summaryrefslogtreecommitdiff
path: root/gcc/testsuite/gdc.test/runnable/traits_getPointerBitmap.d
blob: 512bcea79afe909e394d1d2dc7588270c3bfcab2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

module traits_getPointerBitmap;

import std.stdio;
static import std.traits;

// version = RTInfo;
// debug = LOG;

version(RTInfo)
    import gc.rtinfo;
else
    enum bool RTInfoMark__Monitor = false; // is __monitor GC allocated?


enum bytesPerPtr = (size_t.sizeof);
enum bytesPerBitmapWord = bytesPerPtr * bytesPerPtr * 8;

template allocatedSize(T)
{
    static if (is (T == class))
        enum allocatedSize = __traits(classInstanceSize, T);
    else
        enum allocatedSize = T.sizeof;
}

bool testBit(const(size_t)* p, size_t biti)
{
    enum BITS_SHIFT = (size_t.sizeof == 8 ? 6 : 5);
    enum BITS_MASK = (bytesPerPtr - 1);

    return (p[biti >> BITS_SHIFT] & (1 << (biti & BITS_MASK))) != 0;
}

void __testType(T)(size_t[] expected)
{
    // check compile time info
    enum bits  = (T.sizeof + bytesPerPtr - 1) / bytesPerPtr;
    enum words = (T.sizeof + bytesPerBitmapWord - 1) / bytesPerBitmapWord;
    version(RTInfo)
        enum info = RTInfoImpl2!(Unqual!T); // we want the array, not the pointer
    else
        enum info = __traits(getPointerBitmap,T); // we want the array, not the pointer

    debug(LOG) writef("%-20s:", T.stringof);
    debug(LOG) writef(" CT:%s", info);
    debug(LOG) writef(" EXP:%d %s", allocatedSize!T, expected);
    assert(info[0] == allocatedSize!T);
    assert(info[1..$] == expected);
    assert(words == expected.length);

    debug(LOG) writeln();
}

///////////////////////////////////////
struct S(T, aliasTo = void)
{
    static if(!is(aliasTo == void))
    {
        aliasTo a;
        alias a this;
    }

    size_t x;
    T t = void;
    void* p;

}

template tOff(T)
{
    enum tOff = T.t.offsetof / bytesPerPtr;
}

template pOff(T)
{
    enum pOff = T.p.offsetof / bytesPerPtr;
}

class C(T, aliasTo = void)
{
    static if(!is(aliasTo == void))
    {
        aliasTo a;
        alias a this;
    }

    size_t x;
    T t = void;
    void* p;
}

///////////////////////////////////////

void _testType(T)(size_t[] expected)
{
    __testType!(T)(expected);
    __testType!(const(T))(expected);
    __testType!(immutable(T))(expected);
    version(RTInfo) {} else // Unqual does not work with shared(T[N])
        __testType!(shared(T))(expected);
}

void testType(T)(size_t[] expected)
{
    _testType!(T)(expected);

    // generate bit pattern for S!T
    assert(expected.length == 1);
    size_t[] sexp;

    sexp ~= (expected[0] << tOff!(S!T)) | (1 << pOff!((S!T)));
    _testType!(S!T)(sexp);

    // prepend Object
    sexp[0] = (expected[0] << tOff!(S!(T, Object))) | (1 << pOff!(S!(T, Object))) | 1;
    _testType!(S!(T, Object))(sexp);

    // prepend string
    sexp[0] = (expected[0] << tOff!(S!(T, string))) | (1 << pOff!(S!(T, string))) | 2; // arr ptr
    _testType!(S!(T, string))(sexp);

    // generate bit pattern for C!T
    C!T ct = null;
    size_t mutexBit = (RTInfoMark__Monitor ? 2 : 0);
    size_t ctpOff = ct.p.offsetof / bytesPerPtr;
    size_t cttOff = ct.t.offsetof / bytesPerPtr;
    sexp[0] = (expected[0] << cttOff) | (1 << ctpOff) | mutexBit;
    _testType!(C!(T))(sexp);

