summaryrefslogtreecommitdiff
path: root/gcc/regrename.c
blob: 027e2f444b7808465de9c39ce39795ca9a28244d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
/* Register renaming for the GNU compiler.
   Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#define REG_OK_STRICT

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "reload.h"
#include "output.h"
#include "function.h"
#include "recog.h"
#include "flags.h"
#include "toplev.h"
#include "obstack.h"

#ifndef REG_MODE_OK_FOR_BASE_P
#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
#endif

static const char *const reg_class_names[] = REG_CLASS_NAMES;

struct du_chain
{
  struct du_chain *next_chain;
  struct du_chain *next_use;

  rtx insn;
  rtx *loc;
  enum reg_class class;
  unsigned int need_caller_save_reg:1;
  unsigned int earlyclobber:1;
};

enum scan_actions
{
  terminate_all_read,
  terminate_overlapping_read,
  terminate_write,
  terminate_dead,
  mark_read,
  mark_write
};

static const char * const scan_actions_name[] =
{
  "terminate_all_read",
  "terminate_overlapping_read",
  "terminate_write",
  "terminate_dead",
  "mark_read",
  "mark_write"
};

static struct obstack rename_obstack;

static void do_replace PARAMS ((struct du_chain *, int));
static void scan_rtx_reg PARAMS ((rtx, rtx *, enum reg_class,
				  enum scan_actions, enum op_type, int));
static void scan_rtx_address PARAMS ((rtx, rtx *, enum reg_class,
				      enum scan_actions, enum machine_mode));
static void scan_rtx PARAMS ((rtx, rtx *, enum reg_class,
			      enum scan_actions, enum op_type, int));
static struct du_chain *build_def_use PARAMS ((basic_block));
static void dump_def_use_chain PARAMS ((struct du_chain *));
static void note_sets PARAMS ((rtx, rtx, void *));
static void clear_dead_regs PARAMS ((HARD_REG_SET *, enum machine_mode, rtx));
static void merge_overlapping_regs PARAMS ((basic_block, HARD_REG_SET *,
					    struct du_chain *));

/* Called through note_stores from update_life.  Find sets of registers, and
   record them in *DATA (which is actually a HARD_REG_SET *).  */

static void
note_sets (x, set, data)
     rtx x;
     rtx set ATTRIBUTE_UNUSED;
     void *data;
{
  HARD_REG_SET *pset = (HARD_REG_SET *) data;
  unsigned int regno;
  int nregs;
  if (GET_CODE (x) != REG)
    return;
  regno = REGNO (x);
  nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));

  /* There must not be pseudos at this point.  */
  if (regno + nregs > FIRST_PSEUDO_REGISTER)
    abort ();

  while (nregs-- > 0)
    SET_HARD_REG_BIT (*pset, regno + nregs);
}

/* Clear all registers from *PSET for which a note of kind KIND can be found
   in the list NOTES.  */

static void
clear_dead_regs (pset, kind, notes)
     HARD_REG_SET *pset;
     enum machine_mode kind;
     rtx notes;
{
  rtx note;
  for (note = notes; note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
      {
	rtx reg = XEXP (note, 0);
	unsigned int regno = REGNO (reg);
	int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));

	/* There must not be pseudos at this point.  */
	if (regno + nregs > FIRST_PSEUDO_REGISTER)
	  abort ();

	while (nregs-- > 0)
	  CLEAR_HARD_REG_BIT (*pset, regno + nregs);
      }
}

/* For a def-use chain CHAIN in basic block B, find which registers overlap
   its lifetime and set the corresponding bits in *PSET.  */

static void
merge_overlapping_regs (b, pset, chain)
     basic_block b;
     HARD_REG_SET *pset;
     struct du_chain *chain;
{
  struct du_chain *t = chain;
  rtx insn;
  HARD_REG_SET live;

  REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
  insn = b->head;
  while (t)
    {
      /* Search forward until the next reference to the register to be
	 renamed.  */
      while (insn != t->insn)
	{
	  if (INSN_P (insn))
	    {
	      clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
	      note_stores (PATTERN (insn), note_sets, (void *) &live);
	      /* Only record currently live regs if we are inside the
		 reg's live range.  */
	      if (t != chain)
		IOR_HARD_REG_SET (*pset, live);
	      clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
	    }
	  insn = NEXT_INSN (insn);
	}

      IOR_HARD_REG_SET (*pset, live);

      /* For the last reference, also merge in all registers set in the
	 same insn.
	 @@@ We only have take earlyclobbered sets into account.  */
      if (! t->next_use)
	note_stores (PATTERN (insn), note_sets, (void *) pset);

      t = t->next_use;
    }
}

/* Perform register renaming on the current function.  */

void
regrename_optimize ()
{
  int tick[FIRST_PSEUDO_REGISTER];
  int this_tick = 0;
  basic_block bb;
  char *first_obj;

  memset (tick, 0, sizeof tick);

  gcc_obstack_init (&rename_obstack);
  first_obj = (char *) obstack_alloc (&rename_obstack, 0);

  FOR_EACH_BB (bb)
    {
      struct du_chain *all_chains = 0;
      HARD_REG_SET unavailable;
      HARD_REG_SET regs_seen;

      CLEAR_HARD_REG_SET (unavailable);

      if (rtl_dump_file)
	fprintf (rtl_dump_file, "\nBasic block %d:\n", bb->index);

      all_chains = build_def_use (bb);

      if (rtl_dump_file)
	dump_def_use_chain (all_chains);

      CLEAR_HARD_REG_SET (unavailable);
      /* Don't clobber traceback for noreturn functions.  */
      if (frame_pointer_needed)
	{
	  int i;

	  for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
	    SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);

#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
	  for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
	    SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
#endif
	}

      CLEAR_HARD_REG_SET (regs_seen);
      while (all_chains)
	{
	  int new_reg, best_new_reg = -1;
	  int n_uses;
	  struct du_chain *this = all_chains;
	  struct du_chain *tmp, *last;
	  HARD_REG_SET this_unavailable;
	  int reg = REGNO (*this->loc);
	  int i;

	  all_chains = this->next_chain;

#if 0 /* This just disables optimization opportunities.  */
	  /* Only rename once we've seen the reg more than once.  */
	  if (! TEST_HARD_REG_BIT (regs_seen, reg))
	    {
	      SET_HARD_REG_BIT (regs_seen, reg);
	      continue;
	    }
#endif

	  if (fixed_regs[reg] || global_regs[reg]
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
	      || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
#else
	      || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
#endif
	      )
	    continue;

