1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
|
/* RTL simplification functions for GNU compiler.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "output.h"
#include "ggc.h"
#include "target.h"
/* Simplification and canonicalization of RTL. */
/* Much code operates on (low, high) pairs; the low value is an
unsigned wide int, the high value a signed wide int. We
occasionally need to sign extend from low to high as if low were a
signed wide int. */
#define HWI_SIGN_EXTEND(low) \
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
static rtx neg_const_int (enum machine_mode, rtx);
static int simplify_plus_minus_op_data_cmp (const void *, const void *);
static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx,
rtx, int);
static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
unsigned int);
static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
rtx, rtx);
static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
enum machine_mode, rtx, rtx);
/* Negate a CONST_INT rtx, truncating (because a conversion from a
maximally negative number can overflow). */
static rtx
neg_const_int (enum machine_mode mode, rtx i)
{
return gen_int_mode (- INTVAL (i), mode);
}
/* Test whether expression, X, is an immediate constant that represents
the most significant bit of machine mode MODE. */
bool
mode_signbit_p (enum machine_mode mode, rtx x)
{
unsigned HOST_WIDE_INT val;
unsigned int width;
if (GET_MODE_CLASS (mode) != MODE_INT)
return false;
width = GET_MODE_BITSIZE (mode);
if (width == 0)
return false;
if (width <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (x) == CONST_INT)
val = INTVAL (x);
else if (width <= 2 * HOST_BITS_PER_WIDE_INT
&& GET_CODE (x) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (x) == 0)
{
val = CONST_DOUBLE_HIGH (x);
width -= HOST_BITS_PER_WIDE_INT;
}
else
return false;
if (width < HOST_BITS_PER_WIDE_INT)
val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
}
/* Make a binary operation by properly ordering the operands and
seeing if the expression folds. */
rtx
simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
rtx op1)
{
rtx tem;
/* Put complex operands first and constants second if commutative. */
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
&& swap_commutative_operands_p (op0, op1))
tem = op0, op0 = op1, op1 = tem;
/* If this simplifies, do it. */
tem = simplify_binary_operation (code, mode, op0, op1);
if (tem)
return tem;
/* Handle addition and subtraction specially. Otherwise, just form
the operation. */
if (code == PLUS || code == MINUS)
{
tem = simplify_plus_minus (code, mode, op0, op1, 1);
if (tem)
return tem;
}
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* If X is a MEM referencing the constant pool, return the real value.
Otherwise return X. */
rtx
avoid_constant_pool_reference (rtx x)
{
rtx c, tmp, addr;
enum machine_mode cmode;
switch (GET_CODE (x))
{
case MEM:
break;
case FLOAT_EXTEND:
/* Handle float extensions of constant pool references. */
tmp = XEXP (x, 0);
c = avoid_constant_pool_reference (tmp);
if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, c);
return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
}
return x;
default:
return x;
}
addr = XEXP (x, 0);
/* Call target hook to avoid the effects of -fpic etc.... */
addr = targetm.delegitimize_address (addr);
if (GET_CODE (addr) == LO_SUM)
addr = XEXP (addr, 1);
if (GET_CODE (addr) != SYMBOL_REF
|| ! CONSTANT_POOL_ADDRESS_P (addr))
return x;
c = get_pool_constant (addr);
cmode = get_pool_mode (addr);
/* If we're accessing the constant in a different mode than it was
originally stored, attempt to fix that up via subreg simplifications.
If that fails we have no choice but to return the original memory. */
if (cmode != GET_MODE (x))
{
c = simplify_subreg (GET_MODE (x), c, cmode, 0);
return c ? c : x;
}
return c;
}
/* Make a unary operation by first seeing if it folds and otherwise making
the specified operation. */
rtx
simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
enum machine_mode op_mode)
{
rtx tem;
/* If this simplifies, use it. */
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
return tem;
return gen_rtx_fmt_e (code, mode, op);
}
/* Likewise for ternary operations. */
rtx
simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
{
rtx tem;
/* If this simplifies, use it. */
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
op0, op1, op2)))
return tem;
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
}
/* Likewise, for relational operations.
CMP_MODE specifies mode comparison is done in. */
rtx
simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
enum machine_mode cmp_mode, rtx op0, rtx op1)
{
rtx tem;
if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
op0, op1)))
return tem;
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
resulting RTX. Return a new RTX which is as simplified as possible. */
rtx
simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
enum machine_mode op_mode;
rtx op0, op1, op2;
/* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
to build a new expression substituting recursively. If we can't do
anything, return our input. */
if (x == old_rtx)
return new_rtx;
switch (GET_RTX_CLASS (code))
{
case RTX_UNARY:
op0 = XEXP (x, 0);
op_mode = GET_MODE (op0);
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
if (op0 == XEXP (x, 0))
return x;
return simplify_gen_unary (code, mode, op0, op_mode);
case RTX_BIN_ARITH:
case RTX_COMM_ARITH:
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return simplify_gen_binary (code, mode, op0, op1);
case RTX_COMPARE:
case RTX_COMM_COMPARE:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return simplify_gen_relational (code, mode, op_mode, op0, op1);
case RTX_TERNARY:
case RTX_BITFIELD_OPS:
op0 = XEXP (x, 0);
op_mode = GET_MODE (op0);
op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
return x;
if (op_mode == VOIDmode)
op_mode = GET_MODE (op0);
return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
case RTX_EXTRA:
/* The only case we try to handle is a SUBREG. */
if (code == SUBREG)
{
op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
if (op0 == SUBREG_REG (x))
return x;
op0 = simplify_gen_subreg (GET_MODE (x), op0,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
return op0 ? op0 : x;
}
break;
case RTX_OBJ:
if (code == MEM)
{
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
if (op0 == XEXP (x, 0))
return x;
return replace_equiv_address_nv (x, op0);
}
else if (code == LO_SUM)
{
op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
/* (lo_sum (high x) x) -> x */
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
return op1;
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_LO_SUM (mode, op0, op1);
}
else if (code == REG)
{
if (REG_P (old_rtx) && REGNO (x) == REGNO (old_rtx))
return new_rtx;
}
break;
default:
break;
}
return x;
}
/* Try to simplify a unary operation CODE whose output mode is to be
MODE with input operand OP whose mode was originally OP_MODE.
Return zero if no simplification can be made. */
rtx
simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
rtx op, enum machine_mode op_mode)
{
unsigned int width = GET_MODE_BITSIZE (mode);
rtx trueop = avoid_constant_pool_reference (op);
if (code == VEC_DUPLICATE)
{
gcc_assert (VECTOR_MODE_P (mode));
if (GET_MODE (trueop) != VOIDmode)
{
if (!VECTOR_MODE_P (GET_MODE (trueop)))
gcc_assert (GET_MODE_INNER (mode) == GET_MODE (trueop));
else
gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
(GET_MODE (trueop)));
}
if (GET_CODE (trueop) == CONST_INT || GET_CODE (trueop) == CONST_DOUBLE
|| GET_CODE (trueop) == CONST_VECTOR)
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
if (GET_CODE (trueop) != CONST_VECTOR)
for (i = 0; i < n_elts; i++)
RTVEC_ELT (v, i) = trueop;
else
{
enum machine_mode inmode = GET_MODE (trueop);
int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
gcc_assert (in_n_elts < n_elts);
gcc_assert ((n_elts % in_n_elts) == 0);
for (i = 0; i < n_elts; i++)
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop, i % in_n_elts);
}
return gen_rtx_CONST_VECTOR (mode, v);
}
}
else if (GET_CODE (op) == CONST)
return simplify_unary_operation (code, mode, XEXP (op, 0), op_mode);
if (VECTOR_MODE_P (mode) && GET_CODE (trueop) == CONST_VECTOR)
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
enum machine_mode opmode = GET_MODE (trueop);
int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
gcc_assert (op_n_elts == n_elts);
for (i = 0; i < n_elts; i++)
{
rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
CONST_VECTOR_ELT (trueop, i),
GET_MODE_INNER (opmode));
if (!x)
return 0;
RTVEC_ELT (v, i) = x;
}
return gen_rtx_CONST_VECTOR (mode, v);
}
/* The order of these tests is critical so that, for example, we don't
check the wrong mode (input vs. output) for a conversion operation,
such as FIX. At some point, this should be simplified. */
if (code == FLOAT && GET_MODE (trueop) == VOIDmode
&& (GET_CODE (trueop) == CONST_DOUBLE || GET_CODE (trueop) == CONST_INT))
{
HOST_WIDE_INT hv, lv;
REAL_VALUE_TYPE d;
if (GET_CODE (trueop) == CONST_INT)
lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
else
lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
REAL_VALUE_FROM_INT (d, lv, hv, mode);
d = real_value_truncate (mode, d);
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
}
else if (code == UNSIGNED_FLOAT && GET_MODE (trueop) == VOIDmode
&& (GET_CODE (trueop) == CONST_DOUBLE
|| GET_CODE (trueop) == CONST_INT))
{
HOST_WIDE_INT hv, lv;
REAL_VALUE_TYPE d;
if (GET_CODE (trueop) == CONST_INT)
lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
else
lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
if (op_mode == VOIDmode)
{
/* We don't know how to interpret negative-looking numbers in
this case, so don't try to fold those. */
if (hv < 0)
return 0;
}
else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
;
else
hv = 0, lv &= GET_MODE_MASK (op_mode);
REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
d = real_value_truncate (mode, d);
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
}
if (GET_CODE (trueop) == CONST_INT
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
{
HOST_WIDE_INT arg0 = INTVAL (trueop);
HOST_WIDE_INT val;
switch (code)
{
case NOT:
val = ~ arg0;
break;
case NEG:
val = - arg0;
break;
case ABS:
val = (arg0 >= 0 ? arg0 : - arg0);
break;
case FFS:
/* Don't use ffs here. Instead, get low order bit and then its
number. If arg0 is zero, this will return 0, as desired. */
