1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
! { dg-do compile }
! { dg-options "-O -fno-tree-fre -fno-tree-sra -ftree-loop-vectorize" }
! { dg-additional-options "-mavx2" { target x86_64-*-* i?86-*-* } }
module lfk_prec
integer, parameter :: dp=kind(1.d0)
end module lfk_prec
!***********************************************
SUBROUTINE kernel(tk)
!***********************************************************************
! *
! KERNEL executes 24 samples of Fortran computation *
! TK(1) - total cpu time to execute only the 24 kernels. *
! TK(2) - total Flops executed by the 24 Kernels *
!***********************************************************************
! *
! L. L. N. L. F O R T R A N K E R N E L S: M F L O P S *
! *
! These kernels measure Fortran numerical computation rates for a *
! spectrum of CPU-limited computational structures. Mathematical *
! through-put is measured in units of millions of floating-point *
! operations executed per Second, called Mega-Flops/Sec. *
! *
! This program measures a realistic CPU performance range for the *
! Fortran programming system on a given day. The CPU performance *
! rates depend strongly on the maturity of the Fortran compiler's *
! ability to translate Fortran code into efficient machine code. *
! [ The CPU hardware capability apart from compiler maturity (or *
! availability), could be measured (or simulated) by programming the *
! kernels in assembly or machine code directly. These measurements *
! can also serve as a framework for tracking the maturation of the *
! Fortran compiler during system development.] *
! *
! Fonzi's Law: There is not now and there never will be a language *
! in which it is the least bit difficult to write *
! bad programs. *
! F.H.MCMAHON 1972 *
!***********************************************************************
! l1 := param-dimension governs the size of most 1-d arrays
! l2 := param-dimension governs the size of most 2-d arrays
! Loop := multiple pass control to execute kernel long enough to ti
! me.
! n := DO loop control for each kernel. Controls are set in subr.
! SIZES
! ******************************************************************
use lfk_prec
implicit double precision (a-h,o-z)
!IBM IMPLICIT REAL*8 (A-H,O-Z)
REAL(kind=dp), INTENT(inout) :: tk
INTEGER :: test !!,AND
COMMON/alpha/mk,ik,im,ml,il,mruns,nruns,jr,iovec,npfs(8,3,47)
COMMON/beta/tic,times(8,3,47),see(5,3,8,3),terrs(8,3,47),csums(8,3 &
,47),fopn(8,3,47),dos(8,3,47)
COMMON/spaces/ion,j5,k2,k3,loop1,laps,loop,m,kr,lp,n13h,ibuf,nx,l, &
npass,nfail,n,n1,n2,n13,n213,n813,n14,n16,n416,n21,nt1,nt2,last,idebug &
,mpy,loop2,mucho,mpylim,intbuf(16)
COMMON/spacer/a11,a12,a13,a21,a22,a23,a31,a32,a33,ar,br,c0,cr,di,dk &
,dm22,dm23,dm24,dm25,dm26,dm27,dm28,dn,e3,e6,expmax,flx,q,qa,r,ri &
,s,scale,sig,stb5,t,xnc,xnei,xnm
COMMON/space0/time(47),csum(47),ww(47),wt(47),ticks,fr(9),terr1(47 &
),sumw(7),start,skale(47),bias(47),ws(95),total(47),flopn(47),iq(7 &
),npf,npfs1(47)
COMMON/spacei/wtp(3),mul(3),ispan(47,3),ipass(47,3)
! ******************************************************************
INTEGER :: e,f,zone
COMMON/ispace/e(96),f(96),ix(1001),ir(1001),zone(300)