	  COPY_HARD_REG_SET (this_unavailable, unavailable);

	  /* Find last entry on chain (which has the need_caller_save bit),
	     count number of uses, and narrow the set of registers we can
	     use for renaming.  */
	  n_uses = 0;
	  for (last = this; last->next_use; last = last->next_use)
	    {
	      n_uses++;
	      IOR_COMPL_HARD_REG_SET (this_unavailable,
				      reg_class_contents[last->class]);
	    }
	  if (n_uses < 1)
	    continue;

	  IOR_COMPL_HARD_REG_SET (this_unavailable,
				  reg_class_contents[last->class]);

	  if (this->need_caller_save_reg)
	    IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);

	  merge_overlapping_regs (bb, &this_unavailable, this);

	  /* Now potential_regs is a reasonable approximation, let's
	     have a closer look at each register still in there.  */
	  for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
	    {
	      int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));

	      for (i = nregs - 1; i >= 0; --i)
	        if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
		    || fixed_regs[new_reg + i]
		    || global_regs[new_reg + i]
		    /* Can't use regs which aren't saved by the prologue.  */
		    || (! regs_ever_live[new_reg + i]
			&& ! call_used_regs[new_reg + i])
#ifdef LEAF_REGISTERS
		    /* We can't use a non-leaf register if we're in a
		       leaf function.  */
		    || (current_function_is_leaf
			&& !LEAF_REGISTERS[new_reg + i])
#endif
#ifdef HARD_REGNO_RENAME_OK
		    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
#endif
		    )
		  break;
	      if (i >= 0)
		continue;

	      /* See whether it accepts all modes that occur in
		 definition and uses.  */
	      for (tmp = this; tmp; tmp = tmp->next_use)
		if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
		    || (tmp->need_caller_save_reg
			&& ! (HARD_REGNO_CALL_PART_CLOBBERED
			      (reg, GET_MODE (*tmp->loc)))
			&& (HARD_REGNO_CALL_PART_CLOBBERED
			    (new_reg, GET_MODE (*tmp->loc)))))
		  break;
	      if (! tmp)
		{
		  if (best_new_reg == -1
		      || tick[best_new_reg] > tick[new_reg])
		    best_new_reg = new_reg;
		}
	    }

	  if (rtl_dump_file)
	    {
	      fprintf (rtl_dump_file, "Register %s in insn %d",
		       reg_names[reg], INSN_UID (last->insn));
	      if (last->need_caller_save_reg)
		fprintf (rtl_dump_file, " crosses a call");
	    }

	  if (best_new_reg == -1)
	    {
	      if (rtl_dump_file)
		fprintf (rtl_dump_file, "; no available registers\n");
	      continue;
	    }

	  do_replace (this, best_new_reg);
	  tick[best_new_reg] = this_tick++;

	  if (rtl_dump_file)
	    fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
	}

      obstack_free (&rename_obstack, first_obj);
    }

  obstack_free (&rename_obstack, NULL);

  if (rtl_dump_file)
    fputc ('\n', rtl_dump_file);

  count_or_remove_death_notes (NULL, 1);
  update_life_info (NULL, UPDATE_LIFE_LOCAL,
		    PROP_REG_INFO | PROP_DEATH_NOTES);
}

static void
do_replace (chain, reg)
     struct du_chain *chain;
     int reg;
{
  while (chain)
    {
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      struct reg_attrs * attr = REG_ATTRS (*chain->loc);

      *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
      if (regno >= FIRST_PSEUDO_REGISTER)
	ORIGINAL_REGNO (*chain->loc) = regno;
      REG_ATTRS (*chain->loc) = attr;
      chain = chain->next_use;
    }
}


static struct du_chain *open_chains;
static struct du_chain *closed_chains;

static void
scan_rtx_reg (insn, loc, class, action, type, earlyclobber)
     rtx insn;
     rtx *loc;
     enum reg_class class;
     enum scan_actions action;
     enum op_type type;
     int earlyclobber;
{
  struct du_chain **p;
  rtx x = *loc;
  enum machine_mode mode = GET_MODE (x);
  int this_regno = REGNO (x);
  int this_nregs = HARD_REGNO_NREGS (this_regno, mode);

  if (action == mark_write)
    {
      if (type == OP_OUT)
	{
	  struct du_chain *this = (struct du_chain *)
	    obstack_alloc (&rename_obstack, sizeof (struct du_chain));
	  this->next_use = 0;
	  this->next_chain = open_chains;
	  this->loc = loc;
	  this->insn = insn;
	  this->class = class;
	  this->need_caller_save_reg = 0;
	  this->earlyclobber = earlyclobber;
	  open_chains = this;
	}
      return;
    }

  if ((type == OP_OUT && action != terminate_write)
      || (type != OP_OUT && action == terminate_write))
    return;

  for (p = &open_chains; *p;)
    {
      struct du_chain *this = *p;

      /* Check if the chain has been terminated if it has then skip to
	 the next chain.

	 This can happen when we've already appended the location to
	 the chain in Step 3, but are trying to hide in-out operands
	 from terminate_write in Step 5.  */

      if (*this->loc == cc0_rtx)
	p = &this->next_chain;
      else
	{
	  int regno = REGNO (*this->loc);
	  int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
	  int exact_match = (regno == this_regno && nregs == this_nregs);

	  if (regno + nregs <= this_regno
	      || this_regno + this_nregs <= regno)
	    {
	      p = &this->next_chain;
	      continue;
	    }

	  if (action == mark_read)
	    {
	      if (! exact_match)
		abort ();

	      /* ??? Class NO_REGS can happen if the md file makes use of
		 EXTRA_CONSTRAINTS to match registers.  Which is arguably
		 wrong, but there we are.  Since we know not what this may
		 be replaced with, terminate the chain.  */
	      if (class != NO_REGS)
		{
		  this = (struct du_chain *)
		    obstack_alloc (&rename_obstack, sizeof (struct du_chain));
		  this->next_use = 0;
		  this->next_chain = (*p)->next_chain;
		  this->loc = loc;
		  this->insn = insn;
		  this->class = class;
		  this->need_caller_save_reg = 0;
		  while (*p)
		    p = &(*p)->next_use;
		  *p = this;
		  return;
		}
	    }

	  if (action != terminate_overlapping_read || ! exact_match)
	    {
	      struct du_chain *next = this->next_chain;

