summaryrefslogtreecommitdiff
path: root/gcc/shrink-wrap.c
blob: 8803200fbe0172ae97e32174d1ef91bcd5b220b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
/* Shrink-wrapping related optimizations.
   Copyright (C) 1987-2016 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file handles shrink-wrapping related optimizations.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "insn-config.h"
#include "emit-rtl.h"
#include "output.h"
#include "tree-pass.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "params.h"
#include "bb-reorder.h"
#include "shrink-wrap.h"
#include "regcprop.h"
#include "rtl-iter.h"
#include "valtrack.h"


/* Return true if INSN requires the stack frame to be set up.
   PROLOGUE_USED contains the hard registers used in the function
   prologue.  SET_UP_BY_PROLOGUE is the set of registers we expect the
   prologue to set up for the function.  */
bool
requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
			HARD_REG_SET set_up_by_prologue)
{
  df_ref def, use;
  HARD_REG_SET hardregs;
  unsigned regno;

  if (CALL_P (insn))
    return !SIBLING_CALL_P (insn);

  /* We need a frame to get the unique CFA expected by the unwinder.  */
  if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
    return true;

  CLEAR_HARD_REG_SET (hardregs);
  FOR_EACH_INSN_DEF (def, insn)
    {
      rtx dreg = DF_REF_REG (def);

      if (!REG_P (dreg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
    }
  if (hard_reg_set_intersect_p (hardregs, prologue_used))
    return true;
  AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (hardregs, regno)
	&& df_regs_ever_live_p (regno))
      return true;

  FOR_EACH_INSN_USE (use, insn)
    {
      rtx reg = DF_REF_REG (use);

      if (!REG_P (reg))
	continue;

      add_to_hard_reg_set (&hardregs, GET_MODE (reg),
			   REGNO (reg));
    }
  if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
    return true;

  return false;
}

/* See whether there has a single live edge from BB, which dest uses
   [REGNO, END_REGNO).  Return the live edge if its dest bb has
   one or two predecessors.  Otherwise return NULL.  */

static edge
live_edge_for_reg (basic_block bb, int regno, int end_regno)
{
  edge e, live_edge;
  edge_iterator ei;
  bitmap live;
  int i;

  live_edge = NULL;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      live = df_get_live_in (e->dest);
      for (i = regno; i < end_regno; i++)
	if (REGNO_REG_SET_P (live, i))
	  {
	    if (live_edge && live_edge != e)
	      return NULL;
	    live_edge = e;
	  }
    }

  /* We can sometimes encounter dead code.  Don't try to move it
     into the exit block.  */
  if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return NULL;

  /* Reject targets of abnormal edges.  This is needed for correctness
     on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
     exception edges even though it is generally treated as call-saved
     for the majority of the compilation.  Moving across abnormal edges
     isn't going to be interesting for shrink-wrap usage anyway.  */
  if (live_edge->flags & EDGE_ABNORMAL)
    return NULL;

  /* When live_edge->dest->preds == 2, we can create a new block on
     the edge to make it meet the requirement.  */
  if (EDGE_COUNT (live_edge->dest->preds) > 2)
    return NULL;

  return live_edge;
}

/* Try to move INSN from BB to a successor.  Return true on success.
   USES and DEFS are the set of registers that are used and defined
   after INSN in BB.  SPLIT_P indicates whether a live edge from BB
   is splitted or not.  */

static bool
move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
			   const HARD_REG_SET uses,
			   const HARD_REG_SET defs,
			   bool *split_p,
			   struct dead_debug_local *debug)
{
  rtx set, src, dest;
  bitmap live_out, live_in, bb_uses, bb_defs;
  unsigned int i, dregno, end_dregno;
  unsigned int sregno = FIRST_PSEUDO_REGISTER;
  unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
  basic_block next_block;
  edge live_edge;
  rtx_insn *dinsn;
  df_ref def;

  /* Look for a simple register assignment.  We don't use single_set here
     because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
     destinations.  */
  if (!INSN_P (insn))
    return false;
  set = PATTERN (insn);
  if (GET_CODE (set) != SET)
    return false;
  src = SET_SRC (set);
  dest = SET_DEST (set);

  /* For the destination, we want only a register.  Also disallow STACK
     or FRAME related adjustments.  They are likely part of the prologue,
     so keep them in the entry block.  */
  if (!REG_P (dest)
      || dest == stack_pointer_rtx
      || dest == frame_pointer_rtx
      || dest == hard_frame_pointer_rtx)
    return false;

  /* For the source, we want one of:
      (1) A (non-overlapping) register
      (2) A constant,
      (3) An expression involving no more than one register.

     That last point comes from the code following, which was originally
     written to handle only register move operations, and still only handles
     a single source register when checking for overlaps.  Happily, the
     same checks can be applied to expressions like (plus reg const).  */

  if (CONSTANT_P (src))
    ;
  else if (!REG_P (src))
    {
      rtx src_inner = NULL_RTX;

      if (can_throw_internal (insn))
	return false;

      subrtx_var_iterator::array_type array;
      FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
	{
	  rtx x = *iter;
	  switch (GET_RTX_CLASS (GET_CODE (x)))
	    {
	    case RTX_CONST_OBJ:
	    case RTX_COMPARE:
	    case RTX_COMM_COMPARE:
	    case RTX_BIN_ARITH:
	    case RTX_COMM_ARITH:
	    case RTX_UNARY:
	    case RTX_TERNARY:
	      /* Constant or expression.  Continue.  */
	      break;

	    case RTX_OBJ:
	    case RTX_EXTRA:
	      switch (GET_CODE (x))
		{
		case UNSPEC:
		case SUBREG:
		case STRICT_LOW_PART:
		case PC:
		case LO_SUM:
		  /* Ok.  Continue.  */
		  break;

		case REG:
		  /* Fail if we see a second inner register.  */
		  if (src_inner != NULL)
		    return false;
		  src_inner = x;
		  break;

		default:
		  return false;
		}
	      break;

	    default:
	      return false;
	    }
	}

      if (src_inner != NULL)
	src = src_inner;
    }

  /* Make sure that the source register isn't defined later in BB.  */
  if (REG_P (src))
    {
      sregno = REGNO (src);
      end_sregno = END_REGNO (src);
      if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
	return false;
    }