arg0 &= GET_MODE_MASK (mode);
val = exact_log2 (arg0 & (- arg0)) + 1;
break;
case CLZ:
arg0 &= GET_MODE_MASK (mode);
if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
;
else
val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
break;
case CTZ:
arg0 &= GET_MODE_MASK (mode);
if (arg0 == 0)
{
/* Even if the value at zero is undefined, we have to come
up with some replacement. Seems good enough. */
if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
val = GET_MODE_BITSIZE (mode);
}
else
val = exact_log2 (arg0 & -arg0);
break;
case POPCOUNT:
arg0 &= GET_MODE_MASK (mode);
val = 0;
while (arg0)
val++, arg0 &= arg0 - 1;
break;
case PARITY:
arg0 &= GET_MODE_MASK (mode);
val = 0;
while (arg0)
val++, arg0 &= arg0 - 1;
val &= 1;
break;
case TRUNCATE:
val = arg0;
break;
case ZERO_EXTEND:
/* When zero-extending a CONST_INT, we need to know its
original mode. */
gcc_assert (op_mode != VOIDmode);
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
{
/* If we were really extending the mode,
we would have to distinguish between zero-extension
and sign-extension. */
gcc_assert (width == GET_MODE_BITSIZE (op_mode));
val = arg0;
}
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
else
return 0;
break;
case SIGN_EXTEND:
if (op_mode == VOIDmode)
op_mode = mode;
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
{
/* If we were really extending the mode,
we would have to distinguish between zero-extension
and sign-extension. */
gcc_assert (width == GET_MODE_BITSIZE (op_mode));
val = arg0;
}
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
{
val
= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
if (val
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
}
else
return 0;
break;
case SQRT:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
case SS_TRUNCATE:
case US_TRUNCATE:
return 0;
default:
gcc_unreachable ();
}
val = trunc_int_for_mode (val, mode);
return GEN_INT (val);
}
/* We can do some operations on integer CONST_DOUBLEs. Also allow
for a DImode operation on a CONST_INT. */
else if (GET_MODE (trueop) == VOIDmode
&& width <= HOST_BITS_PER_WIDE_INT * 2
&& (GET_CODE (trueop) == CONST_DOUBLE
|| GET_CODE (trueop) == CONST_INT))
{
unsigned HOST_WIDE_INT l1, lv;
HOST_WIDE_INT h1, hv;
if (GET_CODE (trueop) == CONST_DOUBLE)
l1 = CONST_DOUBLE_LOW (trueop), h1 = CONST_DOUBLE_HIGH (trueop);
else
l1 = INTVAL (trueop), h1 = HWI_SIGN_EXTEND (l1);
switch (code)
{
case NOT:
lv = ~ l1;
hv = ~ h1;
break;
case NEG:
neg_double (l1, h1, &lv, &hv);
break;
case ABS:
if (h1 < 0)
neg_double (l1, h1, &lv, &hv);
else
lv = l1, hv = h1;
break;
case FFS:
hv = 0;
if (l1 == 0)
{
if (h1 == 0)
lv = 0;
else
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
}
else
lv = exact_log2 (l1 & -l1) + 1;
break;
case CLZ:
hv = 0;
if (h1 != 0)
lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
- HOST_BITS_PER_WIDE_INT;
else if (l1 != 0)
lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
lv = GET_MODE_BITSIZE (mode);
break;
case CTZ:
hv = 0;
if (l1 != 0)
lv = exact_log2 (l1 & -l1);
else if (h1 != 0)
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
lv = GET_MODE_BITSIZE (mode);
break;
case POPCOUNT:
hv = 0;
lv = 0;
while (l1)
lv++, l1 &= l1 - 1;
while (h1)
lv++, h1 &= h1 - 1;
break;
case PARITY:
hv = 0;
lv = 0;
while (l1)
lv++, l1 &= l1 - 1;
while (h1)
lv++, h1 &= h1 - 1;
lv &= 1;
break;
case TRUNCATE:
/* This is just a change-of-mode, so do nothing. */
lv = l1, hv = h1;
break;
case ZERO_EXTEND:
gcc_assert (op_mode != VOIDmode);
if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
return 0;
hv = 0;
lv = l1 & GET_MODE_MASK (op_mode);
break;
case SIGN_EXTEND:
if (op_mode == VOIDmode
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
return 0;
else
{
lv = l1 & GET_MODE_MASK (op_mode);
if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
&& (lv & ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
hv = HWI_SIGN_EXTEND (lv);
}
break;
case SQRT:
return 0;
default:
return 0;
}
return immed_double_const (lv, hv, mode);
}
else if (GET_CODE (trueop) == CONST_DOUBLE
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
{
REAL_VALUE_TYPE d, t;
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop);
switch (code)
{
case SQRT:
if (HONOR_SNANS (mode) && real_isnan (&d))
return 0;
real_sqrt (&t, mode, &d);
d = t;
break;
case ABS:
d = REAL_VALUE_ABS (d);
break;
case NEG:
d = REAL_VALUE_NEGATE (d);
break;
case FLOAT_TRUNCATE:
d = real_value_truncate (mode, d);
break;
case FLOAT_EXTEND:
/* All this does is change the mode. */
break;
case FIX:
real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
break;
case NOT:
{
long tmp[4];
int i;
real_to_target (tmp, &d, GET_MODE (trueop));
for (i = 0; i < 4; i++)
tmp[i] = ~tmp[i];
real_from_target (&d, tmp, mode);
}
default:
gcc_unreachable ();
}
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
}
else if (GET_CODE (trueop) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (trueop)) == MODE_FLOAT
&& GET_MODE_CLASS (mode) == MODE_INT
&& width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
{
/* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
operators are intentionally left unspecified (to ease implementation
by target backends), for consistency, this routine implements the
same semantics for constant folding as used by the middle-end. */
HOST_WIDE_INT xh, xl, th, tl;
REAL_VALUE_TYPE x, t;
REAL_VALUE_FROM_CONST_DOUBLE (x, trueop);
switch (code)
{
case FIX:
if (REAL_VALUE_ISNAN (x))
return const0_rtx;
/* Test against the signed upper bound. */
if (width > HOST_BITS_PER_WIDE_INT)
{
th = ((unsigned HOST_WIDE_INT) 1
<< (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
tl = -1;
}
else
{
th = 0;
tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
}
real_from_integer (&t, VOIDmode, tl, th, 0);
if (REAL_VALUES_LESS (t, x))
{
xh = th;
xl = tl;
break;
}
/* Test against the signed lower bound. */
if (width > HOST_BITS_PER_WIDE_INT)
{
th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
tl = 0;
}
else
{
th = -1;
tl = (HOST_WIDE_INT) -1 << (width - 1);
}
real_from_integer (&t, VOIDmode, tl, th, 0);
if (REAL_VALUES_LESS (x, t))
{
xh = th;
xl = tl;
break;
}
REAL_VALUE_TO_INT (&xl, &xh, x);
break;
case UNSIGNED_FIX:
if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
return const0_rtx;
/* Test against the unsigned upper bound. */
if (width == 2*HOST_BITS_PER_WIDE_INT)
{
th = -1;
tl = -1;
}
else if (width >= HOST_BITS_PER_WIDE_INT)
{
th = ((unsigned HOST_WIDE_INT) 1
<< (width - HOST_BITS_PER_WIDE_INT)) - 1;
tl = -1;
}
else
{
th = 0;
tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
}
real_from_integer (&t, VOIDmode, tl, th, 1);
if (REAL_VALUES_LESS (t, x))
{
xh = th;
xl = tl;
break;
}
REAL_VALUE_TO_INT (&xl, &xh, x);
break;
default:
gcc_unreachable ();
}
return immed_double_const (xl, xh, mode);
}
/* This was formerly used only for non-IEEE float.
eggert@twinsun.com says it is safe for IEEE also. */
else
{
enum rtx_code reversed;
rtx temp;
/* There are some simplifications we can do even if the operands
aren't constant. */
switch (code)
{
case NOT:
/* (not (not X)) == X. */
if (GET_CODE (op) == NOT)
return XEXP (op, 0);
/* (not (eq X Y)) == (ne X Y), etc. */
if (COMPARISON_P (op)
&& (mode == BImode || STORE_FLAG_VALUE == -1)
&& ((reversed = reversed_comparison_code (op, NULL_RTX))
!= UNKNOWN))
return simplify_gen_relational (reversed, mode, VOIDmode,
XEXP (op, 0), XEXP (op, 1));
/* (not (plus X -1)) can become (neg X). */
if (GET_CODE (op) == PLUS
&& XEXP (op, 1) == constm1_rtx)
return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
/* Similarly, (not (neg X)) is (plus X -1). */
if (GET_CODE (op) == NEG)
return plus_constant (XEXP (op, 0), -1);
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
if (GET_CODE (op) == XOR
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (op, 1),
mode)) != 0)
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
/* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
if (GET_CODE (op) == PLUS
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& mode_signbit_p (mode, XEXP (op, 1))
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (op, 1),
mode)) != 0)
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
operands other than 1, but that is not valid. We could do a
similar simplification for (not (lshiftrt C X)) where C is
just the sign bit, but this doesn't seem common enough to
bother with. */
if (GET_CODE (op) == ASHIFT
&& XEXP (op, 0) == const1_rtx)
{
temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
}
/* If STORE_FLAG_VALUE is -1, (not (comparison X Y)) can be done
by reversing the comparison code if valid. */
if (STORE_FLAG_VALUE == -1
&& COMPARISON_P (op)
&& (reversed = reversed_comparison_code (op, NULL_RTX))
!= UNKNOWN)
return simplify_gen_relational (reversed, mode, VOIDmode,
XEXP (op, 0), XEXP (op, 1));
/* (not (ashiftrt foo C)) where C is the number of bits in FOO
minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
so we can perform the above simplification. */
if (STORE_FLAG_VALUE == -1
&& GET_CODE (op) == ASHIFTRT
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
return simplify_gen_relational (GE, mode, VOIDmode,
XEXP (op, 0), const0_rtx);
break;
case NEG:
/* (neg (neg X)) == X. */
if (GET_CODE (op) == NEG)
return XEXP (op, 0);
/* (neg (plus X 1)) can become (not X). */
if (GET_CODE (op) == PLUS
&& XEXP (op, 1) == const1_rtx)
return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
/* Similarly, (neg (not X)) is (plus X 1). */
if (GET_CODE (op) == NOT)
return plus_constant (XEXP (op, 0), 1);
/* (neg (minus X Y)) can become (minus Y X). This transformation
isn't safe for modes with signed zeros, since if X and Y are
both +0, (minus Y X) is the same as (minus X Y). If the
rounding mode is towards +infinity (or -infinity) then the two
expressions will be rounded differently. */
if (GET_CODE (op) == MINUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
return simplify_gen_binary (MINUS, mode, XEXP (op, 1),
XEXP (op, 0));
if (GET_CODE (op) == PLUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
{
/* (neg (plus A C)) is simplified to (minus -C A). */
if (GET_CODE (XEXP (op, 1)) == CONST_INT
|| GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
{
temp = simplify_unary_operation (NEG, mode, XEXP (op, 1),
mode);
if (temp)
return simplify_gen_binary (MINUS, mode, temp,
XEXP (op, 0));
}
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
}
/* (neg (mult A B)) becomes (mult (neg A) B).