COMMON/space1/u(1001),v(1001),w(1001),x(1001),y(1001),z(1001),g(1001) &
,du1(101),du2(101),du3(101),grd(1001),dex(1001),xi(1001),ex(1001) &
,ex1(1001),dex1(1001),vx(1001),xx(1001),rx(1001),rh(2048),vsp(101) &
,vstp(101),vxne(101),vxnd(101),ve3(101),vlr(101),vlin(101),b5(101) &
,plan(300),d(300),sa(101),sb(101)
COMMON/space2/p(4,512),px(25,101),cx(25,101),vy(101,25),vh(101,7), &
vf(101,7),vg(101,7),vs(101,7),za(101,7),zp(101,7),zq(101,7),zr(101 &
,7),zm(101,7),zb(101,7),zu(101,7),zv(101,7),zz(101,7),b(64,64),c(64,64) &
,h(64,64),u1(5,101,2),u2(5,101,2),u3(5,101,2)
! ******************************************************************
dimension zx(1023),xz(447,3),tk(6),mtmp(1)
EQUIVALENCE(zx(1),z(1)),(xz(1,1),x(1))
double precision temp
logical ltmp
! ******************************************************************
! STANDARD PRODUCT COMPILER DIRECTIVES MAY BE USED FOR OPTIMIZATION
CALL trace('KERNEL ')
CALL SPACE
mpy= 1
mpysav= mpylim
loop2= 1
mpylim= loop2
l= 1
loop= 1
lp= loop
it0= test(0)
loop2= mpysav
mpylim= loop2
do
!***********************************************************************
!*** KERNEL 1 HYDRO FRAGMENT
!***********************************************************************
x(:n)= q+y(:n)*(r*zx(11:n+10)+t*zx(12:n+11))
IF(test(1) <= 0)THEN
EXIT
END IF
END DO
do
! we must execute DO k= 1,n repeatedly for accurat
! e timing
!***********************************************************************
!*** KERNEL 2 ICCG EXCERPT (INCOMPLETE CHOLESKY - CONJUGATE GRADIE
! NT)
!***********************************************************************
ii= n
ipntp= 0
do while(ii > 1)
ipnt= ipntp
ipntp= ipntp+ii
ii= ishft(ii,-1)
i= ipntp+1
!dir$ vector always
x(ipntp+2:ipntp+ii+1)=x(ipnt+2:ipntp:2)-v(ipnt+2:ipntp:2) &
&*x(ipnt+1:ipntp-1:2)-v(ipnt+3:ipntp+1:2)*x(ipnt+3:ipntp+1:2)
END DO
IF(test(2) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 3 INNER PRODUCT
!***********************************************************************
q= dot_product(z(:n),x(:n))
IF(test(3) <= 0)THEN
EXIT
END IF
END DO
m= (1001-7)/2
!***********************************************************************
!*** KERNEL 4 BANDED LINEAR EQUATIONS
!***********************************************************************
fw= 1.000D-25
do
!dir$ vector always
xz(6,:3)= y(5)*(xz(6,:3)+matmul(y(5:n:5), xz(:n/5,:3)))
IF(test(4) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 5 TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL (NO VECTORS
! )
!***********************************************************************
tmp= x(1)
DO i= 2,n
tmp= z(i)*(y(i)-tmp)
x(i)= tmp
END DO
IF(test(5) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 6 GENERAL LINEAR RECURRENCE EQUATIONS
!***********************************************************************
DO i= 2,n
w(i)= 0.0100D0+dot_product(b(i,:i-1),w(i-1:1:-1))
END DO
IF(test(6) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 7 EQUATION OF STATE FRAGMENT
!***********************************************************************
x(:n)= u(:n)+r*(z(:n)+r*y(:n))+t*(u(4:n+3)+r*(u(3:n+2)+r*u(2:n+1))+t*( &
u(7:n+6)+q*(u(6:n+5)+q*u(5:n+4))))
IF(test(7) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 8 A.D.I. INTEGRATION
