimple *last = last_stmt (e->src);
      if (last
	  && gimple_code (last) == GIMPLE_RETURN)
	{
	  return_stmt = as_a <greturn *> (last);
	  break;
	}
    }
  if (!e)
    return;
  return_val = gimple_return_retval (return_stmt);
  if (!return_val)
    return;
  if (TREE_CODE (return_val) != SSA_NAME
      || !SSA_NAME_DEF_STMT (return_val)
      || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
    return;
  phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
  phi_num_args = gimple_phi_num_args (phi);
  pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);

  /* Avoid the case where the function returns -1, 0 and 1 values and
     nothing else.  Those could be qsort etc. comparison functions
     where the negative return isn't less probable than positive.
     For this require that the function returns at least -1 or 1
     or -1 and a boolean value or comparison result, so that functions
     returning just -1 and 0 are treated as if -1 represents error value.  */
  if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
      && !TYPE_UNSIGNED (TREE_TYPE (return_val))
      && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
    if (int r = zero_one_minusone (phi, 3))
      if ((r & (1 | 4)) == (1 | 4))
	return;

  /* Avoid the degenerate case where all return values form the function
     belongs to same category (ie they are all positive constants)
     so we can hardly say something about them.  */
  for (i = 1; i < phi_num_args; i++)
    if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
      break;
  if (i != phi_num_args)
    for (i = 0; i < phi_num_args; i++)
      {
	pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
	if (pred != PRED_NO_PREDICTION)
	  predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
				         direction);
      }
}

/* Look for basic block that contains unlikely to happen events
   (such as noreturn calls) and mark all paths leading to execution
   of this basic blocks as unlikely.  */

static void
tree_bb_level_predictions (void)
{
  basic_block bb;
  bool has_return_edges = false;
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
      {
        has_return_edges = true;
	break;
      }

  apply_return_prediction ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  tree decl;

	  if (is_gimple_call (stmt))
	    {
	      if (gimple_call_noreturn_p (stmt)
		  && has_return_edges
		  && !is_exit_with_zero_arg (stmt))
		predict_paths_leading_to (bb, PRED_NORETURN,
					  NOT_TAKEN);
	      decl = gimple_call_fndecl (stmt);
	      if (decl
		  && lookup_attribute ("cold",
				       DECL_ATTRIBUTES (decl)))
		predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
					  NOT_TAKEN);
	      if (decl && recursive_call_p (current_function_decl, decl))
		predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
					  NOT_TAKEN);
	    }
	  else if (gimple_code (stmt) == GIMPLE_PREDICT)
	    {
	      predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
					gimple_predict_outcome (stmt));
	      /* Keep GIMPLE_PREDICT around so early inlining will propagate
	         hints to callers.  */
	    }
	}
    }
}

/* Callback for hash_map::traverse, asserts that the pointer map is
   empty.  */

bool
assert_is_empty (const_basic_block const &, edge_prediction *const &value,
		 void *)
{
  gcc_assert (!value);
  return true;
}

/* Predict branch probabilities and estimate profile for basic block BB.
   When LOCAL_ONLY is set do not use any global properties of CFG.  */

static void
tree_estimate_probability_bb (basic_block bb, bool local_only)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      /* Look for block we are guarding (ie we dominate it,
	 but it doesn't postdominate us).  */
      if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
	  && !local_only
	  && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
	  && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
	{
	  gimple_stmt_iterator bi;

	  /* The call heuristic claims that a guarded function call
	     is improbable.  This is because such calls are often used
	     to signal exceptional situations such as printing error
	     messages.  */
	  for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
	       gsi_next (&bi))
	    {
	      gimple *stmt = gsi_stmt (bi);
	      if (is_gimple_call (stmt)
		  && !gimple_inexpensive_call_p (as_a <gcall *>  (stmt))
		  /* Constant and pure calls are hardly used to signalize
		     something exceptional.  */
		  && gimple_has_side_effects (stmt))
		{
		  if (gimple_call_fndecl (stmt))
		    predict_edge_def (e, PRED_CALL, NOT_TAKEN);
		  else if (virtual_method_call_p (gimple_call_fn (stmt)))
		    predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
		  else
		    predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
		  break;
		}
	    }
	}
    }
  tree_predict_by_opcode (bb);
}

/* Predict branch probabilities and estimate profile of the tree CFG.
   This function can be called from the loop optimizers to recompute
   the profile information.
   If DRY_RUN is set, do not modify CFG and only produce dump files.  */

void
tree_estimate_probability (bool dry_run)
{
  basic_block bb;

  connect_infinite_loops_to_exit ();
  /* We use loop_niter_by_eval, which requires that the loops have
     preheaders.  */
  create_preheaders (CP_SIMPLE_PREHEADERS);
  calculate_dominance_info (CDI_POST_DOMINATORS);
  /* Decide which edges are known to be unlikely.  This improves later
     branch prediction. */
  determine_unlikely_bbs ();

  bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
  tree_bb_level_predictions ();
  record_loop_exits ();

  if (number_of_loops (cfun) > 1)
    predict_loops ();

  FOR_EACH_BB_FN (bb, cfun)
    tree_estimate_probability_bb (bb, false);

  FOR_EACH_BB_FN (bb, cfun)
    combine_predictions_for_bb (bb, dry_run);

  if (flag_checking)
    bb_predictions->traverse<void *, assert_is_empty> (NULL);

  delete bb_predictions;
  bb_predictions = NULL;

  if (!dry_run)
    estimate_bb_frequencies (false);
  free_dominance_info (CDI_POST_DOMINATORS);
  remove_fake_exit_edges ();
}