	      /* Whether the terminated chain can be used for renaming
	         depends on the action and this being an exact match.
	         In either case, we remove this element from open_chains.  */

	      if ((action == terminate_dead || action == terminate_write)
		  && exact_match)
		{
		  this->next_chain = closed_chains;
		  closed_chains = this;
		  if (rtl_dump_file)
		    fprintf (rtl_dump_file,
			     "Closing chain %s at insn %d (%s)\n",
			     reg_names[REGNO (*this->loc)], INSN_UID (insn),
			     scan_actions_name[(int) action]);
		}
	      else
		{
		  if (rtl_dump_file)
		    fprintf (rtl_dump_file,
			     "Discarding chain %s at insn %d (%s)\n",
			     reg_names[REGNO (*this->loc)], INSN_UID (insn),
			     scan_actions_name[(int) action]);
		}
	      *p = next;
	    }
	  else
	    p = &this->next_chain;
	}
    }
}

/* Adapted from find_reloads_address_1.  CLASS is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */

static void
scan_rtx_address (insn, loc, class, action, mode)
     rtx insn;
     rtx *loc;
     enum reg_class class;
     enum scan_actions action;
     enum machine_mode mode;
{
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  int i, j;

  if (action == mark_write)
    return;

  switch (code)
    {
    case PLUS:
      {
	rtx orig_op0 = XEXP (x, 0);
	rtx orig_op1 = XEXP (x, 1);
	RTX_CODE code0 = GET_CODE (orig_op0);
	RTX_CODE code1 = GET_CODE (orig_op1);
	rtx op0 = orig_op0;
	rtx op1 = orig_op1;
	rtx *locI = NULL;
	rtx *locB = NULL;

	if (GET_CODE (op0) == SUBREG)
	  {
	    op0 = SUBREG_REG (op0);
	    code0 = GET_CODE (op0);
	  }

	if (GET_CODE (op1) == SUBREG)
	  {
	    op1 = SUBREG_REG (op1);
	    code1 = GET_CODE (op1);
	  }

	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
	    || code0 == ZERO_EXTEND || code1 == MEM)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	  }
	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
		 || code1 == ZERO_EXTEND || code0 == MEM)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	  }
	else if (code0 == CONST_INT || code0 == CONST
		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
	  locB = &XEXP (x, 1);
	else if (code1 == CONST_INT || code1 == CONST
		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
	  locB = &XEXP (x, 0);
	else if (code0 == REG && code1 == REG)
	  {
	    int index_op;

	    if (REG_OK_FOR_INDEX_P (op0)
		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
	      index_op = 0;
	    else if (REG_OK_FOR_INDEX_P (op1)
		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
	      index_op = 1;
	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
	      index_op = 0;
	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
	      index_op = 1;
	    else if (REG_OK_FOR_INDEX_P (op1))
	      index_op = 1;
	    else
	      index_op = 0;

	    locI = &XEXP (x, index_op);
	    locB = &XEXP (x, !index_op);
	  }
	else if (code0 == REG)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	  }
	else if (code1 == REG)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	  }

	if (locI)
	  scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
	if (locB)
	  scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
	return;
      }

    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
#ifndef AUTO_INC_DEC
      /* If the target doesn't claim to handle autoinc, this must be
	 something special, like a stack push.  Kill this chain.  */
      action = terminate_all_read;
#endif
      break;

    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
			MODE_BASE_REG_CLASS (GET_MODE (x)), action,
			GET_MODE (x));
      return;

    case REG:
      scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
    }
}

static void
scan_rtx (insn, loc, class, action, type, earlyclobber)
     rtx insn;
     rtx *loc;
     enum reg_class class;
     enum scan_actions action;
     enum op_type type;
     int earlyclobber;
{
  const char *fmt;
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  int i, j;

  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case CC0:
    case PC:
      return;

    case REG:
      scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
      return;

    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
			MODE_BASE_REG_CLASS (GET_MODE (x)), action,
			GET_MODE (x));
      return;

    case SET:
      scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
      scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
      return;

    case STRICT_LOW_PART:
      scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
      return;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      scan_rtx (insn, &XEXP (x, 0), class, action,
		type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
      scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
      scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
      return;

    case POST_INC:
    case PRE_INC:
    case POST_DEC:
    case PRE_DEC:
    case POST_MODIFY:
    case PRE_MODIFY:
      /* Should only happen inside MEM.  */
      abort ();

    case CLOBBER:
      scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
      return;

    case EXPR_LIST:
      scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
      if (XEXP (x, 1))
	scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
    }
}

/* Build def/use chain.  */

static struct du_chain *
build_def_use (bb)
     basic_block bb;
{
  rtx insn;

  open_chains = closed_chains = NULL;

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  int n_ops;
	  rtx note;
	  rtx old_operands[MAX_RECOG_OPERANDS];
	  rtx old_dups[MAX_DUP_OPERANDS];
	  int i, icode;
	  int alt;
	  int predicated;

	  /* Process the insn, determining its effect on the def-use
	     chains.  We perform the following steps with the register
	     references in the insn:
	     (1) Any read that overlaps an open chain, but doesn't exactly
	         match, causes that chain to be closed.  We can't deal
	         with overlaps yet.
	     (2) Any read outside an operand causes any chain it overlaps
	         with to be closed, since we can't replace it.
	     (3) Any read inside an operand is added if there's already
	         an open chain for it.
	     (4) For any REG_DEAD note we find, close open chains that
	         overlap it.
	     (5) For any write we find, close open chains that overlap it.
	     (6) For any write we find in an operand, make a new chain.
	     (7) For any REG_UNUSED, close any chains we just opened.  */

	  icode = recog_memoized (insn);
	  extract_insn (insn);
	  if (! constrain_operands (1))
	    fatal_insn_not_found (insn);
	  preprocess_constraints ();
	  alt = which_alternative;
	  n_ops = recog_data.n_operands;

	  /* Simplify the code below by rewriting things to reflect
	     matching constraints.  Also promote OP_OUT to OP_INOUT
	     in predicated instructions.  */

	  predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
	  for (i = 0; i < n_ops; ++i)
	    {
	      int matches = recog_op_alt[i][alt].matches;
	      if (matches >= 0)
		recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
	      if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
	          || (predicated && recog_data.operand_type[i] == OP_OUT))
		recog_data.operand_type[i] = OP_INOUT;
	    }

	  /* Step 1: Close chains for which we have overlapping reads.  */
	  for (i = 0; i < n_ops; i++)
	    scan_rtx (insn, recog_data.operand_loc[i],
		      NO_REGS, terminate_overlapping_read,
		      recog_data.operand_type[i], 0);