  /* Make sure that the destination register isn't referenced later in BB.  */
  dregno = REGNO (dest);
  end_dregno = END_REGNO (dest);
  if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
      || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
    return false;

  /* See whether there is a successor block to which we could move INSN.  */
  live_edge = live_edge_for_reg (bb, dregno, end_dregno);
  if (!live_edge)
    return false;

  next_block = live_edge->dest;
  /* Create a new basic block on the edge.  */
  if (EDGE_COUNT (next_block->preds) == 2)
    {
      /* split_edge for a block with only one successor is meaningless.  */
      if (EDGE_COUNT (bb->succs) == 1)
	return false;

      /* If DF_LIVE doesn't exist, i.e. at -O1, just give up.  */
      if (!df_live)
	return false;

      basic_block old_dest = live_edge->dest;
      next_block = split_edge (live_edge);

      /* We create a new basic block.  Call df_grow_bb_info to make sure
	 all data structures are allocated.  */
      df_grow_bb_info (df_live);

      bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
		  df_get_live_in (old_dest));
      df_set_bb_dirty (next_block);

      /* We should not split more than once for a function.  */
      if (*split_p)
	return false;

      *split_p = true;
    }

  /* At this point we are committed to moving INSN, but let's try to
     move it as far as we can.  */
  do
    {
      if (MAY_HAVE_DEBUG_INSNS)
	{
	  FOR_BB_INSNS_REVERSE (bb, dinsn)
	    if (DEBUG_INSN_P (dinsn))
	      {
		df_ref use;
		FOR_EACH_INSN_USE (use, dinsn)
		  if (refers_to_regno_p (dregno, end_dregno,
					 DF_REF_REG (use), (rtx *) NULL))
		    dead_debug_add (debug, use, DF_REF_REGNO (use));
	      }
	    else if (dinsn == insn)
	      break;
	}
      live_out = df_get_live_out (bb);
      live_in = df_get_live_in (next_block);
      bb = next_block;

      /* Check whether BB uses DEST or clobbers DEST.  We need to add
	 INSN to BB if so.  Either way, DEST is no longer live on entry,
	 except for any part that overlaps SRC (next loop).  */
      bb_uses = &DF_LR_BB_INFO (bb)->use;
      bb_defs = &DF_LR_BB_INFO (bb)->def;
      if (df_live)
	{
	  for (i = dregno; i < end_dregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_uses, i)
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  /* Check whether BB clobbers SRC.  We need to add INSN to BB if so.
	     Either way, SRC is now live on entry.  */
	  for (i = sregno; i < end_sregno; i++)
	    {
	      if (*split_p
		  || REGNO_REG_SET_P (bb_defs, i)
		  || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
		next_block = NULL;
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}
      else
	{
	  /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
	     DF_REF_CONDITIONAL defs.  So if DF_LIVE doesn't exist, i.e.
	     at -O1, just give up searching NEXT_BLOCK.  */
	  next_block = NULL;
	  for (i = dregno; i < end_dregno; i++)
	    {
	      CLEAR_REGNO_REG_SET (live_out, i);
	      CLEAR_REGNO_REG_SET (live_in, i);
	    }

	  for (i = sregno; i < end_sregno; i++)
	    {
	      SET_REGNO_REG_SET (live_out, i);
	      SET_REGNO_REG_SET (live_in, i);
	    }
	}

      /* If we don't need to add the move to BB, look for a single
	 successor block.  */
      if (next_block)
	{
	  live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
	  if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
	    break;
	  next_block = live_edge->dest;
	}
    }
  while (next_block);

  /* For the new created basic block, there is no dataflow info at all.
     So skip the following dataflow update and check.  */
  if (!(*split_p))
    {
      /* BB now defines DEST.  It only uses the parts of DEST that overlap SRC
	 (next loop).  */
      for (i = dregno; i < end_dregno; i++)
	{
	  CLEAR_REGNO_REG_SET (bb_uses, i);
	  SET_REGNO_REG_SET (bb_defs, i);
	}

      /* BB now uses SRC.  */
      for (i = sregno; i < end_sregno; i++)
	SET_REGNO_REG_SET (bb_uses, i);
    }

  /* Insert debug temps for dead REGs used in subsequent debug insns.  */
  if (debug->used && !bitmap_empty_p (debug->used))
    FOR_EACH_INSN_DEF (def, insn)
      dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
			      DEBUG_TEMP_BEFORE_WITH_VALUE);

  emit_insn_after (PATTERN (insn), bb_note (bb));
  delete_insn (insn);
  return true;
}

/* Look for register copies in the first block of the function, and move
   them down into successor blocks if the register is used only on one
   path.  This exposes more opportunities for shrink-wrapping.  These
   kinds of sets often occur when incoming argument registers are moved
   to call-saved registers because their values are live across one or
   more calls during the function.  */

static void
prepare_shrink_wrap (basic_block entry_block)
{
  rtx_insn *insn, *curr;
  rtx x;
  HARD_REG_SET uses, defs;
  df_ref def, use;
  bool split_p = false;
  unsigned int i;
  struct dead_debug_local debug;

  if (JUMP_P (BB_END (entry_block)))
    {
      /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
	 to sink the copies from parameter to callee saved register out of
	 entry block.  copyprop_hardreg_forward_bb_without_debug_insn is called
	 to release some dependences.  */
      copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
    }

  dead_debug_local_init (&debug, NULL, NULL);
  CLEAR_HARD_REG_SET (uses);
  CLEAR_HARD_REG_SET (defs);

  FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
    if (NONDEBUG_INSN_P (insn)
	&& !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
				       &split_p, &debug))
      {
	/* Add all defined registers to DEFs.  */
	FOR_EACH_INSN_DEF (def, insn)
	  {
	    x = DF_REF_REG (def);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      for (i = REGNO (x); i < END_REGNO (x); i++)
		SET_HARD_REG_BIT (defs, i);
	  }

	/* Add all used registers to USESs.  */
	FOR_EACH_INSN_USE (use, insn)
	  {
	    x = DF_REF_REG (use);
	    if (REG_P (x) && HARD_REGISTER_P (x))
	      for (i = REGNO (x); i < END_REGNO (x); i++)
		SET_HARD_REG_BIT (uses, i);
	  }
      }

  dead_debug_local_finish (&debug, NULL);
}

/* Return whether basic block PRO can get the prologue.  It can not if it
   has incoming complex edges that need a prologue inserted (we make a new
   block for the prologue, so those edges would need to be redirected, which
   does not work).  It also can not if there exist registers live on entry
   to PRO that are clobbered by the prologue.  */

static bool
can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, pro->preds)
    if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
	&& !dominated_by_p (CDI_DOMINATORS, e->src, pro))
      return false;

  HARD_REG_SET live;
  REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
  if (hard_reg_set_intersect_p (live, prologue_clobbered))
    return false;

  return true;
}

/* Return whether we can duplicate basic block BB for shrink wrapping.  We
   cannot if the block cannot be duplicated at all, or if any of its incoming
   edges are complex and come from a block that does not require a prologue
   (we cannot redirect such edges), or if the block is too big to copy.
   PRO is the basic block before which we would put the prologue, MAX_SIZE is
   the maximum size block we allow to be copied.  */

static bool
can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
{
  if (!can_duplicate_block_p (bb))
    return false;

  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
	&& !dominated_by_p (CDI_DOMINATORS, e->src, pro))
      return false;

  unsigned size = 0;

  rtx_insn *insn;
  FOR_BB_INSNS (bb, insn)
    if (NONDEBUG_INSN_P (insn))
      {
	size += get_attr_min_length (insn);
	if (size > max_size)
	  return false;
      }

  return true;
}

/* Do whatever needs to be done for exits that run without prologue.
   Sibcalls need nothing done.  Normal exits get a simple_return inserted.  */

static void
handle_simple_exit (edge e)
{

  if (e->flags & EDGE_SIBCALL)
    {
      /* Tell function.c to take no further action on this edge.  */
      e->flags |= EDGE_IGNORE;

      e->flags &= ~EDGE_FALLTHRU;
      emit_barrier_after_bb (e->src);
      return;
    }

  /* If the basic block the edge comes from has multiple successors,
     split the edge.  */
  if (EDGE_COUNT (e->src->succs) > 1)
    {
      basic_block old_bb = e->src;
      rtx_insn *end = BB_END (old_bb);
      rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
      basic_block new_bb = create_basic_block (note, note, old_bb);
      BB_COPY_PARTITION (new_bb, old_bb);
      BB_END (old_bb) = end;

      redirect_edge_succ (e, new_bb);
      e->flags |= EDGE_FALLTHRU;

      e = make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
    }

  e->flags &= ~EDGE_FALLTHRU;
  rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
					     BB_END (e->src));
  JUMP_LABEL (ret) = simple_return_rtx;
  emit_barrier_after_bb (e->src);

  if (dump_file)
    fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
	     INSN_UID (ret), e->src->index);
}

/* Try to perform a kind of shrink-wrapping, making sure the
   prologue/epilogue is emitted only around those parts of the
   function that require it.

   There will be exactly one prologue, and it will be executed either
   zero or one time, on any path.  Depending on where the prologue is
   placed, some of the basic blocks can be reached via both paths with
   and without a prologue.  Such blocks will be duplicated here, and the
   edges changed to match.

   Paths that go to the exit without going through the prologue will use
   a simple_return instead of the epilogue.  We maximize the number of
   those, making sure to only duplicate blocks that can be duplicated.
   If the prologue can then still be placed in multiple locations, we
   place it as early as possible.

   An example, where we duplicate blocks with control flow (legend:
   _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
   be taken to point down or to the right, to simplify the diagram; here,
   block 3 needs a prologue, the rest does not):


       B                 B
       |                 |
       2                 2
       |\                |\
       | 3    becomes    | 3
       |/                |  \
       4                 7   4
       |\                |\  |\
       | 5               | 8 | 5
       |/                |/  |/
       6                 9   6
       |                 |   |
       R                 S   R


   (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
   edge 2->3).

   Another example, where part of a loop is duplicated (again, bb 3 is
   the only block that needs a prologue):


       B   3<--              B       ->3<--
       |   |   |             |      |  |   |
       |   v   |   becomes   |      |  v   |
       2---4---              2---5--   4---
           |                     |     |
           R                     S     R


   (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).