/* Set edge->probability for each successor edge of BB.  */
void
tree_guess_outgoing_edge_probabilities (basic_block bb)
{
  bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
  tree_estimate_probability_bb (bb, true);
  combine_predictions_for_bb (bb, false);
  if (flag_checking)
    bb_predictions->traverse<void *, assert_is_empty> (NULL);
  delete bb_predictions;
  bb_predictions = NULL;
}

/* Filter function predicate that returns true for a edge predicate P
   if its edge is equal to DATA.  */

static bool
not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
{
  return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
}

/* Predict edge E with PRED unless it is already predicted by some predictor
   considered equivalent.  */

static void
maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
{
  if (edge_predicted_by_p (e, pred, taken))
    return;
  if (pred == PRED_LOOP_GUARD
      && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
    return;
  /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD.  */
  if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
    {
      edge_prediction **preds = bb_predictions->get (e->src);
      if (preds)
	filter_predictions (preds, not_loop_guard_equal_edge_p, e);
    }
  predict_edge_def (e, pred, taken);
}
/* Predict edges to successors of CUR whose sources are not postdominated by
   BB by PRED and recurse to all postdominators.  */

static void
predict_paths_for_bb (basic_block cur, basic_block bb,
		      enum br_predictor pred,
		      enum prediction taken,
		      bitmap visited, class loop *in_loop = NULL)
{
  edge e;
  edge_iterator ei;
  basic_block son;

  /* If we exited the loop or CUR is unconditional in the loop, there is
     nothing to do.  */
  if (in_loop
      && (!flow_bb_inside_loop_p (in_loop, cur)
	  || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
    return;

  /* We are looking for all edges forming edge cut induced by
     set of all blocks postdominated by BB.  */
  FOR_EACH_EDGE (e, ei, cur->preds)
    if (e->src->index >= NUM_FIXED_BLOCKS
	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
    {
      edge e2;
      edge_iterator ei2;
      bool found = false;

      /* Ignore fake edges and eh, we predict them as not taken anyway.  */
      if (unlikely_executed_edge_p (e))
	continue;
      gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));

      /* See if there is an edge from e->src that is not abnormal
	 and does not lead to BB and does not exit the loop.  */
      FOR_EACH_EDGE (e2, ei2, e->src->succs)
	if (e2 != e
	    && !unlikely_executed_edge_p (e2)
	    && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
	    && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
	  {
	    found = true;
	    break;
	  }

      /* If there is non-abnormal path leaving e->src, predict edge
	 using predictor.  Otherwise we need to look for paths
	 leading to e->src.

	 The second may lead to infinite loop in the case we are predicitng
	 regions that are only reachable by abnormal edges.  We simply
	 prevent visiting given BB twice.  */
      if (found)
	maybe_predict_edge (e, pred, taken);
      else if (bitmap_set_bit (visited, e->src->index))
	predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
    }
  for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
       son;
       son = next_dom_son (CDI_POST_DOMINATORS, son))
    predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
}

/* Sets branch probabilities according to PREDiction and
   FLAGS.  */

static void
predict_paths_leading_to (basic_block bb, enum br_predictor pred,
			  enum prediction taken, class loop *in_loop)
{
  predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
}

/* Like predict_paths_leading_to but take edge instead of basic block.  */

static void
predict_paths_leading_to_edge (edge e, enum br_predictor pred,
			       enum prediction taken, class loop *in_loop)
{
  bool has_nonloop_edge = false;
  edge_iterator ei;
  edge e2;

  basic_block bb = e->src;
  FOR_EACH_EDGE (e2, ei, bb->succs)
    if (e2->dest != e->src && e2->dest != e->dest
	&& !unlikely_executed_edge_p (e2)
	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
      {
	has_nonloop_edge = true;
	break;
      }

  if (!has_nonloop_edge)
    predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
  else
    maybe_predict_edge (e, pred, taken);
}

/* This is used to carry information about basic blocks.  It is
   attached to the AUX field of the standard CFG block.  */

class block_info
{
public:
  /* Estimated frequency of execution of basic_block.  */
  sreal frequency;

  /* To keep queue of basic blocks to process.  */
  basic_block next;

  /* Number of predecessors we need to visit first.  */
  int npredecessors;
};

/* Similar information for edges.  */
class edge_prob_info
{
public:
  /* In case edge is a loopback edge, the probability edge will be reached
     in case header is.  Estimated number of iterations of the loop can be
     then computed as 1 / (1 - back_edge_prob).  */
  sreal back_edge_prob;
  /* True if the edge is a loopback edge in the natural loop.  */
  unsigned int back_edge:1;
};

#define BLOCK_INFO(B)	((block_info *) (B)->aux)
#undef EDGE_INFO
#define EDGE_INFO(E)	((edge_prob_info *) (E)->aux)

/* Helper function for estimate_bb_frequencies.
   Propagate the frequencies in blocks marked in
   TOVISIT, starting in HEAD.  */

static void
propagate_freq (basic_block head, bitmap tovisit,
		sreal max_cyclic_prob)
{
  basic_block bb;
  basic_block last;
  unsigned i;
  edge e;
  basic_block nextbb;
  bitmap_iterator bi;

  /* For each basic block we need to visit count number of his predecessors
     we need to visit first.  */
  EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
    {
      edge_iterator ei;
      int count = 0;

      bb = BASIC_BLOCK_FOR_FN (cfun, i);