	  /* Step 2: Close chains for which we have reads outside operands.
	     We do this by munging all operands into CC0, and closing
	     everything remaining.  */

	  for (i = 0; i < n_ops; i++)
	    {
	      old_operands[i] = recog_data.operand[i];
	      /* Don't squash match_operator or match_parallel here, since
		 we don't know that all of the contained registers are
		 reachable by proper operands.  */
	      if (recog_data.constraints[i][0] == '\0')
		continue;
	      *recog_data.operand_loc[i] = cc0_rtx;
	    }
	  for (i = 0; i < recog_data.n_dups; i++)
	    {
	      int dup_num = recog_data.dup_num[i];

	      old_dups[i] = *recog_data.dup_loc[i];
	      *recog_data.dup_loc[i] = cc0_rtx;

	      /* For match_dup of match_operator or match_parallel, share
		 them, so that we don't miss changes in the dup.  */
	      if (icode >= 0
		  && insn_data[icode].operand[dup_num].eliminable == 0)
		old_dups[i] = recog_data.operand[dup_num];
	    }

	  scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
		    OP_IN, 0);

	  for (i = 0; i < recog_data.n_dups; i++)
	    *recog_data.dup_loc[i] = old_dups[i];
	  for (i = 0; i < n_ops; i++)
	    *recog_data.operand_loc[i] = old_operands[i];

	  /* Step 2B: Can't rename function call argument registers.  */
	  if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
	    scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
		      NO_REGS, terminate_all_read, OP_IN, 0);

	  /* Step 2C: Can't rename asm operands that were originally
	     hard registers.  */
	  if (asm_noperands (PATTERN (insn)) > 0)
	    for (i = 0; i < n_ops; i++)
	      {
		rtx *loc = recog_data.operand_loc[i];
		rtx op = *loc;

		if (GET_CODE (op) == REG
		    && REGNO (op) == ORIGINAL_REGNO (op)
		    && (recog_data.operand_type[i] == OP_IN
			|| recog_data.operand_type[i] == OP_INOUT))
		  scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
	      }

	  /* Step 3: Append to chains for reads inside operands.  */
	  for (i = 0; i < n_ops + recog_data.n_dups; i++)
	    {
	      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
	      rtx *loc = (i < n_ops
			  ? recog_data.operand_loc[opn]
			  : recog_data.dup_loc[i - n_ops]);
	      enum reg_class class = recog_op_alt[opn][alt].class;
	      enum op_type type = recog_data.operand_type[opn];

	      /* Don't scan match_operand here, since we've no reg class
		 information to pass down.  Any operands that we could
		 substitute in will be represented elsewhere.  */
	      if (recog_data.constraints[opn][0] == '\0')
		continue;

	      if (recog_op_alt[opn][alt].is_address)
		scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
	      else
		scan_rtx (insn, loc, class, mark_read, type, 0);
	    }

	  /* Step 4: Close chains for registers that die here.
	     Also record updates for REG_INC notes.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    {
	      if (REG_NOTE_KIND (note) == REG_DEAD)
		scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
			  OP_IN, 0);
	      else if (REG_NOTE_KIND (note) == REG_INC)
		scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
			  OP_INOUT, 0);
	    }

	  /* Step 4B: If this is a call, any chain live at this point
	     requires a caller-saved reg.  */
	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      struct du_chain *p;
	      for (p = open_chains; p; p = p->next_chain)
		p->need_caller_save_reg = 1;
	    }

	  /* Step 5: Close open chains that overlap writes.  Similar to
	     step 2, we hide in-out operands, since we do not want to
	     close these chains.  */

	  for (i = 0; i < n_ops; i++)
	    {
	      old_operands[i] = recog_data.operand[i];
	      if (recog_data.operand_type[i] == OP_INOUT)
		*recog_data.operand_loc[i] = cc0_rtx;
	    }
	  for (i = 0; i < recog_data.n_dups; i++)
	    {
	      int opn = recog_data.dup_num[i];
	      old_dups[i] = *recog_data.dup_loc[i];
	      if (recog_data.operand_type[opn] == OP_INOUT)
		*recog_data.dup_loc[i] = cc0_rtx;
	    }

	  scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);

	  for (i = 0; i < recog_data.n_dups; i++)
	    *recog_data.dup_loc[i] = old_dups[i];
	  for (i = 0; i < n_ops; i++)
	    *recog_data.operand_loc[i] = old_operands[i];

	  /* Step 6: Begin new chains for writes inside operands.  */
	  /* ??? Many targets have output constraints on the SET_DEST
	     of a call insn, which is stupid, since these are certainly
	     ABI defined hard registers.  Don't change calls at all.
	     Similarly take special care for asm statement that originally
	     referenced hard registers.  */
	  if (asm_noperands (PATTERN (insn)) > 0)
	    {
	      for (i = 0; i < n_ops; i++)
		if (recog_data.operand_type[i] == OP_OUT)
		  {
		    rtx *loc = recog_data.operand_loc[i];
		    rtx op = *loc;
		    enum reg_class class = recog_op_alt[i][alt].class;

		    if (GET_CODE (op) == REG
			&& REGNO (op) == ORIGINAL_REGNO (op))
		      continue;

		    scan_rtx (insn, loc, class, mark_write, OP_OUT,
			      recog_op_alt[i][alt].earlyclobber);
		  }
	    }
	  else if (GET_CODE (insn) != CALL_INSN)
	    for (i = 0; i < n_ops + recog_data.n_dups; i++)
	      {
		int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
		rtx *loc = (i < n_ops
			    ? recog_data.operand_loc[opn]
			    : recog_data.dup_loc[i - n_ops]);
		enum reg_class class = recog_op_alt[opn][alt].class;

		if (recog_data.operand_type[opn] == OP_OUT)
		  scan_rtx (insn, loc, class, mark_write, OP_OUT,
			    recog_op_alt[opn][alt].earlyclobber);
	      }

	  /* Step 7: Close chains for registers that were never
	     really used here.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_UNUSED)
	      scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
			OP_IN, 0);
	}
      if (insn == bb->end)
	break;
    }

  /* Since we close every chain when we find a REG_DEAD note, anything that
     is still open lives past the basic block, so it can't be renamed.  */
  return closed_chains;
}