This works even for floating-point values. */
if (GET_CODE (op) == MULT
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
{
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
}
/* NEG commutes with ASHIFT since it is multiplication. Only do
this if we can then eliminate the NEG (e.g., if the operand
is a constant). */
if (GET_CODE (op) == ASHIFT)
{
temp = simplify_unary_operation (NEG, mode, XEXP (op, 0),
mode);
if (temp)
return simplify_gen_binary (ASHIFT, mode, temp,
XEXP (op, 1));
}
/* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
C is equal to the width of MODE minus 1. */
if (GET_CODE (op) == ASHIFTRT
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
return simplify_gen_binary (LSHIFTRT, mode,
XEXP (op, 0), XEXP (op, 1));
/* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
C is equal to the width of MODE minus 1. */
if (GET_CODE (op) == LSHIFTRT
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
return simplify_gen_binary (ASHIFTRT, mode,
XEXP (op, 0), XEXP (op, 1));
break;
case SIGN_EXTEND:
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
becomes just the MINUS if its mode is MODE. This allows
folding switch statements on machines using casesi (such as
the VAX). */
if (GET_CODE (op) == TRUNCATE
&& GET_MODE (XEXP (op, 0)) == mode
&& GET_CODE (XEXP (op, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
return XEXP (op, 0);
/* Check for a sign extension of a subreg of a promoted
variable, where the promotion is sign-extended, and the
target mode is the same as the variable's promotion. */
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op)
&& ! SUBREG_PROMOTED_UNSIGNED_P (op)
&& GET_MODE (XEXP (op, 0)) == mode)
return XEXP (op, 0);
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
if (! POINTERS_EXTEND_UNSIGNED
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& REG_P (SUBREG_REG (op))
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
return convert_memory_address (Pmode, op);
#endif
break;
case ZERO_EXTEND:
/* Check for a zero extension of a subreg of a promoted
variable, where the promotion is zero-extended, and the
target mode is the same as the variable's promotion. */
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op)
&& SUBREG_PROMOTED_UNSIGNED_P (op)
&& GET_MODE (XEXP (op, 0)) == mode)
return XEXP (op, 0);
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
if (POINTERS_EXTEND_UNSIGNED > 0
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& REG_P (SUBREG_REG (op))
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
return convert_memory_address (Pmode, op);
#endif
break;
default:
break;
}
return 0;
}
}
/* Subroutine of simplify_binary_operation to simplify a commutative,
associative binary operation CODE with result mode MODE, operating
on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
canonicalization is possible. */
static rtx
simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
rtx op0, rtx op1)
{
rtx tem;
/* Linearize the operator to the left. */
if (GET_CODE (op1) == code)
{
/* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
if (GET_CODE (op0) == code)
{
tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
}
/* "a op (b op c)" becomes "(b op c) op a". */
if (! swap_commutative_operands_p (op1, op0))
return simplify_gen_binary (code, mode, op1, op0);
tem = op0;
op0 = op1;
op1 = tem;
}
if (GET_CODE (op0) == code)
{
/* Canonicalize "(x op c) op y" as "(x op y) op c". */
if (swap_commutative_operands_p (XEXP (op0, 1), op1))
{
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
}
/* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
: simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
if (tem != 0)
return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
/* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
: simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
if (tem != 0)
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
}
return 0;
}
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
and OP1. Return 0 if no simplification is possible.
Don't use this for relational operations such as EQ or LT.
Use simplify_relational_operation instead. */
rtx
simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
rtx op0, rtx op1)
{
HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
HOST_WIDE_INT val;
unsigned int width = GET_MODE_BITSIZE (mode);
rtx trueop0, trueop1;
rtx tem;
/* Relational operations don't work here. We must know the mode
of the operands in order to do the comparison correctly.
Assuming a full word can give incorrect results.
Consider comparing 128 with -128 in QImode. */
gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
/* Make sure the constant is second. */
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
&& swap_commutative_operands_p (op0, op1))
{
tem = op0, op0 = op1, op1 = tem;
}
trueop0 = avoid_constant_pool_reference (op0);
trueop1 = avoid_constant_pool_reference (op1);
if (VECTOR_MODE_P (mode)
&& GET_CODE (trueop0) == CONST_VECTOR
&& GET_CODE (trueop1) == CONST_VECTOR)
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
enum machine_mode op0mode = GET_MODE (trueop0);
int op0_elt_size = GET_MODE_SIZE (GET_MODE_INNER (op0mode));
unsigned op0_n_elts = (GET_MODE_SIZE (op0mode) / op0_elt_size);
enum machine_mode op1mode = GET_MODE (trueop1);
int op1_elt_size = GET_MODE_SIZE (GET_MODE_INNER (op1mode));
unsigned op1_n_elts = (GET_MODE_SIZE (op1mode) / op1_elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
gcc_assert (op0_n_elts == n_elts);
gcc_assert (op1_n_elts == n_elts);
for (i = 0; i < n_elts; i++)
{
rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
CONST_VECTOR_ELT (trueop0, i),
CONST_VECTOR_ELT (trueop1, i));
if (!x)
return 0;
RTVEC_ELT (v, i) = x;
}
return gen_rtx_CONST_VECTOR (mode, v);
}
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_CODE (trueop0) == CONST_DOUBLE
&& GET_CODE (trueop1) == CONST_DOUBLE
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
{
if (code == AND
|| code == IOR
|| code == XOR)
{
long tmp0[4];
long tmp1[4];
REAL_VALUE_TYPE r;
int i;
real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
GET_MODE (op0));
real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
GET_MODE (op1));
for (i = 0; i < 4; i++)
{
switch (code)
{
case AND:
tmp0[i] &= tmp1[i];
break;
case IOR:
tmp0[i] |= tmp1[i];
break;
case XOR:
tmp0[i] ^= tmp1[i];
break;
default:
gcc_unreachable ();
}
}
real_from_target (&r, tmp0, mode);
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
}
else
{
REAL_VALUE_TYPE f0, f1, value;
REAL_VALUE_FROM_CONST_DOUBLE (f0, trueop0);
REAL_VALUE_FROM_CONST_DOUBLE (f1, trueop1);
f0 = real_value_truncate (mode, f0);
f1 = real_value_truncate (mode, f1);
if (HONOR_SNANS (mode)
&& (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
return 0;
if (code == DIV
&& REAL_VALUES_EQUAL (f1, dconst0)
&& (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
return 0;
if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
&& flag_trapping_math
&& REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
{
int s0 = REAL_VALUE_NEGATIVE (f0);
int s1 = REAL_VALUE_NEGATIVE (f1);
switch (code)
{
case PLUS:
/* Inf + -Inf = NaN plus exception. */
if (s0 != s1)
return 0;
break;
case MINUS:
/* Inf - Inf = NaN plus exception. */
if (s0 == s1)
return 0;
break;
case DIV:
/* Inf / Inf = NaN plus exception. */
return 0;
default:
break;
}
}
if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
&& flag_trapping_math
&& ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
|| (REAL_VALUE_ISINF (f1)
&& REAL_VALUES_EQUAL (f0, dconst0))))
/* Inf * 0 = NaN plus exception. */
return 0;
REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
value = real_value_truncate (mode, value);
return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
}
}
/* We can fold some multi-word operations. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& width == HOST_BITS_PER_WIDE_INT * 2
&& (GET_CODE (trueop0) == CONST_DOUBLE
|| GET_CODE (trueop0) == CONST_INT)
&& (GET_CODE (trueop1) == CONST_DOUBLE
|| GET_CODE (trueop1) == CONST_INT))
{
unsigned HOST_WIDE_INT l1, l2, lv, lt;
HOST_WIDE_INT h1, h2, hv, ht;
if (GET_CODE (trueop0) == CONST_DOUBLE)
l1 = CONST_DOUBLE_LOW (trueop0), h1 = CONST_DOUBLE_HIGH (trueop0);
else
l1 = INTVAL (trueop0), h1 = HWI_SIGN_EXTEND (l1);
if (GET_CODE (trueop1) == CONST_DOUBLE)
l2 = CONST_DOUBLE_LOW (trueop1), h2 = CONST_DOUBLE_HIGH (trueop1);
else
l2 = INTVAL (trueop1), h2 = HWI_SIGN_EXTEND (l2);
switch (code)
{
case MINUS:
/* A - B == A + (-B). */
neg_double (l2, h2, &lv, &hv);
l2 = lv, h2 = hv;
/* Fall through.... */
case PLUS:
add_double (l1, h1, l2, h2, &lv, &hv);
break;
case MULT:
mul_double (l1, h1, l2, h2, &lv, &hv);
break;
case DIV:
if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
&lv, &hv, <, &ht))
return 0;
break;
case MOD:
if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
<, &ht, &lv, &hv))
return 0;
break;
case UDIV:
if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
&lv, &hv, <, &ht))
return 0;
break;
case UMOD:
if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
<, &ht, &lv, &hv))
return 0;
break;
case AND:
lv = l1 & l2, hv = h1 & h2;
break;
case IOR:
lv = l1 | l2, hv = h1 | h2;
break;
case XOR:
lv = l1 ^ l2, hv = h1 ^ h2;
break;
case SMIN:
if (h1 < h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
< (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case SMAX:
if (h1 > h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
> (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case UMIN:
if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
< (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case UMAX:
if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
> (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case LSHIFTRT: case ASHIFTRT:
case ASHIFT:
case ROTATE: case ROTATERT:
if (SHIFT_COUNT_TRUNCATED)
l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
return 0;
if (code == LSHIFTRT || code == ASHIFTRT)
rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
code == ASHIFTRT);
else if (code == ASHIFT)
lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
else if (code == ROTATE)
lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
else /* code == ROTATERT */
rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
break;
default:
return 0;
}
return immed_double_const (lv, hv, mode);
}
if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
|| width > HOST_BITS_PER_WIDE_INT || width == 0)
{
/* Even if we can't compute a constant result,
there are some cases worth simplifying. */
switch (code)
{
case PLUS:
/* Maybe simplify x + 0 to x. The two expressions are equivalent
when x is NaN, infinite, or finite and nonzero. They aren't
when x is -0 and the rounding mode is not towards -infinity,
since (-0) + 0 is then 0. */
if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
return op0;
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
transformations are safe even for IEEE. */
if (GET_CODE (op0) == NEG)
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
else if (GET_CODE (op1) == NEG)
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
/* (~a) + 1 -> -a */
if (INTEGRAL_MODE_P (mode)
&& GET_CODE (op0) == NOT
&& trueop1 == const1_rtx)
return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
/* Handle both-operands-constant cases. We can only add
CONST_INTs to constants since the sum of relocatable symbols
can't be handled by most assemblers. Don't add CONST_INT
to CONST_INT since overflow won't be computed properly if wider
than HOST_BITS_PER_WIDE_INT. */
if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
&& GET_CODE (op1) == CONST_INT)
return plus_constant (op0, INTVAL (op1));
else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
&& GET_CODE (op0) == CONST_INT)
return plus_constant (op1, INTVAL (op0));
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
something more expensive than we had before. */
if (! FLOAT_MODE_P (mode))
{
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
rtx lhs = op0, rhs = op1;
if (GET_CODE (lhs) == NEG)
coeff0 = -1, lhs = XEXP (lhs, 0);
else if (GET_CODE (lhs) == MULT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
{
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
coeff1 = -1, rhs = XEXP (rhs, 0);
else if (GET_CODE (rhs) == MULT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
{
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
rtx orig = gen_rtx_PLUS (mode, op0, op1);
tem = simplify_gen_binary (MULT, mode, lhs,
GEN_INT (coeff0 + coeff1));
return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
? tem : 0;
}
}
/* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
if ((GET_CODE (op1) == CONST_INT
|| GET_CODE (op1) == CONST_DOUBLE)
&& GET_CODE (op0) == XOR
&& (GET_CODE (XEXP (op0, 1)) == CONST_INT
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
&& mode_signbit_p (mode, op1))
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
simplify_gen_binary (XOR, mode, op1,
XEXP (op0, 1)));
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law.
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
|| (GET_CODE (op0) == CONST
&& GET_CODE (XEXP (op0, 0)) == PLUS)
|| (GET_CODE (op1) == CONST
&& GET_CODE (XEXP (op1, 0)) == PLUS))
&& (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
return tem;
/* Reassociate floating point addition only when the user
specifies unsafe math optimizations. */
if (FLOAT_MODE_P (mode)
&& flag_unsafe_math_optimizations)
{
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
}
break;
case COMPARE:
#ifdef HAVE_cc0
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
using cc0, in which case we want to leave it as a COMPARE
so we can distinguish it from a register-register-copy.