!***********************************************************************
nl1= 1
nl2= 2
fw= 2.000D0
DO ky= 2,n
DO kx= 2,3
du1ky= u1(kx,ky+1,nl1)-u1(kx,ky-1,nl1)
du2ky= u2(kx,ky+1,nl1)-u2(kx,ky-1,nl1)
du3ky= u3(kx,ky+1,nl1)-u3(kx,ky-1,nl1)
u1(kx,ky,nl2)= u1(kx,ky,nl1)+a11*du1ky+a12*du2ky+a13 &
*du3ky+sig*(u1(kx+1,ky,nl1)-fw*u1(kx,ky,nl1)+u1(kx-1,ky,nl1))
u2(kx,ky,nl2)= u2(kx,ky,nl1)+a21*du1ky+a22*du2ky+a23 &
*du3ky+sig*(u2(kx+1,ky,nl1)-fw*u2(kx,ky,nl1)+u2(kx-1,ky,nl1))
u3(kx,ky,nl2)= u3(kx,ky,nl1)+a31*du1ky+a32*du2ky+a33 &
*du3ky+sig*(u3(kx+1,ky,nl1)-fw*u3(kx,ky,nl1)+u3(kx-1,ky,nl1))
END DO
END DO
IF(test(8) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 9 INTEGRATE PREDICTORS
!***********************************************************************
px(1,:n)= dm28*px(13,:n)+px(3,:n)+dm27*px(12,:n)+dm26*px(11,:n)+dm25*px(10 &
,:n)+dm24*px(9,:n)+dm23*px(8,:n)+dm22*px(7,:n)+c0*(px(5,:n)+px(6,:n))
IF(test(9) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 10 DIFFERENCE PREDICTORS
!***********************************************************************
!dir$ unroll(2)
do k= 1,n
br= cx(5,k)-px(5,k)
px(5,k)= cx(5,k)
cr= br-px(6,k)
px(6,k)= br
ar= cr-px(7,k)
px(7,k)= cr
br= ar-px(8,k)
px(8,k)= ar
cr= br-px(9,k)
px(9,k)= br
ar= cr-px(10,k)
px(10,k)= cr
br= ar-px(11,k)
px(11,k)= ar
cr= br-px(12,k)
px(12,k)= br
px(14,k)= cr-px(13,k)
px(13,k)= cr
enddo
IF(test(10) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 11 FIRST SUM. PARTIAL SUMS. (NO VECTORS)
!***********************************************************************
temp= 0
DO k= 1,n
temp= temp+y(k)
x(k)= temp
END DO
IF(test(11) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 12 FIRST DIFF.
!***********************************************************************
x(:n)= y(2:n+1)-y(:n)
IF(test(12) <= 0)THEN
EXIT
END IF
END DO
fw= 1.000D0
!***********************************************************************
!*** KERNEL 13 2-D PIC Particle In Cell
!***********************************************************************
do
! rounding modes for integerizing make no difference here
do k= 1,n
i1= 1+iand(int(p(1,k)),63)
j1= 1+iand(int(p(2,k)),63)
p(3,k)= p(3,k)+b(i1,j1)
p(1,k)= p(1,k)+p(3,k)
i2= iand(int(p(1,k)),63)
p(1,k)= p(1,k)+y(i2+32)
p(4,k)= p(4,k)+c(i1,j1)
p(2,k)= p(2,k)+p(4,k)
j2= iand(int(p(2,k)),63)
p(2,k)= p(2,k)+z(j2+32)
i2= i2+e(i2+32)
j2= j2+f(j2+32)
h(i2,j2)= h(i2,j2)+fw
enddo
IF(test(13) <= 0)THEN
EXIT
END IF
END DO
fw= 1.000D0
!***********************************************************************
!*** KERNEL 14 1-D PIC Particle In Cell
!***********************************************************************
do
ix(:n)= grd(:n)
!dir$ ivdep
vx(:n)= ex(ix(:n))-ix(:n)*dex(ix(:n))
ir(:n)= vx(:n)+flx
rx(:n)= vx(:n)+flx-ir(:n)
ir(:n)= iand(ir(:n),2047)+1
xx(:n)= rx(:n)+ir(:n)
DO k= 1,n
rh(ir(k))= rh(ir(k))+fw-rx(k)
rh(ir(k)+1)= rh(ir(k)+1)+rx(k)
END DO
IF(test(14) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 15 CASUAL FORTRAN. DEVELOPMENT VERSION.
!***********************************************************************
! CASUAL ORDERING OF SCALAR OPERATIONS IS TYPICAL PRACTICE.
! THIS EXAMPLE DEMONSTRATES THE NON-TRIVIAL TRANSFORMATION
! REQUIRED TO MAP INTO AN EFFICIENT MACHINE IMPLEMENTATION.