      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  bool visit = bitmap_bit_p (tovisit, e->src->index);

	  if (visit && !(e->flags & EDGE_DFS_BACK))
	    count++;
	  else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
	    fprintf (dump_file,
		     "Irreducible region hit, ignoring edge to %i->%i\n",
		     e->src->index, bb->index);
	}
      BLOCK_INFO (bb)->npredecessors = count;
      /* When function never returns, we will never process exit block.  */
      if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
	bb->count = profile_count::zero ();
    }

  BLOCK_INFO (head)->frequency = 1;
  last = head;
  for (bb = head; bb; bb = nextbb)
    {
      edge_iterator ei;
      sreal cyclic_probability = 0;
      sreal frequency = 0;

      nextbb = BLOCK_INFO (bb)->next;
      BLOCK_INFO (bb)->next = NULL;

      /* Compute frequency of basic block.  */
      if (bb != head)
	{
	  if (flag_checking)
	    FOR_EACH_EDGE (e, ei, bb->preds)
	      gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
			  || (e->flags & EDGE_DFS_BACK));

	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (EDGE_INFO (e)->back_edge)
	      cyclic_probability += EDGE_INFO (e)->back_edge_prob;
	    else if (!(e->flags & EDGE_DFS_BACK))
	      {
		/* FIXME: Graphite is producing edges with no profile. Once
		   this is fixed, drop this.  */
		sreal tmp = e->probability.initialized_p () ?
			    e->probability.to_sreal () : 0;
		frequency += tmp * BLOCK_INFO (e->src)->frequency;
	      }

	  if (cyclic_probability == 0)
	    {
	      BLOCK_INFO (bb)->frequency = frequency;
	    }
	  else
	    {
	      if (cyclic_probability > max_cyclic_prob)
		{
		  if (dump_file)
		    fprintf (dump_file,
			     "cyclic probability of bb %i is %f (capped to %f)"
			     "; turning freq %f",
			     bb->index, cyclic_probability.to_double (),
			     max_cyclic_prob.to_double (),
			     frequency.to_double ());
			
		  cyclic_probability = max_cyclic_prob;
		}
	      else if (dump_file)
		fprintf (dump_file,
			 "cyclic probability of bb %i is %f; turning freq %f",
			 bb->index, cyclic_probability.to_double (),
			 frequency.to_double ());

	      BLOCK_INFO (bb)->frequency = frequency
				 / (sreal (1) - cyclic_probability);
	      if (dump_file)
		fprintf (dump_file, " to %f\n",
			 BLOCK_INFO (bb)->frequency.to_double ());
	    }
	}

      bitmap_clear_bit (tovisit, bb->index);

      e = find_edge (bb, head);
      if (e)
	{
	  /* FIXME: Graphite is producing edges with no profile. Once
	     this is fixed, drop this.  */
	  sreal tmp = e->probability.initialized_p () ?
		      e->probability.to_sreal () : 0;
	  EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
	}

      /* Propagate to successor blocks.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!(e->flags & EDGE_DFS_BACK)
	    && BLOCK_INFO (e->dest)->npredecessors)
	  {
	    BLOCK_INFO (e->dest)->npredecessors--;
	    if (!BLOCK_INFO (e->dest)->npredecessors)
	      {
		if (!nextbb)
		  nextbb = e->dest;
		else
		  BLOCK_INFO (last)->next = e->dest;

		last = e->dest;
	      }
	  }
    }
}

/* Estimate frequencies in loops at same nest level.  */

static void
estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
{
  class loop *loop;

  for (loop = first_loop; loop; loop = loop->next)
    {
      edge e;
      basic_block *bbs;
      unsigned i;
      auto_bitmap tovisit;

      estimate_loops_at_level (loop->inner, max_cyclic_prob);

      /* Find current loop back edge and mark it.  */
      e = loop_latch_edge (loop);
      EDGE_INFO (e)->back_edge = 1;

      bbs = get_loop_body (loop);
      for (i = 0; i < loop->num_nodes; i++)
	bitmap_set_bit (tovisit, bbs[i]->index);
      free (bbs);
      propagate_freq (loop->header, tovisit, max_cyclic_prob);
    }
}

/* Propagates frequencies through structure of loops.  */

static void
estimate_loops (void)
{
  auto_bitmap tovisit;
  basic_block bb;
  sreal max_cyclic_prob = (sreal)1
			   - (sreal)1 / (param_max_predicted_iterations + 1);

  /* Start by estimating the frequencies in the loops.  */
  if (number_of_loops (cfun) > 1)
    estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);

  /* Now propagate the frequencies through all the blocks.  */
  FOR_ALL_BB_FN (bb, cfun)
    {
      bitmap_set_bit (tovisit, bb->index);
    }
  propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
}

/* Drop the profile for NODE to guessed, and update its frequency based on
   whether it is expected to be hot given the CALL_COUNT.  */

static void
drop_profile (struct cgraph_node *node, profile_count call_count)
{
  struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
  /* In the case where this was called by another function with a
     dropped profile, call_count will be 0. Since there are no
     non-zero call counts to this function, we don't know for sure
     whether it is hot, and therefore it will be marked normal below.  */
  bool hot = maybe_hot_count_p (NULL, call_count);