In IEEE floating point, x-0 is not the same as x. */
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& trueop1 == CONST0_RTX (mode))
return op0;
#endif
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
{
rtx xop00 = XEXP (op0, 0);
rtx xop10 = XEXP (op1, 0);
#ifdef HAVE_cc0
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
#else
if (REG_P (xop00) && REG_P (xop10)
&& GET_MODE (xop00) == GET_MODE (xop10)
&& REGNO (xop00) == REGNO (xop10)
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
#endif
return xop00;
}
break;
case MINUS:
/* We can't assume x-x is 0 even with non-IEEE floating point,
but since it is zero except in very strange circumstances, we
will treat it as zero with -funsafe-math-optimizations. */
if (rtx_equal_p (trueop0, trueop1)
&& ! side_effects_p (op0)
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
return CONST0_RTX (mode);
/* Change subtraction from zero into negation. (0 - x) is the
same as -x when x is NaN, infinite, or finite and nonzero.
But if the mode has signed zeros, and does not round towards
-infinity, then 0 - 0 is 0, not -0. */
if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
return simplify_gen_unary (NEG, mode, op1, mode);
/* (-1 - a) is ~a. */
if (trueop0 == constm1_rtx)
return simplify_gen_unary (NOT, mode, op1, mode);
/* Subtracting 0 has no effect unless the mode has signed zeros
and supports rounding towards -infinity. In such a case,
0 - 0 is -0. */
if (!(HONOR_SIGNED_ZEROS (mode)
&& HONOR_SIGN_DEPENDENT_ROUNDING (mode))
&& trueop1 == CONST0_RTX (mode))
return op0;
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
something more expensive than we had before. */
if (! FLOAT_MODE_P (mode))
{
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
rtx lhs = op0, rhs = op1;
if (GET_CODE (lhs) == NEG)
coeff0 = -1, lhs = XEXP (lhs, 0);
else if (GET_CODE (lhs) == MULT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
{
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
coeff1 = - 1, rhs = XEXP (rhs, 0);
else if (GET_CODE (rhs) == MULT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
{
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
rtx orig = gen_rtx_MINUS (mode, op0, op1);
tem = simplify_gen_binary (MULT, mode, lhs,
GEN_INT (coeff0 - coeff1));
return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
? tem : 0;
}
}
/* (a - (-b)) -> (a + b). True even for IEEE. */
if (GET_CODE (op1) == NEG)
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
/* (-x - c) may be simplified as (-c - x). */
if (GET_CODE (op0) == NEG
&& (GET_CODE (op1) == CONST_INT
|| GET_CODE (op1) == CONST_DOUBLE))
{
tem = simplify_unary_operation (NEG, mode, op1, mode);
if (tem)
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
}
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law.
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
|| (GET_CODE (op0) == CONST
&& GET_CODE (XEXP (op0, 0)) == PLUS)
|| (GET_CODE (op1) == CONST
&& GET_CODE (XEXP (op1, 0)) == PLUS))
&& (tem = simplify_plus_minus (code, mode, op0, op1, 0)) != 0)
return tem;
/* Don't let a relocatable value get a negative coeff. */
if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
return simplify_gen_binary (PLUS, mode,
op0,
neg_const_int (mode, op1));
/* (x - (x & y)) -> (x & ~y) */
if (GET_CODE (op1) == AND)
{
if (rtx_equal_p (op0, XEXP (op1, 0)))
{
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
GET_MODE (XEXP (op1, 1)));
return simplify_gen_binary (AND, mode, op0, tem);
}
if (rtx_equal_p (op0, XEXP (op1, 1)))
{
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
GET_MODE (XEXP (op1, 0)));
return simplify_gen_binary (AND, mode, op0, tem);
}
}
break;
case MULT:
if (trueop1 == constm1_rtx)
return simplify_gen_unary (NEG, mode, op0, mode);
/* Maybe simplify x * 0 to 0. The reduction is not valid if
x is NaN, since x * 0 is then also NaN. Nor is it valid
when the mode has signed zeros, since multiplying a negative
number by 0 will give -0, not 0. */
if (!HONOR_NANS (mode)
&& !HONOR_SIGNED_ZEROS (mode)
&& trueop1 == CONST0_RTX (mode)
&& ! side_effects_p (op0))
return op1;
/* In IEEE floating point, x*1 is not equivalent to x for
signalling NaNs. */
if (!HONOR_SNANS (mode)
&& trueop1 == CONST1_RTX (mode))
return op0;
/* Convert multiply by constant power of two into shift unless
we are still generating RTL. This test is a kludge. */
if (GET_CODE (trueop1) == CONST_INT
&& (val = exact_log2 (INTVAL (trueop1))) >= 0
/* If the mode is larger than the host word size, and the
uppermost bit is set, then this isn't a power of two due
to implicit sign extension. */
&& (width <= HOST_BITS_PER_WIDE_INT
|| val != HOST_BITS_PER_WIDE_INT - 1))
return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
/* x*2 is x+x and x*(-1) is -x */
if (GET_CODE (trueop1) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
&& GET_MODE (op0) == mode)
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
if (REAL_VALUES_EQUAL (d, dconst2))
return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
if (REAL_VALUES_EQUAL (d, dconstm1))
return simplify_gen_unary (NEG, mode, op0, mode);
}
/* Reassociate multiplication, but for floating point MULTs
only when the user specifies unsafe math optimizations. */
if (! FLOAT_MODE_P (mode)
|| flag_unsafe_math_optimizations)
{
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
}
break;
case IOR:
if (trueop1 == const0_rtx)
return op0;
if (GET_CODE (trueop1) == CONST_INT
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
== GET_MODE_MASK (mode)))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
/* A | (~A) -> -1 */
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return constm1_rtx;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case XOR:
if (trueop1 == const0_rtx)
return op0;
if (GET_CODE (trueop1) == CONST_INT
&& ((INTVAL (trueop1) & GET_MODE_MASK (mode))
== GET_MODE_MASK (mode)))
return simplify_gen_unary (NOT, mode, op0, mode);
if (trueop0 == trueop1
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return const0_rtx;
/* Canonicalize XOR of the most significant bit to PLUS. */
if ((GET_CODE (op1) == CONST_INT
|| GET_CODE (op1) == CONST_DOUBLE)
&& mode_signbit_p (mode, op1))
return simplify_gen_binary (PLUS, mode, op0, op1);
/* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
if ((GET_CODE (op1) == CONST_INT
|| GET_CODE (op1) == CONST_DOUBLE)
&& GET_CODE (op0) == PLUS
&& (GET_CODE (XEXP (op0, 1)) == CONST_INT
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
&& mode_signbit_p (mode, XEXP (op0, 1)))
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
simplify_gen_binary (XOR, mode, op1,
XEXP (op0, 1)));
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case AND:
if (trueop1 == const0_rtx && ! side_effects_p (op0))
return const0_rtx;
/* If we are turning off bits already known off in OP0, we need
not do an AND. */
if (GET_CODE (trueop1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
return op0;
if (trueop0 == trueop1 && ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return op0;
/* A & (~A) -> 0 */
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return const0_rtx;
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
((A & N) + B) & M -> (A + B) & M
Similarly if (N & M) == 0,
((A | N) + B) & M -> (A + B) & M
and for - instead of + and/or ^ instead of |. */
if (GET_CODE (trueop1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ~INTVAL (trueop1)
&& (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
{
rtx pmop[2];
int which;
pmop[0] = XEXP (op0, 0);
pmop[1] = XEXP (op0, 1);
for (which = 0; which < 2; which++)
{
tem = pmop[which];
switch (GET_CODE (tem))
{
case AND:
if (GET_CODE (XEXP (tem, 1)) == CONST_INT
&& (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
== INTVAL (trueop1))
pmop[which] = XEXP (tem, 0);
break;
case IOR:
case XOR:
if (GET_CODE (XEXP (tem, 1)) == CONST_INT
&& (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
pmop[which] = XEXP (tem, 0);
break;
default:
break;
}
}
if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
{
tem = simplify_gen_binary (GET_CODE (op0), mode,
pmop[0], pmop[1]);
return simplify_gen_binary (code, mode, tem, op1);
}
}
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case UDIV:
/* 0/x is 0 (or x&0 if x has side-effects). */
if (trueop0 == const0_rtx)
return side_effects_p (op1)
? simplify_gen_binary (AND, mode, op1, const0_rtx)
: const0_rtx;
/* x/1 is x. */
if (trueop1 == const1_rtx)
{
/* Handle narrowing UDIV. */
rtx x = gen_lowpart_common (mode, op0);
if (x)
return x;
if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
return gen_lowpart_SUBREG (mode, op0);
return op0;
}
/* Convert divide by power of two into shift. */
if (GET_CODE (trueop1) == CONST_INT
&& (arg1 = exact_log2 (INTVAL (trueop1))) > 0)
return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (arg1));
break;
case DIV:
/* Handle floating point and integers separately. */
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
{
/* Maybe change 0.0 / x to 0.0. This transformation isn't
safe for modes with NaNs, since 0.0 / 0.0 will then be
NaN rather than 0.0. Nor is it safe for modes with signed
zeros, since dividing 0 by a negative number gives -0.0 */
if (trueop0 == CONST0_RTX (mode)
&& !HONOR_NANS (mode)
&& !HONOR_SIGNED_ZEROS (mode)
&& ! side_effects_p (op1))
return op0;
/* x/1.0 is x. */
if (trueop1 == CONST1_RTX (mode)
&& !HONOR_SNANS (mode))
return op0;
if (GET_CODE (trueop1) == CONST_DOUBLE
&& trueop1 != CONST0_RTX (mode))
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
/* x/-1.0 is -x. */
if (REAL_VALUES_EQUAL (d, dconstm1)
&& !HONOR_SNANS (mode))
return simplify_gen_unary (NEG, mode, op0, mode);
/* Change FP division by a constant into multiplication.