    C!(T, string) cts = null;
    size_t ctspOff = cts.p.offsetof / bytesPerPtr;
    size_t ctstOff = cts.t.offsetof / bytesPerPtr;
    // generate bit pattern for C!T
    sexp[0] = (expected[0] << ctstOff) | (1 << ctspOff) | mutexBit | 0b1000; // arr ptr
    _testType!(C!(T, string))(sexp);
}

///////////////////////////////////////
alias void[2*size_t.sizeof] void2;
alias size_t[3] int3;
alias size_t*[3] pint3;
alias string[3] sint3;
alias string[3][2] sint3_2;
alias int delegate() dg;
alias int function() fn;
alias typeof(null) NullType;

// span multiple bitmap elements
struct Large
{
    size_t[30] data1;
    void* p1;
    size_t[1] val1;

    size_t[28] data2;
    void* p2;
    size_t[3] val2;

    size_t[16] data3;
    void* p3;
    size_t[15] val3;
}

class N
{
    struct Nested
    {
        // no outer for structs
        size_t x;
        void* p1;
        Large* s;

        void foo() {} // need member fnction to not be POD
    }
    class CNested
    {
        // implicit vtptr,monitor
        size_t x;
        void* p1;
        size_t y;
        // implicit outer
    }
    class CNestedDerived : CNested
    {
        size_t[3] z;
        void* p;
    }
}

union U
{
    size_t data[4];
    Large*[] arr; // { length, ptr }

    struct
    {
        size_t d1;
        size_t d2;
        size_t d3;
        void* p;
    }
}

void testRTInfo()
{
    testType!(bool)         ([ 0b0 ]);
    testType!(ubyte)        ([ 0b0 ]);
    testType!(short)        ([ 0b0 ]);
    testType!(int)          ([ 0b0 ]);
    testType!(long)         ([ 0b00 ]);
    testType!(double)       ([ 0b00 ]);
    testType!(ifloat)       ([ 0b0 ]);
    testType!(cdouble)      ([ 0b0000 ]);
    testType!(dg)           ([ 0b01 ]);
    testType!(fn)           ([ 0b0 ]);
    testType!(S!fn)         ([ 0b100 ]);
    testType!(NullType)     ([ 0b0 ]);
    version(D_LP64)
        testType!(__vector(float[4]))  ([ 0b00 ]);

    testType!(Object[int])       ([ 0b1 ]);
    testType!(Object[])       ([ 0b10 ]);
    testType!(string)         ([ 0b10 ]);

    testType!(int3)           ([ 0b000 ]);
    testType!(pint3)          ([ 0b111 ]);
    testType!(sint3)          ([ 0b101010 ]);
    testType!(sint3_2)        ([ 0b101010101010 ]);
    testType!(void2)          ([ 0b11 ]);
    testType!(U)              ([ 0b1010 ]);

    version(D_LP64)
        _testType!(Large)          ([ 0x1000_0000__4000_0000, 0x0001_0000 ]);
    else
        _testType!(Large)          ([ 0x4000_0000, 0x1000_0000, 0x0001_0000 ]);

    _testType!(N.CNested)     ([ 0b101000 ]);
    _testType!(N.CNestedDerived) ([ 0b1000101000 ]);

    testType!(N.Nested)       ([ 0b110 ]);

    struct SFNested
    {
        size_t[2] d;
        void* p1;
        fn f;
        // implicite outer

        void foo() {} // need member fnction to not be POD
    }

    class CFNested
    {
        // implicit vtptr,monitor
        size_t[2] d;
        void* p1;
        // implicite outer
    }

    testType!(SFNested)      ([ 0b10100 ]);
    _testType!(CFNested)     ([ 0b110000 ]);
}

void main()
{
    testRTInfo();
}