  if (dump_file)
    fprintf (dump_file,
	     "Dropping 0 profile for %s. %s based on calls.\n",
	     node->dump_name (),
	     hot ? "Function is hot" : "Function is normal");
  /* We only expect to miss profiles for functions that are reached
     via non-zero call edges in cases where the function may have
     been linked from another module or library (COMDATs and extern
     templates). See the comments below for handle_missing_profiles.
     Also, only warn in cases where the missing counts exceed the
     number of training runs. In certain cases with an execv followed
     by a no-return call the profile for the no-return call is not
     dumped and there can be a mismatch.  */
  if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
      && call_count > profile_info->runs)
    {
      if (flag_profile_correction)
        {
          if (dump_file)
            fprintf (dump_file,
		     "Missing counts for called function %s\n",
		     node->dump_name ());
        }
      else
	warning (0, "Missing counts for called function %s",
		 node->dump_name ());
    }

  basic_block bb;
  if (opt_for_fn (node->decl, flag_guess_branch_prob))
    {
      bool clear_zeros
	 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
      FOR_ALL_BB_FN (bb, fn)
	if (clear_zeros || !(bb->count == profile_count::zero ()))
	  bb->count = bb->count.guessed_local ();
      fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
    }
  else
    {
      FOR_ALL_BB_FN (bb, fn)
	bb->count = profile_count::uninitialized ();
      fn->cfg->count_max = profile_count::uninitialized ();
    }

  struct cgraph_edge *e;
  for (e = node->callees; e; e = e->next_callee)
    e->count = gimple_bb (e->call_stmt)->count;
  for (e = node->indirect_calls; e; e = e->next_callee)
    e->count = gimple_bb (e->call_stmt)->count;
  node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
  
  profile_status_for_fn (fn)
      = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
  node->frequency
      = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
}

/* In the case of COMDAT routines, multiple object files will contain the same
   function and the linker will select one for the binary. In that case
   all the other copies from the profile instrument binary will be missing
   profile counts. Look for cases where this happened, due to non-zero
   call counts going to 0-count functions, and drop the profile to guessed
   so that we can use the estimated probabilities and avoid optimizing only
   for size.
   
   The other case where the profile may be missing is when the routine
   is not going to be emitted to the object file, e.g. for "extern template"
   class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
   all other cases of non-zero calls to 0-count functions.  */

void
handle_missing_profiles (void)
{
  const int unlikely_frac = param_unlikely_bb_count_fraction;
  struct cgraph_node *node;
  auto_vec<struct cgraph_node *, 64> worklist;

  /* See if 0 count function has non-0 count callers.  In this case we
     lost some profile.  Drop its function profile to PROFILE_GUESSED.  */
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      struct cgraph_edge *e;
      profile_count call_count = profile_count::zero ();
      gcov_type max_tp_first_run = 0;
      struct function *fn = DECL_STRUCT_FUNCTION (node->decl);

      if (node->count.ipa ().nonzero_p ())
        continue;
      for (e = node->callers; e; e = e->next_caller)
	if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
	  {
            call_count = call_count + e->count.ipa ();

	    if (e->caller->tp_first_run > max_tp_first_run)
	      max_tp_first_run = e->caller->tp_first_run;
	  }

      /* If time profile is missing, let assign the maximum that comes from
	 caller functions.  */
      if (!node->tp_first_run && max_tp_first_run)
	node->tp_first_run = max_tp_first_run + 1;

      if (call_count > 0
          && fn && fn->cfg
	  && call_count * unlikely_frac >= profile_info->runs)
        {
          drop_profile (node, call_count);
          worklist.safe_push (node);
        }
    }

  /* Propagate the profile dropping to other 0-count COMDATs that are
     potentially called by COMDATs we already dropped the profile on.  */
  while (worklist.length () > 0)
    {
      struct cgraph_edge *e;

      node = worklist.pop ();
      for (e = node->callees; e; e = e->next_caller)
        {
          struct cgraph_node *callee = e->callee;
          struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);

          if (!(e->count.ipa () == profile_count::zero ())
	      && callee->count.ipa ().nonzero_p ())
            continue;
          if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
	      && fn && fn->cfg
              && profile_status_for_fn (fn) == PROFILE_READ)
            {
              drop_profile (node, profile_count::zero ());
              worklist.safe_push (callee);
            }
        }
    }
}

/* Convert counts measured by profile driven feedback to frequencies.
   Return nonzero iff there was any nonzero execution count.  */

bool
update_max_bb_count (void)
{
  profile_count true_count_max = profile_count::uninitialized ();
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
    true_count_max = true_count_max.max (bb->count);

  cfun->cfg->count_max = true_count_max;

  return true_count_max.ipa ().nonzero_p ();
}

/* Return true if function is likely to be expensive, so there is no point to
   optimize performance of prologue, epilogue or do inlining at the expense
   of code size growth.  THRESHOLD is the limit of number of instructions
   function can execute at average to be still considered not expensive.  */

bool
expensive_function_p (int threshold)
{
  basic_block bb;

  /* If profile was scaled in a way entry block has count 0, then the function
     is deifnitly taking a lot of time.  */
  if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
    return true;

  profile_count limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count * threshold;
  profile_count sum = profile_count::zero ();
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *insn;

      if (!bb->count.initialized_p ())
	{
	  if (dump_file)
	    fprintf (dump_file, "Function is considered expensive because"
		     " count of bb %i is not initialized\n", bb->index);
	  return true;
	}

      FOR_BB_INSNS (bb, insn)
	if (active_insn_p (insn))
	  {
	    sum += bb->count;
	    if (sum > limit)
	      return true;
	}
    }

  return false;
}

/* All basic blocks that are reachable only from unlikely basic blocks are
   unlikely.  */

void
propagate_unlikely_bbs_forward (void)
{
  auto_vec<basic_block, 64> worklist;
  basic_block bb;
  edge_iterator ei;
  edge e;

  if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
    {
      ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
      worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));

      while (worklist.length () > 0)
	{
	  bb = worklist.pop ();
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (!(e->count () == profile_count::zero ())
		&& !(e->dest->count == profile_count::zero ())
		&& !e->dest->aux)
	      {
		e->dest->aux = (void *)(size_t) 1;
		worklist.safe_push (e->dest);
	      }
	}
    }