Only do this with -funsafe-math-optimizations. */
if (flag_unsafe_math_optimizations
&& !REAL_VALUES_EQUAL (d, dconst0))
{
REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
return simplify_gen_binary (MULT, mode, op0, tem);
}
}
}
else
{
/* 0/x is 0 (or x&0 if x has side-effects). */
if (trueop0 == const0_rtx)
return side_effects_p (op1)
? simplify_gen_binary (AND, mode, op1, const0_rtx)
: const0_rtx;
/* x/1 is x. */
if (trueop1 == const1_rtx)
{
/* Handle narrowing DIV. */
rtx x = gen_lowpart_common (mode, op0);
if (x)
return x;
if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
return gen_lowpart_SUBREG (mode, op0);
return op0;
}
/* x/-1 is -x. */
if (trueop1 == constm1_rtx)
{
rtx x = gen_lowpart_common (mode, op0);
if (!x)
x = (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
? gen_lowpart_SUBREG (mode, op0) : op0;
return simplify_gen_unary (NEG, mode, x, mode);
}
}
break;
case UMOD:
/* 0%x is 0 (or x&0 if x has side-effects). */
if (trueop0 == const0_rtx)
return side_effects_p (op1)
? simplify_gen_binary (AND, mode, op1, const0_rtx)
: const0_rtx;
/* x%1 is 0 (of x&0 if x has side-effects). */
if (trueop1 == const1_rtx)
return side_effects_p (op0)
? simplify_gen_binary (AND, mode, op0, const0_rtx)
: const0_rtx;
/* Implement modulus by power of two as AND. */
if (GET_CODE (trueop1) == CONST_INT
&& exact_log2 (INTVAL (trueop1)) > 0)
return simplify_gen_binary (AND, mode, op0,
GEN_INT (INTVAL (op1) - 1));
break;
case MOD:
/* 0%x is 0 (or x&0 if x has side-effects). */
if (trueop0 == const0_rtx)
return side_effects_p (op1)
? simplify_gen_binary (AND, mode, op1, const0_rtx)
: const0_rtx;
/* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
if (trueop1 == const1_rtx || trueop1 == constm1_rtx)
return side_effects_p (op0)
? simplify_gen_binary (AND, mode, op0, const0_rtx)
: const0_rtx;
break;
case ROTATERT:
case ROTATE:
case ASHIFTRT:
/* Rotating ~0 always results in ~0. */
if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
&& (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
&& ! side_effects_p (op1))
return op0;
/* Fall through.... */
case ASHIFT:
case LSHIFTRT:
if (trueop1 == const0_rtx)
return op0;
if (trueop0 == const0_rtx && ! side_effects_p (op1))
return op0;
break;
case SMIN:
if (width <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (trueop1) == CONST_INT
&& INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
&& ! side_effects_p (op0))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case SMAX:
if (width <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (trueop1) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
== (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
&& ! side_effects_p (op0))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case UMIN:
if (trueop1 == const0_rtx && ! side_effects_p (op0))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case UMAX:
if (trueop1 == constm1_rtx && ! side_effects_p (op0))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case SS_PLUS:
case US_PLUS:
case SS_MINUS:
case US_MINUS:
/* ??? There are simplifications that can be done. */
return 0;
case VEC_SELECT:
if (!VECTOR_MODE_P (mode))
{
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
gcc_assert (GET_CODE (trueop1) == PARALLEL);
gcc_assert (XVECLEN (trueop1, 0) == 1);
gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
if (GET_CODE (trueop0) == CONST_VECTOR)
return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
(trueop1, 0, 0)));
}
else
{
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
gcc_assert (GET_MODE_INNER (mode)
== GET_MODE_INNER (GET_MODE (trueop0)));
gcc_assert (GET_CODE (trueop1) == PARALLEL);
if (GET_CODE (trueop0) == CONST_VECTOR)
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
for (i = 0; i < n_elts; i++)
{
rtx x = XVECEXP (trueop1, 0, i);
gcc_assert (GET_CODE (x) == CONST_INT);
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
INTVAL (x));
}
return gen_rtx_CONST_VECTOR (mode, v);
}
}
return 0;
case VEC_CONCAT:
{
enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
? GET_MODE (trueop0)
: GET_MODE_INNER (mode));
enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
? GET_MODE (trueop1)
: GET_MODE_INNER (mode));
gcc_assert (VECTOR_MODE_P (mode));
gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
== GET_MODE_SIZE (mode));
if (VECTOR_MODE_P (op0_mode))
gcc_assert (GET_MODE_INNER (mode)
== GET_MODE_INNER (op0_mode));
else
gcc_assert (GET_MODE_INNER (mode) == op0_mode);
if (VECTOR_MODE_P (op1_mode))
gcc_assert (GET_MODE_INNER (mode)
== GET_MODE_INNER (op1_mode));
else
gcc_assert (GET_MODE_INNER (mode) == op1_mode);
if ((GET_CODE (trueop0) == CONST_VECTOR
|| GET_CODE (trueop0) == CONST_INT
|| GET_CODE (trueop0) == CONST_DOUBLE)
&& (GET_CODE (trueop1) == CONST_VECTOR
|| GET_CODE (trueop1) == CONST_INT
|| GET_CODE (trueop1) == CONST_DOUBLE))
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
unsigned in_n_elts = 1;
if (VECTOR_MODE_P (op0_mode))
in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
for (i = 0; i < n_elts; i++)
{
if (i < in_n_elts)
{
if (!VECTOR_MODE_P (op0_mode))
RTVEC_ELT (v, i) = trueop0;
else
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
}
else
{
if (!VECTOR_MODE_P (op1_mode))
RTVEC_ELT (v, i) = trueop1;
else
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
i - in_n_elts);
}
}
return gen_rtx_CONST_VECTOR (mode, v);
}
}
return 0;
default:
gcc_unreachable ();
}
return 0;
}
/* Get the integer argument values in two forms:
zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
arg0 = INTVAL (trueop0);
arg1 = INTVAL (trueop1);
if (width < HOST_BITS_PER_WIDE_INT)
{
arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
arg0s = arg0;
if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
arg0s |= ((HOST_WIDE_INT) (-1) << width);
arg1s = arg1;
if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
arg1s |= ((HOST_WIDE_INT) (-1) << width);
}
else
{
arg0s = arg0;
arg1s = arg1;
}
/* Compute the value of the arithmetic. */
switch (code)
{
case PLUS:
val = arg0s + arg1s;
break;
case MINUS:
val = arg0s - arg1s;
break;
case MULT:
val = arg0s * arg1s;
break;
case DIV:
if (arg1s == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = arg0s / arg1s;
break;
case MOD:
if (arg1s == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = arg0s % arg1s;
break;
case UDIV:
if (arg1 == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = (unsigned HOST_WIDE_INT) arg0 / arg1;
break;
case UMOD:
if (arg1 == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = (unsigned HOST_WIDE_INT) arg0 % arg1;
break;
case AND:
val = arg0 & arg1;
break;
case IOR:
val = arg0 | arg1;
break;
case XOR:
val = arg0 ^ arg1;
break;
case LSHIFTRT:
case ASHIFT:
case ASHIFTRT:
/* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure the
value is in range. We can't return any old value for out-of-range
arguments because either the middle-end (via shift_truncation_mask)
or the back-end might be relying on target-specific knowledge.
Nor can we rely on shift_truncation_mask, since the shift might
not be part of an ashlM3, lshrM3 or ashrM3 instruction. */
if (SHIFT_COUNT_TRUNCATED)
arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
return 0;
val = (code == ASHIFT
? ((unsigned HOST_WIDE_INT) arg0) << arg1
: ((unsigned HOST_WIDE_INT) arg0) >> arg1);
/* Sign-extend the result for arithmetic right shifts. */
if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
val |= ((HOST_WIDE_INT) -1) << (width - arg1);
break;
case ROTATERT:
if (arg1 < 0)
return 0;
arg1 %= width;
val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
| (((unsigned HOST_WIDE_INT) arg0) >> arg1));
break;
case ROTATE:
if (arg1 < 0)
return 0;
arg1 %= width;
val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
| (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
break;
case COMPARE:
/* Do nothing here. */
return 0;
case SMIN:
val = arg0s <= arg1s ? arg0s : arg1s;
break;
case UMIN:
val = ((unsigned HOST_WIDE_INT) arg0
<= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
break;
case SMAX:
val = arg0s > arg1s ? arg0s : arg1s;
break;
case UMAX:
val = ((unsigned HOST_WIDE_INT) arg0
> (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
break;
case SS_PLUS:
case US_PLUS:
case SS_MINUS:
case US_MINUS:
/* ??? There are simplifications that can be done. */
return 0;
default:
gcc_unreachable ();
}
val = trunc_int_for_mode (val, mode);
return GEN_INT (val);
}
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
PLUS or MINUS.
Rather than test for specific case, we do this by a brute-force method
and do all possible simplifications until no more changes occur. Then
we rebuild the operation.
If FORCE is true, then always generate the rtx. This is used to
canonicalize stuff emitted from simplify_gen_binary. Note that this
can still fail if the rtx is too complex. It won't fail just because
the result is not 'simpler' than the input, however. */
struct simplify_plus_minus_op_data
{
rtx op;
int neg;
};
static int
simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
{
const struct simplify_plus_minus_op_data *d1 = p1;
const struct simplify_plus_minus_op_data *d2 = p2;
return (commutative_operand_precedence (d2->op)
- commutative_operand_precedence (d1->op));
}
static rtx
simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
rtx op1, int force)
{
struct simplify_plus_minus_op_data ops[8];
rtx result, tem;
int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
int first, changed;
int i, j;
memset (ops, 0, sizeof ops);
/* Set up the two operands and then expand them until nothing has been
changed. If we run out of room in our array, give up; this should
almost never happen. */
ops[0].op = op0;
ops[0].neg = 0;
ops[1].op = op1;
ops[1].neg = (code == MINUS);
do
{
changed = 0;
for (i = 0; i < n_ops; i++)
{
rtx this_op = ops[i].op;
int this_neg = ops[i].neg;
enum rtx_code this_code = GET_CODE (this_op);
switch (this_code)
{
case PLUS:
case MINUS:
if (n_ops == 7)
return NULL_RTX;
ops[n_ops].op = XEXP (this_op, 1);
ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
n_ops++;
ops[i].op = XEXP (this_op, 0);
input_ops++;
changed = 1;
break;
case NEG:
ops[i].op = XEXP (this_op, 0);
ops[i].neg = ! this_neg;
changed = 1;
break;
case CONST:
if (n_ops < 7
&& GET_CODE (XEXP (this_op, 0)) == PLUS
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
{
ops[i].op = XEXP (XEXP (this_op, 0), 0);
ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
ops[n_ops].neg = this_neg;
n_ops++;
input_consts++;
changed = 1;
}
break;
case NOT:
/* ~a -> (-a - 1) */
if (n_ops != 7)
{
ops[n_ops].op = constm1_rtx;
ops[n_ops++].neg = this_neg;
ops[i].op = XEXP (this_op, 0);
ops[i].neg = !this_neg;
changed = 1;
}
break;
case CONST_INT:
if (this_neg)
{
ops[i].op = neg_const_int (mode, this_op);
ops[i].neg = 0;
changed = 1;
}
break;
default:
break;
}
}
}
while (changed);
/* If we only have two operands, we can't do anything. */
if (n_ops <= 2 && !force)
return NULL_RTX;
/* Count the number of CONSTs we didn't split above. */
for (i = 0; i < n_ops; i++)
if (GET_CODE (ops[i].op) == CONST)
input_consts++;
/* Now simplify each pair of operands until nothing changes. The first
time through just simplify constants against each other. */
first = 1;
do
{
changed = first;
for (i = 0; i < n_ops - 1; i++)
for (j = i + 1; j < n_ops; j++)
{
rtx lhs = ops[i].op, rhs = ops[j].op;
int lneg = ops[i].neg, rneg = ops[j].neg;
if (lhs != 0 && rhs != 0
&& (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
{
enum rtx_code ncode = PLUS;
if (lneg != rneg)
{
ncode = MINUS;
if (lneg)
tem = lhs, lhs = rhs, rhs = tem;
}
else if (swap_commutative_operands_p (lhs, rhs))
tem = lhs, lhs = rhs, rhs = tem;
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
/* Reject "simplifications" that just wrap the two
arguments in a CONST. Failure to do so can result
in infinite recursion with simplify_binary_operation
when it calls us to simplify CONST operations. */
if (tem
&& ! (GET_CODE (tem) == CONST
&& GET_CODE (XEXP (tem, 0)) == ncode
&& XEXP (XEXP (tem, 0), 0) == lhs
&& XEXP (XEXP (tem, 0), 1) == rhs)
/* Don't allow -x + -1 -> ~x simplifications in the
first pass. This allows us the chance to combine
the -1 with other constants. */
&& ! (first
&& GET_CODE (tem) == NOT
&& XEXP (tem, 0) == rhs))
{
lneg &= rneg;
if (GET_CODE (tem) == NEG)
tem = XEXP (tem, 0), lneg = !lneg;
if (GET_CODE (tem) == CONST_INT && lneg)
tem = neg_const_int (mode, tem), lneg = 0;
ops[i].op = tem;
ops[i].neg = lneg;
ops[j].op = NULL_RTX;
changed = 1;
}
}
}
first = 0;
}
while (changed);
/* Pack all the operands to the lower-numbered entries. */
for (i = 0, j = 0; j < n_ops; j++)
if (ops[j].op)
ops[i++] = ops[j];
n_ops = i;
/* Sort the operations based on swap_commutative_operands_p. */
qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
/* Create (minus -C X) instead of (neg (const (plus X C))). */
if (n_ops == 2
&& GET_CODE (ops[1].op) == CONST_INT
&& CONSTANT_P (ops[0].op)
&& ops[0].neg)
return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
/* We suppressed creation of trivial CONST expressions in the
combination loop to avoid recursion. Create one manually now.