ng= 7
nz= n
ar= 0.05300D0
br= 0.07300D0
!$omp parallel do private(t,j,k,r,s,i,ltmp) if(nz>98)
do j= 2,ng-1
do k= 2,nz
i= merge(k-1,k,vf(k,j) < vf((k-1),j))
t= merge(br,ar,vh(k,(j+1)) <= vh(k,j))
r= MAX(vh(i,j),vh(i,j+1))
s= vf(i,j)
vy(k,j)= t/s*SQRT(vg(k,j)**2+r*r)
if(k < nz)then
ltmp=vf(k,j) >= vf(k,(j-1))
i= merge(j,j-1,ltmp)
t= merge(ar,br,ltmp)
r= MAX(vg(k,i),vg(k+1,i))
s= vf(k,i)
vs(k,j)= t/s*SQRT(vh(k,j)**2+r*r)
endif
END do
vs(nz,j)= 0.0D0
END do
vy(2:nz,ng)= 0.0D0
IF(test(15) <= 0)THEN
EXIT
END IF
END DO
ii= n/3
!***********************************************************************
!*** KERNEL 16 MONTE CARLO SEARCH LOOP
!***********************************************************************
lb= ii+ii
k2= 0
k3= 0
do
DO m= 1,zone(1)
j2= (n+n)*(m-1)+1
DO k= 1,n
k2= k2+1
j4= j2+k+k
j5= zone(j4)
IF(j5 >= n)THEN
IF(j5 == n)THEN
EXIT
END IF
k3= k3+1
IF(d(j5) < d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
go to 200
END IF
IF(d(j5) == d(j5-1)*(t-d(j5-2))**2+(s-d(j5-3))**2+ (r-d(j5-4))**2)THEN
EXIT
END IF
ELSE
IF(j5-n+lb < 0)THEN
IF(plan(j5) < t)THEN
go to 200
END IF
IF(plan(j5) == t)THEN
EXIT
END IF
ELSE
IF(j5-n+ii < 0)THEN
IF(plan(j5) < s)THEN
go to 200
END IF
IF(plan(j5) == s)THEN
EXIT
END IF
ELSE
IF(plan(j5) < r)THEN
go to 200
END IF
IF(plan(j5) == r)THEN
EXIT
END IF
END IF
END IF
END IF
IF(zone(j4-1) <= 0)THEN
go to 200
END IF
END DO
EXIT
200 IF(zone(j4-1) == 0)THEN
EXIT
END IF
END DO
IF(test(16) <= 0)THEN
EXIT
END IF
END DO
dw= 5.0000D0/3.0000D0
!***********************************************************************
!*** KERNEL 17 IMPLICIT, CONDITIONAL COMPUTATION (NO VECTORS)
!***********************************************************************
! RECURSIVE-DOUBLING VECTOR TECHNIQUES CAN NOT BE USED
! BECAUSE CONDITIONAL OPERATIONS APPLY TO EACH ELEMENT.
fw= 1.0000D0/3.0000D0
tw= 1.0300D0/3.0700D0
do
scale= dw
rtmp= fw
e6= tw
DO k= n,2,-1
e3= rtmp*vlr(k)+vlin(k)
xnei= vxne(k)
vxnd(k)= e6
xnc= scale*e3
! SELECT MODEL
IF(max(rtmp,xnei) <= xnc)THEN
! LINEAR MODEL
ve3(k)= e3
rtmp= e3+e3-rtmp
vxne(k)= e3+e3-xnei
ELSE
rtmp= rtmp*vsp(k)+vstp(k)
! STEP MODEL
vxne(k)= rtmp
ve3(k)= rtmp
END IF
e6= rtmp
END DO
xnm= rtmp
IF(test(17) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 18 2-D EXPLICIT HYDRODYNAMICS FRAGMENT
!***********************************************************************
t= 0.003700D0
s= 0.004100D0
kn= 6
jn= n
zb(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(2:jn,:kn-1))/(zm(2:jn,2:kn)+zm(:jn-1,2:kn)) &
*(zp(:jn-1,2:kn)-zp(2:jn,2:kn)+(zq(:jn-1,2:kn)-zq(2:jn,2:kn)))
za(2:jn,2:kn)=(zr(2:jn,2:kn)+zr(:jn-1,2:kn))/(zm(:jn-1,2:kn)+zm(:jn-1,3:kn+1)) &
*(zp(:jn-1,3:kn+1)-zp(:jn-1,2:kn)+(zq(:jn-1,3:kn+1)-zq(:jn-1,2:kn)))
zu(2:jn,2:kn)= zu(2:jn,2:kn)+ &
s*(za(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(3:jn+1,2:kn)) &
-za(:jn-1,2:kn)*(zz(2:jn,2:kn)-zz(:jn-1,2:kn)) &
-zb(2:jn,2:kn)*(zz(2:jn,2:kn)-zz(2:jn,:kn-1))+ &
zb(2:jn,3:kn+1)*(zz(2:jn, 2:kn)-zz(2:jn,3:kn+1)))
zv(2:jn,2:kn)= zv(2:jn,2:kn)+ &