  FOR_ALL_BB_FN (bb, cfun)
    {
      if (!bb->aux)
	{
	  if (!(bb->count == profile_count::zero ())
	      && (dump_file && (dump_flags & TDF_DETAILS)))
	    fprintf (dump_file,
		     "Basic block %i is marked unlikely by forward prop\n",
		     bb->index);
	  bb->count = profile_count::zero ();
	}
      else
        bb->aux = NULL;
    }
}

/* Determine basic blocks/edges that are known to be unlikely executed and set
   their counters to zero.
   This is done with first identifying obviously unlikely BBs/edges and then
   propagating in both directions.  */

static void
determine_unlikely_bbs ()
{
  basic_block bb;
  auto_vec<basic_block, 64> worklist;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB_FN (bb, cfun)
    {
      if (!(bb->count == profile_count::zero ())
	  && unlikely_executed_bb_p (bb))
	{
          if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Basic block %i is locally unlikely\n",
		     bb->index);
	  bb->count = profile_count::zero ();
	}

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!(e->probability == profile_probability::never ())
	    && unlikely_executed_edge_p (e))
	  {
            if (dump_file && (dump_flags & TDF_DETAILS))
	      fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
		       bb->index, e->dest->index);
	    e->probability = profile_probability::never ();
	  }

      gcc_checking_assert (!bb->aux);
    }
  propagate_unlikely_bbs_forward ();

  auto_vec<int, 64> nsuccs;
  nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
  FOR_ALL_BB_FN (bb, cfun)
    if (!(bb->count == profile_count::zero ())
	&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
      {
	nsuccs[bb->index] = 0;
        FOR_EACH_EDGE (e, ei, bb->succs)
	  if (!(e->probability == profile_probability::never ())
	      && !(e->dest->count == profile_count::zero ()))
	    nsuccs[bb->index]++;
	if (!nsuccs[bb->index])
	  worklist.safe_push (bb);
      }
  while (worklist.length () > 0)
    {
      bb = worklist.pop ();
      if (bb->count == profile_count::zero ())
	continue;
      if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
	{
	  bool found = false;
          for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
               !gsi_end_p (gsi); gsi_next (&gsi))
	    if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
		/* stmt_can_terminate_bb_p special cases noreturns because it
		   assumes that fake edges are created.  We want to know that
		   noreturn alone does not imply BB to be unlikely.  */
		|| (is_gimple_call (gsi_stmt (gsi))
		    && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
	      {
		found = true;
		break;
	      }
	  if (found)
	    continue;
	}
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Basic block %i is marked unlikely by backward prop\n",
		 bb->index);
      bb->count = profile_count::zero ();
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!(e->probability == profile_probability::never ()))
	  {
	    if (!(e->src->count == profile_count::zero ()))
	      {
		gcc_checking_assert (nsuccs[e->src->index] > 0);
	        nsuccs[e->src->index]--;
	        if (!nsuccs[e->src->index])
		  worklist.safe_push (e->src);
	      }
	  }
    }
  /* Finally all edges from non-0 regions to 0 are unlikely.  */
  FOR_ALL_BB_FN (bb, cfun)
    {
      if (!(bb->count == profile_count::zero ()))
	FOR_EACH_EDGE (e, ei, bb->succs)
	  if (!(e->probability == profile_probability::never ())
	      && e->dest->count == profile_count::zero ())
	     {
	       if (dump_file && (dump_flags & TDF_DETAILS))
		 fprintf (dump_file, "Edge %i->%i is unlikely because "
			  "it enters unlikely block\n",
			  bb->index, e->dest->index);
	       e->probability = profile_probability::never ();
	     }

      edge other = NULL;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->probability == profile_probability::never ())
	  ;
	else if (other)
	  {
	    other = NULL;
	    break;
	  }
	else
	  other = e;
      if (other
	  && !(other->probability == profile_probability::always ()))
	{
            if (dump_file && (dump_flags & TDF_DETAILS))
	      fprintf (dump_file, "Edge %i->%i is locally likely\n",
		       bb->index, other->dest->index);
	  other->probability = profile_probability::always ();
	}
    }
  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
    cgraph_node::get (current_function_decl)->count = profile_count::zero ();
}

/* Estimate and propagate basic block frequencies using the given branch
   probabilities.  If FORCE is true, the frequencies are used to estimate
   the counts even when there are already non-zero profile counts.  */

void
estimate_bb_frequencies (bool force)
{
  basic_block bb;
  sreal freq_max;

  determine_unlikely_bbs ();

  if (force || profile_status_for_fn (cfun) != PROFILE_READ
      || !update_max_bb_count ())
    {

      mark_dfs_back_edges ();

      single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
	 profile_probability::always ();

      /* Set up block info for each basic block.  */
      alloc_aux_for_blocks (sizeof (block_info));
      alloc_aux_for_edges (sizeof (edge_prob_info));
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
	{
	  edge e;
	  edge_iterator ei;

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      /* FIXME: Graphite is producing edges with no profile. Once
		 this is fixed, drop this.  */
	      if (e->probability.initialized_p ())
	        EDGE_INFO (e)->back_edge_prob
		   = e->probability.to_sreal ();
	      else
		/* back_edge_prob = 0.5 */
		EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
	    }
	}