   ENTRY_EDGE is the edge where the prologue will be placed, possibly
   changed by this function.  PROLOGUE_SEQ is the prologue we will insert.  */

void
try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
{
  /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
     no sense to shrink-wrap: then do not shrink-wrap!  */

  if (!SHRINK_WRAPPING_ENABLED)
    return;

  if (crtl->profile && !targetm.profile_before_prologue ())
    return;

  if (crtl->calls_eh_return)
    return;

  bool empty_prologue = true;
  for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
    if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
      {
	empty_prologue = false;
	break;
      }
  if (empty_prologue)
    return;

  /* Move some code down to expose more shrink-wrapping opportunities.  */

  basic_block entry = (*entry_edge)->dest;
  prepare_shrink_wrap (entry);

  if (dump_file)
    fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");

  /* Compute the registers set and used in the prologue.  */

  HARD_REG_SET prologue_clobbered, prologue_used;
  CLEAR_HARD_REG_SET (prologue_clobbered);
  CLEAR_HARD_REG_SET (prologue_used);
  for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
    if (NONDEBUG_INSN_P (insn))
      {
	HARD_REG_SET this_used;
	CLEAR_HARD_REG_SET (this_used);
	note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
	AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
	IOR_HARD_REG_SET (prologue_used, this_used);
	note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
      }
  CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
  if (frame_pointer_needed)
    CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);

  /* Find out what registers are set up by the prologue; any use of these
     cannot happen before the prologue.  */

  struct hard_reg_set_container set_up_by_prologue;
  CLEAR_HARD_REG_SET (set_up_by_prologue.set);
  add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
  add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
  if (frame_pointer_needed)
    add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			 HARD_FRAME_POINTER_REGNUM);
  if (pic_offset_table_rtx 
      && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
    add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
			 PIC_OFFSET_TABLE_REGNUM);
  if (crtl->drap_reg)
    add_to_hard_reg_set (&set_up_by_prologue.set,
			 GET_MODE (crtl->drap_reg),
			 REGNO (crtl->drap_reg));
  if (targetm.set_up_by_prologue)
    targetm.set_up_by_prologue (&set_up_by_prologue);

  /* We will insert the prologue before the basic block PRO.  PRO should
     dominate all basic blocks that need the prologue to be executed
     before them.  First, make PRO the "tightest wrap" possible.  */

  calculate_dominance_info (CDI_DOMINATORS);

  basic_block pro = 0;

  basic_block bb;
  edge e;
  edge_iterator ei;
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *insn;
      FOR_BB_INSNS (bb, insn)
	if (NONDEBUG_INSN_P (insn)
	    && requires_stack_frame_p (insn, prologue_used,
				       set_up_by_prologue.set))
	  {
	    if (dump_file)
	      fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
	    pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
	    break;
	  }
    }

  /* If nothing needs a prologue, just put it at the start.  This really
     shouldn't happen, but we cannot fix it here.  */

  if (pro == 0)
    {
      if (dump_file)
	fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
			   "putting it at the start.\n");
      pro = entry;
    }

  if (dump_file)
    fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
	     pro->index);

  /* Now see if we can put the prologue at the start of PRO.  Putting it
     there might require duplicating a block that cannot be duplicated,
     or in some cases we cannot insert the prologue there at all.  If PRO
     wont't do, try again with the immediate dominator of PRO, and so on.

     The blocks that need duplicating are those reachable from PRO but
     not dominated by it.  We keep in BB_WITH a bitmap of the blocks
     reachable from PRO that we already found, and in VEC a stack of
     those we still need to consider (to find successors).  */

  bitmap bb_with = BITMAP_ALLOC (NULL);
  bitmap_set_bit (bb_with, pro->index);

  vec<basic_block> vec;
  vec.create (n_basic_blocks_for_fn (cfun));
  vec.quick_push (pro);

  unsigned max_grow_size = get_uncond_jump_length ();
  max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);

  while (!vec.is_empty () && pro != entry)
    {
      while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
	{
	  pro = get_immediate_dominator (CDI_DOMINATORS, pro);

	  if (bitmap_set_bit (bb_with, pro->index))
	    vec.quick_push (pro);
	}

      basic_block bb = vec.pop ();
      if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
	while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
	  {
	    gcc_assert (pro != entry);

	    pro = get_immediate_dominator (CDI_DOMINATORS, pro);

	    if (bitmap_set_bit (bb_with, pro->index))
	      vec.quick_push (pro);
	  }

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	    && bitmap_set_bit (bb_with, e->dest->index))
	  vec.quick_push (e->dest);
    }

  if (dump_file)
    fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
	     pro->index);

  /* If we can move PRO back without having to duplicate more blocks, do so.
     We do this because putting the prologue earlier is better for scheduling.

     We can move back to a block PRE if every path from PRE will eventually
     need a prologue, that is, PRO is a post-dominator of PRE.  PRE needs
     to dominate every block reachable from itself.  We keep in BB_TMP a
     bitmap of the blocks reachable from PRE that we already found, and in
     VEC a stack of those we still need to consider.

     Any block reachable from PRE is also reachable from all predecessors
     of PRE, so if we find we need to move PRE back further we can leave
     everything not considered so far on the stack.  Any block dominated
     by PRE is also dominated by all other dominators of PRE, so anything
     found good for some PRE does not need to be reconsidered later.

     We don't need to update BB_WITH because none of the new blocks found
     can jump to a block that does not need the prologue.  */

  if (pro != entry)
    {
      calculate_dominance_info (CDI_POST_DOMINATORS);

      bitmap bb_tmp = BITMAP_ALLOC (NULL);
      bitmap_copy (bb_tmp, bb_with);
      basic_block last_ok = pro;
      vec.truncate (0);

      while (pro != entry)
	{
	  basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
	  if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
	    break;

	  if (bitmap_set_bit (bb_tmp, pre->index))
	    vec.quick_push (pre);

	  bool ok = true;
	  while (!vec.is_empty ())
	    {
	      if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
		{
		  ok = false;
		  break;
		}

	      basic_block bb = vec.pop ();
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (bitmap_set_bit (bb_tmp, e->dest->index))
		  vec.quick_push (e->dest);
	    }

	  if (ok && can_get_prologue (pre, prologue_clobbered))
	    last_ok = pre;

	  pro = pre;
	}

      pro = last_ok;

      BITMAP_FREE (bb_tmp);
      free_dominance_info (CDI_POST_DOMINATORS);
    }

  vec.release ();

  if (dump_file)
    fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
	     pro->index);

  if (pro == entry)
    {
      BITMAP_FREE (bb_with);
      free_dominance_info (CDI_DOMINATORS);
      return;
    }