/* Dump all def/use chains in CHAINS to RTL_DUMP_FILE.  They are
   printed in reverse order as that's how we build them.  */

static void
dump_def_use_chain (chains)
     struct du_chain *chains;
{
  while (chains)
    {
      struct du_chain *this = chains;
      int r = REGNO (*this->loc);
      int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
      fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
      while (this)
	{
	  fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
		   reg_class_names[this->class]);
	  this = this->next_use;
	}
      fprintf (rtl_dump_file, "\n");
      chains = chains->next_chain;
    }
}

/* The following code does forward propagation of hard register copies.
   The object is to eliminate as many dependencies as possible, so that
   we have the most scheduling freedom.  As a side effect, we also clean
   up some silly register allocation decisions made by reload.  This
   code may be obsoleted by a new register allocator.  */

/* For each register, we have a list of registers that contain the same
   value.  The OLDEST_REGNO field points to the head of the list, and
   the NEXT_REGNO field runs through the list.  The MODE field indicates
   what mode the data is known to be in; this field is VOIDmode when the
   register is not known to contain valid data.  */

struct value_data_entry
{
  enum machine_mode mode;
  unsigned int oldest_regno;
  unsigned int next_regno;
};

struct value_data
{
  struct value_data_entry e[FIRST_PSEUDO_REGISTER];
  unsigned int max_value_regs;
};

static void kill_value_regno PARAMS ((unsigned, struct value_data *));
static void kill_value PARAMS ((rtx, struct value_data *));
static void set_value_regno PARAMS ((unsigned, enum machine_mode,
				     struct value_data *));
static void init_value_data PARAMS ((struct value_data *));
static void kill_clobbered_value PARAMS ((rtx, rtx, void *));
static void kill_set_value PARAMS ((rtx, rtx, void *));
static int kill_autoinc_value PARAMS ((rtx *, void *));
static void copy_value PARAMS ((rtx, rtx, struct value_data *));
static bool mode_change_ok PARAMS ((enum machine_mode, enum machine_mode,
				    unsigned int));
static rtx maybe_mode_change PARAMS ((enum machine_mode, enum machine_mode,
				      enum machine_mode, unsigned int,
				      unsigned int));
static rtx find_oldest_value_reg PARAMS ((enum reg_class, rtx,
					  struct value_data *));
static bool replace_oldest_value_reg PARAMS ((rtx *, enum reg_class, rtx,
					      struct value_data *));
static bool replace_oldest_value_addr PARAMS ((rtx *, enum reg_class,
					       enum machine_mode, rtx,
					       struct value_data *));
static bool replace_oldest_value_mem PARAMS ((rtx, rtx, struct value_data *));
static bool copyprop_hardreg_forward_1 PARAMS ((basic_block,
						struct value_data *));
extern void debug_value_data PARAMS ((struct value_data *));
#ifdef ENABLE_CHECKING
static void validate_value_data PARAMS ((struct value_data *));
#endif

/* Kill register REGNO.  This involves removing it from any value lists,
   and resetting the value mode to VOIDmode.  */

static void
kill_value_regno (regno, vd)
     unsigned int regno;
     struct value_data *vd;
{
  unsigned int i, next;

  if (vd->e[regno].oldest_regno != regno)
    {
      for (i = vd->e[regno].oldest_regno;
	   vd->e[i].next_regno != regno;
	   i = vd->e[i].next_regno)
	continue;
      vd->e[i].next_regno = vd->e[regno].next_regno;
    }
  else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
    {
      for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
	vd->e[i].oldest_regno = next;
    }

  vd->e[regno].mode = VOIDmode;
  vd->e[regno].oldest_regno = regno;
  vd->e[regno].next_regno = INVALID_REGNUM;

#ifdef ENABLE_CHECKING
  validate_value_data (vd);
#endif
}

/* Kill X.  This is a convenience function for kill_value_regno
   so that we mind the mode the register is in.  */

static void
kill_value (x, vd)
     rtx x;
     struct value_data *vd;
{
  /* SUBREGS are supposed to have been eliminated by now.  But some
     ports, e.g. i386 sse, use them to smuggle vector type information
     through to instruction selection.  Each such SUBREG should simplify,
     so if we get a NULL  we've done something wrong elsewhere.  */

  if (GET_CODE (x) == SUBREG)
    x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
			 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
  if (REG_P (x))
    {
      unsigned int regno = REGNO (x);
      unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
      unsigned int i, j;

      /* Kill the value we're told to kill.  */
      for (i = 0; i < n; ++i)
	kill_value_regno (regno + i, vd);

      /* Kill everything that overlapped what we're told to kill.  */
      if (regno < vd->max_value_regs)
	j = 0;
      else
	j = regno - vd->max_value_regs;
      for (; j < regno; ++j)
	{
	  if (vd->e[j].mode == VOIDmode)
	    continue;
	  n = HARD_REGNO_NREGS (j, vd->e[j].mode);
	  if (j + n > regno)
	    for (i = 0; i < n; ++i)
	      kill_value_regno (j + i, vd);
	}
    }
}

/* Remember that REGNO is valid in MODE.  */

static void
set_value_regno (regno, mode, vd)
     unsigned int regno;
     enum machine_mode mode;
     struct value_data *vd;
{
  unsigned int nregs;

  vd->e[regno].mode = mode;

  nregs = HARD_REGNO_NREGS (regno, mode);
  if (nregs > vd->max_value_regs)
    vd->max_value_regs = nregs;
}

/* Initialize VD such that there are no known relationships between regs.  */

static void
init_value_data (vd)
     struct value_data *vd;
{
  int i;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    {
      vd->e[i].mode = VOIDmode;
      vd->e[i].oldest_regno = i;
      vd->e[i].next_regno = INVALID_REGNUM;
    }
  vd->max_value_regs = 0;
}

/* Called through note_stores.  If X is clobbered, kill its value.  */

static void
kill_clobbered_value (x, set, data)
     rtx x;
     rtx set;
     void *data;
{
  struct value_data *vd = data;
  if (GET_CODE (set) == CLOBBER)
    kill_value (x, vd);
}

/* Called through note_stores.  If X is set, not clobbered, kill its
   current value and install it as the root of its own value list.  */

static void
kill_set_value (x, set, data)
     rtx x;
     rtx set;
     void *data;
{
  struct value_data *vd = data;
  if (GET_CODE (set) != CLOBBER)
    {
      kill_value (x, vd);
      if (REG_P (x))
	set_value_regno (REGNO (x), GET_MODE (x), vd);
    }
}