      /* First compute frequencies locally for each loop from innermost
         to outermost to examine frequencies for back edges.  */
      estimate_loops ();

      freq_max = 0;
      FOR_EACH_BB_FN (bb, cfun)
	if (freq_max < BLOCK_INFO (bb)->frequency)
	  freq_max = BLOCK_INFO (bb)->frequency;

      /* Scaling frequencies up to maximal profile count may result in
	 frequent overflows especially when inlining loops.
	 Small scalling results in unnecesary precision loss.  Stay in
	 the half of the (exponential) range.  */
      freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
      if (freq_max < 16)
	freq_max = 16;
      profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
      cfun->cfg->count_max = profile_count::uninitialized ();
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
	{
	  sreal tmp = BLOCK_INFO (bb)->frequency;
	  if (tmp >= 1)
	    {
	      gimple_stmt_iterator gsi;
	      tree decl;

	      /* Self recursive calls can not have frequency greater than 1
		 or program will never terminate.  This will result in an
		 inconsistent bb profile but it is better than greatly confusing
		 IPA cost metrics.  */
	      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
		if (is_gimple_call (gsi_stmt (gsi))
		    && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
		    && recursive_call_p (current_function_decl, decl))
		  {
		    if (dump_file)
		      fprintf (dump_file, "Dropping frequency of recursive call"
			       " in bb %i from %f\n", bb->index,
			       tmp.to_double ());
		    tmp = (sreal)9 / (sreal)10;
		    break;
		  }
	    }
	  tmp = tmp * freq_max + sreal (1, -1);
	  profile_count count = profile_count::from_gcov_type (tmp.to_int ());	

	  /* If we have profile feedback in which this function was never
	     executed, then preserve this info.  */
	  if (!(bb->count == profile_count::zero ()))
	    bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
          cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
	}

      free_aux_for_blocks ();
      free_aux_for_edges ();
    }
  compute_function_frequency ();
}

/* Decide whether function is hot, cold or unlikely executed.  */
void
compute_function_frequency (void)
{
  basic_block bb;
  struct cgraph_node *node = cgraph_node::get (current_function_decl);

  if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
      || MAIN_NAME_P (DECL_NAME (current_function_decl)))
    node->only_called_at_startup = true;
  if (DECL_STATIC_DESTRUCTOR (current_function_decl))
    node->only_called_at_exit = true;

  if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
    {
      int flags = flags_from_decl_or_type (current_function_decl);
      if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
	  != NULL)
	node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
      else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
	       != NULL)
        node->frequency = NODE_FREQUENCY_HOT;
      else if (flags & ECF_NORETURN)
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
	       || DECL_STATIC_DESTRUCTOR (current_function_decl))
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      return;
    }

  node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
  warn_function_cold (current_function_decl);
  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
    return;
  FOR_EACH_BB_FN (bb, cfun)
    {
      if (maybe_hot_bb_p (cfun, bb))
	{
	  node->frequency = NODE_FREQUENCY_HOT;
	  return;
	}
      if (!probably_never_executed_bb_p (cfun, bb))
	node->frequency = NODE_FREQUENCY_NORMAL;
    }
}

/* Build PREDICT_EXPR.  */
tree
build_predict_expr (enum br_predictor predictor, enum prediction taken)
{
  tree t = build1 (PREDICT_EXPR, void_type_node,
		   build_int_cst (integer_type_node, predictor));
  SET_PREDICT_EXPR_OUTCOME (t, taken);
  return t;
}

const char *
predictor_name (enum br_predictor predictor)
{
  return predictor_info[predictor].name;
}

/* Predict branch probabilities and estimate profile of the tree CFG. */

namespace {

const pass_data pass_data_profile =
{
  GIMPLE_PASS, /* type */
  "profile_estimate", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_BRANCH_PROB, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_profile : public gimple_opt_pass
{
public:
  pass_profile (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_profile, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_guess_branch_prob; }
  unsigned int execute (function *) final override;

}; // class pass_profile

unsigned int
pass_profile::execute (function *fun)
{
  unsigned nb_loops;

  if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
    return 0;

  loop_optimizer_init (LOOPS_NORMAL);
  if (dump_file && (dump_flags & TDF_DETAILS))
    flow_loops_dump (dump_file, NULL, 0);

  nb_loops = number_of_loops (fun);
  if (nb_loops > 1)
    scev_initialize ();

  tree_estimate_probability (false);

  if (nb_loops > 1)
    scev_finalize ();

  loop_optimizer_finalize ();
  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags);
 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
    profile_status_for_fn (fun) = PROFILE_GUESSED;
 if (dump_file && (dump_flags & TDF_DETAILS))
   {
     for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
       if (loop->header->count.initialized_p ())
         fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
       	   loop->num,
       	   (int)expected_loop_iterations_unbounded (loop));
   }
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_profile (gcc::context *ctxt)
{
  return new pass_profile (ctxt);
}

/* Return true when PRED predictor should be removed after early
   tree passes.  Most of the predictors are beneficial to survive
   as early inlining can also distribute then into caller's bodies.  */

static bool
strip_predictor_early (enum br_predictor pred)
{
  switch (pred)
    {
    case PRED_TREE_EARLY_RETURN:
      return true;
    default:
      return false;
    }
}

/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
   we no longer need.  EARLY is set to true when called from early
   optimizations.  */

unsigned int
strip_predict_hints (function *fun, bool early)
{
  basic_block bb;
  gimple *ass_stmt;
  tree var;
  bool changed = false;