The combination loop should have ensured that there is exactly
one CONST_INT, and the sort will have ensured that it is last
in the array and that any other constant will be next-to-last. */
if (n_ops > 1
&& GET_CODE (ops[n_ops - 1].op) == CONST_INT
&& CONSTANT_P (ops[n_ops - 2].op))
{
rtx value = ops[n_ops - 1].op;
if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
value = neg_const_int (mode, value);
ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
n_ops--;
}
/* Count the number of CONSTs that we generated. */
n_consts = 0;
for (i = 0; i < n_ops; i++)
if (GET_CODE (ops[i].op) == CONST)
n_consts++;
/* Give up if we didn't reduce the number of operands we had. Make
sure we count a CONST as two operands. If we have the same
number of operands, but have made more CONSTs than before, this
is also an improvement, so accept it. */
if (!force
&& (n_ops + n_consts > input_ops
|| (n_ops + n_consts == input_ops && n_consts <= input_consts)))
return NULL_RTX;
/* Put a non-negated operand first, if possible. */
for (i = 0; i < n_ops && ops[i].neg; i++)
continue;
if (i == n_ops)
ops[0].op = gen_rtx_NEG (mode, ops[0].op);
else if (i != 0)
{
tem = ops[0].op;
ops[0] = ops[i];
ops[i].op = tem;
ops[i].neg = 1;
}
/* Now make the result by performing the requested operations. */
result = ops[0].op;
for (i = 1; i < n_ops; i++)
result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
mode, result, ops[i].op);
return result;
}
/* Like simplify_binary_operation except used for relational operators.
MODE is the mode of the result. If MODE is VOIDmode, both operands must
not also be VOIDmode.
CMP_MODE specifies in which mode the comparison is done in, so it is
the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
the operands or, if both are VOIDmode, the operands are compared in
"infinite precision". */
rtx
simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
enum machine_mode cmp_mode, rtx op0, rtx op1)
{
rtx tem, trueop0, trueop1;
if (cmp_mode == VOIDmode)
cmp_mode = GET_MODE (op0);
if (cmp_mode == VOIDmode)
cmp_mode = GET_MODE (op1);
tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
if (tem)
{
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
{
if (tem == const0_rtx)
return CONST0_RTX (mode);
#ifdef FLOAT_STORE_FLAG_VALUE
{
REAL_VALUE_TYPE val;
val = FLOAT_STORE_FLAG_VALUE (mode);
return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
}
#else
return NULL_RTX;
#endif
}
if (VECTOR_MODE_P (mode))
{
if (tem == const0_rtx)
return CONST0_RTX (mode);
#ifdef VECTOR_STORE_FLAG_VALUE
{
int i, units;
rtvec c;
rtx val = VECTOR_STORE_FLAG_VALUE (mode);
if (val == NULL_RTX)
return NULL_RTX;
if (val == const1_rtx)
return CONST1_RTX (mode);
units = GET_MODE_NUNITS (mode);
v = rtvec_alloc (units);
for (i = 0; i < units; i++)
RTVEC_ELT (v, i) = val;
return gen_rtx_raw_CONST_VECTOR (mode, v);
}
#else
return NULL_RTX;
#endif
}
return tem;
}
/* For the following tests, ensure const0_rtx is op1. */
if (swap_commutative_operands_p (op0, op1)
|| (op0 == const0_rtx && op1 != const0_rtx))
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
/* If op0 is a compare, extract the comparison arguments from it. */
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
return simplify_relational_operation (code, mode, VOIDmode,
XEXP (op0, 0), XEXP (op0, 1));
if (mode == VOIDmode
|| GET_MODE_CLASS (cmp_mode) == MODE_CC
|| CC0_P (op0))
return NULL_RTX;
trueop0 = avoid_constant_pool_reference (op0);
trueop1 = avoid_constant_pool_reference (op1);
return simplify_relational_operation_1 (code, mode, cmp_mode,
trueop0, trueop1);
}
/* This part of simplify_relational_operation is only used when CMP_MODE
is not in class MODE_CC (i.e. it is a real comparison).
MODE is the mode of the result, while CMP_MODE specifies in which
mode the comparison is done in, so it is the mode of the operands. */
rtx
simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
enum machine_mode cmp_mode, rtx op0, rtx op1)
{
if (GET_CODE (op1) == CONST_INT)
{
if (INTVAL (op1) == 0 && COMPARISON_P (op0))
{
/* If op0 is a comparison, extract the comparison arguments form it. */
if (code == NE)
{
if (GET_MODE (op0) == cmp_mode)
return simplify_rtx (op0);
else
return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
XEXP (op0, 0), XEXP (op0, 1));
}
else if (code == EQ)
{
enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
if (new_code != UNKNOWN)
return simplify_gen_relational (new_code, mode, VOIDmode,
XEXP (op0, 0), XEXP (op0, 1));
}
}
}
return NULL_RTX;
}
/* Check if the given comparison (done in the given MODE) is actually a
tautology or a contradiction.
If no simplification is possible, this function returns zero.
Otherwise, it returns either const_true_rtx or const0_rtx. */
rtx
simplify_const_relational_operation (enum rtx_code code,
enum machine_mode mode,
rtx op0, rtx op1)
{
int equal, op0lt, op0ltu, op1lt, op1ltu;
rtx tem;
rtx trueop0;
rtx trueop1;
gcc_assert (mode != VOIDmode
|| (GET_MODE (op0) == VOIDmode
&& GET_MODE (op1) == VOIDmode));
/* If op0 is a compare, extract the comparison arguments from it. */
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* We can't simplify MODE_CC values since we don't know what the
actual comparison is. */
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
return 0;
/* Make sure the constant is second. */
if (swap_commutative_operands_p (op0, op1))
{
tem = op0, op0 = op1, op1 = tem;
code = swap_condition (code);
}
trueop0 = avoid_constant_pool_reference (op0);
trueop1 = avoid_constant_pool_reference (op1);
/* For integer comparisons of A and B maybe we can simplify A - B and can
then simplify a comparison of that with zero. If A and B are both either
a register or a CONST_INT, this can't help; testing for these cases will
prevent infinite recursion here and speed things up.
If CODE is an unsigned comparison, then we can never do this optimization,
because it gives an incorrect result if the subtraction wraps around zero.
ANSI C defines unsigned operations such that they never overflow, and
thus such cases can not be ignored; but we cannot do it even for
signed comparisons for languages such as Java, so test flag_wrapv. */
if (!flag_wrapv && INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
&& ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
&& (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
/* We cannot do this for == or != if tem is a nonzero address. */
&& ((code != EQ && code != NE) || ! nonzero_address_p (tem))
&& code != GTU && code != GEU && code != LTU && code != LEU)
return simplify_const_relational_operation (signed_condition (code),
mode, tem, const0_rtx);
if (flag_unsafe_math_optimizations && code == ORDERED)
return const_true_rtx;
if (flag_unsafe_math_optimizations && code == UNORDERED)
return const0_rtx;
/* For modes without NaNs, if the two operands are equal, we know the
result except if they have side-effects. */
if (! HONOR_NANS (GET_MODE (trueop0))
&& rtx_equal_p (trueop0, trueop1)
&& ! side_effects_p (trueop0))
equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
/* If the operands are floating-point constants, see if we can fold
the result. */
else if (GET_CODE (trueop0) == CONST_DOUBLE
&& GET_CODE (trueop1) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
{
REAL_VALUE_TYPE d0, d1;
REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
/* Comparisons are unordered iff at least one of the values is NaN. */
if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
switch (code)
{
case UNEQ:
case UNLT:
case UNGT:
case UNLE:
case UNGE:
case NE:
case UNORDERED:
return const_true_rtx;
case EQ:
case LT:
case GT:
case LE:
case GE:
case LTGT:
case ORDERED:
return const0_rtx;
default:
return 0;
}
equal = REAL_VALUES_EQUAL (d0, d1);
op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
}
/* Otherwise, see if the operands are both integers. */
else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
&& (GET_CODE (trueop0) == CONST_DOUBLE
|| GET_CODE (trueop0) == CONST_INT)
&& (GET_CODE (trueop1) == CONST_DOUBLE
|| GET_CODE (trueop1) == CONST_INT))
{
int width = GET_MODE_BITSIZE (mode);
HOST_WIDE_INT l0s, h0s, l1s, h1s;
unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
/* Get the two words comprising each integer constant. */
if (GET_CODE (trueop0) == CONST_DOUBLE)
{
l0u = l0s = CONST_DOUBLE_LOW (trueop0);
h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
}
else
{
l0u = l0s = INTVAL (trueop0);
h0u = h0s = HWI_SIGN_EXTEND (l0s);
}
if (GET_CODE (trueop1) == CONST_DOUBLE)
{
l1u = l1s = CONST_DOUBLE_LOW (trueop1);
h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
}
else
{
l1u = l1s = INTVAL (trueop1);
h1u = h1s = HWI_SIGN_EXTEND (l1s);
}
/* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
we have to sign or zero-extend the values. */
if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
{
l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
l0s |= ((HOST_WIDE_INT) (-1) << width);
if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
l1s |= ((HOST_WIDE_INT) (-1) << width);
}
if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
equal = (h0u == h1u && l0u == l1u);
op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
}
/* Otherwise, there are some code-specific tests we can make. */
else
{
/* Optimize comparisons with upper and lower bounds. */
if (SCALAR_INT_MODE_P (mode)
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
rtx mmin, mmax;
int sign;
if (code == GEU
|| code == LEU
|| code == GTU
|| code == LTU)
sign = 0;
else
sign = 1;
get_mode_bounds (mode, sign, mode, &mmin, &mmax);
tem = NULL_RTX;
switch (code)
{
case GEU:
case GE:
/* x >= min is always true. */
if (rtx_equal_p (trueop1, mmin))
tem = const_true_rtx;
else
break;
case LEU:
case LE:
/* x <= max is always true. */
if (rtx_equal_p (trueop1, mmax))
tem = const_true_rtx;
break;
case GTU:
case GT:
/* x > max is always false. */
if (rtx_equal_p (trueop1, mmax))
tem = const0_rtx;
break;
case LTU:
case LT:
/* x < min is always false. */
if (rtx_equal_p (trueop1, mmin))
tem = const0_rtx;
break;
default:
break;
}
if (tem == const0_rtx
|| tem == const_true_rtx)
return tem;
}
switch (code)
{
case EQ:
if (trueop1 == const0_rtx && nonzero_address_p (op0))
return const0_rtx;
break;
case NE:
if (trueop1 == const0_rtx && nonzero_address_p (op0))
return const_true_rtx;
break;
case LT:
/* Optimize abs(x) < 0.0. */
if (trueop1 == CONST0_RTX (mode) && !HONOR_SNANS (mode))
{
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
: trueop0;
if (GET_CODE (tem) == ABS)
return const0_rtx;
}
break;
case GE:
/* Optimize abs(x) >= 0.0. */
if (trueop1 == CONST0_RTX (mode) && !HONOR_NANS (mode))
{
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
: trueop0;
if (GET_CODE (tem) == ABS)
return const_true_rtx;
}
break;
case UNGE:
/* Optimize ! (abs(x) < 0.0). */
if (trueop1 == CONST0_RTX (mode))
{
tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
: trueop0;
if (GET_CODE (tem) == ABS)
return const_true_rtx;
}
break;
default:
break;
}
return 0;
}
/* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
as appropriate. */
switch (code)
{
case EQ:
case UNEQ:
return equal ? const_true_rtx : const0_rtx;
case NE:
case LTGT:
return ! equal ? const_true_rtx : const0_rtx;
case LT:
case UNLT:
return op0lt ? const_true_rtx : const0_rtx;
case GT:
case UNGT:
return op1lt ? const_true_rtx : const0_rtx;
case LTU:
return op0ltu ? const_true_rtx : const0_rtx;
case GTU:
return op1ltu ? const_true_rtx : const0_rtx;
case LE:
case UNLE:
return equal || op0lt ? const_true_rtx : const0_rtx;
case GE:
case UNGE:
return equal || op1lt ? const_true_rtx : const0_rtx;
case LEU:
return equal || op0ltu ? const_true_rtx : const0_rtx;
case GEU:
return equal || op1ltu ? const_true_rtx : const0_rtx;
case ORDERED:
return const_true_rtx;
case UNORDERED:
return const0_rtx;
default:
gcc_unreachable ();
}
}
/* Simplify CODE, an operation with result mode MODE and three operands,
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
a constant. Return 0 if no simplifications is possible. */
rtx
simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
enum machine_mode op0_mode, rtx op0, rtx op1,
rtx op2)
{
unsigned int width = GET_MODE_BITSIZE (mode);
/* VOIDmode means "infinite" precision. */
if (width == 0)
width = HOST_BITS_PER_WIDE_INT;
switch (code)
{
case SIGN_EXTRACT:
case ZERO_EXTRACT:
if (GET_CODE (op0) == CONST_INT
&& GET_CODE (op1) == CONST_INT
&& GET_CODE (op2) == CONST_INT
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
{
/* Extracting a bit-field from a constant */
HOST_WIDE_INT val = INTVAL (op0);
if (BITS_BIG_ENDIAN)
val >>= (GET_MODE_BITSIZE (op0_mode)
- INTVAL (op2) - INTVAL (op1));
else
val >>= INTVAL (op2);
if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
{
/* First zero-extend. */
val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
/* If desired, propagate sign bit. */
if (code == SIGN_EXTRACT
&& (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
}
/* Clear the bits that don't belong in our mode,
unless they and our sign bit are all one.
So we get either a reasonable negative value or a reasonable
unsigned value for this mode. */
if (width < HOST_BITS_PER_WIDE_INT
&& ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
val &= ((HOST_WIDE_INT) 1 << width) - 1;
return GEN_INT (val);
}
break;
case IF_THEN_ELSE:
if (GET_CODE (op0) == CONST_INT)
return op0 != const0_rtx ? op1 : op2;
/* Convert c ? a : a into "a". */
if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
return op1;
/* Convert a != b ? a : b into "a". */
if (GET_CODE (op0) == NE
&& ! side_effects_p (op0)
&& ! HONOR_NANS (mode)
&& ! HONOR_SIGNED_ZEROS (mode)
&& ((rtx_equal_p (XEXP (op0, 0), op1)
&& rtx_equal_p (XEXP (op0, 1), op2))
|| (rtx_equal_p (XEXP (op0, 0), op2)
&& rtx_equal_p (XEXP (op0, 1), op1))))
return op1;
/* Convert a == b ? a : b into "b". */
if (GET_CODE (op0) == EQ
&& ! side_effects_p (op0)
&& ! HONOR_NANS (mode)
&& ! HONOR_SIGNED_ZEROS (mode)
&& ((rtx_equal_p (XEXP (op0, 0), op1)
&& rtx_equal_p (XEXP (op0, 1), op2))
|| (rtx_equal_p (XEXP (op0, 0), op2)
&& rtx_equal_p (XEXP (op0, 1), op1))))
return op2;
if (COMPARISON_P (op0) && ! side_effects_p (op0))
{
enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
? GET_MODE (XEXP (op0, 1))
: GET_MODE (XEXP (op0, 0)));
rtx temp;
/* Look for happy constants in op1 and op2. */
if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
{
HOST_WIDE_INT t = INTVAL (op1);
HOST_WIDE_INT f = INTVAL (op2);
if (t == STORE_FLAG_VALUE && f == 0)
code = GET_CODE (op0);
else if (t == 0 && f == STORE_FLAG_VALUE)
{
enum rtx_code tmp;
tmp = reversed_comparison_code (op0, NULL_RTX);
if (tmp == UNKNOWN)
break;
code = tmp;
}
else
break;
return simplify_gen_relational (code, mode, cmp_mode,
XEXP (op0, 0), XEXP (op0, 1));
}
if (cmp_mode == VOIDmode)
cmp_mode = op0_mode;
temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
cmp_mode, XEXP (op0, 0),
XEXP (op0, 1));
/* See if any simplifications were possible. */
if (temp)
{
if (GET_CODE (temp) == CONST_INT)
return temp == const0_rtx ? op2 : op1;
else if (temp)
return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
}
}
break;
case VEC_MERGE:
gcc_assert (GET_MODE (op0) == mode);
gcc_assert (GET_MODE (op1) == mode);
gcc_assert (VECTOR_MODE_P (mode));
op2 = avoid_constant_pool_reference (op2);
if (GET_CODE (op2) == CONST_INT)
{
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
int mask = (1 << n_elts) - 1;
if (!(INTVAL (op2) & mask))
return op1;
if ((INTVAL (op2) & mask) == mask)
return op0;
op0 = avoid_constant_pool_reference (op0);
op1 = avoid_constant_pool_reference (op1);
if (GET_CODE (op0) == CONST_VECTOR
&& GET_CODE (op1) == CONST_VECTOR)
{
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
for (i = 0; i < n_elts; i++)
RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
? CONST_VECTOR_ELT (op0, i)
: CONST_VECTOR_ELT (op1, i));
return gen_rtx_CONST_VECTOR (mode, v);
}
}
break;
default:
gcc_unreachable ();
}
return 0;
}
/* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
Works by unpacking OP into a collection of 8-bit values
represented as a little-endian array of 'unsigned char', selecting by BYTE,
and then repacking them again for OUTERMODE. */
static rtx
simplify_immed_subreg (enum machine_mode outermode, rtx op,
enum machine_mode innermode, unsigned int byte)
{
/* We support up to 512-bit values (for V8DFmode). */
enum {
max_bitsize = 512,
value_bit = 8,
value_mask = (1 << value_bit) - 1
};
unsigned char value[max_bitsize / value_bit];
int value_start;
int i;
int elem;
int num_elem;
rtx * elems;
int elem_bitsize;
rtx result_s;
rtvec result_v = NULL;
enum mode_class outer_class;
enum machine_mode outer_submode;
/* Some ports misuse CCmode. */
if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
return op;
/* Unpack the value. */
if (GET_CODE (op) == CONST_VECTOR)
{
num_elem = CONST_VECTOR_NUNITS (op);
elems = &CONST_VECTOR_ELT (op, 0);
elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
}
else
{
num_elem = 1;
elems = &op;
elem_bitsize = max_bitsize;
}
/* If this asserts, it is too complicated; reducing value_bit may help. */
gcc_assert (BITS_PER_UNIT % value_bit == 0);
/* I don't know how to handle endianness of sub-units. */
gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
for (elem = 0; elem < num_elem; elem++)
{
unsigned char * vp;
rtx el = elems[elem];
/* Vectors are kept in target memory order. (This is probably
a mistake.) */
{
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
/ BITS_PER_UNIT);
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
unsigned bytele = (subword_byte % UNITS_PER_WORD
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
vp = value + (bytele * BITS_PER_UNIT) / value_bit;
}
switch (GET_CODE (el))
{
case CONST_INT:
for (i = 0;
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
i += value_bit)
*vp++ = INTVAL (el) >> i;
/* CONST_INTs are always logically sign-extended. */
for (; i < elem_bitsize; i += value_bit)
*vp++ = INTVAL (el) < 0 ? -1 : 0;
break;
case CONST_DOUBLE:
if (GET_MODE (el) == VOIDmode)
{
/* If this triggers, someone should have generated a
CONST_INT instead. */
gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
*vp++ = CONST_DOUBLE_LOW (el) >> i;
while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
{
*vp++
= CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
i += value_bit;
}
/* It shouldn't matter what's done here, so fill it with
zero. */
for (; i < max_bitsize; i += value_bit)
*vp++ = 0;
}
else
{
long tmp[max_bitsize / 32];
int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
gcc_assert (GET_MODE_CLASS (GET_MODE (el)) == MODE_FLOAT);
gcc_assert (bitsize <= elem_bitsize);
gcc_assert (bitsize % value_bit == 0);
real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
GET_MODE (el));
/* real_to_target produces its result in words affected by
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
and use WORDS_BIG_ENDIAN instead; see the documentation
of SUBREG in rtl.texi. */
for (i = 0; i < bitsize; i += value_bit)
{
int ibase;
if (WORDS_BIG_ENDIAN)
ibase = bitsize - 1 - i;
else
ibase = i;
*vp++ = tmp[ibase / 32] >> i % 32;
}
/* It shouldn't matter what's done here, so fill it with
zero. */
for (; i < elem_bitsize; i += value_bit)
*vp++ = 0;
}
break;
default:
gcc_unreachable ();
}
}
/* Now, pick the right byte to start with. */
/* Renumber BYTE so that the least-significant byte is byte 0. A special
case is paradoxical SUBREGs, which shouldn't be adjusted since they
will already have offset 0. */
if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
{
unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
- byte);
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
byte = (subword_byte % UNITS_PER_WORD
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
}
/* BYTE should still be inside OP. (Note that BYTE is unsigned,
so if it's become negative it will instead be very large.) */
gcc_assert (byte < GET_MODE_SIZE (innermode));
/* Convert from bytes to chunks of size value_bit. */
value_start = byte * (BITS_PER_UNIT / value_bit);
/* Re-pack the value. */
if (VECTOR_MODE_P (outermode))
{
num_elem = GET_MODE_NUNITS (outermode);
result_v = rtvec_alloc (num_elem);
elems = &RTVEC_ELT (result_v, 0);
outer_submode = GET_MODE_INNER (outermode);
}
else
{
num_elem = 1;
elems = &result_s;
outer_submode = outermode;
}
outer_class = GET_MODE_CLASS (outer_submode);
elem_bitsize = GET_MODE_BITSIZE (outer_submode);
gcc_assert (elem_bitsize % value_bit == 0);
gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
for (elem = 0; elem < num_elem; elem++)
{
unsigned char *vp;
/* Vectors are stored in target memory order. (This is probably
a mistake.) */
{
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
/ BITS_PER_UNIT);
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
unsigned bytele = (subword_byte % UNITS_PER_WORD
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
}
switch (outer_class)
{
case MODE_INT:
case MODE_PARTIAL_INT:
{
unsigned HOST_WIDE_INT hi = 0, lo = 0;
for (i = 0;
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
i += value_bit)
lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
for (; i < elem_bitsize; i += value_bit)
hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
<< (i - HOST_BITS_PER_WIDE_INT));
/* immed_double_const doesn't call trunc_int_for_mode. I don't
know why. */
if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
elems[elem] = gen_int_mode (lo, outer_submode);
else
elems[elem] = immed_double_const (lo, hi, outer_submode);
}
break;
case MODE_FLOAT:
{
