1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
! { dg-do run { xfail *-*-mingw* spu-*-* } }
! { dg-add-options ieee }
!
! PR fortran/36158
! PR fortran/33197
!
! For mingw targets this test is disabled as the MS implementation
! of BESSEL_YN(n,x) has different results. It returns NAN rather than
! -INF for "x=0.0" and all "n".
!
! XFAILed for SPU targets since we don't have an accurate library
! implementation of the single-precision Bessel functions.
!
! Run-time tests for transformations BESSEL_YN
!
implicit none
real,parameter :: values(*) = [0.0, 0.5, 1.0, 0.9, 1.8,2.0,3.0,4.0,4.25,8.0,34.53, 475.78]
real,parameter :: myeps(size(values)) = epsilon(0.0) &
* [2, 3, 4, 5, 8, 2, 13, 6, 7, 6, 36, 168 ]
! The following is sufficient for me - the values above are a bit
! more tolerant
! * [0, 0, 0, 3, 3, 0, 9, 0, 2, 1, 22, 130 ]
integer,parameter :: nit(size(values)) = &
[100, 100, 100, 25, 15, 100, 10, 31, 7, 100, 7, 25 ]
integer, parameter :: Nmax = 100
real :: rec(0:Nmax), lib(0:Nmax)
integer :: i
do i = 1, ubound(values,dim=1)
call compare(values(i), myeps(i), nit(i), 6*epsilon(0.0))
end do
contains
subroutine compare(X, myeps, nit, myeps2)
integer :: i, nit
real X, myeps, myeps2
rec = BESSEL_YN(0, Nmax, X)
lib = [ (BESSEL_YN(i, X), i=0,Nmax) ]
!print *, 'YN for X = ', X, ' -- Epsilon = ',epsilon(x)
do i = 0, Nmax
! print '(i2,2e17.9,e12.2,f14.10,2l3)', i, rec(i), lib(i), &
! rec(i)-lib(i), ((rec(i)-lib(i))/rec(i))/epsilon(x), &
! i > nit .or. rec(i) == lib(i) &
! .or. abs((rec(i)-lib(i))/rec(i)) < myeps2, &
! rec(i) == lib(i) .or. abs((rec(i)-lib(i))/rec(i)) < myeps
if (.not. (i > nit .or. rec(i) == lib(i) &
.or. abs((rec(i)-lib(i))/rec(i)) < myeps2)) &
STOP 1
if (.not. (rec(i) == lib(i) .or. abs((rec(i)-lib(i))/rec(i)) < myeps)) &
STOP 2
end do
end
end
|