  FOR_EACH_BB_FN (bb, fun)
    {
      gimple_stmt_iterator bi;
      for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
	{
	  gimple *stmt = gsi_stmt (bi);

	  if (gimple_code (stmt) == GIMPLE_PREDICT)
	    {
	      if (!early
		  || strip_predictor_early (gimple_predict_predictor (stmt)))
		{
		  gsi_remove (&bi, true);
		  changed = true;
		  continue;
		}
	    }
	  else if (is_gimple_call (stmt))
	    {
	      tree fndecl = gimple_call_fndecl (stmt);

	      if (!early
		  && ((fndecl != NULL_TREE
		       && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
		       && gimple_call_num_args (stmt) == 2)
		      || (fndecl != NULL_TREE
			  && fndecl_built_in_p (fndecl,
						BUILT_IN_EXPECT_WITH_PROBABILITY)
			  && gimple_call_num_args (stmt) == 3)
		      || (gimple_call_internal_p (stmt)
			  && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
		{
		  var = gimple_call_lhs (stmt);
	          changed = true;
		  if (var)
		    {
		      ass_stmt
			= gimple_build_assign (var, gimple_call_arg (stmt, 0));
		      gsi_replace (&bi, ass_stmt, true);
		    }
		  else
		    {
		      gsi_remove (&bi, true);
		      continue;
		    }
		}
	    }
	  gsi_next (&bi);
	}
    }
  return changed ? TODO_cleanup_cfg : 0;
}

namespace {

const pass_data pass_data_strip_predict_hints =
{
  GIMPLE_PASS, /* type */
  "*strip_predict_hints", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_BRANCH_PROB, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_strip_predict_hints : public gimple_opt_pass
{
public:
  pass_strip_predict_hints (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () final override
  {
    return new pass_strip_predict_hints (m_ctxt);
  }
  void set_pass_param (unsigned int n, bool param) final override
    {
      gcc_assert (n == 0);
      early_p = param;
    }

  unsigned int execute (function *) final override;

private:
  bool early_p;

}; // class pass_strip_predict_hints

unsigned int
pass_strip_predict_hints::execute (function *fun)
{
  return strip_predict_hints (fun, early_p);
}

} // anon namespace

gimple_opt_pass *
make_pass_strip_predict_hints (gcc::context *ctxt)
{
  return new pass_strip_predict_hints (ctxt);
}

/* Rebuild function frequencies.  Passes are in general expected to
   maintain profile by hand, however in some cases this is not possible:
   for example when inlining several functions with loops freuqencies might run
   out of scale and thus needs to be recomputed.  */

void
rebuild_frequencies (void)
{
  timevar_push (TV_REBUILD_FREQUENCIES);

  /* When the max bb count in the function is small, there is a higher
     chance that there were truncation errors in the integer scaling
     of counts by inlining and other optimizations. This could lead
     to incorrect classification of code as being cold when it isn't.
     In that case, force the estimation of bb counts/frequencies from the
     branch probabilities, rather than computing frequencies from counts,
     which may also lead to frequencies incorrectly reduced to 0. There
     is less precision in the probabilities, so we only do this for small
     max counts.  */
  cfun->cfg->count_max = profile_count::uninitialized ();
  basic_block bb;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
    cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);

  if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
    {
      loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
      connect_infinite_loops_to_exit ();
      estimate_bb_frequencies (true);
      remove_fake_exit_edges ();
      loop_optimizer_finalize ();
    }
  else if (profile_status_for_fn (cfun) == PROFILE_READ)
    update_max_bb_count ();
  else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
	   && !flag_guess_branch_prob)
    ;
  else
    gcc_unreachable ();
  timevar_pop (TV_REBUILD_FREQUENCIES);
}

/* Perform a dry run of the branch prediction pass and report comparsion of
   the predicted and real profile into the dump file.  */

void
report_predictor_hitrates (void)
{
  unsigned nb_loops;

  loop_optimizer_init (LOOPS_NORMAL);
  if (dump_file && (dump_flags & TDF_DETAILS))
    flow_loops_dump (dump_file, NULL, 0);

  nb_loops = number_of_loops (cfun);
  if (nb_loops > 1)
    scev_initialize ();

  tree_estimate_probability (true);

  if (nb_loops > 1)
    scev_finalize ();

  loop_optimizer_finalize ();
}

/* Force edge E to be cold.
   If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
   keep low probability to represent possible error in a guess.  This is used
   i.e. in case we predict loop to likely iterate given number of times but
   we are not 100% sure.

   This function locally updates profile without attempt to keep global
   consistency which cannot be reached in full generality without full profile
   rebuild from probabilities alone.  Doing so is not necessarily a good idea
   because frequencies and counts may be more realistic then probabilities.