s*(za(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(3:jn+1,2:kn)) &
-za(:jn-1,2:kn)*(zr(2:jn,2:kn)-zr(:jn-1,2:kn)) &
-zb(2:jn,2:kn)*(zr(2:jn,2:kn)-zr(2:jn,:kn-1))+ &
zb(2:jn,3:kn+1)*(zr(2:jn, 2:kn)-zr(2:jn,3:kn+1)))
zr(2:jn,2:kn)= zr(2:jn,2:kn)+t*zu(2:jn,2:kn)
zz(2:jn,2:kn)= zz(2:jn,2:kn)+t*zv(2:jn,2:kn)
IF(test(18) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 19 GENERAL LINEAR RECURRENCE EQUATIONS (NO VECTORS)
!***********************************************************************
kb5i= 0
DO k= 1,n
b5(k+kb5i)= sa(k)+stb5*sb(k)
stb5= b5(k+kb5i)-stb5
END DO
DO k= n,1,-1
b5(k+kb5i)= sa(k)+stb5*sb(k)
stb5= b5(k+kb5i)-stb5
END DO
IF(test(19) <= 0)THEN
EXIT
END IF
END DO
dw= 0.200D0
!***********************************************************************
!*** KERNEL 20 DISCRETE ORDINATES TRANSPORT: RECURRENCE (NO VECTORS
!***********************************************************************
do
rtmp= xx(1)
DO k= 1,n
di= y(k)*(rtmp+dk)-g(k)
dn=merge( max(s,min(z(k)*(rtmp+dk)/di,t)),dw,di /= 0.0)
x(k)= ((w(k)+v(k)*dn)*rtmp+u(k))/(vx(k)+v(k)*dn)
rtmp= ((w(k)-vx(k))*rtmp+u(k))*DN/(vx(k)+v(k)*dn)+ rtmp
xx(k+1)= rtmp
END DO
IF(test(20) <= 0)THEN
EXIT
END IF
END DO
do
!***********************************************************************
!*** KERNEL 21 MATRIX*MATRIX PRODUCT
!***********************************************************************
px(:25,:n)= px(:25,:n)+matmul(vy(:25,:25),cx(:25,:n))
IF(test(21) <= 0)THEN
EXIT
END IF
END DO
expmax= 20.0000D0
!***********************************************************************
!*** KERNEL 22 PLANCKIAN DISTRIBUTION
!***********************************************************************
! EXPMAX= 234.500d0
fw= 1.00000D0
u(n)= 0.99000D0*expmax*v(n)
do
y(:n)= u(:n)/v(:n)
w(:n)= x(:n)/(EXP(y(:n))-fw)
IF(test(22) <= 0)THEN
EXIT
END IF
END DO
fw= 0.17500D0
!***********************************************************************
!*** KERNEL 23 2-D IMPLICIT HYDRODYNAMICS FRAGMENT
!***********************************************************************
do
DO k= 2,n
do j=2,6
za(k,j)= za(k,j)+fw*(za(k,j+1)*zr(k,j)-za(k,j)+ &
& zv(k,j)*za(k-1,j)+(zz(k,j)+za(k+1,j)* &
& zu(k,j)+za(k,j-1)*zb(k,j)))
END DO
END DO
IF(test(23) <= 0)THEN
EXIT
END IF
END DO
x(n/2)= -1.000D+10
!***********************************************************************
!*** KERNEL 24 FIND LOCATION OF FIRST MINIMUM IN ARRAY
!***********************************************************************
! X( n/2)= -1.000d+50
do
m= minloc(x(:n),DIM=1)
IF(test(24) == 0)THEN
EXIT
END IF
END DO
sum= 0.00D0
som= 0.00D0
DO k= 1,mk
sum= sum+time(k)
times(jr,il,k)= time(k)
terrs(jr,il,k)= terr1(k)
npfs(jr,il,k)= npfs1(k)
csums(jr,il,k)= csum(k)
dos(jr,il,k)= total(k)
fopn(jr,il,k)= flopn(k)
som= som+flopn(k)*total(k)
END DO
tk(1)= tk(1)+sum
tk(2)= tk(2)+som
! Dumpout Checksums: file "chksum"
! WRITE ( 7,706) jr, il
! 706 FORMAT(1X,2I3)
! WRITE ( 7,707) ( CSUM(k), k= 1,mk)
! 707 FORMAT(5X,'&',1PE23.16,',',1PE23.16,',',1PE23.16,',')
CALL track('KERNEL ')
RETURN
END SUBROUTINE kernel
|