  /* Compute what fraction of the frequency and count of the blocks that run
     both with and without prologue are for running with prologue.  This gives
     the correct answer for reducible flow graphs; for irreducible flow graphs
     our profile is messed up beyond repair anyway.  */

  gcov_type num = 0;
  gcov_type den = 0;

  FOR_EACH_EDGE (e, ei, pro->preds)
    if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
      {
	num += EDGE_FREQUENCY (e);
	den += e->src->frequency;
      }

  if (den == 0)
    den = 1;

  /* All is okay, so do it.  */

  crtl->shrink_wrapped = true;
  if (dump_file)
    fprintf (dump_file, "Performing shrink-wrapping.\n");

  /* Copy the blocks that can run both with and without prologue.  The
     originals run with prologue, the copies without.  Store a pointer to
     the copy in the ->aux field of the original.  */

  FOR_EACH_BB_FN (bb, cfun)
    if (bitmap_bit_p (bb_with, bb->index)
	&& !dominated_by_p (CDI_DOMINATORS, bb, pro))
      {
	basic_block dup = duplicate_block (bb, 0, 0);

	bb->aux = dup;

	if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
	  emit_barrier_after_bb (dup);

	if (EDGE_COUNT (dup->succs) == 0)
	  emit_barrier_after_bb (dup);

	if (dump_file)
	  fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);

	bb->frequency = RDIV (num * bb->frequency, den);
	dup->frequency -= bb->frequency;
	bb->count = RDIV (num * bb->count, den);
	dup->count -= bb->count;
      }

  /* Now change the edges to point to the copies, where appropriate.  */

  FOR_EACH_BB_FN (bb, cfun)
    if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
      {
	basic_block src = bb;
	if (bitmap_bit_p (bb_with, bb->index))
	  src = (basic_block) bb->aux;

	FOR_EACH_EDGE (e, ei, src->succs)
	  {
	    if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	      continue;

	    if (bitmap_bit_p (bb_with, e->dest->index)
		&& !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
	      {
		if (dump_file)
		  fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
			   e->src->index, e->dest->index,
			   ((basic_block) e->dest->aux)->index);
		redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
	      }
	    else if (e->flags & EDGE_FALLTHRU
		     && bitmap_bit_p (bb_with, bb->index))
	      force_nonfallthru (e);
	  }
      }

  /* Also redirect the function entry edge if necessary.  */

  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
    if (bitmap_bit_p (bb_with, e->dest->index)
	&& !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
      {
	basic_block split_bb = split_edge (e);
	e = single_succ_edge (split_bb);
	redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
      }

  /* Make a simple_return for those exits that run without prologue.  */

  FOR_EACH_BB_REVERSE_FN (bb, cfun)
    if (!bitmap_bit_p (bb_with, bb->index))
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	  handle_simple_exit (e);

  /* Finally, we want a single edge to put the prologue on.  Make a new
     block before the PRO block; the edge beteen them is the edge we want.
     Then redirect those edges into PRO that come from blocks without the
     prologue, to point to the new block instead.  The new prologue block
     is put at the end of the insn chain.  */

  basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
  BB_COPY_PARTITION (new_bb, pro);
  if (dump_file)
    fprintf (dump_file, "Made prologue block %d\n", new_bb->index);

  for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
    {
      if (bitmap_bit_p (bb_with, e->src->index)
	  || dominated_by_p (CDI_DOMINATORS, e->src, pro))
	{
	  ei_next (&ei);
	  continue;
	}

      new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
      new_bb->frequency += EDGE_FREQUENCY (e);

      redirect_edge_and_branch_force (e, new_bb);
      if (dump_file)
	fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
    }

  *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
  force_nonfallthru (*entry_edge);

  BITMAP_FREE (bb_with);
  free_dominance_info (CDI_DOMINATORS);
}

/* Separate shrink-wrapping

   Instead of putting all of the prologue and epilogue in one spot, we
   can put parts of it in places where those components are executed less
   frequently.  The following code does this, for prologue and epilogue
   components that can be put in more than one location, and where those
   components can be executed more than once (the epilogue component will
   always be executed before the prologue component is executed a second
   time).

   What exactly is a component is target-dependent.  The more usual
   components are simple saves/restores to/from the frame of callee-saved
   registers.  This code treats components abstractly (as an sbitmap),
   letting the target handle all details.

   Prologue components are placed in such a way that for every component
   the prologue is executed as infrequently as possible.  We do this by
   walking the dominator tree, comparing the cost of placing a prologue
   component before a block to the sum of costs determined for all subtrees
   of that block.

   From this placement, we then determine for each component all blocks
   where at least one of this block's dominators (including itself) will
   get a prologue inserted.  That then is how the components are placed.
   We could place the epilogue components a bit smarter (we can save a
   bit of code size sometimes); this is a possible future improvement.

   Prologues and epilogues are preferably placed into a block, either at
   the beginning or end of it, if it is needed for all predecessor resp.
   successor edges; or placed on the edge otherwise.

   If the placement of any prologue/epilogue leads to a situation we cannot
   handle (for example, an abnormal edge would need to be split, or some
   targets want to use some specific registers that may not be available
   where we want to put them), separate shrink-wrapping for the components
   in that prologue/epilogue is aborted.  */


/* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
   label LABEL.  */
static void
dump_components (const char *label, sbitmap components)
{
  if (bitmap_empty_p (components))
    return;

  fprintf (dump_file, " [%s", label);

  for (unsigned int j = 0; j < components->n_bits; j++)
    if (bitmap_bit_p (components, j))
      fprintf (dump_file, " %u", j);

  fprintf (dump_file, "]");
}

/* The data we collect for each bb.  */
struct sw {
  /* What components does this BB need?  */
  sbitmap needs_components;

  /* What components does this BB have?  This is the main decision this
     pass makes.  */
  sbitmap has_components;