   In some cases (such as for elimination of early exits during full loop
   unrolling) the caller can ensure that profile will get consistent
   afterwards.  */

void
force_edge_cold (edge e, bool impossible)
{
  profile_count count_sum = profile_count::zero ();
  profile_probability prob_sum = profile_probability::never ();
  edge_iterator ei;
  edge e2;
  bool uninitialized_exit = false;

  /* When branch probability guesses are not known, then do nothing.  */
  if (!impossible && !e->count ().initialized_p ())
    return;

  profile_probability goal = (impossible ? profile_probability::never ()
			      : profile_probability::very_unlikely ());

  /* If edge is already improbably or cold, just return.  */
  if (e->probability <= goal
      && (!impossible || e->count () == profile_count::zero ()))
    return;
  FOR_EACH_EDGE (e2, ei, e->src->succs)
    if (e2 != e)
      {
	if (e->flags & EDGE_FAKE)
	  continue;
	if (e2->count ().initialized_p ())
	  count_sum += e2->count ();
	if (e2->probability.initialized_p ())
	  prob_sum += e2->probability;
	else 
	  uninitialized_exit = true;
      }

  /* If we are not guessing profiles but have some other edges out,
     just assume the control flow goes elsewhere.  */
  if (uninitialized_exit)
    e->probability = goal;
  /* If there are other edges out of e->src, redistribute probabilitity
     there.  */
  else if (prob_sum > profile_probability::never ())
    {
      if (!(e->probability < goal))
	e->probability = goal;

      profile_probability prob_comp = prob_sum / e->probability.invert ();

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Making edge %i->%i %s by redistributing "
		 "probability to other edges.\n",
		 e->src->index, e->dest->index,
		 impossible ? "impossible" : "cold");
      FOR_EACH_EDGE (e2, ei, e->src->succs)
	if (e2 != e)
	  {
	    e2->probability /= prob_comp;
	  }
      if (current_ir_type () != IR_GIMPLE
	  && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
	update_br_prob_note (e->src);
    }
  /* If all edges out of e->src are unlikely, the basic block itself
     is unlikely.  */
  else
    {
      if (prob_sum == profile_probability::never ())
        e->probability = profile_probability::always ();
      else
	{
	  if (impossible)
	    e->probability = profile_probability::never ();
	  /* If BB has some edges out that are not impossible, we cannot
	     assume that BB itself is.  */
	  impossible = false;
	}
      if (current_ir_type () != IR_GIMPLE
	  && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
	update_br_prob_note (e->src);
      if (e->src->count == profile_count::zero ())
	return;
      if (count_sum == profile_count::zero () && impossible)
	{
	  bool found = false;
	  if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
	    ;
	  else if (current_ir_type () == IR_GIMPLE)
	    for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
	         !gsi_end_p (gsi); gsi_next (&gsi))
	      {
	        if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
		  {
		    found = true;
	            break;
		  }
	      }
	  /* FIXME: Implement RTL path.  */
	  else 
	    found = true;
	  if (!found)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "Making bb %i impossible and dropping count to 0.\n",
			 e->src->index);
	      e->src->count = profile_count::zero ();
	      FOR_EACH_EDGE (e2, ei, e->src->preds)
		force_edge_cold (e2, impossible);
	      return;
	    }
	}

      /* If we did not adjusting, the source basic block has no likely edeges
 	 leaving other direction. In that case force that bb cold, too.
	 This in general is difficult task to do, but handle special case when
	 BB has only one predecestor.  This is common case when we are updating
	 after loop transforms.  */
      if (!(prob_sum > profile_probability::never ())
	  && count_sum == profile_count::zero ()
	  && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
	     > (impossible ? 0 : 1))
	{
	  int old_frequency = e->src->count.to_frequency (cfun);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
		     impossible ? "impossible" : "cold");
	  int new_frequency = MIN (e->src->count.to_frequency (cfun),
				   impossible ? 0 : 1);
	  if (impossible)
	    e->src->count = profile_count::zero ();
	  else
	    e->src->count = e->count ().apply_scale (new_frequency,
						     old_frequency);
	  force_edge_cold (single_pred_edge (e->src), impossible);
	}
      else if (dump_file && (dump_flags & TDF_DETAILS)
	       && maybe_hot_bb_p (cfun, e->src))
	fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
		 impossible ? "impossible" : "cold");
    }
}

/* Change E's probability to NEW_E_PROB, redistributing the probabilities
   of other outgoing edges proportionally.

   Note that this function does not change the profile counts of any
   basic blocks.  The caller must do that instead, using whatever
   information it has about the region that needs updating.  */

void
change_edge_frequency (edge e, profile_probability new_e_prob)
{
  profile_probability old_e_prob = e->probability;
  profile_probability old_other_prob = old_e_prob.invert ();
  profile_probability new_other_prob = new_e_prob.invert ();

  e->probability = new_e_prob;
  profile_probability cumulative_prob = new_e_prob;

  unsigned int num_other = EDGE_COUNT (e->src->succs) - 1;
  edge other_e;
  edge_iterator ei;
  FOR_EACH_EDGE (other_e, ei, e->src->succs)
    if (other_e != e)
      {
	num_other -= 1;
	if (num_other == 0)
	  /* Ensure that the probabilities add up to 1 without
	     rounding error.  */
	  other_e->probability = cumulative_prob.invert ();
	else
	  {
	    other_e->probability /= old_other_prob;
	    other_e->probability *= new_other_prob;
	    cumulative_prob += other_e->probability;
	  }
      }
}

#if CHECKING_P

namespace selftest {

/* Test that value range of predictor values defined in predict.def is
   within range (50, 100].  */

struct branch_predictor
{
  const char *name;
  int probability;
};

#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },

static void
test_prediction_value_range ()
{
  branch_predictor predictors[] = {
#include "predict.def"
    { NULL, PROB_UNINITIALIZED }
  };

  for (unsigned i = 0; predictors[i].name != NULL; i++)
    {
      if (predictors[i].probability == PROB_UNINITIALIZED)
	continue;

      unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
      ASSERT_TRUE (p >= 50 && p <= 100);
    }
}

#undef DEF_PREDICTOR

/* Run all of the selfests within this file.  */

void
predict_cc_tests ()
{
  test_prediction_value_range ();
}

} // namespace selftest
#endif /* CHECKING_P.  */