/* Called through for_each_rtx.  Kill any register used as the base of an
   auto-increment expression, and install that register as the root of its
   own value list.  */

static int
kill_autoinc_value (px, data)
     rtx *px;
     void *data;
{
  rtx x = *px;
  struct value_data *vd = data;

  if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
    {
      x = XEXP (x, 0);
      kill_value (x, vd);
      set_value_regno (REGNO (x), Pmode, vd);
      return -1;
    }

  return 0;
}

/* Assert that SRC has been copied to DEST.  Adjust the data structures
   to reflect that SRC contains an older copy of the shared value.  */

static void
copy_value (dest, src, vd)
     rtx dest;
     rtx src;
     struct value_data *vd;
{
  unsigned int dr = REGNO (dest);
  unsigned int sr = REGNO (src);
  unsigned int dn, sn;
  unsigned int i;

  /* ??? At present, it's possible to see noop sets.  It'd be nice if
     this were cleaned up beforehand...  */
  if (sr == dr)
    return;

  /* Do not propagate copies to the stack pointer, as that can leave
     memory accesses with no scheduling dependency on the stack update.  */
  if (dr == STACK_POINTER_REGNUM)
    return;

  /* Likewise with the frame pointer, if we're using one.  */
  if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
    return;

  /* If SRC and DEST overlap, don't record anything.  */
  dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
  sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
  if ((dr > sr && dr < sr + sn)
      || (sr > dr && sr < dr + dn))
    return;

  /* If SRC had no assigned mode (i.e. we didn't know it was live)
     assign it now and assume the value came from an input argument
     or somesuch.  */
  if (vd->e[sr].mode == VOIDmode)
    set_value_regno (sr, vd->e[dr].mode, vd);

  /* If we are narrowing the input to a smaller number of hard regs,
     and it is in big endian, we are really extracting a high part.
     Since we generally associate a low part of a value with the value itself,
     we must not do the same for the high part.
     Note we can still get low parts for the same mode combination through
     a two-step copy involving differently sized hard regs.
     Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
     (set (reg:DI r0) (reg:DI fr0))
     (set (reg:SI fr2) (reg:SI r0))
     loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
     (set (reg:SI fr2) (reg:SI fr0))
     loads the high part of (reg:DI fr0) into fr2.

     We can't properly represent the latter case in our tables, so don't
     record anything then.  */
  else if (sn < (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode)
	   && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
	       ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
    return;

  /* If SRC had been assigned a mode narrower than the copy, we can't
     link DEST into the chain, because not all of the pieces of the
     copy came from oldest_regno.  */
  else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
    return;

  /* Link DR at the end of the value chain used by SR.  */

  vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;

  for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
    continue;
  vd->e[i].next_regno = dr;

#ifdef ENABLE_CHECKING
  validate_value_data (vd);
#endif
}

/* Return true if a mode change from ORIG to NEW is allowed for REGNO.  */

static bool
mode_change_ok (orig_mode, new_mode, regno)
     enum machine_mode orig_mode, new_mode;
     unsigned int regno ATTRIBUTE_UNUSED;
{
  if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
    return false;

#ifdef CANNOT_CHANGE_MODE_CLASS
  return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
#endif

  return true;
}

/* Register REGNO was originally set in ORIG_MODE.  It - or a copy of it -
   was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
   in NEW_MODE.
   Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX.  */

static rtx
maybe_mode_change (orig_mode, copy_mode, new_mode, regno, copy_regno)
     enum machine_mode orig_mode, copy_mode, new_mode;
     unsigned int regno, copy_regno ATTRIBUTE_UNUSED;
{
  if (orig_mode == new_mode)
    return gen_rtx_raw_REG (new_mode, regno);
  else if (mode_change_ok (orig_mode, new_mode, regno))
    {
      int copy_nregs = HARD_REGNO_NREGS (copy_regno, copy_mode);
      int use_nregs = HARD_REGNO_NREGS (copy_regno, new_mode);
      int copy_offset
	= GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
      int offset
	= GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
      int byteoffset = offset % UNITS_PER_WORD;
      int wordoffset = offset - byteoffset;

      offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
		+ (BYTES_BIG_ENDIAN ? byteoffset : 0));
      return gen_rtx_raw_REG (new_mode,
			      regno + subreg_regno_offset (regno, orig_mode,
							   offset,
							   new_mode));
    }
  return NULL_RTX;
}

/* Find the oldest copy of the value contained in REGNO that is in
   register class CLASS and has mode MODE.  If found, return an rtx
   of that oldest register, otherwise return NULL.  */

static rtx
find_oldest_value_reg (class, reg, vd)
     enum reg_class class;
     rtx reg;
     struct value_data *vd;
{
  unsigned int regno = REGNO (reg);
  enum machine_mode mode = GET_MODE (reg);
  unsigned int i;

  /* If we are accessing REG in some mode other that what we set it in,
     make sure that the replacement is valid.  In particular, consider
	(set (reg:DI r11) (...))
	(set (reg:SI r9) (reg:SI r11))
	(set (reg:SI r10) (...))
	(set (...) (reg:DI r9))
     Replacing r9 with r11 is invalid.  */
  if (mode != vd->e[regno].mode)
    {
      if (HARD_REGNO_NREGS (regno, mode)
	  > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
	return NULL_RTX;
    }

  for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
    {
      enum machine_mode oldmode = vd->e[i].mode;
      rtx new;

    if (TEST_HARD_REG_BIT (reg_class_contents[class], i)
	&& (new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i,
				     regno)))
      {
	ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
        REG_ATTRS (new) = REG_ATTRS (reg);
	return new;
      }
    }

  return NULL_RTX;
}

/* If possible, replace the register at *LOC with the oldest register
   in register class CLASS.  Return true if successfully replaced.  */

static bool
replace_oldest_value_reg (loc, class, insn, vd)
     rtx *loc;
     enum reg_class class;
     rtx insn;
     struct value_data *vd;
{
  rtx new = find_oldest_value_reg (class, *loc, vd);
  if (new)
    {
      if (rtl_dump_file)
	fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
		 INSN_UID (insn), REGNO (*loc), REGNO (new));