REAL_VALUE_TYPE r;
long tmp[max_bitsize / 32];
/* real_from_target wants its input in words affected by
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
and use WORDS_BIG_ENDIAN instead; see the documentation
of SUBREG in rtl.texi. */
for (i = 0; i < max_bitsize / 32; i++)
tmp[i] = 0;
for (i = 0; i < elem_bitsize; i += value_bit)
{
int ibase;
if (WORDS_BIG_ENDIAN)
ibase = elem_bitsize - 1 - i;
else
ibase = i;
tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
}
real_from_target (&r, tmp, outer_submode);
elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
}
break;
default:
gcc_unreachable ();
}
}
if (VECTOR_MODE_P (outermode))
return gen_rtx_CONST_VECTOR (outermode, result_v);
else
return result_s;
}
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
Return 0 if no simplifications are possible. */
rtx
simplify_subreg (enum machine_mode outermode, rtx op,
enum machine_mode innermode, unsigned int byte)
{
/* Little bit of sanity checking. */
gcc_assert (innermode != VOIDmode);
gcc_assert (outermode != VOIDmode);
gcc_assert (innermode != BLKmode);
gcc_assert (outermode != BLKmode);
gcc_assert (GET_MODE (op) == innermode
|| GET_MODE (op) == VOIDmode);
gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
gcc_assert (byte < GET_MODE_SIZE (innermode));
if (outermode == innermode && !byte)
return op;
if (GET_CODE (op) == CONST_INT
|| GET_CODE (op) == CONST_DOUBLE
|| GET_CODE (op) == CONST_VECTOR)
return simplify_immed_subreg (outermode, op, innermode, byte);
/* Changing mode twice with SUBREG => just change it once,
or not at all if changing back op starting mode. */
if (GET_CODE (op) == SUBREG)
{
enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
int final_offset = byte + SUBREG_BYTE (op);
rtx newx;
if (outermode == innermostmode
&& byte == 0 && SUBREG_BYTE (op) == 0)
return SUBREG_REG (op);
/* The SUBREG_BYTE represents offset, as if the value were stored
in memory. Irritating exception is paradoxical subreg, where
we define SUBREG_BYTE to be 0. On big endian machines, this
value should be negative. For a moment, undo this exception. */
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
{
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
if (WORDS_BIG_ENDIAN)
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
final_offset += difference % UNITS_PER_WORD;
}
if (SUBREG_BYTE (op) == 0
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
{
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
if (WORDS_BIG_ENDIAN)
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
final_offset += difference % UNITS_PER_WORD;
}
/* See whether resulting subreg will be paradoxical. */
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
{
/* In nonparadoxical subregs we can't handle negative offsets. */
if (final_offset < 0)
return NULL_RTX;
/* Bail out in case resulting subreg would be incorrect. */
if (final_offset % GET_MODE_SIZE (outermode)
|| (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
return NULL_RTX;
}
else
{
int offset = 0;
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
/* In paradoxical subreg, see if we are still looking on lower part.
If so, our SUBREG_BYTE will be 0. */
if (WORDS_BIG_ENDIAN)
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset += difference % UNITS_PER_WORD;
if (offset == final_offset)
final_offset = 0;
else
return NULL_RTX;
}
/* Recurse for further possible simplifications. */
newx = simplify_subreg (outermode, SUBREG_REG (op),
GET_MODE (SUBREG_REG (op)),
final_offset);
if (newx)
return newx;
return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
}
/* SUBREG of a hard register => just change the register number
and/or mode. If the hard register is not valid in that mode,
suppress this simplification. If the hard register is the stack,
frame, or argument pointer, leave this as a SUBREG. */
if (REG_P (op)
&& REGNO (op) < FIRST_PSEUDO_REGISTER
#ifdef CANNOT_CHANGE_MODE_CLASS
&& ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
#endif
&& ((reload_completed && !frame_pointer_needed)
|| (REGNO (op) != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& REGNO (op) != HARD_FRAME_POINTER_REGNUM
#endif
))
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& REGNO (op) != ARG_POINTER_REGNUM
#endif
&& REGNO (op) != STACK_POINTER_REGNUM
&& subreg_offset_representable_p (REGNO (op), innermode,
byte, outermode))
{
rtx tem = gen_rtx_SUBREG (outermode, op, byte);
int final_regno = subreg_hard_regno (tem, 0);
/* ??? We do allow it if the current REG is not valid for
its mode. This is a kludge to work around how float/complex
arguments are passed on 32-bit SPARC and should be fixed. */
if (HARD_REGNO_MODE_OK (final_regno, outermode)
|| ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
{
rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
/* Propagate original regno. We don't have any way to specify
the offset inside original regno, so do so only for lowpart.
The information is used only by alias analysis that can not
grog partial register anyway. */
if (subreg_lowpart_offset (outermode, innermode) == byte)
ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
return x;
}
}
/* If we have a SUBREG of a register that we are replacing and we are
replacing it with a MEM, make a new MEM and try replacing the
SUBREG with it. Don't do this if the MEM has a mode-dependent address
or if we would be widening it. */
if (MEM_P (op)
&& ! mode_dependent_address_p (XEXP (op, 0))
/* Allow splitting of volatile memory references in case we don't
have instruction to move the whole thing. */
&& (! MEM_VOLATILE_P (op)
|| ! have_insn_for (SET, innermode))
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
return adjust_address_nv (op, outermode, byte);
/* Handle complex values represented as CONCAT
of real and imaginary part. */
if (GET_CODE (op) == CONCAT)
{
int is_realpart = byte < (unsigned int) GET_MODE_UNIT_SIZE (innermode);
rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
unsigned int final_offset;
rtx res;
final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
if (res)
return res;
/* We can at least simplify it by referring directly to the
relevant part. */
return gen_rtx_SUBREG (outermode, part, final_offset);
}
/* Optimize SUBREG truncations of zero and sign extended values. */
if ((GET_CODE (op) == ZERO_EXTEND
|| GET_CODE (op) == SIGN_EXTEND)
&& GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
{
unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
/* If we're requesting the lowpart of a zero or sign extension,
there are three possibilities. If the outermode is the same
as the origmode, we can omit both the extension and the subreg.
If the outermode is not larger than the origmode, we can apply
the truncation without the extension. Finally, if the outermode
is larger than the origmode, but both are integer modes, we
can just extend to the appropriate mode. */
if (bitpos == 0)
{
enum machine_mode origmode = GET_MODE (XEXP (op, 0));
if (outermode == origmode)
return XEXP (op, 0);
if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
subreg_lowpart_offset (outermode,
origmode));
if (SCALAR_INT_MODE_P (outermode))
return simplify_gen_unary (GET_CODE (op), outermode,
XEXP (op, 0), origmode);
}
/* A SUBREG resulting from a zero extension may fold to zero if
it extracts higher bits that the ZERO_EXTEND's source bits. */
if (GET_CODE (op) == ZERO_EXTEND
&& bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
return CONST0_RTX (outermode);
}
return NULL_RTX;
}
/* Make a SUBREG operation or equivalent if it folds. */
rtx
simplify_gen_subreg (enum machine_mode outermode, rtx op,
enum machine_mode innermode, unsigned int byte)
{
rtx newx;
/* Little bit of sanity checking. */
gcc_assert (innermode != VOIDmode);
gcc_assert (outermode != VOIDmode);
gcc_assert (innermode != BLKmode);
gcc_assert (outermode != BLKmode);
gcc_assert (GET_MODE (op) == innermode
|| GET_MODE (op) == VOIDmode);
gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
gcc_assert (byte < GET_MODE_SIZE (innermode));
newx = simplify_subreg (outermode, op, innermode, byte);
if (newx)
return newx;
if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode
|| (REG_P (op) && REGNO (op) < FIRST_PSEUDO_REGISTER))
return NULL_RTX;
return gen_rtx_SUBREG (outermode, op, byte);
}
/* Simplify X, an rtx expression.
Return the simplified expression or NULL if no simplifications
were possible.
This is the preferred entry point into the simplification routines;
however, we still allow passes to call the more specific routines.
Right now GCC has three (yes, three) major bodies of RTL simplification
code that need to be unified.
1. fold_rtx in cse.c. This code uses various CSE specific
information to aid in RTL simplification.
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
it uses combine specific information to aid in RTL
simplification.
3. The routines in this file.
Long term we want to only have one body of simplification code; to
get to that state I recommend the following steps:
1. Pour over fold_rtx & simplify_rtx and move any simplifications
which are not pass dependent state into these routines.
2. As code is moved by #1, change fold_rtx & simplify_rtx to
use this routine whenever possible.
3. Allow for pass dependent state to be provided to these
routines and add simplifications based on the pass dependent
state. Remove code from cse.c & combine.c that becomes
redundant/dead.
It will take time, but ultimately the compiler will be easier to
maintain and improve. It's totally silly that when we add a
simplification that it needs to be added to 4 places (3 for RTL
simplification and 1 for tree simplification. */
rtx
simplify_rtx (rtx x)
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
switch (GET_RTX_CLASS (code))
{
case RTX_UNARY:
return simplify_unary_operation (code, mode,
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
case RTX_COMM_ARITH:
if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
/* Fall through.... */
case RTX_BIN_ARITH:
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
case RTX_TERNARY:
case RTX_BITFIELD_OPS:
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
XEXP (x, 0), XEXP (x, 1),
XEXP (x, 2));
case RTX_COMPARE:
case RTX_COMM_COMPARE:
return simplify_relational_operation (code, mode,
((GET_MODE (XEXP (x, 0))
!= VOIDmode)
? GET_MODE (XEXP (x, 0))
: GET_MODE (XEXP (x, 1))),
XEXP (x, 0),
XEXP (x, 1));
case RTX_EXTRA:
if (code == SUBREG)
return simplify_gen_subreg (mode, SUBREG_REG (x),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
break;
case RTX_OBJ:
if (code == LO_SUM)
{
/* Convert (lo_sum (high FOO) FOO) to FOO. */
if (GET_CODE (XEXP (x, 0)) == HIGH
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
return XEXP (x, 1);
}
break;
default:
break;
}
return NULL;
}
|