  /* The components for which we placed code at the start of the BB (instead
     of on all incoming edges).  */
  sbitmap head_components;

  /* The components for which we placed code at the end of the BB (instead
     of on all outgoing edges).  */
  sbitmap tail_components;

  /* The frequency of executing the prologue for this BB, if a prologue is
     placed on this BB.  This is a pessimistic estimate (no prologue is
     needed for edges from blocks that have the component under consideration
     active already).  */
  gcov_type own_cost;

  /* The frequency of executing the prologue for this BB and all BBs
     dominated by it.  */
  gcov_type total_cost;
};

/* A helper function for accessing the pass-specific info.  */
static inline struct sw *
SW (basic_block bb)
{
  gcc_assert (bb->aux);
  return (struct sw *) bb->aux;
}

/* Create the pass-specific data structures for separately shrink-wrapping
   with components COMPONENTS.  */
static void
init_separate_shrink_wrap (sbitmap components)
{
  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    {
      bb->aux = xcalloc (1, sizeof (struct sw));

      SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);

      /* Mark all basic blocks without successor as needing all components.
	 This avoids problems in at least cfgcleanup, sel-sched, and
	 regrename (largely to do with all paths to such a block still
	 needing the same dwarf CFI info).  */
      if (EDGE_COUNT (bb->succs) == 0)
	bitmap_copy (SW (bb)->needs_components, components);

      if (dump_file)
	{
	  fprintf (dump_file, "bb %d components:", bb->index);
	  dump_components ("has", SW (bb)->needs_components);
	  fprintf (dump_file, "\n");
	}

      SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
      SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
      SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
      bitmap_clear (SW (bb)->has_components);
      bitmap_clear (SW (bb)->head_components);
      bitmap_clear (SW (bb)->tail_components);
    }
}

/* Destroy the pass-specific data.  */
static void
fini_separate_shrink_wrap (void)
{
  basic_block bb;
  FOR_ALL_BB_FN (bb, cfun)
    if (bb->aux)
      {
	sbitmap_free (SW (bb)->needs_components);
	sbitmap_free (SW (bb)->has_components);
	sbitmap_free (SW (bb)->head_components);
	sbitmap_free (SW (bb)->tail_components);
	free (bb->aux);
	bb->aux = 0;
      }
}

/* Place the prologue for component WHICH, in the basic blocks dominated
   by HEAD.  Do a DFS over the dominator tree, and set bit WHICH in the
   HAS_COMPONENTS of a block if either the block has that bit set in
   NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
   dominator subtrees separately.  */
static void
place_prologue_for_one_component (unsigned int which, basic_block head)
{
  /* The block we are currently dealing with.  */
  basic_block bb = head;
  /* Is this the first time we visit this block, i.e. have we just gone
     down the tree.  */
  bool first_visit = true;

  /* Walk the dominator tree, visit one block per iteration of this loop.
     Each basic block is visited twice: once before visiting any children
     of the block, and once after visiting all of them (leaf nodes are
     visited only once).  As an optimization, we do not visit subtrees
     that can no longer influence the prologue placement.  */
  for (;;)
    {
      /* First visit of a block: set the (children) cost accumulator to zero;
	 if the block does not have the component itself, walk down.  */
      if (first_visit)
	{
	  /* Initialize the cost.  The cost is the block execution frequency
	     that does not come from backedges.  Calculating this by simply
	     adding the cost of all edges that aren't backedges does not
	     work: this does not always add up to the block frequency at
	     all, and even if it does, rounding error makes for bad
	     decisions.  */
	  SW (bb)->own_cost = bb->frequency;

	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
	      {
		if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
		  SW (bb)->own_cost -= EDGE_FREQUENCY (e);
		else
		  SW (bb)->own_cost = 0;
	      }

	  SW (bb)->total_cost = 0;

	  if (!bitmap_bit_p (SW (bb)->needs_components, which)
	      && first_dom_son (CDI_DOMINATORS, bb))
	    {
	      bb = first_dom_son (CDI_DOMINATORS, bb);
	      continue;
	    }
	}

      /* If this block does need the component itself, or it is cheaper to
	 put the prologue here than in all the descendants that need it,
	 mark it so.  If this block's immediate post-dominator is dominated
	 by this block, and that needs the prologue, we can put it on this
	 block as well (earlier is better).  */
      if (bitmap_bit_p (SW (bb)->needs_components, which)
	  || SW (bb)->total_cost > SW (bb)->own_cost)
	{
	  SW (bb)->total_cost = SW (bb)->own_cost;
	  bitmap_set_bit (SW (bb)->has_components, which);
	}
      else
	{
	  basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
	  if (dominated_by_p (CDI_DOMINATORS, kid, bb)
	      && bitmap_bit_p (SW (kid)->has_components, which))
	    {
	      SW (bb)->total_cost = SW (bb)->own_cost;
	      bitmap_set_bit (SW (bb)->has_components, which);
	    }
	}

      /* We are back where we started, so we are done now.  */
      if (bb == head)
	return;

      /* We now know the cost of the subtree rooted at the current block.
	 Accumulate this cost in the parent.  */
      basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
      SW (parent)->total_cost += SW (bb)->total_cost;

      /* Don't walk the tree down unless necessary.  */
      if (next_dom_son (CDI_DOMINATORS, bb)
          && SW (parent)->total_cost <= SW (parent)->own_cost)
	{
	  bb = next_dom_son (CDI_DOMINATORS, bb);
	  first_visit = true;
	}
      else
	{
	  bb = parent;
	  first_visit = false;
	}
    }
}