      *loc = new;
      return true;
    }
  return false;
}

/* Similar to replace_oldest_value_reg, but *LOC contains an address.
   Adapted from find_reloads_address_1.  CLASS is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */

static bool
replace_oldest_value_addr (loc, class, mode, insn, vd)
     rtx *loc;
     enum reg_class class;
     enum machine_mode mode;
     rtx insn;
     struct value_data *vd;
{
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  int i, j;
  bool changed = false;

  switch (code)
    {
    case PLUS:
      {
	rtx orig_op0 = XEXP (x, 0);
	rtx orig_op1 = XEXP (x, 1);
	RTX_CODE code0 = GET_CODE (orig_op0);
	RTX_CODE code1 = GET_CODE (orig_op1);
	rtx op0 = orig_op0;
	rtx op1 = orig_op1;
	rtx *locI = NULL;
	rtx *locB = NULL;

	if (GET_CODE (op0) == SUBREG)
	  {
	    op0 = SUBREG_REG (op0);
	    code0 = GET_CODE (op0);
	  }

	if (GET_CODE (op1) == SUBREG)
	  {
	    op1 = SUBREG_REG (op1);
	    code1 = GET_CODE (op1);
	  }

	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
	    || code0 == ZERO_EXTEND || code1 == MEM)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	  }
	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
		 || code1 == ZERO_EXTEND || code0 == MEM)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	  }
	else if (code0 == CONST_INT || code0 == CONST
		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
	  locB = &XEXP (x, 1);
	else if (code1 == CONST_INT || code1 == CONST
		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
	  locB = &XEXP (x, 0);
	else if (code0 == REG && code1 == REG)
	  {
	    int index_op;

	    if (REG_OK_FOR_INDEX_P (op0)
		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
	      index_op = 0;
	    else if (REG_OK_FOR_INDEX_P (op1)
		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
	      index_op = 1;
	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
	      index_op = 0;
	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
	      index_op = 1;
	    else if (REG_OK_FOR_INDEX_P (op1))
	      index_op = 1;
	    else
	      index_op = 0;

	    locI = &XEXP (x, index_op);
	    locB = &XEXP (x, !index_op);
	  }
	else if (code0 == REG)
	  {
	    locI = &XEXP (x, 0);
	    locB = &XEXP (x, 1);
	  }
	else if (code1 == REG)
	  {
	    locI = &XEXP (x, 1);
	    locB = &XEXP (x, 0);
	  }

	if (locI)
	  changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
						insn, vd);
	if (locB)
	  changed |= replace_oldest_value_addr (locB,
						MODE_BASE_REG_CLASS (mode),
						mode, insn, vd);
	return changed;
      }

    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
      return false;

    case MEM:
      return replace_oldest_value_mem (x, insn, vd);

    case REG:
      return replace_oldest_value_reg (loc, class, insn, vd);

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
					      insn, vd);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
						mode, insn, vd);
    }

  return changed;
}

/* Similar to replace_oldest_value_reg, but X contains a memory.  */

static bool
replace_oldest_value_mem (x, insn, vd)
     rtx x;
     rtx insn;
     struct value_data *vd;
{
  return replace_oldest_value_addr (&XEXP (x, 0),
				    MODE_BASE_REG_CLASS (GET_MODE (x)),
				    GET_MODE (x), insn, vd);
}

/* Perform the forward copy propagation on basic block BB.  */

static bool
copyprop_hardreg_forward_1 (bb, vd)
     basic_block bb;
     struct value_data *vd;
{
  bool changed = false;
  rtx insn;

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      int n_ops, i, alt, predicated;
      bool is_asm;
      rtx set;

      if (! INSN_P (insn))
	{
	  if (insn == bb->end)
	    break;
	  else
	    continue;
	}

      set = single_set (insn);
      extract_insn (insn);
      if (! constrain_operands (1))
	fatal_insn_not_found (insn);
      preprocess_constraints ();
      alt = which_alternative;
      n_ops = recog_data.n_operands;
      is_asm = asm_noperands (PATTERN (insn)) >= 0;

      /* Simplify the code below by rewriting things to reflect
	 matching constraints.  Also promote OP_OUT to OP_INOUT
	 in predicated instructions.  */

      predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
      for (i = 0; i < n_ops; ++i)
	{
	  int matches = recog_op_alt[i][alt].matches;
	  if (matches >= 0)
	    recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
	  if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
	      || (predicated && recog_data.operand_type[i] == OP_OUT))
	    recog_data.operand_type[i] = OP_INOUT;
	}

      /* For each earlyclobber operand, zap the value data.  */
      for (i = 0; i < n_ops; i++)
	if (recog_op_alt[i][alt].earlyclobber)
	  kill_value (recog_data.operand[i], vd);

      /* Within asms, a clobber cannot overlap inputs or outputs.
	 I wouldn't think this were true for regular insns, but
	 scan_rtx treats them like that...  */
      note_stores (PATTERN (insn), kill_clobbered_value, vd);

      /* Kill all auto-incremented values.  */
      /* ??? REG_INC is useless, since stack pushes aren't done that way.  */
      for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);

      /* Kill all early-clobbered operands.  */
      for (i = 0; i < n_ops; i++)
	if (recog_op_alt[i][alt].earlyclobber)
	  kill_value (recog_data.operand[i], vd);

      /* Special-case plain move instructions, since we may well
	 be able to do the move from a different register class.  */
      if (set && REG_P (SET_SRC (set)))
	{
	  rtx src = SET_SRC (set);
	  unsigned int regno = REGNO (src);
	  enum machine_mode mode = GET_MODE (src);
	  unsigned int i;
	  rtx new;

	  /* If we are accessing SRC in some mode other that what we
	     set it in, make sure that the replacement is valid.  */
	  if (mode != vd->e[regno].mode)
	    {
	      if (HARD_REGNO_NREGS (regno, mode)
		  > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
		goto no_move_special_case;
	    }

	  /* If the destination is also a register, try to find a source
	     register in the same class.  */
	  if (REG_P (SET_DEST (set)))
	    {
	      new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
	      if (new && validate_change (insn, &SET_SRC (set), new, 0))
		{
		  if (rtl_dump_file)
		    fprintf (rtl_dump_file,
			     "insn %u: replaced reg %u with %u\n",
			     INSN_UID (insn), regno, REGNO (new));
		  changed = true;
		  goto did_replacement;
		}
	    }

	  /* Otherwise, try all valid registers and see if its valid.  */
	  for (i = vd->e[regno].oldest_regno; i != regno;
	       i = vd->e[i].next_regno)
	    {
	      new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
				       mode, i, regno);
	      if (new != NULL_RTX)
		{
		  if (validate_change (insn, &SET_SRC (set), new, 0))
		    {
		      ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
		      REG_ATTRS (new) = REG_ATTRS (src);
		      if (rtl_dump_file)
			fprintf (rtl_dump_file,
				 "insn %u: replaced reg %u with %u\n",
				 INSN_UID (insn), regno, REGNO (new));
		      changed = true;
		      goto did_replacement;
		    }
		}
	    }
	}
      no_move_special_case:

      /* For each input operand, replace a hard register with the
	 eldest live copy that's in an appropriate register class.  */
      for (i = 0; i < n_ops; i++)
	{
	  bool replaced = false;

	  /* Don't scan match_operand here, since we've no reg class
	     information to pass down.  Any operands that we could
	     substitute in will be represented elsewhere.  */
	  if (recog_data.constraints[i][0] == '\0')
	    continue;

	  /* Don't replace in asms intentionally referencing hard regs.  */
	  if (is_asm && GET_CODE (recog_data.operand[i]) == REG
	      && (REGNO (recog_data.operand[i])
		  == ORIGINAL_REGNO (recog_data.operand[i])))
	    continue;

	  if (recog_data.operand_type[i] == OP_IN)
	    {
	      if (recog_op_alt[i][alt].is_address)
		replaced
		  = replace_oldest_value_addr (recog_data.operand_loc[i],
					       recog_op_alt[i][alt].class,
					       VOIDmode, insn, vd);
	      else if (REG_P (recog_data.operand[i]))
		replaced
		  = replace_oldest_value_reg (recog_data.operand_loc[i],
					      recog_op_alt[i][alt].class,
					      insn, vd);
	      else if (GET_CODE (recog_data.operand[i]) == MEM)
		replaced = replace_oldest_value_mem (recog_data.operand[i],
						     insn, vd);
	    }
	  else if (GET_CODE (recog_data.operand[i]) == MEM)
	    replaced = replace_oldest_value_mem (recog_data.operand[i],
						 insn, vd);

	  /* If we performed any replacement, update match_dups.  */
	  if (replaced)
	    {
	      int j;
	      rtx new;

	      changed = true;

	      new = *recog_data.operand_loc[i];
	      recog_data.operand[i] = new;
	      for (j = 0; j < recog_data.n_dups; j++)
		if (recog_data.dup_num[j] == i)
		  *recog_data.dup_loc[j] = new;
	    }
	}

    did_replacement:
      /* Clobber call-clobbered registers.  */
      if (GET_CODE (insn) == CALL_INSN)
	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	  if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	    kill_value_regno (i, vd);

      /* Notice stores.  */
      note_stores (PATTERN (insn), kill_set_value, vd);

      /* Notice copies.  */
      if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
	copy_value (SET_DEST (set), SET_SRC (set), vd);

      if (insn == bb->end)
	break;
    }

  return changed;
}

/* Main entry point for the forward copy propagation optimization.  */

void
copyprop_hardreg_forward ()
{
  struct value_data *all_vd;
  bool need_refresh;
  basic_block bb, bbp = 0;

  need_refresh = false;

  all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);

  FOR_EACH_BB (bb)
    {
      /* If a block has a single predecessor, that we've already
	 processed, begin with the value data that was live at
	 the end of the predecessor block.  */
      /* ??? Ought to use more intelligent queueing of blocks.  */
      if (bb->pred)
	for (bbp = bb; bbp && bbp != bb->pred->src; bbp = bbp->prev_bb);
      if (bb->pred
	  && ! bb->pred->pred_next
	  && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
	  && bb->pred->src != ENTRY_BLOCK_PTR
	  && bbp)
	all_vd[bb->index] = all_vd[bb->pred->src->index];
      else
	init_value_data (all_vd + bb->index);

      if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
	need_refresh = true;
    }

  if (need_refresh)
    {
      if (rtl_dump_file)
	fputs ("\n\n", rtl_dump_file);

      /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
	 to scan, so we have to do a life update with no initial set of
	 blocks Just In Case.  */
      delete_noop_moves (get_insns ());
      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
			PROP_DEATH_NOTES
			| PROP_SCAN_DEAD_CODE
			| PROP_KILL_DEAD_CODE);
    }

  free (all_vd);
}

/* Dump the value chain data to stderr.  */

void
debug_value_data (vd)
     struct value_data *vd;
{
  HARD_REG_SET set;
  unsigned int i, j;

  CLEAR_HARD_REG_SET (set);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (vd->e[i].oldest_regno == i)
      {
	if (vd->e[i].mode == VOIDmode)
	  {
	    if (vd->e[i].next_regno != INVALID_REGNUM)
	      fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
		       i, vd->e[i].next_regno);
	    continue;
	  }

	SET_HARD_REG_BIT (set, i);
	fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));

	for (j = vd->e[i].next_regno;
	     j != INVALID_REGNUM;
	     j = vd->e[j].next_regno)
	  {
	    if (TEST_HARD_REG_BIT (set, j))
	      {
		fprintf (stderr, "[%u] Loop in regno chain\n", j);
		return;
	      }

	    if (vd->e[j].oldest_regno != i)
	      {
		fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
			 j, vd->e[j].oldest_regno);
		return;
	      }
	    SET_HARD_REG_BIT (set, j);
	    fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
	  }
	fputc ('\n', stderr);
      }

  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (! TEST_HARD_REG_BIT (set, i)
	&& (vd->e[i].mode != VOIDmode
	    || vd->e[i].oldest_regno != i
	    || vd->e[i].next_regno != INVALID_REGNUM))
      fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
	       i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
	       vd->e[i].next_regno);
}

#ifdef ENABLE_CHECKING
static void
validate_value_data (vd)
     struct value_data *vd;
{
  HARD_REG_SET set;
  unsigned int i, j;

  CLEAR_HARD_REG_SET (set);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (vd->e[i].oldest_regno == i)
      {
	if (vd->e[i].mode == VOIDmode)
	  {
	    if (vd->e[i].next_regno != INVALID_REGNUM)
	      internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
			      i, vd->e[i].next_regno);
	    continue;
	  }

	SET_HARD_REG_BIT (set, i);

	for (j = vd->e[i].next_regno;
	     j != INVALID_REGNUM;
	     j = vd->e[j].next_regno)
	  {
	    if (TEST_HARD_REG_BIT (set, j))
	      internal_error ("validate_value_data: Loop in regno chain (%u)",
			      j);
	    if (vd->e[j].oldest_regno != i)
	      internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
			      j, vd->e[j].oldest_regno);

	    SET_HARD_REG_BIT (set, j);
	  }
      }

  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (! TEST_HARD_REG_BIT (set, i)
	&& (vd->e[i].mode != VOIDmode
	    || vd->e[i].oldest_regno != i
	    || vd->e[i].next_regno != INVALID_REGNUM))
      internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
		      i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
		      vd->e[i].next_regno);
}
#endif