/* Mark HAS_COMPONENTS for every block dominated by at least one block with
   HAS_COMPONENTS set for the respective components, starting at HEAD.  */
static void
spread_components (basic_block head)
{
  basic_block bb = head;
  bool first_visit = true;
  /* This keeps a tally of all components active.  */
  sbitmap components = SW (head)->has_components;

  for (;;)
    {
      if (first_visit)
	{
	  bitmap_ior (SW (bb)->has_components, SW (bb)->has_components,
		      components);

	  if (first_dom_son (CDI_DOMINATORS, bb))
	    {
	      components = SW (bb)->has_components;
	      bb = first_dom_son (CDI_DOMINATORS, bb);
	      continue;
	    }
	}

      components = SW (bb)->has_components;

      if (next_dom_son (CDI_DOMINATORS, bb))
	{
	  bb = next_dom_son (CDI_DOMINATORS, bb);
	  basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
	  components = SW (parent)->has_components;
	  first_visit = true;
	}
      else
	{
	  if (bb == head)
	    return;
	  bb = get_immediate_dominator (CDI_DOMINATORS, bb);
	  first_visit = false;
	}
    }
}

/* If we cannot handle placing some component's prologues or epilogues where
   we decided we should place them, unmark that component in COMPONENTS so
   that it is not wrapped separately.  */
static void
disqualify_problematic_components (sbitmap components)
{
  sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  /* Find which components we want pro/epilogues for here.  */
	  bitmap_and_compl (epi, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (pro, SW (e->dest)->has_components,
			    SW (e->src)->has_components);

	  /* Ask the target what it thinks about things.  */
	  if (!bitmap_empty_p (epi))
	    targetm.shrink_wrap.disqualify_components (components, e, epi,
						       false);
	  if (!bitmap_empty_p (pro))
	    targetm.shrink_wrap.disqualify_components (components, e, pro,
						       true);

	  /* If this edge doesn't need splitting, we're fine.  */
	  if (single_pred_p (e->dest)
	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
	    continue;

	  /* If the edge can be split, that is fine too.  */
	  if ((e->flags & EDGE_ABNORMAL) == 0)
	    continue;

	  /* We also can handle sibcalls.  */
	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	    {
	      gcc_assert (e->flags & EDGE_SIBCALL);
	      continue;
	    }

	  /* Remove from consideration those components we would need
	     pro/epilogues for on edges where we cannot insert them.  */
	  bitmap_and_compl (components, components, epi);
	  bitmap_and_compl (components, components, pro);

	  if (dump_file && !bitmap_subset_p (epi, components))
	    {
	      fprintf (dump_file, "  BAD epi %d->%d", e->src->index,
		       e->dest->index);
	      if (e->flags & EDGE_EH)
		fprintf (dump_file, " for EH");
	      dump_components ("epi", epi);
	      fprintf (dump_file, "\n");
	    }

	  if (dump_file && !bitmap_subset_p (pro, components))
	    {
	      fprintf (dump_file, "  BAD pro %d->%d", e->src->index,
		       e->dest->index);
	      if (e->flags & EDGE_EH)
		fprintf (dump_file, " for EH");
	      dump_components ("pro", pro);
	      fprintf (dump_file, "\n");
	    }
	}
    }

  sbitmap_free (pro);
  sbitmap_free (epi);
}

/* Place code for prologues and epilogues for COMPONENTS where we can put
   that code at the start of basic blocks.  */
static void
emit_common_heads_for_components (sbitmap components)
{
  sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      /* Find which prologue resp. epilogue components are needed for all
	 predecessor edges to this block.  */

      /* First, select all possible components.  */
      bitmap_copy (epi, components);
      bitmap_copy (pro, components);

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  if (e->flags & EDGE_ABNORMAL)
	    {
	      bitmap_clear (epi);
	      bitmap_clear (pro);
	      break;
	    }

	  /* Deselect those epilogue components that should not be inserted
	     for this edge.  */
	  bitmap_and_compl (tmp, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and (epi, epi, tmp);

	  /* Similar, for the prologue.  */
	  bitmap_and_compl (tmp, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and (pro, pro, tmp);
	}

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "  bb %d", bb->index);

      if (dump_file && !bitmap_empty_p (epi))
	dump_components ("epi", epi);
      if (dump_file && !bitmap_empty_p (pro))
	dump_components ("pro", pro);

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "\n");

      /* Place code after the BB note.  */
      if (!bitmap_empty_p (pro))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_prologue_components (pro);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_prologue_seq (seq);

	  emit_insn_after (seq, bb_note (bb));

	  bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
	}

      if (!bitmap_empty_p (epi))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_epilogue_components (epi);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_epilogue_seq (seq);

	  emit_insn_after (seq, bb_note (bb));

	  bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
	}
    }

  sbitmap_free (pro);
  sbitmap_free (epi);
  sbitmap_free (tmp);
}

/* Place code for prologues and epilogues for COMPONENTS where we can put
   that code at the end of basic blocks.  */
static void
emit_common_tails_for_components (sbitmap components)
{
  sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      /* Find which prologue resp. epilogue components are needed for all
	 successor edges from this block.  */
      if (EDGE_COUNT (bb->succs) == 0)
	continue;

      /* First, select all possible components.  */
      bitmap_copy (epi, components);
      bitmap_copy (pro, components);

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (e->flags & EDGE_ABNORMAL)
	    {
	      bitmap_clear (epi);
	      bitmap_clear (pro);
	      break;
	    }

	  /* Deselect those epilogue components that should not be inserted
	     for this edge, and also those that are already put at the head
	     of the successor block.  */
	  bitmap_and_compl (tmp, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
	  bitmap_and (epi, epi, tmp);

	  /* Similarly, for the prologue.  */
	  bitmap_and_compl (tmp, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
	  bitmap_and (pro, pro, tmp);
	}

      /* If the last insn of this block is a control flow insn we cannot
	 put anything after it.  We can put our code before it instead,
	 but only if that jump insn is a simple jump.  */
      rtx_insn *last_insn = BB_END (bb);
      if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
	{
	  bitmap_clear (epi);
	  bitmap_clear (pro);
	}

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "  bb %d", bb->index);

      if (dump_file && !bitmap_empty_p (epi))
	dump_components ("epi", epi);
      if (dump_file && !bitmap_empty_p (pro))
	dump_components ("pro", pro);

      if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
	fprintf (dump_file, "\n");

      /* Put the code at the end of the BB, but before any final jump.  */
      if (!bitmap_empty_p (epi))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_epilogue_components (epi);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_epilogue_seq (seq);

	  if (control_flow_insn_p (last_insn))
	    emit_insn_before (seq, last_insn);
	  else
	    emit_insn_after (seq, last_insn);

	  bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
	}

      if (!bitmap_empty_p (pro))
	{
	  start_sequence ();
	  targetm.shrink_wrap.emit_prologue_components (pro);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  record_prologue_seq (seq);

	  if (control_flow_insn_p (last_insn))
	    emit_insn_before (seq, last_insn);
	  else
	    emit_insn_after (seq, last_insn);

	  bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
	}
    }

  sbitmap_free (pro);
  sbitmap_free (epi);
  sbitmap_free (tmp);
}

/* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
   placed them inside blocks directly.  */
static void
insert_prologue_epilogue_for_components (sbitmap components)
{
  sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
  sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      if (!bb->aux)
	continue;

      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  /* Find which pro/epilogue components are needed on this edge.  */
	  bitmap_and_compl (epi, SW (e->src)->has_components,
			    SW (e->dest)->has_components);
	  bitmap_and_compl (pro, SW (e->dest)->has_components,
			    SW (e->src)->has_components);
	  bitmap_and (epi, epi, components);
	  bitmap_and (pro, pro, components);

	  /* Deselect those we already have put at the head or tail of the
	     edge's dest resp. src.  */
	  bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
	  bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
	  bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
	  bitmap_and_compl (pro, pro, SW (e->src)->tail_components);

	  if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "  %d->%d", e->src->index,
			   e->dest->index);
		  dump_components ("epi", epi);
		  dump_components ("pro", pro);
		  fprintf (dump_file, "\n");
		}

	      /* Put the epilogue components in place.  */
	      start_sequence ();
	      targetm.shrink_wrap.emit_epilogue_components (epi);
	      rtx_insn *seq = get_insns ();
	      end_sequence ();
	      record_epilogue_seq (seq);

	      if (e->flags & EDGE_SIBCALL)
		{
		  gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));

		  rtx_insn *insn = BB_END (e->src);
		  gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
		  emit_insn_before (seq, insn);
		}
	      else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
		{
		  gcc_assert (e->flags & EDGE_FALLTHRU);
		  basic_block new_bb = split_edge (e);
		  emit_insn_after (seq, BB_END (new_bb));
		}
	      else
		insert_insn_on_edge (seq, e);

	      /* Put the prologue components in place.  */
	      start_sequence ();
	      targetm.shrink_wrap.emit_prologue_components (pro);
	      seq = get_insns ();
	      end_sequence ();
	      record_prologue_seq (seq);

	      insert_insn_on_edge (seq, e);
	    }
	}
    }

  sbitmap_free (pro);
  sbitmap_free (epi);

  commit_edge_insertions ();
}

/* The main entry point to this subpass.  FIRST_BB is where the prologue
   would be normally put.  */
void
try_shrink_wrapping_separate (basic_block first_bb)
{
  if (HAVE_cc0)
    return;

  if (!(SHRINK_WRAPPING_ENABLED
	&& flag_shrink_wrap_separate
	&& optimize_function_for_speed_p (cfun)
	&& targetm.shrink_wrap.get_separate_components))
    return;

  /* We don't handle "strange" functions.  */
  if (cfun->calls_alloca
      || cfun->calls_setjmp
      || cfun->can_throw_non_call_exceptions
      || crtl->calls_eh_return
      || crtl->has_nonlocal_goto
      || crtl->saves_all_registers)
    return;

  /* Ask the target what components there are.  If it returns NULL, don't
     do anything.  */
  sbitmap components = targetm.shrink_wrap.get_separate_components ();
  if (!components)
    return;

  /* We need LIVE info, not defining anything in the entry block and not
     using anything in the exit block.  A block then needs a component if
     the register for that component is in the IN or GEN or KILL set for
     that block.  */
  df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
  df_update_entry_exit_and_calls ();
  df_live_add_problem ();
  df_live_set_all_dirty ();
  df_analyze ();

  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);

  init_separate_shrink_wrap (components);

  sbitmap_iterator sbi;
  unsigned int j;
  EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
    place_prologue_for_one_component (j, first_bb);

  spread_components (first_bb);

  disqualify_problematic_components (components);

  /* Don't separately shrink-wrap anything where the "main" prologue will
     go; the target code can often optimize things if it is presented with
     all components together (say, if it generates store-multiple insns).  */
  bitmap_and_compl (components, components, SW (first_bb)->has_components);

  if (bitmap_empty_p (components))
    {
      if (dump_file)
	fprintf (dump_file, "Not wrapping anything separately.\n");
    }
  else
    {
      if (dump_file)
	{
	  fprintf (dump_file, "The components we wrap separately are");
	  dump_components ("sep", components);
	  fprintf (dump_file, "\n");

	  fprintf (dump_file, "... Inserting common heads...\n");
	}

      emit_common_heads_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Inserting common tails...\n");

      emit_common_tails_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Inserting the more difficult ones...\n");

      insert_prologue_epilogue_for_components (components);

      if (dump_file)
	fprintf (dump_file, "... Done.\n");

      targetm.shrink_wrap.set_handled_components (components);

      crtl->shrink_wrapped_separate = true;
    }

  fini_separate_shrink_wrap ();

  sbitmap_free (components);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);

  /* All done.  */
  df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
  df_update_entry_exit_and_calls ();
  df_live_set_all_dirty ();
  df_analyze ();
}